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Abstract—To glean the benefits offered by massive multi-input
multi-output (MIMO) systems, channel state information must be
accurately acquired. Despite the high accuracy, the computational
complexity of classical linear minimum mean squared error
(MMSE) estimator becomes prohibitively high in the context of
massive MIMO, while the other low-complexity methods degrade
the estimation accuracy seriously. In this paper, we develop a
novel rank-1 subspace channel estimator to approximate the max-
imum likelihood (ML) estimator, which outperforms the linear
MMSE estimator, but incurs a surprisingly low computational
complexity. Our method first acquires the highly accurate angle-
of-arrival (AoA) information via a constructed space-embedding
matrix and the rank-1 subspace method. Then, it adopts the
post-reception beamforming to acquire the unbiased estimate
of channel gains. Furthermore, a fast method is designed to
implement our new estimator. Theoretical analysis shows that
the extra gain achieved by our method over the linear MMSE
estimator grows according to the rule of O(log10 M), while its
computational complexity is linearly scalable to the number of
antennas M . Numerical simulations also validate the theoretical
results. Our new method substantially extends the accuracy-
complexity region and constitutes a promising channel estimation
solution to the emerging massive MIMO communications.

Index Terms—Massive MIMO, channel estimation, MMSE es-
timator, rank-1 subspace, post-reception beamforming, Cramer-
Rao lower bound, low complexity

I. INTRODUCTION

Massive multi-input multi-output (MIMO), as well as its
evolution, has been recognized as a key technology in 5G
and 6G communications [1]–[8]. It is capable of substantially
improving both the spectrum and energy efficiency [2], thus
enabling a wide variety of emerging applications [4], [9],
[10]. However, the vast potential benefits of massive MIMO
can be attained only if the channel state information (CSI) is
accurately acquired. Given the prohibitive complexity of the
maximum likelihood (ML) estimator, the task of accurate CSI
acquisition is usually accomplished by another classical linear
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minimum mean squared error (MMSE) channel estimator [3],
[11]–[16]. The linear MMSE estimator exploits the covariance
matrix of wireless channels and is capable of attaining high
accuracy. Unfortunately, the a priori statistical covariance
information tends to be unavailable, particularly in realistic
dynamic environments. Moreover, the linear MMSE estimator
may also incur an excessively high computational complexity
and a significant processing delay, and hence becomes imprac-
tical to low-cost and low-power devices. For these reasons, the
linear least-square (LS) channel estimator [1] has been widely
applied. However, the LS estimator inevitably degrades the
CSI accuracy and thus the channel capacity, despite its benefit
of low-complexity implementation [17], [18].

Recently, a variety of other channel estimators have been
proposed for massive MIMO systems, in order to achieve more
balanced tradeoff between estimation accuracy and computa-
tional complexity. These estimators can be divided into three
types. The first type of channel estimators exploit the low-
rank property [18]–[21], as massive MIMO channels are in
general spatially correlated [19]. By approximately computing
the inverse of a large matrix in the linear MMSE estimator, a
weighted polynomial expansion channel (WPEACH) estimator
was designed [17], [22], which results in a substantial reduc-
tion in computational complexity. However, in time-varying
environments, the updating of the weight coefficients is highly
complex [18]. The authors of [20] proposed a singular value
projection (SVP) method, which has lower mean squared error
(MSE) than the LS estimator and lower complexity than the
linear MMSE estimator. The second type of estimators resort
to the sparsity property of massive MIMO channels operating
in millimeter-wave (mmWave) frequencies [23]–[29]. For ex-
ample, an iterative LS estimator with sparse message passing
(LSE-SMP) was proposed to acquire CSI [28], [29], and it
attains the minimum variance unbiased estimate.

The third type of channel estimators first exploit the array
signal processing techniques [30]–[32] that are widely used in
radar systems, such as multiple signal classification (MUSIC)
and fast Fourier transform (FFT), to estimate the angle of
arrival (AoA), and then invoke the acquired accurate AoA
information to assist the fading gain estimation. With the
accurate information of AoAs, it is expected that the signal-to-
noise ratio (SNR) in fading gain estimation will be improved
[33], [34]. When the MUSIC algorithm is applied, the high
resolution AoA estimate can be attained, yet its complexity is
formidable to massive MIMO systems. Besides, the subspace
computation is infeasible for uniform linear array (ULA), as
the covariance matrix becomes unavailable in the multi-user
case. For this reason, FFT has been widely applied. As a
result, this type of channel estimators are capable of effectively
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reducing the complexity. However, due to its leakage effect,
the angular resolution is seriously limited and the estimated
AoAs even become biased. Therefore, the existing angular-
domain estimators may potentially suffer from either unaf-
fordable complexity or degraded accuracy.

The designs of the state-of-the-art channel estimators for
massive MIMO are to strike an attractive compromise between
the two conflicting objectives, namely, the computational com-
plexity and the estimation accuracy. Most existing methods can
reduce the computational complexity to some extent [17], [20],
[34], compared with the linear MMSE estimator; but none of
them is capable of outperforming the linear MMSE estimator.
Despite its great significance in both theoretical analysis and
practical applications, designing a channel estimator whose
achievable performance is superior to that of the linear MMSE
estimator remains an important open problem, especially when
the low computation complexity is also required.

Against the above backdrop, in this work we propose a
novel rank-1 subspace channel estimator for massive MIMO.
To the best of our knowledge, it is the first time that an
approximate ML estimator is designed, which can outper-
form the classical linear MMSE estimator, yet requiring a
dramatically reduced computational complexity. To attain this,
it firstly acquires the AoA information by leveraging a space-
embedding Hankel matrix and exploiting the rank-1 subspace,
which attains the near-optimal AoA estimates and breaks the
resolution limit of the FFT method. Second, a post-reception
beamforming scheme is suggested to estimate fading gains,
relying on the ML criterion. More importantly, we provide
the theoretical result on the lower-bound error of this two-
stage estimator, showing that the achieved gain over the linear
MMSE estimator increases obeying the rule of O(log10 M),
where M is the number of antennas at the base station (BS).
In order to reduce the complexity, we further integrate a fast
method, by using the low rank property of channel matrix of
massive MIMO communications. It thus achieves the highest-
ever complexity reduction, which is only on the order of
O
(
KP 2M

)
, compared with O

(
M3
)

for the MMSE estimator,
whereby K < M is the number of users and P ≪ M is the
number of paths.

Note that, although the single-snapshot MUSIC was studied
in MIMO radar systems [35]–[37], this is the first time it
is introduced to massive MIMO communications. By incor-
porating a post-reception beamforming scheme and the ML-
based estimation of fading gains, the single-snapshot MUSIC
approximates the ML estimator. Moreover, we maximally
simplify the computational decomposition of large matrix,
thus making complex subspace methods applicable to massive
MIMO systems. As such, our method overcomes two chal-
lenges in classical CSI estimators, by significantly improving
the accuracy and reducing the complexity. The main contribu-
tions of this work are summarized as follows.

1) We develop a two-stage channel estimator for mas-
sive MIMO systems by leveraging the rank-1 subspace
method. We first obtain the estimation of unknown
AoAs, relying on a constructed Hankel matrix and an
estimated pseudo-spectrum. Thus, the high-resolution
AoAs are acquired, resulting in the estimation error on

the order of O
(
1/M1+ε

)
for 0 < ε < 1. Moreover,

we adopt the post-reception beamforming to estimate
unknown channel gains, which effectively improves the
SNR and, unlike the classical FFT method, attains the
unbiased channel gain estimation.

2) We prove that the Cramér-Rao lower bound (CRLB) of
our two-stage CSI estimator is improved by O

(
1/M

)
,

compared with the linear MMSE estimator. For the
target MSE, our near-ML estimator thus attains an
extra gain that increases according to O(log10 M). As
a result, the channel estimation accuracy is dramatically
improved, which in turn enhances the communication
coverage and the channel capacity.

3) We design a fast method to implement this rank-1 sub-
space channel estimator, in the case of low-rank channel
matrix. By utilizing the inherent low-rank property of a
large Hankel matrix, we first approximate it via three
small matrices. Then, the singular value decomposition
(SVD) of the large Hankel matrix is replaced with the
SVD of these small matrices. This reduces the compu-
tational complexity of our estimator from O

(
KM3

)
to

O
(
KP 2M

)
(P ≪ M). Moreover, we show that our

fast method attains the high-resolution AoA estimation,
without compromising the accuracy.

4) The theoretical performance analysis of our new es-
timator is consolidated by comprehensive numerical
simulation results, which demonstrate that our method
indeed outperforms the linear MMSE estimator and the
sparsity-based methods, while dramatically reducing the
computational complexity by 2∼3 orders of magnitude.
In other words, the substantial performance gain is
attained by imposing a much lower complexity. Thus,
our new CSI estimator substantially extends the attain-
able complexity-accuracy region of CSI estimation for
massive MIMO systems.

The rest of our paper is organized as follows. In Section II,
we analyze the AoA-aided post-reception beamforming for
acquiring the channel gains in the single-user case, for empha-
sizing the critical role of accurate AoA estimation. Section III
details our proposed rank-1 subspace channel estimator, which
involves the successive estimation of AoAs and channel gains.
In Section IV, we theoretically analyze the estimation accuracy
of our method. In Section V a fast method is developed
to implement our estimator, and it remarkably reduces the
computational complexity without degrading the accuracy.
Numerical simulations are provided in Section VI to validate
our method, and we conclude this paper in Section VII.

This paper adopts the following notation conventions. Bold-
face lower-case and capital letters denote vectors and matrices,
respectively. X∗, XT and XH represent the conjugate, the
transpose and the conjugate transpose of X , respectively,
while X−1 and X† = XH

(
XXH

)−1
are the inverse and the

Moore-Penrose pseudo-inverse of X , respectively. vec(H) is
the vectorization of H , ⊗ is the Kronecker product, and ⌈·⌉
is the ceiling operator. IM is the M ×M identity matrix, and
∥·∥F is the Frobenius norm, while E[·] denotes the expectation
operator and var[·] stands for variance.
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II. CHANNEL ESTIMATION AIDED WITH AOA

In the uplink training of massive MIMO systems, if the
AoA information is available to the BS, it can be utilized
in the post-reception beamforming to improve the channel
estimation accuracy. In this section, we first analyze the AoA-
aided post-reception beamforming for acquiring the channel
gains in a single-user case, upon assuming perfect AoA infor-
mation. This provides some insight on how the post-reception
beamforming improves the channel estimation accuracy. We
next derive a necessary condition on the estimated AoA
information in order to attain the unbiased channel estimation,
and thereby show that classical FFT-based angular-domain
channel estimators may fail to satisfy this condition.

We consider the up-link channel estimation with a single-
antenna user equipment (UE), which transmits the pilot signal
of length B ≥ 1, while the BS equipped with M antennas
estimates the unknown channel gains. Hence, the received
signal Y ∈ CM×B is given by

Y =hxH +N , (1)

where x ∈ CB×1 is the random pilot signal (e.g., i.i.d. Gaus-
sian sequence) with a covariance matrix σ2

xIB , N ∈ CM×B

is the additive white Gaussian noise (AWGN) matrix whose
entries have zero mean and variance σ2

n, and h ∈ CM×1 is
the wireless channel vector. Without loss of generality, we use
the Saleh-Valenzuela (S-V) channel model to capture both the
spatial sparsity and the low-rank property of massive MIMO
channels [24], [38]–[41]. The low-rank channel occurs widely
in massive MIMO communications, especially when the BS
deployed in high buildings suppresses local scattering [19],
[20] and the signal propagation of multiple clustered users
shares the same reflectors. Then, the channel vector between
the UE and the BS is given by [18]–[20], [39]

h =

P−1∑
p=0

αpaM

(
θp
)
=

P−1∑
p=0

cp, (2)

where P is the number of paths; c0 ≜ α0aM

(
θ0
)

is the line-
of-sight (LoS) component with the complex-valued gain α0

and the AoA θ0; while cp ≜ αpaM

(
θp
)
, 1 ≤ p ≤ P − 1,

denotes the pth non-line-of-sight (NLoS) component that has
the complex-valued gain αp and the AoA θp [20], [42]. As
shown in [43], when operating in the high frequency band
(e.g., millimeter-wave band), the number of paths typically
satisfy P ≤ 5 in realistic environments. If ULA is used, the
steering vector aM (θ) ∈ CM×1 corresponding to the AoA θ
reads

aM (θ) ≜
[
1 exp

(
j2πd sin θ

λ

)
· · · exp

(
j2π(M−1)d sin θ

λ

)]T
.

(3)

Here, λ is the carrier wavelength and d is the antenna spacing.
If we further define the received signal vector as

y ≜Y x ∈ CM×1, (4)

and assume that the accurate AoA information of P paths,{
θ̂p
}P−1

p=0
, is available, then we estimate the channel gains by

invoking a post-reception beamforming as

α̂p =
1

M
aH
M

(
θ̂p
)
y, 0 ≤ p ≤ P − 1. (5)

Theorem 1. When the uplink AoAs of a single-antenna UE
are exactly known, i.e., θ̂p = θp for 0 ≤ p ≤ P − 1, and
the number of BS antennas M is large, the channel gains
estimated by using the post-reception beamforming (5) are
unbiased, i.e., E

[
α̂p

]
= αp, with the estimation error bounded

by σ2
n

MBσ2
x

, for 0 ≤ p ≤ P − 1.

Proof. See Appendix A.

It can be seen that in this idealized scenario with per-
fect P AoAs, the estimation accuracy for the channel gains
approaches the optimum, achieving a CRLB of σ2

n

MBσ2
x

. In
practice, however, the BS does not have the perfect AoA
information and can only estimate these P AoAs. Naturally,
the accuracy of the estimated AoAs,

{
θ̂p
}P−1

p=0
, affects the

accuracy of estimating the channel gains, when using the post-
reception beamforming (5).

Theorem 2. To achieve the unbiased estimation of the channel
gains via (5), a necessary condition is that the estimation error
of the AoA information must satisfy:∣∣θ̂p − θp

∣∣=O
(
1/M1+ε

)
, ∃ ε > 0,∀p. (6)

Proof. See Appendix B.

As mentioned, there exist some angular-domain channel
estimators, which first acquire the AoAs and then estimate
the channel gains [34]. In terms of the achievable MSE,
such angular-domain estimators [34] are superior to the LS
estimator, but inferior to the linear MMSE estimator. The main
reason is that, in the case of ULA, the information available
at the BS is limited and thus inadequate for classical subspace
methods to acquire high-resolution AoAs1. Thus, only the FFT
method can be applicable to acquiring AoAs, but it attains
low-resolution and even biased AoAs, due to the limited FFT
length (recall that the angular resolution is ∆θ = 1/M in the
FFT method). As a result, the channel gain estimation upon
using the post-reception beamforming is biased unfortunately.
Then, the FFT-based AoA estimation, with an error decaying
rate obeying O(1/M), is insufficient to achieve the unbiased
channel estimation via the post-reception beamforming. This
will also be demonstrated later by our numerical simulations,
where the FFT-based method exhibits the MSE floor in the
high-SNR region.

The above discussion emphasizes the significant importance
of the viable, high-resolution AoA estimates for the accurate
CSI acquisition in massive MIMO systems, which partially
motivates our work presented in this paper.

III. RANK-1 SUBSPACE CHANNEL ESTIMATOR

In this section, we first introduce a new approach to acquire
high-resolution AoA information, which then assists us to

1Another 2D MUSIC method has been studied in [33], which also becomes
inapplicable to the case considered here, i.e., one ULA serves multiple UEs,
where the rank of the covariance matrix Ry = 1

M
yyH is one.
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obtain the unbiased and accurate channel estimation via the
post-reception beamforming. In the case of ULA with K
UEs, the received signal reduces to an M × 1 spatial-domain
vector, since the other dimension of the signal matrix vanishes
after removing the multi-user interference (MUI), as will be
seen later. Thus, classical subspace methods (e.g. standard
MUSIC) relying on the covariance matrix becomes invalid.
To overcome this difficulty, we design a novel rank-1 sub-
space channel estimator, by leveraging the space-embedding
technique in analogy to the time-embedding technique used in
modeling dynamical systems [44]–[46]. Note that the spatial
smoothing MUSIC technique is also applicable in this context.

A. Single-User Uplink Channel Estimation

We begin with the single-user case (K = 1). Let the length
of pilot signal be B ≥ K = 1. The elements of the received
signal vector y = [y0 y1 · · · yM−1]

H of (4) can be expressed
for 0 ≤ m ≤ M − 1 as

ym =

P−1∑
p=0

αp exp

(
j2πmd sin θp

λ

)
+ nm. (7)

It can be seen that the SNR is increased by B times, since we
have var

[
nm

]
= σ2

n/Bσ2
x. By defining the steering matrix as

AM (θ) =
[
aM (θ0) aM (θ1) · · · aM (θP−1)

]
∈ CM×P , (8)

with θ = [θ0 θ1 · · · θP−1]
H, the received signal vector can be

restructured as

y =AM (θ)α+ n, (9)

where we have α =
[
α0 α1 · · ·αP−1

]H ∈ CP×1.
To extract the unknown AoA information θ, we adopt

a novel rank-1 subspace method which allows for high-
resolution AoA estimation [35], [47]. To be specific, we first
construct a space-embedding Hankel matrix Ȳ ∈ CL×(M−L)

from the received signal vector y, i.e.,

Ȳ ≜


y0 y1 · · · yM−L−1

y1 y2 · · · yM−L

...
...

. . .
...

yL−1 yL · · · yM−1

=ĀLΛĀH
M−L+N̄ , (10)

where we have the diagonal matrix Λ ≜
diag{α0, α1, · · · , αP−1}, the stack length L satisfies
L ≥ P and M − L ≥ P , while ĀL ∈ CL×P is the sub-
matrix consisting of the first L rows of AM (θ) given in (8).
Since the above Hankel matrix Ȳ admits the Vandermonde
decomposition, one can directly obtain the signal space and
noise subspace by performing SVD on Ȳ [35].

Thus, like other subspace-based methods, e.g., the MUSIC
method [31], [32], [48], in order to accomplish high-resolution
AoA estimation we first compute the SVD of Ȳ as

Ȳ =UΣV H = UPΣPV
H
P +U−PΣΣΣnV

H
−P , (11)

where we denote the left singular matrix
U ∈ CL×L, the diagonal singular value matrix
ΣP = diag

{
σ1(Ȳ ), σ2(Ȳ ), · · · , σP (Ȳ )

}
and Σn =

diag
{
σP+1(Ȳ ), σP+2(Ȳ ), · · · , σL(Ȳ )

}
, with the singular

values σ1(Ȳ ) ≥ · · · ≥ σP (Ȳ ) ≥ σP+1(Ȳ ) = · · · = σL(Ȳ )2,
and the right singular matrix is V ∈ C(M−L)×L, while
UP ∈ CL×P is the submatrix consisting of the first P
columns of U and it corresponds to the signal subspace,
and VP ∈ C(M−L)×P is the submatrix consisting of the
first P columns of V . Furthermore, U−P ∈ CL×(L−P )

is the submatrix consisting of the last (L − P ) columns
of U and it corresponds to the noise subspace, and
V−P ∈ C(M−L)×(L−P ) is the submatrix consisting of
the last (L − P ) columns of V . Note that the first P
singular values of matrix Ȳ are significantly larger than the
remaining L−P singular values (e.g., in the high-SNR case).
Thus, we refer Ȳ as an approximate low-rank matrix, i.e.,
rank

(
Ȳ
)
= rank(Λ) ≈ P .

For each angle θ ∈ [−π, π], the spatial pseudo-spectrum
P (θ) is then estimated via [35]:

P (θ) =
1

aH
L(θ)

(
IL −UPUH

P

)
aL(θ)

, (12)

where aL(θ) ∈ CL×1 denotes the subvector consisting of
the first L elements of aM (θ). Upon evaluating the spatial
pseudo-spectrum with the total N discretized angles {−π +
n∆θ, n = 0, 1, · · · , N − 1}, where ∆θ = 2π/N is the angle
resolution and N is a sufficiently large integer, multiple AoAs
of unknown channel paths can be extracted, e.g., by identifying
the P highest peaks in P (θ):

θ̂ ≜
{
θ̂p | θ̂p = peak[P (θ)], 0 ≤ p ≤ P − 1

}
. (13)

After obtaining the unknown AoAs
{
θ̂p
}P−1

p=0
, the estimated

channel gains
{
α̂p

}P−1

p=0
can be computed using the post-

reception beamforming (5). In fact, based on the obtained
highly accurate AoA information our estimator essentially
achieves the ML estimation:

α̂p =arg max
αp∈C

p

(
1

M
aH
M

(
θ̂p
)
(h− y)

∣∣αp

)
, (14)

where the likelihood is given by

p

(
1

M
aH
M

(
θ̂p
)
(h− y)

∣∣αp

)
≈p

(
αp −

1

M
aH
M

(
θ̂p
)
y

)
≈p

(
1

M
aH
M

(
θ̂p
)
n

)
, (15)

since 1
M aH

M

(
θ̂p
)
aH
M

(
θp
)
≈ 1 and 1

M aH
M

(
θ̂p
)
aH
M

(
θp′
)
≈ 0,

p ̸= p′, for large M and accurate θ̂p. That is, it is a Gaussian
distribution, and solving the optimization problem (14) leads
to the ML solution of (5). Finally, we arrive at the equivalent
angular-domain channel estimate

ĥ =

P−1∑
p=0

α̂paM

(
θ̂p
)
. (16)

B. Multiple-User Uplink Channel Estimation

Now consider the multi-user MIMO (MU-MIMO) case,
where the BS equipped with M antennas serves K single-
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antenna users. Given the pilot signal X =
[
x1 x2 · · ·xK

]
∈

CB×K , the received signal matrix Y ∈ CM×B is given by

Y =HXH +N , (17)

where again N is the channel AWGN matrix, and the channel
matrix H =

[
h1 h2 · · ·hK

]
∈ CM×K with

hk =

P−1∑
p=0

αp,kaM

(
θp,k

)
, 1 ≤ k ≤ K. (18)

By exploiting the orthogonal property for the pilot se-
quences of different users, namely, xH

k xk = 1 and xH
k xk′ = 0

for k, k′ ∈ {1, 2, · · ·K} and k ̸= k′, we first obtain the
received signal vector of the kth user:

yk =Y xk ∈ CM×1, 1 ≤ k ≤ K. (19)

For each signal vector yk, the MUI has been removed. Thus,
we will adopt the rank-1 subspace method in Section III-A to
acquire the highly accurate AoAs of user k.

To be specific, a space-embedding matrix Ȳk is con-
structed similar to (10). On this basis, we can estimate
the unknown channel vector of the kth user as ĥk =∑P−1

p=0 α̂p,kaM (θ̂p,k). By repeating the above single-user esti-
mator for K times, the whole channel matrix can be estimated
as Ĥ =

[
ĥ1 ĥ2 · · · ĥk

]
.

C. Complexity Analysis

For the single-user case, the computational complexity of
our rank-1 subspace channel estimator consists of three parts:
1) the SVD of a space-embedding matrix Ȳ ∈ CL×(M−L),
which requires the computational complexity on the order of
O(M3), where we have assumed L = O(M), e.g., L = M

2 ;
2) the calculation of pseudo-spectrum, which imposes the
complexity of O(NLP ) (note that this procedure involves
only matrix multiplication and has highly efficient parallel
acceleration, see [48], [49]); 3) the estimation of the unknown
channel gains, which requires the computational complexity
of O(PM). Therefore, the overall complexity of our proposed
estimator is on the order of O(M3).

For the MU-MIMO case with K users, the computational
complexity of our estimator is obviously on the order of
O(KM3). In massive MIMO systems, M is very large, and
therefore this computational complexity is still too high. In
Section V, we further design a fast rank-1 subspace CSI
estimator, relying on the randomized low-rank approximation
technique [32], [50]–[52], with which the computational com-
plexity of our channel estimator can be reduced dramatically,
whilst the AoA estimation accuracy suffers no degradation.

IV. THEORETICAL PERFORMANCE ANALYSIS

In this section, we analyze the accuracy of our rank-1
subspace channel estimator for massive MIMO uplink.

A. Error of Estimated Channel AoAs

We first investigate the estimation accuracy of the AoA
information of each user. We easily note that the norm of
the Gaussian noise matrix in (10) obeys the following rule:∥∥N̄∥∥

2
=O

(√
M log2(M)

)
. (20)

On this basis, if the stack length is chosen to be L ∼ O(M)
[35], e.g., L = M/2, we can acquire the accurate pseudo-
spectrum estimation. When M → ∞ and the Gaussian noise
matrix N̄ meets the condition,

∥∥N̄∥∥2
2
∼ M log2(M), the error

of the estimated pseudo-spectrum is bounded [35]:

|P (θ)− P0(θ)|=O

(√
log2(M)√

M

)
, (21)

where P0(θ) is the exact spatial pseudo-spectrum in the
absence of additive noise. As such, for massive MIMO uplink,
we are able to obtain the highly accurate spatial pseudo-
spectrum, even in the presence of additive noise.

Furthermore, the error of the estimated AoA is also
bounded, as specified by the following Lemma 1 [35].

Lemma 1. Assume that L ≥ P and M − L ≥ P . Define

f(L) ≜
1

L

√
2

π

(
2

π
− 4

L

)− 1
2

. (22)

Denote the minimal gap between two adjacent AoAs as d =
minp ̸=p′

∣∣θp,k − θp′,k

∣∣. If

d ≥ max
{
f(L), f(M − L)

}
, (23)

then the AoA estimation error is bounded for large M :

δp,k ≜
∣∣θ̂p,k − θp,k

∣∣=O
(√

log2(M)
/
M

3
2

)
, ∀p. (24)

Based on Lemma 1, it is seen that when M is sufficiently
large, as is the case for massive MIMO, the estimated AoA
information is highly accurate. Also observe that the AoA
estimation error meets the necessary condition for the unbiased
channel gain estimate stated in Theorem 2. More importantly,
this high resolution AoA information enables the near-ML
estimation of unknown CSI, as seen late in Section IV-C.

B. Error of Estimated Channel Gains

We now analyze the estimation accuracy of the channel gain
estimates, obtained by the post-reception beamforming using
our highly accurate AoA estimates. Denote the error of the pth
AoA of the kth UE as δp,k =

∣∣θ̂p,k−θp,k
∣∣ and the variance of

the pilot signal as σ2
x. After the post-reception beamforming,

the noise term nM in (46) of Appendix A has the variance

σ̄2
M =

1

M
exp

(
−2 ln(2)M2δ2p,k

) σ2
n

Bσ2
x

. (25)

Here, the approximate Gaussian beamformer is considered;
see (49) in Appendix B. From (24), for large M , we have
δp,k → O

(√
log2(M)

/
M1+ϵ

)
, with ϵ → 1/2. By applying

the Taylor series expansion exp(x) = 1+ x+ o(x2), we have

σ̄2
M =

1

M

(
1− 2 ln(2)O

(
log2(M)

M2ϵ

))
σ2
n

Bσ2
x

M is large−→ σ2
n

MBσ2
x

.

(26)

Moreover, the channel gain estimation is the classical ML
estimation (14), whose likelihood density is a complex Gaus-
sian distribution with mean αp,k and variance σ̄2

M , namely,

p

(
αp,k − 1

M
aH
M

(
θ̂p,k

)
yk

)
∼ CN

(
αp,k, σ̄

2
M ) (27)
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The following theorem shows that the estimates
{
α̂p,k

}P−1

p=0

are unbiased with the estimation MSE bound σ2
n

/
(MBσ2

x).

Theorem 3. When L = O(M) (e.g., L = M/2) and the
minimal gap between AoAs satisfies (23), the channel gain
estimated via the rank-1 subspace method is asymptotically
unbiased for a large M , namely,

E
[
α̂p,k

]
=αp,k, for large M, (28)

and the estimation MSE is bounded by σ2
n

/
(MBσ2

x).

Proof. See Appendix C.

Note that, unlike the classical FFT method whose channel
gain estimate is biased, our rank-1 subspace method now
attains the unbiased channel gain estimate.

C. Error of Estimated Channel Vector

Based on the above error analysis on the estimates of
the AoAs and the channel gains, in the angular domain, the
residual error of the kth channel vector can be written as:

E
[∥∥ĥk − hk

∥∥2
2

]
= E

[∑P−1

p=0

∣∣∣ĥp,k − hp,k

∣∣∣2]
δp,k→0
≈ E

[∑P−1

p=0

∣∣α̂p,k cos(δp,k)− αp,k

∣∣2] . (29)

Recall from (24) that the MSE of AoA estimates of our
new method is O

(
log2 M
M3

)
, while that of the ML method is

O
(

1
M3

)
[53]. We argue that, although the MSE gap between

our method and ML is O (log2 M), the near-ML CSI estima-
tion will be attained in the high SNR region, given the shared
dominate decaying rate of O

(
1

M3

)
.

To be specific, when the number of antennas is sufficiently
large, e.g., M ≥ 100, we are able to omit the error of AoA
estimates in the high SNR region. That is to say, we will
asymptotically have cos

(
δp,k

) M is large−→ 1. Further consider
that the channel gains were estimated via the ML criterion
[54], the CRLB of the channel gain estimation is achievable.
As a result, the estimation error of the pth component in the
kth channel vector is:

E
[∣∣ĥp,k − hp,k

∣∣2] M is large
≈ E

[∣∣α̂p,k − αp,k

∣∣2] ≥ σ2
n

MBσ2
x

.

(30)

D. Gain Over Linear MMSE Estimator

Based on the signal model (17), the classical linear MMSE
estimator would also obtain an accurate channel estimation.
But it requires the MIMO channel covariance matrix RH ∈
CMK×MK and the channel AWGN covariance matrix RN ∈
CKB×KB to compute the channel estimate [54]

vec
(
Ĥmmse

)
=RHX̃H

(
X̃RHX̃H +RN

)−1
vec (Y ) ,

(31)

where X̃ = XT
⊗

I , and
⊗

is the Kronecker product. Note
that, the acquisition of the MIMO channel covariance matrix
and its inverse are very costly. So, another simpler LS channel
estimator computes the MIMO channel matrix estimate as

Ĥ ls =Y X†. (32)

Yet it has a larger estimation error than the linear MMSE
estimator.

Note that the linear MMSE estimator should not outperform
the ML method whose CRLB of the estimation error is given
in [55], [56]. Therefore, using this CRLB, we have

E

[∥∥∥ĥmmse
p,k − hp,k

∥∥∥2
2

]
≥ σ2

n

Bσ2
x + ρ2hσ

2
n

, (33)

where E
[
∂ ln ph(h)

∂h∗
∂H ln ph(h)

∂h∗

]
≜ ρ2hIM ; ρ2h = P + 1 and

ph(h) is the prior distribution of the channel vector hk.
Comparing (30) with (33), it can be seen that our rank-1

subspace estimator is capable of attaining an higher estimation
accuracy than the linear MMSE estimator.

Theorem 4. Define the normalized MSE of the channel
estimation as γ = E

[∥∥Ĥ−H
∥∥2
F

/
∥H∥2F

]
. In order to achieve

a target normalized MSE γ (e.g., γ < 10−2), the required SNR
for our rank-1 subspace method is snr1 ≜ 10 log10(E1/σ

2
n),

while the required SNR for the linear MMSE estimator is
snr2 ≜ 10 log10(E2/σ

2
n), where E1 and E2 are the respective

transmission powers of the two schemes. When M is large
and the stack length is L = O(M), we have:

snr2 − snr1=O
(
log10(M)

)
. (34)

The proof of Theorem 4 is straightforward. From (31),
we have snr1 ≜ 10 log10(E1/σ

2
n) = 10 log10(

σ2
n

MBσ2
x
).

While for the linear MMSE method, we have snr2 ≜
10 log10(E2/σ

2
n) = 10 log10(

σ2
n

Bσ2
x+ρ2

hσ
2
n
). Thus, we obtain

snr2 − snr1 = 10 log10

[
M

1+ρ2
h/B×σ2

n/σ
2
x

]
= O

(
log10(M)

)
,

when σ2
n/σ

2
x is small.

Remark 1. Theoretical analysis shows that our new estimator
is capable of acquiring the high-resolution AoA for large
M and L ∼ O(M). When M is small, this result may be
invalid. Later in the numerical simulation, it will be shown
that the above theoretical result holds when M > M0 with
M0 = 64. Although our rank-1 subspace estimator achieves
excellent estimation performance for massive MIMO systems,
its computational complexity on the order of O(KM3) still
makes it impractical. Note that the same problem is also
applied to the linear MMSE estimator2, which has the com-
plexity of O(M3). It is critical to achieve a low-complexity
deployment for massive MIMO system, while maintaining the
high performance.

V. FAST RANK-1 SUBSPACE ESTIMATOR

In this section, we design a fast implementation of our rank-
1 subspace method. From Subsection III-C, the complexity of
this rank-1 subspace estimator mainly comes from the SVD
of the Hankel matrix Ȳ . Without loss of generality, in the
sequel we assume L = M/2. Therefore, from (10), the space-
embedding Hankel matrix Ȳ ∈ CL×L becomes a symmetric
positive semi-definite (SPSD) matrix, i.e., Ȳ = Ȳ T. As
discussed previously, the rank of this SPSD matrix Ȳ is

2For the correlated MIMO channel matrix, the computational complexity
of the linear MMSE estimator becomes O

(
(MB)3

)
[17], [18].
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restricted. By exploiting this low-rank property, we resort
to a randomized low-rank approximation technique that is
widely applied in linear algebra and scientific computing [18],
[50]–[52], [57], [58], to construct a fast rank-1 subspace
CSI estimator without impeding the estimation accuracy. It is
noteworthy that, although this fast method may substantially
reduce the computational complexity in the case of low-rank
channel matrix, it is not an essential component of our two-
stage CSI estimator. For example, for the full-rank channel
matrix, there is no need to apply it.

A. Randomized Low-rank Approximation

In order to minimize the overall computational complexity,
we focus on approximate rather than exact computation of the
SVD of Ȳ ∈ CL×L. To achieve this goal, we first approximate
Ȳ with a special structure [32]:

Ȳ ≈CWCH, (35)

where the small matrix sketch C ∈ CL×s is abstracted from
Ȳ via random sampling3, while the small matrix W ∈ Cs×s

is computed based on the chosen sketch C.
To abstract C from Ȳ via random sampling, we specify

the sampling length s that satisfy rank
(
Ȳ
)
≤ s ≪ M , and

randomly pick up the s columns of Ȳ according to the uniform
distribution U{1, 2, · · · , L}. Denoting the sampled column
indexes as the set I ≜ {i1, i2, · · · , is} with |I| = s, we have

C =Ȳ (:, I) = Ȳ Π, (36)

where Π ∈ RL×s is the uniform sampling matrix, which
selects the s columns of

√
L√
s
IL with the column index set

I, namely, Π =
√
L√
s
IL(:, I).

Given the small sketch C ∈ CL×s, the weight matrix W ∈
Cs×s is determined, by minimizing the approximation error

W =arg min
W ′∈Cs×s

∥∥Ȳ −CW ′CH
∥∥2
F
= C†Ȳ

(
C†)H. (37)

Considering that the above exact solution requires the compu-
tational complexity of O

(
2s2M + sM2

)
, we choose to solve

it approximately. Specifically, since the optimization problem
(37) is over-determined, W can be derived in a more efficient
way, by further sketching both Ȳ and CWCH, as is done by
the Nyström method [32], [52], [59]. Hence, we have

W =arg min
W ′∈Cs×s

∥∥ΠT
(
Ȳ −CW ′CH

)
Π
∥∥2
F
,

=
(
ΠTȲ Π

)†
=
(
Ȳ (I, I)

)†
. (38)

With C and W , we obtain the randomized low-rank approx-
imation Ȳ as in (35). To compute its SVD, we first obtain the
SVD of C as C = UcΣcV

H
c , and then approximate Ȳ by:

Ȳ ≈ Uc ΣcV
H
c WVcΣ

H
c︸ ︷︷ ︸

≜B

UH
c = UcBUH

c . (39)

3Note that, in the general case (L ̸= M/2), the Hankel matrix Ȳ ,
constructed from the received signal vector y, is not symmetric. For simplicity,
here we assume L = M/2.

TABLE I
COMPUTATIONAL COMPLEXITY OF VARIOUS CSI ESTIMATORS.

Estimator Computational complexity
LS [1] O

(
KBM +KB2

)
SVP [20]1 O

(
tsvprest(K2 +K)M + 2K2

)
FFT [34] O

(
K(B + log2(M))M +KP 2

)
WPEACH [17]2 O

(
Nl(BK2 +B2K)M3 +N3

l

)
Linear MMSE [11]3 O

(
B(2K2 + 2BK +B2)M3

)
LSE-SMP [29]4 O

(
tlse−smpK(B2 +K2)M3

)
Random-MMSE [18]5 O

(
B3

1M
3 + s3rB

2
2 + s2rsc

)
Proposed6 O

(
KM3 +KNPM

)
Proposed fast6 O

(
K(P 2 +NP )M

)
1. tsvp: the number of iterations, and rest: the order of low rank.
2. Nl: truncation order of Taylor series expansion.
3. O

(
M3

)
for uncorrelated MIMO channels.

4. tlse−smp: the number of iterations.
5. B1/B2: the pilot lengths, and sr/sc: the sampling lengths.
6. Complexity O(KNPM) for matrix multiplications has fast parallel
acceleration implementation [49].

As B is a Hermitian matrix, i.e., B = BH, it has the SVD of
B = UBΣBU

H
B . Substituting the SVD of B into (39) leads

to the approximate rank-restricted SVD of Ȳ as

Ȳ ≈UcUBΣBU
T
BUH

c = ŨPΣBŨ
H
P , (40)

where the unitary matrix ŨP ∈ CL×s, given by

ŨP ≜ UcUB , (41)

defines approximately the signal subspace. On this basis, we
can approximate the pseudo-spectrum (12) by

P̃ (θ) =
1

aH
L(θ)

(
IL − ŨP ŨH

P

)
aL(θ)

, (42)

and search for its P highest peaks on the N gridded angles
{−π + n∆θ, n = 0, 1, · · · , N − 1}. In this stage, other
subspace-based methods, e.g., ESPRIT, can also be applied
to compute the above pseudo-spectrum and thus acquire un-
known AoAs. When the exact number of P is known as a
priori, highly accurate AoAs can be attained with ESPRIT.
While this prior information is not known, the above MUSIC
method can still acquire the accurate result.

B. Complexity Analysis

The computational complexity of our fast rank-1 subspace
estimator for the single UE involves three parts: 1) compute
the SVD of Ȳ approximately, which has the complexity of
O
(
s2M +s3

)
, 2) evaluate the spatial pseudo-spectrum, which

has the complexity of O(NLP ), and 3) estimate the channel
gains, with the complexity of O(M). Since both the number of
users K and the number of paths P are very small (≪ M ) and
further considering that L = M

2 and in practice the number
of sampled columns s = O(P ), the overall computational
complexity of our fast method for the K-user case is

Cfast rank-1=O
(
K(P 2 +NP )M

)
. (43)

Hence, the complexity of our fast method scales linearly with
M . This is two orders of magnitude lower than that of the
linear MMSE method, which has the complexity of O(M3).
This is because in practice we usually have P < 6,M >
64,K ≪ M in the multi-users massive MIMO scenario [43],
and hence K(P 2 +NP )M ≪ M3.



8

Table I compares the computational complexity of the
following massive MIMO channel estimators: the linear LS
[1], the SVP [20], the FFT [34], the WPEACH [17], the
linear MMSE [11], the LSE-SMP [29], the random-MMSE
[18], our rank-1 subspace estimator, and our fast rank-1
subspace estimator. We will show that our low-complexity
fast rank-1 subspace estimator is capable of outperforming the
linear MMSE estimator through both theoretical analysis and
numerical simulation.
C. Theoretical Analysis on Approximated Pseudo-spectrum

We first give the error bound on the approximate pseudo-
spectrum P̃ (θ) (42) computed based on the subspace ŨP . To
be self-contained, here we provide the following Theorem 5 to
demonstrate the accuracy of the fast method, while the proof
of Theorem 5 can be found in our previous work [32].

Theorem 5. Give C = Ȳ Π and W =
(
Ȳ (I, I)

)†
, where

Π ∈ RL×s is a uniform sampling matrix. Let the signal
subspace ŨP be computed by (41) and the pseudo-spectrum
be approximated by (42). Define the coherence of ŨP as
µ
(
ŨP

)
≜ L

P max
1≤m≤L

∥∥ŨP (m, :)
∥∥2
2

∈
[
1, L

P

]
and give a

constant δ ∈ (0, 1). When the sampling length s satisfies

s ≥4.5P log2

(
P
δ

)
µ
(
ŨP

)
, (44)

the following relation holds with probability at least 1− δ√
P (θ) ≤

(
1 + L√

s

σP+1

(
Ȳ
)

σP

(
Ȳ
) )√P̃ (θ). (45)

Theorem 5 gives the lower error bound on the approximate
pseudo-spectrum. When the SNR is high, the spectrum gap
σP+1

(
Ȳ )

σP

(
Ȳ
) is very small, i.e.,

σP+1

(
Ȳ )

σP

(
Ȳ
) → 0, and the approxi-

mation error becomes ignorable.

Remark 2. Based on the above lower bound, we can show
that the approximated pseudo-spectrum should not miss the
true AoAs. On one hand, the exact pseudo-spectrum peaks at
a true AoA and is significantly larger than the noise baseline
at the non-AoA region. Specifically, P (θp)/P (θnull) ∼ L,
where θnull ∈ [0, π]/{θp}Pp=1. If a single AoA was missed
in the approximated pseudo-spectrum, we expect to have
P̃ (θp) ∼ P (θnull). On the other hand, Theorem 5 suggests

that P (θp)/P̃ (θp) ≤ (1+ ϵ)2, where ϵ ≜ L√
s

σP+1

(
Ȳ
)

σP

(
Ȳ
) . Due to

the low-rank property of Hankel matrix Ȳ , in the high SNR
region, we should have ϵ < 1. Combining the both arguments
results in the contradictory result of (1 + ϵ)2 ≥ L. This
indicates that P̃ (θp) ∼ P (θnull) should be untrue, in the case
of large M . Thus, the approximated pseudo-spectrum should
accurately capture the real AoAs.

Hence, like the exact pseudo-spectrum (12), the approxi-
mated pseudo-spectrum (42) can be also used to acquire the
accurately AoA information. Furthermore, the rest of the fast
rank-1 subspace estimator are identical to those of the rank-1
subspace estimator. Therefore, we may conclude that the fast
rank-1 subspace estimator should not degrade the achievable
performance of the rank-1 subspace estimator.

-5 0 5 10 15 20

SNR /dB

-40

-35

-30

-25

-20

-15

-10

-5

0

N
or

m
al

iz
ed

 M
S

E
 /d

B

MMSE
Proposed
ML

Fig. 1. Normalized MSE performance of our rank-1 subspace estimator and
the linear MMSE estimator as functions of SNR for the full-rank, sparse and
uncorrelated channel, given M = 128, K = 40, B = 2K and L = M/2.

Fig. 2. SNR gain of our rank-1 subspace method over the classical linear
MMSE estimator as function of M for the full-rank sparse channel of Fig. 1,
with K = 40, B = 2K and L = M/2.

VI. NUMERICAL ANALYSIS

In this section, we compare the performance and complexity
of various massive MIMO channel estimators based on nu-
merical simulations using several evaluation metrics, including
the normalized mean square error (NMSE), the averaged CPU
runtime, and the channel capacity.

A. Full-rank and Sparse Channel

We first compare our rank-1 subspace estimator with the
classical linear MMSE method, in the case of full-rank and
sparse channel matrix, i.e., rank(H) = min{M,K} = K and
P ≪ M . That means, the channels are uncorrelated. In the
simulation, we first randomly generate P independent AoAs of
each channel vector and P i.i.d. Rayleigh fading gains. With
the assumption of ULA, these spatial channel parameters can
be transformed to the temporal domain, and then the channel
matrix is obtained. As discussed, the linear MMSE method
requires the channel covariance RH . We assume that such
a priori statistical information is available, thus leading to
the genie-aided linear MMSE estimator [60]. This may be
impractical as acquiring an accurate estimation of the channel
covariance requires considerable time resources. By contrast,
our method excludes such an impractical prior knowledge.

Fig. 1 compares the NMSE performance of our rank-1
subspace estimator with that of the classical linear MMSE
estimator and the ML estimator, for the massive MIMO system
with the number of antennas M = 128, the number of users
K = 40 and the length of pilot signal B = 2K. The number
of paths is P = 5 ∼ 7 for each channel vector, and we
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Fig. 3. Normalized MSE performance of five channel estimators as functions
of SNR for the full-rank, sparse and uncorrelated channel, given M = 256,
K = 40, B = 2K and L = M/2.

set the stack length to L = M/2 for our estimator. Observe
from Fig. 1 that our new method indeed approximates the
ML estimator, and dramatically outperforms the linear MMSE
estimator. For example, at SNR = 20 dB, the NMSE of our
rank-1 subspace estimator is more than 6 dB lower than that
of the linear MMSE method. This significant gain is mainly
attributed to two key factors: 1) the highly accurate AoA in-
formation acquired by the rank-1 subspace method, and 2) the
largely improved SNR by the post-reception beamforming.

Fig. 2 depicts the SNR gain achieved by our new method
over the linear MMSE estimator under different M . First, this
SNR gain increases with M , since the SNR after the post-
reception beamforming increases with M . Second, the numer-
ical results show that the attained gain over the linear MMSE
method indeed shows a logarithmic increasing trend with M ,
which validates the theoretical result of Theorem 4. Therefore,
by applying our new estimator, the UEs far away from the BS
can be admitted to establish reliable communication links, and
the coverage area of massive MIMO system can be effectively
extended.

Next we use the same full-rank channel model with M =
256, L = 128, K = 40, B = 2K and P = 7, to compare
the NMSE performance of several state-of-the-art channel
estimators in Fig. 3. Again, the propagation channels of K UEs
are uncorrelated. In this case, many low-rank based channel
estimators, including the SVP and WPEACH methods, are
inapplicable. As expected, the LS estimator and the FFT-based
estimator acquire less accurate CSI than the linear MMSE
method. As a classical angular-domain estimator [34], the
FFT-based method also acquire AoAs first. However, due to
its limited resolution and biased channel gain estimation, it
exhibits an error floor at the high SNR region, as can be
clearly seen in Fig. 3. Observe that our fast rank-1 subspace
estimator achieves the same NMSE performance as the rank-
1 subspace estimator. The numerical result of Fig. 3 thus
validates the theoretical analysis of Subsection V-C, namely,
the approximation of the fast rank-1 subspace implementation
does not degrade the achievable performance. Hence, the fast
rank-1 subspace estimator significantly outperforms the linear
MMSE estimator, in terms of channel estimation accuracy.
Note that for the fast rank-1 subspace method, we set the
sampling length to s = ⌈1.5 × P ⌉, i.e., s ∼ O(P ), which is
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Fig. 4. Time complexity of four channel estimators for the full-rank sparse
channel of Fig. 3: (a) as functions of K, given M = 256, B = 2K and
L = M/2, and (b) as functions of M , given K = 40, B = 2K and
L = M/2.

less strict than the requirement of (44); recall that (44) is a
sufficient condition. With this setting on s, it is sufficient to
attain a highly accurate AoA information.

To evaluate the computational complexity of various chan-
nel estimators, except for the comparative results in Table 1,
we also provide the CPU run-time to measure time complexity
or processing delay. The operating system runs at 2.7 GHz
basic frequency with RAM 32 GB. For the same full-rank
system of Fig. 3, Fig. 4(a) compares the time complexity of
four channel estimators by varying the number of users K. As
expected, the LS estimator imposes the lowest computational
complexity, which is its major advantage in practical appli-
cations. Observe that our fast rank-1 subspace method incurs
a lower complexity compared to the linear MMSE estimator.
This is remarkable, considering the fact that it significantly
outperforms the linear MMSE method, in terms of channel
estimation accuracy. Fig. 4(b) shows the time complexity of
the four channel estimators under different M . As shown, the
complexity of our fast method increases linearly with M . This
verifies the complexity analysis of Subsection IV-B. It can also
be seen that for M > 200, the complexity of our fast estimator
is dramatically lower than the linear MMSE estimator. In
particular, for M = 800, its complexity is around 106 times
lower than the linear MMSE method. This agrees with the
analysis of Subsection IV-B, which indicates that for massive
MIMO with large M , the complexity of our fast method is on
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Fig. 5. Normalized MSE performance of various channel estimator for the
low-rank, sparse and correlated channel, given rank(H) = 20, M = 256,
K = 40, L = M/2, and B = K.

two orders of magnitude lower than that of the linear MMSE
method.

B. Low-rank and Sparse Channel

We further consider the case of low-rank and sparse massive
MIMO, i.e., rank(H) < K and P ≪ M . As reported in
[19], multiple users may experience the similar propagation
environments, and hence the channel involves correlated paths.
In this case, the channel matrix is characterized by both low
rank and sparsity. Many channel estimators were developed
to exploit these two features [20], [34]. In the simulation, we
firstly generate a set of random AoAs and fading gains, while
assuming multiple channel vectors of clustered users share
the same set of spatial parameters. After the spatial channel
parameters are transformed to the temporal domain, the low-
rank and sparse channel matrix can be obtained. We assume
P = 5 ∼ 7, M = 256, K = 40, rank(H) = 20, L = M/2,
and B = 2K. For the fast method, the sampling length is
s = 20.

Fig. 5 compares the normalized MSE performance of var-
ious channel estimators. Similar to the FFT-based method,
the WPEACH also exhibits a high error floor at the high
SNR region. This is due to the approximation based on a
limited expansion order (e.g., 3 ∼ 5). The SVP achieves
3dB gain over the LS estimator. The sparsity-based estimator,
LSE-SMP, improves the NMSE by 2dB over the SVP, but its
NMSE is still 7 dB higher than the linear MMSE estimator.
The randomized-MMSE [18], which relies on randomized
matrix approximation to reduce the complexity, is capable
of achieving a comparable accuracy as the linear MMSE
estimator. Observe that our rank-1 subspace method and its
fast version attain the similar performance, both of which
approximate the ML estimator and again outperform the linear
MMSE estimator considerably.

Fig. 6 depicts the complexity of these channel estimators
as the functions of M . The LSE-SMP requires the highest
computational complexity, as it involves iterative computation
of large matrices. The high complexity of the WPEACH can be
attributed to the complex computation of weight coefficients
required in approximating inverse via matrix series expansion.
Observe that in correlated MIMO, the complexity of the linear
MMSE method also increases considerably. By separately
acquiring two small sub-matrices [18], the randomized-MMSE
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Fig. 7. BER performance of various channel estimators in the 5G NR
scenario; M = 256, K = 40 and P = 7; rank{H} = K; B = 80;
QPSK.

has significantly lower complexity than the linear MMSE
method, but its computational complexity is still considerably
higher than our rank-1 subspace method. The LS and FFT
methods offer the lowest complexity, but their estimation
performance are much poorer compared with the linear MMSE
method. Most noticeably, our fast rank-1 subspace method also
requires a very low computational complexity. Specifically,
at M = 300, its time complexity is 10000× faster than
the linear MMSE method. Among all the existing massive
MIMO channel estimators, our new method is the first one that
not only significantly outperforms the popular linear MMSE
estimator, but also imposes a dramatically lower complexity
than the latter.

C. BER Performance

We further evaluate the bit error rate (BER) performance
of various CSI estimators, in the context of 5G NR config-
urations. To be specific, we consider the sparse uncorrelated
channel matrix. The detailed simulation parameters are given
as follows: M = 256, K = 40, B = 2K and L = M/2.
The QPSK modulation is assumed, and the deterministic
pilot sequence (i.e., DM-RS) of length B = 80 is used. In
practice, our new estimator can be applied to both random
and deterministic pilot sequences. In the simulation, totally
1.6×106 data symbols are used (Nframe = 10, Npacket = 2000);
the BER curve is then plotted based on the Monte-Carlo
method. From Fig. 7, we can see that our new CSI estimator
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Fig. 8. Channel capacity achieved by various channel estimators for the
MIMO system with M = 256, K = 40 and P = 4.

attains the near-ML BER performance, while outperforming
the classical CSI estimators (e.g., LS and linear MMSE).

D. Channel Capacity and Spectral Efficiency

We then evaluate the channel capacity of the massive MIMO
system, assuming M = 128, K = 40 and P = 7. For
simplicity, we directly present the calculated results of the
sum rate. One can refer to [61] for the detailed equation. Fig. 8
depicts the channel capacity achieved by various channel esti-
mators, in comparison with the channel capacity of the perfect
CSI. It can be seen from Fig. 8 that the channel capacity
is significantly enhanced by our rank-1 subspace estimator,
compared to the other methods. For example, at SNR = 30 dB,
the achieved channel capacity of the linear MMSE estimator is
5.8 bits/sec/Hz, while our new method improves the channel
capacity to 7.1 bits/sec/Hz, which asymptotically closes the
capacity gap between the estimated CSI and the perfect CSI
(where the estimation MSE is zero).

Furthermore, we evaluate the spectral efficiency of various
CSI estimators in massive MIMO communications. In the
simulation, we set M = 256, K = 40, P = 5, B = 2K and
rank{H} = K. Note that, with the finite number of antennas
(M = 256), we may assume that the inter-cell interference
(ICI) from nearby cells can be reasonably ignored, as the pilot
contamination in this case can be negligible. Thus, we focus on
the popular regularized zero-forcing (RZF) precoding scheme
[62]. On this basis, the signal-to-noise-plus-interference ratio
(SINR) can be calculated. Finally, we obtain the instantaneous
spectral efficiency of various CSI estimators. From Fig. 9,
we observe that our proposed method achieves comparable
spectral efficiency as the ML estimator, while the others fail
to do so.

E. Complexity versus Accuracy Region

Next we jointly evaluate the two aspects of channel estima-
tion in massive MIMO communications, specifically, complex-
ity vs accuracy. The first performance metric is related to the
implementation cost, such as time or energy; while the second
metric corresponds to the benefit, i.e., estimation accuracy or
channel capacity. Traditionally, these two conflicting aspects
have to be balanced in massive MIMO systems, as done by
different channel estimators. To achieve the high accuracy in
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Fig. 9. Spectral efficiency of various channel estimators as functions of SNR;
M = 256, K = 40, L = M/2, and B = 2K. The regularized zero-forcing
(RZF) precoding scheme is adopted.

 

Fig. 10. Complexity vs accuracy in the CSI acquisition of massive MIMO
communications, given M = 256, K = 40 and SNR = 20 dB.
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Fig. 11. Performance of the proposed CSI estimator under different rank
values of channel matrices; M = 256, K = 40 and B = 2K.

the classical estimation sense, the complexity may become
impractical, as in the case of the linear MMSE estimator. To
reduce the complexity to a minimum, the estimation accuracy
and hence the channel capacity has to be seriously scarified, as
in the case of the LS estimator. Within the classical paradigm
of trading such two aspects [17], [20], [29], [34], the attainable
complexity-accuracy region in the CSI acquisition is largely
limited, as illustrated in the attainable region of Fig. 10.

As a key breakthrough, our rank-1 subspace estimator
surprisingly extends this complexity-accuracy region consid-
erably, as seen in Fig. 10. Unlike the CRLB of the classical
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linear MMSE method whose MSE is proportional to the noise
variance, our theoretical analysis shows that the attainable
MSE of our new estimator is further scaled by 1

M when M
is large (e.g. M > 64). Hence, the estimation accuracy of
our rank-1 subspace estimator is far beyond the limit of the
classical linear MMSE estimator, and it substantially enhances
the channel capacity and the coverage area. Moreover, its fast
version, which does not degrade the estimation accuracy, has
the complexity scaled linearly with M . This new massive
MIMO channel estimator therefore offers the great promise
to the emerging 5G-Advanced and 6G communications.

F. Practical Considerations

1) Effects of Channel Correlation Factor: In the above, we
have evaluated the performance of our proposed method in
both full-rank and low-rank channels. As seen, our method
is independent of the rank value of a channel matrix. It was
shown in [63] that the channel correlation factor, or the spatial
correlation matrices at the BS, affects the low rank property of
massive MIMO channels. In principle, the higher the channel
correlation factor, the lower the channel rank value. Although
a unified relationship between the channel correlation factor
and the channel rank value is hard to describe, we may
alternatively evaluate the estimators’ performance under differ-
ent rank values, corresponding to various channel correlation
factors. In Fig. 11, we present the NMSE performance with
different rank values. From the averaged NMSE performance
obtained with a large number of random channel realizations,
we conclude that the proposed method accurately acquires
unknown channel matrix.

2) Effects of Sector-Level Beamforming: In practice, the
BS may adopt the sector-level beamforming to enhance the
system’s performance. Combined with classical CSI estimators
(e.g., LS), the sector-level beamforming may further improve
the accuracy of channel estimation. Our proposed method can
also be applied in this scenario. Nevertheless, the improvement
on the estimation accuracy may be marginal. This is mainly
due to the high-accuracy estimation of AoAs, as well as the
subsequent post-reception beamforming in acquiring unknown
fading gains based on the ML criterion. Hence, for our two-
stage CSI estimator, the MSE performance may be comparable
with the case of using omnidirectional antenna.

3) 2D Uniform Rectangular Array (URA) Scenario: Fur-
thermore, we demonstrate that the proposed channel estimator
can be directly applied to the 2D URA based massive MIMO
to accomplish a highly accurate channel estimation. Here,
the only difference is that the received signal becomes a
two-dimensional matrix. From Fig. 12, it is seen that our
new estimator attains significant performance gain over the
classical LS and FFT estimators.

4) Another Potential Solution: Lastly, we note that another
popular scheme, i.e., approximate message passing (AMP),
shares the similar linear inverse problem formulation. In
this respect, the orthogonal AMP (OAMP) [64], or recently
developed memory AMP (MAMP) [65], may also have the
potential to accomplish the Bayesian optimal estimation. It is
interesting to consider the application of such AMP methods
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to realize the high-accuracy CSI estimation in future research.

VII. CONCLUSIONS

For massive MIMO systems, the existing channel estimators
do not trade off estimation accuracy and computational com-
plexity well, and the attainable accuracy-complexity region is
fundamentally limited. In this work, we have presented a novel
rank-1 subspace channel estimator, which could approximate
the ML method while avoiding the computationally exhaustive
search of high-dimensional space. Our new estimator first
acquires the high-resolution AoA estimate, and then attains
the unbiased and highly accurate channel gains by the post-
reception beamforming. Given the number of antennas M ,
our theoretical analysis has shown that this new method
substantially outperforms the classical linear MMSE estima-
tor, attaining the extra gain that increases with log10(M).
We have also derived a fast implementation of this rank-1
subspace estimator by leveraging the low-rank property of
the constructed Hankel matrix. This fast version does not
degrade the achievable performance, and yet it reduces the
computational complexity to the order of O(M), which is
orders of magnitude lower than the linear MMSE estimator.
Numerical simulations have validated our theoretical analysis.
Our new estimator has thus resolved a long-standing dilemma
in massive MIMO signal processing, namely, accuracy vs
complexity. It is the first estimator that goes far beyond the
estimation accuracy limit set by the linear MMSE estimator,
and yet only imposes the complexity in the order of the LS
estimator. We believe it has great potential in the 5G-Advanced
and 6G communications.

APPENDIX

A. Proof of Theorem 1

Proof. Substituting θ̂p by θp in (5) as well as noting the facts
of aH

M (θp)aM (θp) = M and aH
M (θp)aM (θp′) → 0 as M →

∞ for p ̸= p′, we immediately have

α̂p =
1

M
aH
M (θp)

( P−1∑
p′=0

αp′aM (θp′)

)
+

1

M
aH
M (θp)n,

=αp + nM , (46)
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where n ≜ Nx ∈ CM×1 with elements having the variance
σ2
n/Bσ2

x, and nM ≜ aH
M (θp)n/M which is a zero-mean

AWGN with the variance var[nM ] = σ2
n/MBσ2

x. Therefore,
the estimated channel gains using (5) are unbiased, i.e.,

E
[
α̂p

]
=αp, 0 ≤ p ≤ P − 1. (47)

With the linear Gaussian model of (46), the CRLB of the
above channel estimator satisfies [54]:

var
[
α̂p

]
≥var[nM ] =

σ2
n

MBσ2
x

, 0 ≤ p ≤ P − 1. (48)

This completes the proof of Theorem 1.

B. Proof of Theorem 2

Proof. For the ULA based massive MIMO system, the main-
lobe gain of a post-reception beamformer is modeled as a
circularly symmetric Gaussian function [66]–[68], i.e.,

G(θ) =M exp
(
−β(θ − θp)

2
)
, (49)

where β ≜ ln(2)/∆θ2−3dB with the 3dB beamwidth given by
∆θ−3dB = 2/M . Upon having the estimated AoAs

{
θ̂p
}P−1

p=0
,

the averaged channel gain estimation becomes:

E
[
α̂p

]
=exp

(
−2 ln(2)M2

(
θ̂p − θp

)2)
αp. (50)

When the number of antennas M is large, in order to attain
an unbiased channel gain estimate, the AoA estimation error
must satisfy certain condition. More specifically, in order to
obtain E

[
α̂p

]
= αp, we must have

M2
(
θ̂p − θp

)2 M is large−→ 0. (51)

It can be readily seen that when ∃ ε > 0 such that the
AoA estimation error satisfies

∣∣θ̂p − θp
∣∣ ∼ O

(
1/M1+ε

)
, the

unbiased channel gain estimate can be attained by (5).

C. Proof of Theorem 3

Proof. From (50), the expectation on the estimated channel
gain is given by

E
[
α̂p,k

]
= exp

(
−2 ln(2)M2δ2p,k

)
αp,k

=

(
1− 2 ln(2)O

(
log2(M)
M2ϵ

))
αp,k

M is large−→ αp,k. (52)

The CRLB of the estimation error is defined by [54]

E
[∣∣α̂p,k − αp,k

∣∣2] ≥ −

∂ ln p

(
αp,k− 1

M aH
M

(
θ̂p,k

)
yk

)
∂α2

p,k

−1

.

(53)

From (27) and (26), we conclude that the MSE of the channel
gain estimate meets:

E
[∣∣α̂p,k − αp,k

∣∣2] ≥σ̄2
M

M is large−→ σ2
n

MBσ2
x

. (54)

This completes the proof.
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