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Abstract  

The probabilistic cellular automaton (PCA) method is highlighted for its relatively simple 

numerical algorithm and low computational cost in the simulation of microstructural evolution. 

In this method, probabilistic state change rules are implemented to compute the evolution of 

cell states at each time step. The stochastic nature of this simulation method leads to non-

repeatable simulation results, introducing inherent uncertainty. In this study, the uncertainty 

and dispersion in PCA simulations of microstructural evolution were investigated. Hence, the 

probabilistic transformations of cell states were meticulously considered at each time step, and 

discrete probability distribution functions (dPDF) were introduced to analyze the frequency 

distribution of simulation outcomes. To evaluate the performance of the proposed dPDFs, 

cellular automaton models were developed with various numbers of cells and distribution of 

transformation probabilities. Multiple iterations of these simulations were conducted, and the 

validity of the presented distribution functions was assessed through statistical analysis of the 

simulations’ outcomes. Comparisons between PCA simulation results and distribution 

functions demonstrate consistency, emphasizing the predictive capability of the proposed 

models. Also, the effects of modeling parameters on the uncertainty of simulation results in 

two and three-dimensional PCA modeling were studied, introducing the coefficient of variation 

as a measure of dispersion. Results indicate that increasing the number of boundary cells, 

cellular resolution, and model size reduces uncertainty, enhancing the repeatability of PCA 

simulation outcomes.  
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1. Introduction  

Various numerical methods, including Monte Carlo, cellular automaton (CA), phase field, 

level-set, and vertex method, have been employed to simulate microstructural evolution. 

Cellular automation has gained significant interest due to its low computational cost, relatively 

simple numerical algorithm, and satisfactory computational accuracy [1, 2]. In cellular 

automaton, the states of individual system components (cells) are determined in discrete spatial 

and temporal domains using either deterministic or probabilistic rules. In this method, complex 

physical systems can be explained by defining relatively simple concepts and rules to describe 

the state transformation of cells and their interconnections [3]. Using probabilistic rules in the 

CA method simplifies the numerical algorithm and reduces the computational cost. For 

instance, In the simulation of microstructural evolutions controlled by interface movement, the 

transformation probability of each boundary cell is computed using governing kinetic 

equations of boundary motion. Subsequently, a decision is made regarding cell transformation, 

which can only exhibit two possible states: success or failure. In other words, the boundary 

either remains stationary or moves to a specific extent. Nevertheless, in reality, the interfaces 

move continually during transformation.  

In material science, the PCA is used in simulating various phenomena, such as solidification, 

Grain growth, and static and dynamic recrystallization. This method has been widely used for 

simulation of microstructural evolution during recrystallization. In the late 1990s, Raabe [4, 5] 

modeled the probabilistic nature of the grain boundary migration activated by atomic thermal 

fluctuations in the recrystallization phenomenon. Subsequently, the attack frequency 

(switching frequency of cell) and the probability of transformation of each boundary cell are 

derived by employing principles of cellular automaton modeling. He introduced a scalable 

kinetic probabilistic cellular automaton method, utilizing a weighted random sampling Monte 

Carlo to simulate the stochastic nature of the boundary dynamics during recrystallization. The 

PCA method has been used to predict both nucleation and growth of new grains in static [1, 6-

8] and dynamic [9-11] recrystallization. Moreover, this method is extensively employed to 

simulate the grain growth phenomenon, considering the structure, curvature, energy, and 

misorientation of grain boundaries. In these researches, various aspects of microstructure, 

including grain growth kinetics, grain size distribution, grain morphology, and abnormal grain 

growth, have been investigated using 2D [12, 13] and 3D [14, 15] models. Rappaz et al. [16] 

employed the PCA method to simulate the dendritic grain structures in solidification. Recently, 
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this method has been used in the simulation of various aspects of solidification, including 

epitaxial growth, competitive growth, and dendritic growth in additive manufacturing [17-20]. 

In the PCA method, the transformation probability is computed as the ratio of the local 

boundary velocity to the maximum boundary velocity in the domain (or the ratio of the local 

boundary movement to the maximum admissible boundary movement). Thus, the probabilistic 

state change rule, determining the new state of the cell i in the k+1 time step (𝜉𝑖
𝑘+1), is defined 

based on the state of this cell and its neighbors in the kth time step as below [2]. 

𝜉𝑖
𝑘+1 = {

𝜉𝑖
𝑘                   𝑖𝑓 𝑟 > 𝜔𝑖   (𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝑅𝑒𝑓𝑢𝑠𝑒𝑑)

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒  𝑖𝑓 𝑟 ≤ 𝜔𝑖    (𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝑆𝑢𝑐𝑐𝑒𝑒𝑑)
    (1) 

𝜔𝑖 =
𝑣𝑖

𝑣𝑚𝑎𝑥
     𝑣𝑚𝑎𝑥 = max

∀𝑗∈Ω
(𝑣𝑗) 

where 𝜔𝑖 and 𝑣𝑖 are the switching probability and boundary velocity of cell 𝑖, and 𝑣𝑚𝑎𝑥 is the 

maximum switching probability in domain Ω. Here 𝑟 is a random number (𝑟 ∈ ℝ | 0 ≤ 𝑟 ≤ 1). 

This rule has been applied, either in the same manner or with minor modifications in numerous 

studies employing probabilistic cellular automaton [5, 21].  

Generally, numerical simulation involves four main steps i.e., developing a conceptual model 

and proposing mathematical governing equations, developing numerical algorithms to solve 

the governing equations, implementing the computer program, and finally, validation and 

verification of model and simulation [22]. In the final step, model validation and verification 

are performed to assess the accuracy and reliability of the numerical simulation. Model 

verification evaluates the correctness of the model's assumptions, implementation, and 

technical specifications by comparing the simulation results with theoretical or analytical 

results. Validation assesses the model's capability to reproduce real-world observations or 

experimental data with adequate accuracy [23]. In most microstructural simulation studies, the 

typical procedure involves introducing the model, conducting the numerical simulations, and 

subsequently comparing the obtained results with experimental data to validate the model. 

However, in these researches, it is assumed that the mathematical model and numerical 

algorithms are already confirmed, and no uncertainty is attributed to models and algorithms. 

So, in most microstructural simulation studies, the focus lies on assessing the accuracy of the 

simulation by comparing the obtained results with experimental observations.  

Similar to other simulation methods, the solution uncertainties and simulation verification in 

CA simulations have not received significant attention despite the extensive research conducted 
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in the field. Only a few studies have focused briefly on the uncertainties associated with CA 

[24-26]. Chen et al. [24] conducted the CA to simulate the prey-predator ecological systems 

and studied the effects of cell size and cellular configurations in the dynamics of systems. The 

findings revealed that cell size has significant effects on spatial patterns, while cellular 

configurations affect both spatial patterns and system stability. Sitko et al. [25] studied the 

reliability in the predictions of the CA static recrystallization model at different levels of CA 

space discretization and time step length. They proposed threshold values for CA cell size and 

time step length to obtain reliable predictions. The findings showed a direct correlation between 

the accuracy of the simulation results and the resolution of the spatial and temporal domains. 

Yeh et al. [26] employed CA to simulate the evolution of urban systems. They investigated the 

effects of GIS (geographic information system) data errors and modeling uncertainties on urban 

simulation. It showed that the CA model generated relatively stable simulation results at the 

macro-level despite variations observed at the micro-level. It is also recommended to calculate 

the probability maps by repeating the numerical simulation and overlaying the repeated 

simulation results. The researchers studied the effects of various factors, such as cell size and 

structure resolution [24, 25, 27], time step length [25], cellular configurations and 

neighborhood definition [24, 28], state change law, initial conditions [26, 29-32] and stochastic 

nature of PCA algorithm [29] on the sensitivity of the results and behavior of the cellular 

automation model. However, the literature does not address the fundamental reasons behind 

uncertainty generation in PCA. Furthermore, there is a notable lack of exploration concerning 

their dependence on factors such as temporal and spatial resolution. 

In this study, the uncertainty in PCA simulations of microstructural evolution has been 

investigated. So, the stochastic behavior of microstructure changes in each PCA time step is 

studied, and discrete probability distribution functions (dPDF) are introduced to analyze the 

frequency distribution of simulation outcomes. These dPDFs are employed to predict the most 

probable outcome and the dispersion of simulation results. Also, the effects of modeling 

parameters, including the size and resolution of the model, as well as the probability 

distribution of state changes on The precision and reliability of simulation results, are studied. 

To assess the effectiveness of the suggested dPDFs, different cellular automaton models with 

various modeling specifications were created, and the results were statistically analyzed. 
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2. Uncertainty in PCA method 

In the CA method, the spatial domain is divided into a finite number of cells with specific states 

𝜉𝑖
(𝑘)

 and neighborhood 𝜂𝑖
(𝑘)

 at discrete time step 𝑘. Also, a state transformation function 𝑓𝑖
(𝑘)

 

is defined to compute the new states based on their previous states and neighborhoods. PCA is 

a type of CA that uses probabilistic rules for state transitions instead of deterministic rules. In 

this method, the new state of each cell is determined by a Monte Carlo sampling based on the 

transition probability of the cell and the states of its neighboring cells (it is mathematically 

expressed in eq. 1). For a cell “𝑖” with a transformation probability “𝜔𝑖”, the cell's state at time 

step “𝑘 + 1” can be determined by rewriting eq. 1 as follows. 

𝜉𝑖
𝑘+1 = {

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒     𝑖𝑓 𝜁𝑖
𝑘 = 1 

𝜉𝑖
𝑘                      𝑖𝑓 𝜁𝑖

𝑘 = 0
        (2) 

In this equation, the transformation decision “𝜁𝑖
𝑘” is evaluated using a Monte Carlo sampling, 

where 1 represents a "success", and 0 means a "failure". As it is clear in eq. 2, there are just 

two possible outcomes ("success" or "failure") in which 𝜁𝑖
𝑘 = 1  ("success") occurs with 

probability 𝜔𝑖 and 𝜁𝑖
𝑘 = 0  ("failure") occurs with probability 1 − 𝜔𝑖, where 0 ≤ 𝜔𝑖 ≤ 1. 

Thus, the Bernoulli probability function 𝑝𝑖 over possible outcomes 𝜁𝑖 ∈ {1, 0} can be expressed 

to determine the probability of possible outcome 𝜁𝑖 as follows 

𝑝𝑖(𝜁𝑖; 𝜔𝑖) = {
𝜔𝑖             𝑖𝑓 𝜁𝑖 = 1
1 − 𝜔𝑖     𝑖𝑓 𝜁𝑖 = 0

       0 ≤ 𝑝𝑖 ≤ 1       (3) 

It may be simply rewritten as follows  

𝑝𝑖(𝜁𝑖; 𝜔𝑖) =  𝜁𝑖𝜔𝑖 + (1 − 𝜁𝑖)(1 − 𝜔𝑖)      0 ≤ 𝑝𝑖 ≤ 1, 𝜁𝑖 ∈ {1, 0}    (4) 

Fig. 1. schematically depicts the probability distribution of cell i. 

 

Fig. 1. Probability distribution of cell i within a time step. 

 

In the simulation of microstructural transformations, similar to other PCA applications, many 

cells are subjected to transformation at each time step. Fig. 2 provides a schematic 

representation of a microstructure, illustrating two distinct blue and white phases separated by 

a red boundary. It is assumed that the boundary is moving in the specified directions (local 

𝜁𝑖 = 1 
 

֜ 𝑝𝑖 = 𝜔𝑖   

𝜁𝑖 = 0 
 

֜ 𝑝𝑖 = 1 − 𝜔𝑖 
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boundary velocities are depicted by red vectors). Consequently, the cells highlighted in red are 

subjected to transformation.  

 

Fig. 2. Schematic representation of a microstructure, illustrating two distinct blue and white phases 

separated by a red boundary. The cells highlighted in red are subjected to transformation. 

 

In the cellular automaton method, it is crucial to note that the transformation of each cell is 

determined by the states of the cell and its neighboring cells, independent of the transformations 

of other cells. In other words, the transformation of each cell is independent of the 

transformations in other cells. It is assumed that the domain consists of 𝒩 cells, and at the kth 

time step, 𝑁 cells are subjected to transformation. So, there are 2𝑁 possible outcomes or 

scenarios. Fig. 3 schematically depicts all possible scenarios for the transformation of boundary 

cells.  

 

Fig. 3. Schematic diagram of all possible scenarios for transformation of boundary cells. 
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If 𝑛 represents the number of successes ({𝑛 ∈ ℕ0 | 𝑛 ≤ 𝑁}), a specific outcome 𝒪𝑗  denoting 

the jth possible way to see 𝑛 successes among 𝑁 cells can be defined as follows 

𝒪𝑛,𝑗 = {𝜁1, … 𝜁𝑖, … 𝜁𝑁} | 𝜁𝑖 ∈ {1, 0}  & ∑ 𝜁𝑖
𝑁
𝑖=1 = 𝑛      (5) 

It should be noted that the number of possible scenarios with 𝑛 successes among 𝑁 cells is 

𝒥 = (𝑁
𝑛

) (combinatorial number 𝑁 in 𝑛). Hence, the probability of occurring jth scenario with 

𝑛 successes is 

𝑃𝑟(𝒪𝑛,𝑗) = 𝑃𝑟(⋂ 𝜁𝑖
𝑁
𝑖=1 )    𝑤ℎ𝑒𝑟𝑒 𝜁𝑖 ∈ 𝒪𝑛,𝑗, ∀𝑗 ∈ ℕ| 𝑗 ≤ 𝒥    (6) 

As the finite set of events in each scenario is mutually independent, by using the multiplication 

rule for independent events, yielding 

𝑃𝑟(𝒪𝑛,𝑗) = ∏ 𝑝𝑖(𝜁𝑖; 𝜔𝑖)𝑁
𝑖=1 = ∏ (𝜁𝑖𝜔𝑖 + (1 − 𝜁𝑖)(1 − 𝜔𝑖))𝑁

𝑖=1     (7) 

As mentioned earlier, there are 𝒥 different scenarios for 𝑛 successes. Considering all these 

scenarios, the probability of 𝑛 successes can be calculated as follows 

Φ(𝑛) = Pr(⋃ 𝒪𝑛,𝑖
𝒥
𝑖=1 )             (8) 

So it can be expanded as below 

Φ(𝑛) = ∑ Pr(𝒪𝑛,𝑖)𝒥
𝑖=1 − ∑ Pr(𝒪𝑛,𝑖 ∩ 𝒪𝑛,𝑗) 

𝑖<𝑗 + ∑ Pr(𝒪𝑛,𝑖 ∩ 𝒪𝑛,𝑗 ∩ 𝒪𝑛,𝑘) 
𝑖<𝑗<𝑘 + ⋯ +

(−1)𝒥−1 ∑ Pr(⋂ Pr(𝒪𝑛,𝑖)𝒥
𝑖=1 ) 

𝑖<⋯<𝒥        (9) 

In this problem, different scenarios are mutually exclusive which means the occurrence of any 

one of them implies the non-occurrence of the remaining scenarios. As the mutually exclusive 

scenarios cannot occur at the same time, so 

⋂ Pr(𝒪𝑛,𝑖) = ∅ 
𝑖∈𝐼   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐼 ⊂ {1, … , 𝒥}  & |𝐼| > 1    (10) 

so, eq. 9 can be simplified to  

Φ(𝑛) = ∑ Pr(𝒪𝑛,𝑖)𝒥
𝑖=1 = ∑ (∏ 𝑝𝑖(𝜁𝑖; 𝜔𝑖)𝑁

𝑗=1 )𝒥
𝑖=1      (11) 

This dPDF determines the frequency distribution of successful transformations of boundary 

cells. So, the most repetitive outcome and its uncertainty at each time step can be assessed 

using this dPDF. The mean or expected value of the dPDF is calculated as the weighted average 

of all discrete possible values, and it can be expressed as follows 

𝜇 = ∑ 𝑛Φ(𝑛)𝑁
𝑛=0          (12) 
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Also, the squared deviation from the mean (variance) of Φ(𝑛) can be defined as follows  

𝜎2 = ∑ Φ(𝑛)(𝑛 − 𝜇)2𝑁
𝑛=0         (13) 

This parameter is employed to quantify the dispersion of simulation results, explicitly 

indicating the level of uncertainty in the obtained outcomes. As a simple case study, it can be 

assumed that the transformation probabilities of all boundary cells are the same, where 𝜔𝑗 = 𝜔 

for every 𝑗 ∈ {1, … , 𝑁}, so eq. 7 can be rewritten as 

𝑃𝑟(𝒪𝑛,𝑗) = ∏ 𝜔𝑁
𝑖=1

𝜁𝑖=1

∏ (1 − 𝜔)𝑁
𝑖=1

𝜁𝑖=0

= 𝜔𝑛(1 − 𝜔)𝑁−𝑛     (14) 

Consequently, the probability distribution of 𝑛 successes derived as 

Φ(𝑛) = ∑ Pr(𝒪𝑛,𝑖)𝒥
𝑖=1 = ∑ 𝜔𝑛(1 − 𝜔)𝑁−𝑛𝒥

𝑖=1 = (𝑁
𝑛

)𝜔𝑛(1 − 𝜔)𝑁−𝑛   (15) 

It can be observed that the distribution of successful transformations in a given time step 

follows a binomial distribution. The binomial distribution is a dPDF that models the number 

of successes in a fixed number of independent Bernoulli trials with the same success 

probability. This problem is similar to tossing a coin 𝑁 times, where the probability of getting 

a “heads” in each toss is 𝜔.  

In this case, it can be shown that the mean of the distribution is equal to 𝑁𝜔. Also, the 

distribution mode, which represents the most probable number of successful transformations 

among 𝑁 boundary cells, is an integer number that satisfies the following statement.  

mode = {

⌊(𝑁 + 1)𝜔⌋                                𝑖𝑓 (𝑁 + 1)𝜔 ∉ ℕ0

(𝑁 + 1)𝜔 𝑎𝑛𝑑 (𝑁 + 1)𝜔 − 1 𝑖𝑓 (𝑁 + 1)𝜔 ∈ ℕ  
𝑁                                                 𝑖𝑓 𝜔 = 1                 

     (16) 

Furthermore, the variance of the results distribution can be expressed using the following 

equation. 

𝜎2 = 𝑁𝜔(1 − 𝜔)         (17) 

 

3. Results & Discussion  

3.1. Uncertainty Assessment in PCA method 

At the end of the previous section, the simplest case of the uncertainty analysis of PCA 

simulation results is proposed. In this case, it’s assumed that within a cellular model consisting 

of 𝒩 cells, there are 𝑁 boundary cells with a transformation probability of 𝜔. In this condition, 
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the distribution of simulation results can be predicted using the binomial distribution function, 

as described by Eq. 15. For instance, Fig. 4 illustrates the discrete bell-shaped distributions 

with different values of 𝜔. The horizontal axis represents the ratio of successful transformations 

to the total number of cells subject to transformation (𝑛/𝑁), while the vertical axis represents 

the probability of occurrence. Notably, the highest probability of transformation occurs when 

the ratio 𝑛/𝑁 is equal or nearly equal to the probability of transformation, as predicted by Eq. 

16. Furthermore, it is observed that the highest dispersion of results occurs at 𝜔 = 0.5. In 

contrast, when 𝜔 = 0 or 𝜔 = 1, no dispersion is observed in the results, representing 0% and 

100% transformation success, respectively. 

 

Fig. 4. Binomial distributions, N=10 with different 𝜔 = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. 

 

To evaluate the ability of the binomial distribution function, numerous PCA models were 

created and employed to achieve the distribution of simulation results. The model consisted of 

a specific number of boundary cells with a uniform distribution of transformation probability. 

Also, the probabilistic state change rule described in Eq. 1 was applied to determine cell 

transformations. To obtain the distribution of the PCA results, the PCA simulation was repeated 

several times with the same inputs. Fig. 5 illustrates both the histogram of PCA outcomes and 

the binomial discrete distribution function with 20 boundary cells and 𝜔 = 0.5. Notably, the 

distribution of the PCA model results exhibits a close consistency with the binomial 
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distribution function, highlighting the potency of the binomial model in the prediction of the 

distribution of the PCA results at each time step. It should be noted that due to the inherent 

stochastic nature of the algorithm, the repeated PCA simulations may exhibit chaotic behavior, 

leading to dispersion of the results. 

 

Fig. 5. Comparison of the distribution functions (Bottom histograms, blue histogram: Binomial 

distribution with 𝜔 = 0.5, and red histogram: distribution function with non-uniform cell 

transformation probabilities 𝜔̅ = 0.5) and distribution of PCA results replication (Top histograms, 

blue histogram: PCA results’ distribution with 𝜔 = 0.5, and red histogram: PCA results’ distribution 

with non-uniform cell transformation probabilities 𝜔̅ = 0.5). Number of replication =1000, N = 20. 

 

The average and the standard deviation of the simulation results can be computed by repeating 

the PCA simulations with different 𝜔 and obtaining the distribution of the results. Comparisons 

between the mean value and standard deviation of the simulation results and the binomial 

distribution are presented in Fig. 6. In Fig. 6a, it can be observed that the mean values of the 
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repeated simulations align well with the mean of the binomial distribution function (𝜇 = 𝜔). 

Furthermore, the standard deviation values of the PCA simulations (Fig. 6b) exhibit a notable 

agreement with the parabolic function as described in Eq. 17. 

  

Fig. 6. Comparisons between the mean value and standard deviation of the simulation results and the 

binomial distribution. 

 

In PCA simulations, the transformation possibilities of boundary cells within the 

microstructure are not uniform due to the non-uniform distribution of driving pressure and the 

mobility of boundaries. To assess the accuracy of these simulations, similar to the approach 

used in the previous section, cellular models with a specific number of boundary cells were 

employed. However, it is assumed that the transformation probability of the boundary cells is 

non-uniform. The transformation probabilities of boundary cells were randomly assigned, 

whereas the average transformation probability is equal to 𝜔̅, the following relationship was 

satisfied 

𝜔̅ =
1

𝑁
∑ 𝜔𝑖

𝑁
1   𝑤ℎ𝑒𝑟𝑒  𝜔𝑖 ∈ ℝ |  0 ≤𝜔𝑖 ≤ 1      (18) 

The frequency distribution of the results of repeated PCA simulations is presented in Fig 5. 

These simulations were conducted with non-uniform cell transformation probabilities with a 

predetermined 𝜔̅ value of 0.5. Additionally, the probability distribution based on Eq. 11 is 

compared with the binomial distribution function, and the histogram of PCA simulation results 

is obtained using a constant transformation probability. The histograms demonstrate a notable 



Page 12 of 23 
 

agreement among the different distributions, indicating similar patterns in the simulation 

outcomes. However, it seems that the results obtained under non-uniform transformation 

probabilities exhibit a narrower distribution than those under uniform conditions. In other 

words, the modeling and simulation outcomes under non-uniform transformation probabilities 

show smaller dispersion compared to the uniform condition. Further statistical analysis can 

provide additional insights into the degree of agreement among the distributions.  

Fig. 7 illustrates the mean and standard deviation of the distribution of PCA simulation results, 

and the distribution function represented in eq. 11 with different 𝜔̅. In this figure, the circles 

represent the results of eq. 11, and the plus symbols show the PCA simulation results. This 

figure reveals the ability of eq. 11 to predict the distribution of PCA simulation results, as 

evidenced by the consistent alignment of the statistical parameters of the simulation results and 

the distribution function predictions. Fig. 7a illustrates the relationship between the mean of 

the distribution function and 𝜔̅. So, it may be concluded that the mean of the distribution 

function equals 𝑁𝜔̅. In other words, the mean of the distribution function in Eq. 12 is equivalent 

to the sum of the transformation probabilities of boundary cells. 

𝜇 = ∑ 𝑛Φ(𝑛)𝑁
𝑛=0 = ∑ 𝜔𝑖

𝑁
𝑖=1         (19) 

The standard deviation of the results from repeated PCA simulations and the distribution 

function presented in Eq. 13 are displayed in Fig. 7b. To calculate the distribution function 

using Eq. 13, all possible events should be considered, which can be computationally intensive. 

As discussed in section 2, the number of possible events in each time step follows an 

exponential relation (number of events equal 2𝑁) with the number of boundary cells (𝑁) and 

leads to a substantial increase in computational demands with larger 𝑁. Consequently, using 

eq. 13 to calculate the standard deviation becomes less feasible in cases with a large number of 

boundary cells. Therefore, an alternative solution is needed to resolve this limitation. 
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Fig. 7. Comparison of (a) the mean and (b) standard deviation of the distribution of PCA simulation 

results, and the dPDF represented in eq. 11 in different 𝜔̅. 

 

In the previous sections, it was observed that when the transformation probability of boundary 

cells is uniform, the binomial distribution function can effectively predict the distribution of 

the results. However, to provide an alternative solution, 𝜔̅ (the mean of the transformation 

probability of boundary cells) was inserted into the binomial distribution function (equations 

15 & 17). The solid line in Fig. 7 demonstrates the performance of this modified distribution. 

As depicted in this figure, the standard deviation obtained from the binomial function provides 

a reasonable approximation of the standard deviation derived from PCA simulations and the 

distribution function of Eq. 13. Notably, the predicted standard deviation using the binomial 

distribution function is higher than standard deviations of almost all PCA simulations and all 

results of the distribution function of Eq. 13. In other words, the upper limit of the standard 

deviation and the maximum uncertainty in the results can be estimated using the binomial 

distribution function, therefore  

𝜎2 ≤ 𝑁𝜔̅(1 − 𝜔̅)         (20) 

The above equation is one of the key findings of this research, offering a simple and 

computationally efficient method to forecast the uncertainty of PCA simulation results at each 

time step. 
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3.2. PCA Model Parameters and Uncertainty of Results  

In this section, Eq. 20 is employed to investigate the effects of various modeling parameters, 

including the number of spatial dimensions, cellular resolution, and model size, as well as the 

average transformation probability of boundaries on uncertainty in simulation results. In this 

section, to assess the dispersion of results compared to the best estimate of PCA simulation 

outcomes, the coefficient of variation is used. This dimensionless factor is obtained by 

calculating the ratio of the standard deviation to the mean value of the results (𝐶𝑣 = 𝜎  𝜇⁄ ) and 

provides insight into the precision and reliability of the simulation results. This factor quantifies 

the relative variability in the simulation results and allows meaningful comparisons of different 

simulations. Using eq. 18-20, the coefficient of variation “𝐶𝑣” can be derived as follows 

𝐶𝑣 ≤
(𝑁𝜔̅(1−𝜔̅))

1
2

𝑁𝜔̅
= (

1−𝜔̅

𝑁𝜔̅
)

1

2
        (21) 

The right-hand term of this equation represents the upper bound of 𝐶𝑣. The dependency of the 

upper limit of 𝐶𝑣 on 𝜔̅ and the number of boundary cells is illustrated in Fig. 8. It is evident 

that when 𝜔̅ equals 1, the PCA simulation results exhibit no dispersion. It indicates complete 

success in transformations of boundary cells without any errors or uncertainties. However, as 

𝜔̅ decreases, an increase is observed in the relative dispersion of the simulation results. When 

𝜔̅ approaches zero, the intensity of the upper bound of 𝐶𝑣 increases significantly. At low values 

of 𝜔̅, where the probability of transformation in boundary cells is very low, even the 

transformation of a single cell causes significant results’ scattering compared to the mean value 

of the results. It's important to note that according to Fig. 6 and 7, the highest uncertainty occurs 

at 𝜔̅ = 0.5. Moreover, the figure reveals that increasing the number of boundary cells reduces 

the coefficient of variation and the dispersion of the results. In other words, by increasing the 

number of boundary cells, the uncertainty of the results is reduced, leading to enhanced 

repeatability of the PCA simulation results. These findings may be used to determine and 

optimize the reliability and precision of the simulations. 
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Fig. 8. The dependency of the upper limit of coefficient of variation “𝐶𝑣” on the mean of the 

transformation probability of boundary cells “𝜔̅” and the number of boundary cells “N”. 

 

A comparison of the upper limit of Cv calculated using eq. 21 with PCA simulation results 

with different numbers of boundary cells is presented in Fig. 9. Remarkably, the figure 

illustrates that eq. 21 effectively predicts the upper limit of Cv and demonstrates the potential 

of this equation in exploring the effects of various modeling parameters on the uncertainty of 

PCA simulations. Fig. 9b illustrates the case with 𝜔̅ = 0.5. A noteworthy observation is the 

drastic decrease in the change rate of Cv with increasing the number of boundary cells. In other 

words, PCA simulations with a large number of boundary cells exhibit less sensitivity to further 

increases in 𝑁. This observation is significant as it highlights the influence of the number of 

boundary cells on the stability and reliability of simulation results.  
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Fig. 9. Comparison of the upper limit of Cv calculated using eq. 21 with PCA simulation 

results with different numbers of boundary cells. 

 

In cellular automata simulations of microstructural transformations, the number of boundary 

cells depends on the modeling parameters such as model size and cell resolution (number of 

cells per unit length). Generally, for a given microstructure morphology, by increasing the 
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model size and cell resolution, both the area of grain boundaries and the number of boundary 

cells increase. For instance, the cellular microstructures with the same average grain size but 

different model sizes and cellular resolutions in two- and three-dimensional are presented in 

Fig. 10 and 11, respectively. Notably, increasing the model size and cell resolution leads to an 

increase in the number of boundary cells. In the subsequent analysis, the effects of these 

parameters on the dispersion of PCA simulation results are analyzed. 

 

Fig. 10. Two-dimensional cellular microstructures with the same average grain size but different 

model sizes and cellular resolutions. 
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Fig. 11. Three-dimensional cellular microstructures with the same average grain size but different 

model sizes and cellular resolutions. 

 

In 2D cellular automaton modeling, adjusting the model's size with a specific ratio statistically 

leads to a proportional change in the length of the grain boundaries. In other words, if the 

boundary length of a microstructure with a specific model’s size is denoted as 𝐿0, by changing 

the model's size with a ratio of “𝛼”, the boundary length of the new model can be estimated as 

𝛼𝐿0. Additionally, the number of boundary cells can be estimated as 𝜌𝐿 (where 𝐿 represents 

the length of the grain boundaries and 𝜌 is cell resolution). Thus, the eq. 21 can be rewritten as 

follows. 

𝐶𝑣 ≤ (
1−𝜔̅

𝛼𝜌𝐿0𝜔̅
)

1

2
          (22) 
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Fig. 12a presents the comparison between the predicted upper limit of 𝐶𝑣 using eq. 22 and 2D 

PCA simulation results in various cell resolutions and model sizes. Throughout this analysis, 

it is assumed that 𝜔̅ remains constant regardless of changes in model size and cell resolution. 

Under this assumption, 𝐶𝑣 can be derived as the following relationship. As demonstrated in 

Fig. 12a, increasing the cell resolution and employing larger models result in a reduction of 

uncertainty in the simulation results. The findings showcased in this figure provide valuable 

insights into the influence of cell resolution and model size on the reliability and stability of 

the PCA simulations. By optimizing these parameters, the precision and reproducibility of the 

microstructure modeling process can be enhanced. The following equation shows the effects 

of model size and resolution on the variation of 𝐶𝑣 compared to a specific model with resolution 

of 𝜌0 and uncertainty of 𝐶𝑣0 

𝐶𝑣 = (
𝜌0

𝛼𝜌
)

1

2
𝐶𝑣0          (23) 

For instance, 𝐶𝑣 can be halved by doubling each dimension of the model (resulting in four 

times the area of the 2D model) or quadrupling the cell resolution. In 3D PCA modeling, a 

similar analysis to that presented in the previous section allows us to explore the relationship 

between PCA simulation uncertainty and model size, as well as cell resolution. In 3D modeling, 

the area of the grain boundaries also changes proportionally by changing the size of the model. 

Furthermore, as the grain boundaries in 3D modeling are spatial surfaces with a specific area, 

the number of boundary cells is related to the square of the cell resolution. Consequently, the 

upper bound of 𝐶𝑣 follows the relationship presented below 

𝜎 

𝑛̅
≤ (

1−𝜔̅

𝑁𝜔̅
)

1

2
= (

1−𝜔̅

𝜌2Ω𝑆0𝜔̅
)

1

2
        (24) 

where Ω represents the volume ratio of the adjusted model compared to the original model. 

Fig. 12b shows the comparison between the predicted upper limit of 𝐶𝑣 using eq. 24 and 3D 

PCA simulation results in various cell resolutions and model sizes. As a result, the value of 𝐶𝑣 

can be expressed as a function of cell resolution and model size as follows 

𝐶𝑣 =
𝜌0

𝜌√Ω
𝐶𝑣0          (25) 

For instance, doubling the cell resolution leads to halving the value of 𝐶𝑣. Similarly, 

multiplying each dimension of the model by 41 3⁄  yields a similar outcome. 
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Fig. 12. Comparison between the predicted 𝐶𝑣 using eqs. 22 and 24 and PCA simulation results in 

various cell resolutions and model sizes in (a) 2D and (b) 3D PCA modeling. 

 

4. Conclusions 

In this study, the uncertainty analysis and verification of Probabilistic Cellular Automata (PCA) 

simulations in microstructural evolution is investigated. The findings offer practical tools and 

equations to assess the reliability and precision of the microstructure modeling. The key 

findings of the investigation can be summarized as follows: 

 A discrete probability distribution function is introduced to predict the frequency 

distribution of simulation results at each PCA time step, offering a key tool for 

evaluating outcomes and measuring result dispersion. This dPDF can be simplified into 

binomial distribution in PCA modeling with uniform transformation probabilities for 

boundary cells. 

 The comparison between the statistical analyses of PCA simulation results and the 

binomial distribution function shows that the variance of simulation outcomes is less 

than the variance of the binomial distribution function. As a result, The equation 𝜎2 ≤

𝑁𝜔̅(1 − 𝜔̅) offers a straightforward and computationally efficient method to estimate 

the maximum uncertainty in PCA simulation results at each time step. 

 The dPDF predictions and PCA simulation results showed that the maximum dispersion 

of results was observed in PCA models with an average transformation probability of 

0.5.  
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 the coefficient of variation was introduced as a measure of precision and reliability, its 

dependence on the average transformation probability and the number of boundary 

cells. This observation highlights the influence of the number of boundary cells on the 

stability and reliability of simulation results, indicating that an increase in boundary 

cells led to more precise outcomes.  

 As cellular resolution and model size increase, representing the microstructure with 

more cells results in a reduction of uncertainty and dispersion in simulation results. 

 In 2D PCA models, the relative uncertainty of simulation results was found to be 

inversely proportional to the square root of cellular resolution and model size. Also, in 

3D models, the relative uncertainty of simulation results is inversely proportional to the 

cellular resolution and square root of model size. 

 

Data Availability 

The data that support the findings of this study are publicly available at “Seyed Salehi, Majid 

(2024), Uncertainty Assessment of Probabilistic Cellular Automata in Microstructure 

Evolution - Data and Resources, Mendeley Data, V1, doi: 10.17632/3p4pfsk3zd.1”. 
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