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Abstract

We prove some results on the density and multiplicity of positive solutions to the pre-
scribed Webster scalar curvature problem on the (2n+ 1)-dimensional standard unit CR sphere
(S2n+1, θ0). Specifically, we construct arbitrarily many multi-bump solutions via the variational
gluing method. In particular, we show the Webster scalar curvature functions of contact forms
conformal to θ0 are C

0-dense among bounded functions which are positive somewhere. Existence
results of infinitely many positive solutions to the related equation −∆Hu = R(ξ)u(n+2)/n on the
Heisenberg group H

n with R(ξ) being asymptotically periodic with respect to left translation
are also obtained. Our proofs make use of a refined analysis of bubbling behavior, gradient flow,
Pohozaev identity, as well as blow up arguments.
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1 Introduction

1.1 The studied problem and its history

The simplicity and subtlety of curvature and its global nature draw many attention. In particular,
one celebrated problem, raised by Nirenberg in the 1960’s, asks on the n-dimensional standard
sphere (Sn, g0) (n ≥ 2), if one can find a conformally invariant metric g such that the scalar
curvature (Gauss curvature for n = 2) of g is equal to the given function K. This is widely known
as the Nirenberg problem and is also called the prescribed scalar curvature problem on S

n. If we
denote g = e2vg0 in the case n = 2 and g = v4/(n−2)g0 in the n ≥ 3 dimensional case, this problem
amounts to finding a positive solution v of the equations

−∆g0v + 1 = Ke2v on S
2,

and
−∆g0v + c(n)R0v = c(n)Kv

n+2
n−2 on S

n for n ≥ 3, (1.1)

where ∆g0 is the Laplace-Beltrami operator on (Sn, g0), c(n) = (n−2)/(4(n−1)) and R0 = n(n−1)
is the scalar curvature associated to g0. The Nirenberg problem has been studied extensively and
it would be impossible to mention here all works in this area. Two significant aspects most related
to this paper are the fine analysis of blow up (approximate) solutions and the gluing methods in
construction of solutions, see, e.g., [5, 6, 11,12,52–55,57,59,70,73] and references therein.

In the past half century, several studies have been performed for classical elliptic equations
which are similar to Nirenberg’s equations but with the conformal sub-Laplacians on CR manifolds.
The geometry of CR manifolds, namely the abstract model of real hypersurfaces in complex man-
ifolds, has attracted, since the late 1970’s, a lot of attention of prominent mathematicians as for
instance, Chern-Moser [16], Fefferman [25], Jacobowitz [45], Jerison-Lee [46–49], Tanaka [71], Web-
ster [72], among many others. This geometry is very rich when the CR manifold admits a strictly
pseudo-convex structure in which case we encounter a great analogy with the conformal geometry
of Riemannian manifolds. Notably, the study of the prescribing Webster scalar curvature problem
on CR manifolds, which dates back to Jerison-Lee [47–49], has received a lot of attention, see,
e.g., [30,36] and references therein. For more recent and further studies, see [17,18,22,32,64,74,75]
and related references.

As a natural analogue of the Nirenberg probelm for the CR geometry, one can consider the
prescribed Webster (pseudo-hermitian) scalar curvature problem on the standard CR sphere which
can be formulated as follows. Let (S2n+1, θ0) be the unit CR sphere in C

n+1 with θ0 being the
standard contact form and n ≥ 1. Given any function R̄ on S

2n+1, it is natural to ask: Does there
exist a contact form θ conformally related to θ0 in the sense that θ = v2/nθ0 for some function v > 0
such that R̄ is the Webster scalar curvature of the Webster metric gθ associated with the contact
form θ? Following the same way as in the Riemannian case, the Webster metric gθ associated with
θ obeys its scalar curvature which is given by

Scalθ = u−
n+2
n

(
− 2(n+ 1)

n
∆θ0u+ Scalθ0 u

)
,

where ∆θ0 is the sub-Laplacian with respect to the contact form θ0 and Scalθ0 = n(n+ 1)/2 is the
Webster scalar curvature of the Webster metric gθ0 associated with the contact form θ0. Clearly,
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the problem of solving Scalθ = R̄ is equivalent to finding positive solutions v to the following PDE

Lθ0v := −∆θ0v +
n2

4
v = c̄(n)R̄v1+

2
n , v > 0 on S

2n+1. (1.2)

Here Lθ0 is called the conformal sub-Laplacian and transforms according to the law Lθ(φ) =

v−
n+2
n Lθ0(vφ) for any φ ∈ C∞(S2n+1), the sub-Laplacian operator ∆θ0 can be expressed explic-

itly in coordinates ζ = (ζ1, . . . , ζn+1) ∈ S
2n+1 by

n+1∑

j=1

∂2

∂ζj∂ζ̄j
+

n+1∑

j,k=1

ζj ζ̄k
∂2

∂ζj∂ζ̄k
+
n

2

n+1∑

k=1

(
ζk

∂

∂ζk
+ ζ̄k

∂

∂ζ̄k

)
,

and c̄(n) = n
2(n+1) , see, e.g., [7,47]. Geller [40] showed that, for regular function f : S2n+1 → C, the

function

G(ζ) = L−1
θ0

(f)(ζ) = cn

∫

S2n+1

dist(ζ, ·)−2nf(·) (1.3)

satisfies Lθ0G = f , where cn =
2n−1Γ(n

2
)2

πn+1 and dist(ζ, η) :=
√

2|1 − ζ · η̄| is the distance function on
S
2n+1. We also refer to (1.3) as the Green’s representation formula.
Prescribing such Webster scalar curvature on the standard CR sphere can be interpreted as a

generalization of the Nirenberg problem, called in this context: the CR Nirenberg problem. We
will present more geometric and analytical backgrounds to understand our problem in Section 2.1.
Throughout the paper, we assume n ≥ 1 without otherwise stated.

Equation (1.2) proves to be remarkably flexible and difficult to solve. As we multiply v to (1.2)
and apply integration by parts, it is easy to see a simple necessary condition is maxS2n+1 R̄ > 0,
but there are also some obstructions, which are said of topological type. For example, a necessary
condition is the following Kazdan-Warner type condition (see [15, Theorem B]): for any CR vector
field X on S

2n+1, there holds ∫

S2n+1

X(R̄)v2+
2
n dvolθ0 = 0 (1.4)

for any positive solution v of (1.2), where dvolθ0 denotes the volume of S
2n+1 with respect to

θ0. Note that the real or imaginary part of gradient (with respect to 〈·, ·〉θ under the Levi form
θ) of a bigraded spherical harmonic function f of type (1, 0) or (0, 1) is a CR vector field. This
implies that (1.2) is not solvable if R̄ = f + constant. Another difficulty in studying (1.2) is the
lack of compactness due to the presence of the Sobolev critical exponent. A typical phenomenon
encountered here is bubbling blow up. Bubbles are solutions of (1.2) with R̄ = 1, these arise as profiles

of general diverging solutions and were classified in [48] under the hypothesis that v ∈ L2+ 2
n , which

is equivalent to having finite volume. From the variational point of view, bubbles generate diverging
Palais-Smale sequences for the Euler-Lagrange functional of (1.2). Two main approaches have been
used to understand the blow up phenomenon: subcritical approximations (see, e.g., [61]), or the
construction of pseudo-gradient flows (see, e.g., [33, 34, 64]). Both of these two methods will be
explored and put into application in this paper.

The conformal sub-Laplacian operator Lθ0 can be seen more concretely when we deform the CR
structure to the Heisenberg group, which is a flat CR manifold. Let us recall some basic notions on
the Heisenberg group first.

The Heisenberg group H
n is the Lie group whose underlying manifold is Cn×R with coordinates

(z, t) and whose the group law ◦ defined by (z, t)◦(ẑ, t̂) := (z+ ẑ, t+ t̂+2 Im(zẑ)). We will always use
the notation ξ = (z, t) = (x, y, t) with z = x+ iy, x = (x1, . . . , xn) ∈ R

n and y = (y1, . . . , yn) ∈ R
n

to denote an element in H
n and (ξ)k := ξ ◦ · · · ◦ ξ to denote k-fold composition for simplicity.
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Let Q := 2n + 2 denote the homogeneous dimension of Hn, see also [29]. We consider the norm
on H

n defined by |ξ| := (|z|4 + t2)1/4. The corresponding distance on H
n is defined accordingly

by d(ξ, ξ0) := |ξ−1
0 ◦ ξ| for any ξ, ξ0 ∈ H

n, where ξ−1
0 is the inverse of ξ0 with respect to ◦, i.e.,

ξ−1
0 = −ξ0. In addition, we will denote by Br(ξ0) := {ξ ∈ H

n : d(ξ0, ξ) < r} the ball with respect
to the distance d, of center ξ and radius r.

For any fixed ξ0 ∈ H
n we will denote by τξ0 : Hn → H

n the left translation on H
n by ξ0, defined

by τξ0(ξ) = ξ0 ◦ ξ, while for any λ > 0 we will denote by δλ : Hn → H
n the dilation defined by

δλ(ξ) := (λz, λ2t).
Define the following left invariant vector fields in the coordinate (x, y, t):

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
. (1.5)

The Heisenberg gradient, or horizontal gradient, of a regular function u is then defined by ∇Hu :=
(X1u, . . . ,Xnu, Y1u, . . . , Ynu), while its Heisenberg Hessian matrix is

∇2
Hu : =




X1X1u · · · XnX1u Y1X1u · · · YnX1u
...

. . .
...

...
. . .

...
X1Xnu · · · XnXnu Y1Xnu · · · YnXnu
X1Y1u · · · XnY1u Y1Y1u · · · YnY1u

...
. . .

...
...

. . .
...

X1Ynu · · · XnYnu Y1Ynu · · · YnYnu




.

The Heisenberg Laplacian is the trace of the above Heisenberg Hessian matrix, that is

L0 = −∆H := −
n∑

j=1

(X2
j + Y 2

j ) =

n∑

j=1

(∂2u
∂x2j

+
∂2

∂y2j
+ 4yj

∂2

∂xj∂t
− 4xj

∂2

∂yj∂t
+ 4(x2j + y2j )

∂2

∂t2

)
.

The Heisenberg group H
n is CR equivalent to the sphere S

2n+1 ⊂ C
n+1 minus a point via the

Cayley transform. The Cayley transform from S
2n+1\{(0, . . . , 0,−1)} to H

n is the inverse of

C : Hn → S
2n+1\{(0, . . . , 0,−1)}, (z, t) 7→

( 2z

1 + |z|2 + it
,
1− |z|2 − it

1 + |z|2 + it

)
. (1.6)

Then using (1.3) and (1.6), we have

4(Lθ0φ) ◦ C = (2|JC |)−(Q+2)/(2Q)L0((2|JC |)(Q−2)/(2Q)(φ ◦ C)) for φ ∈ C∞(S2n+1),

where |JC | = 22n+1

((1+|z|2)2+t2)n+1 is the deteminant of the Jacobian of C. Here and from now on, we also

use the notation ◦ to denote the composition mapping of some functions. Therefore, if we denote

u = (2|JC |)
Q−2
2Q (v ◦ C) and R = R̄ ◦ C, then problem (1.2) is equivalent to solving

−∆Hu = R(ξ)u(Q+2)/(Q−2), u > 0 in H
n, (1.7)

up to a harmless positive constant in front of R(ξ). Similar to (1.4), Garofalo-Lanconelli [37] showed
that a positive solution u to (1.7) in the Sobolev space E (with the notation in (1.10)) satisfies the
following identity: ∫

Hn

〈(z, 2t),∇R(z, t)〉u(z, t)2Q/(Q−2) dz dt = 0, (1.8)

provided the integral is convergent and R is bounded and suitably regular. This implies that there
are no such solutions if 〈(z, 2t),∇R(z, t)〉 does not change sign in H

n and R is not constant.
Prescribing Webster curvature on S

2n+1 is a focus of reserach in the past decades and it continues
to inspire new thoughts. Recent existence results mainly use
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• the Webster scalar curvature flow method (e.g., [41–44]),

• the reduced finite dimension variational method (e.g., [9, 26,60]), or

• the critical points at infinity method (e.g., [33, 34,62–64,74,75]).

The majority of these require the solution set to be uniformly bounded. The main objective of
this paper is to include a larger class of functions R̄ such that problem (1.2) is solvable. Moreover,
the number of multi-bump solutions to (1.2) will be investigated, subject to some local hypotheses
regarding the prescribed function R̄. Basically speaking, we demonstrate the Webster scalar curva-
ture functions of contact forms conformal to θ0 are C0-dense among bounded functions which are
positive somewhere by constructing multi-bump solutions to the perturbed equations. As a varia-
tion of this idea, the related problem (1.7) with R(ξ) being periodic with respect to left translation
are also studied and infinitely many multi-bump solutions (modulo left translations by its periods)
are obtained under certain flatness conditions.

1.2 Main results

We now list the main results of this paper and some remarks on them. The first one deals with the
existence of multi-bump solutions to the perturbed CR Nirenberg problem.

Theorem 1.1. Let R̄ ∈ L∞(S2n+1) be a given function. Suppose that there exists a point q0 ∈ S
2n+1

such that R̄(q0) > 0 and R̄ is continuous in a geodesic ball B(q0, ε̃) for some ε̃ > 0. Then, for any
ε ∈ (0, ε̃), any integers k ≥ 1 and m ≥ 2, there exists a function R̄ε,k,m ∈ L∞(S2n+1) satisfying
R̄ε,k,m−R̄ ∈ C0(S2n+1), ‖R̄ε,k,m−R̄‖C0(S2n+1) < ε, and R̄ε,k,m ≡ R̄ in S

2n+1\B(q0, ε). Furthermore,
for any integer 2 ≤ s ≤ m, the perturbed equation

−∆θ0v +
n2

4
v = c̄(n)R̄ε,k,mv

1+ 2
n , v > 0 on S

2n+1 (1.9)

has at least k positive solutions with s bumps. Here we denote by B(q, ε) the geodesic ball in S
2n+1

with radius ε and center q.

By applying the Kazdan-Warner type condition (1.4), we know that one cannot expect to perturb
any R̄ near any point ζ ∈ S

2n+1 in the sense of C1 in order to obtain the existence of solutions. For
the precise meaning of s bumps, see the proof of Theorem 1.1 in Section 4. Roughly speaking, a
solution is said to have s bumps when the majority of its mass is concentrated in s disjoint regions.
As both the number of bumps and the number of solutions can be chosen arbitrarily, we can conclude
the existence of infinitely many multi-bump solutions to equation (1.9).

The main feature of Theorem 1.1 is that, even if a given bounded function R̄ which is positive
somewhere cannot be realized as the Webster scalar curvature of a contact form θ conformal to θ0,
nevertheless we can find a function R̄′ arbitraly close to R̄ in C0(S2n+1) which is the Webster scalar
curvature as many conformal contact forms to θ0 as we want. Here we give a quite general existence
result since we can perturb any given bounded function which is positive somewhere such that for
the perturbed equations there exist arbitrarily many solutions.

As a consequence, we have

Corollary 1.1. The Webster scalar curvature functions of contact forms conformal to θ0 are dense
in C0(S2n+1) among bounded functions which are positive somewhere.
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Next we consider the related problem (1.7). Before stating the results, we introduce some
notations.

Let E be the completion of the space C∞
c (Hn) with respect to the ‖ · ‖ norm introduced by the

scalar product

〈u, v〉 :=
∫

Hn

∇Hu∇Hv dz dt. (1.10)

Whenever there is no risk of misunderstanding, we suppress dz dt from the integration expressions
on domains in H

n and omit the integral region if it is Hn.
When R ≡ 1, all solutions of (1.7) satisfying the finite energy assumption u ∈ L2Q/(Q−2)(Hn)

have been classified by Jerison-Lee [48] and are given by

wa,λ := λ(2−Q)/2w0,1 ◦ δλ ◦ τa−1 , (1.11)

for any a ∈ H
n and λ > 0, where w0,1(z, t) = c0(t

2 + (1 + |z|2)2)(2−Q)/4 with c0 > 0 being a
suitable constant depends only on n. Similar classification result has been obtained in [39] under
the assumption of cylindrical symmetry. Recently, Catino, Li, Monticelli and Roncoroni [10] proved
a classification of all positive solutions in H

1 and a classification of positive solutions when n ≥ 2
that satisfy a suitable decay condition at infinity, which is weaker than finite energy assumption.
Inspired by [10], Afeltra [1] obtained a compactness result for the CR Yamabe problem in dimension
three.

Denote the Sobolev critical exponent Q∗ := 2Q
Q−2 . It is well-known (see [47]) that E can be

embedded into LQ∗

(Hn) and the sharp Sobolev inequality (or Folland-Stein inequality [28]) is

Sn

( ∫
|u|Q∗

)1/Q∗

≤
(∫

|∇Hu|2
)1/2

, (1.12)

where Sn = 2n
√
π

(22nn!)1/(2(n+1)) is the best constant. Then for every (a, λ) ∈ H
n × (0,∞), wa,λ is the

solution to (1.7) with R ≡ 1. Moreover, the functions in (1.11) and its non-zero constant multiples
attain the sharp Sobolev inequality (1.12) and such functions are usually called Jerison-Lee’s bubbles.

Let R ∈ L∞(Hn), we define the energy functional IR : E → R by

IR(u) =
1

2

∫
|∇Hu|2 −

1

Q∗

∫
R|u|Q∗

.

Obviously a positive critical point gives rise to a positive solution to (1.7).
Let R(ξ) ∈ L∞(Hn), O(1), . . . , O(k) ⊂ H

n are some open sets with dist(O(i), O(j)) ≥ 1 for any
i 6= j. If R ∈ C0(∪k

i=1O
(i)), we define V (k, ε) := V (k, ε,O(1), . . . , O(k), R) as the following open set

in E for ε > 0:

V (k, ε) :=
{
u ∈ E :∃α = (α1, . . . , αk) ∈ R

k, ∃ ξ = (ξ1, . . . , ξk) ∈ O(1) × . . .×O(k),

∃λ = (λ1, . . . , λk), λi > ε−1, ∀ i ≤ k, such that

|αi −R(ξi)
(2−Q)/4| < ε, ∀ i ≤ k, and

∥∥∥u−
k∑

i=1

αiwξi,λi

∥∥∥ < ε
}
.

(1.13)

The open set V (k, ε) recodes the information of the concentration rate and the locations of concen-
tration points, it also describes the neighborhood of potential critical points at infinity.

Recently, there have been some works devoted to the existence results via studying the flatness
condition effect, see, e.g., [33, 34, 62–64]. Here we will adopt the flatness hypothesis introduced
in [61], which is modified from [54].

6



Flatness condition: For any real munber β > 1, we say that a sequence {Ri} of functions
satisfies condition (∗)β for some sequence of constants {L1(β, i)}, {L2(β, i)} in some region Ωi ⊂ H

n

if {Ri} ∈ C [β]−1,1(Ωi) satisfies
‖∇Ri‖C0(Ωi) ≤ L1(β, i)

and, if β ≥ 2,
|∇sRi(ξ)| ≤ L2(β, i)|∇Ri(ξ)|(β−s)/(β−1)

for all 2 ≤ s ≤ [β], ξ ∈ Ωi, ∇Ri(ξ) 6= 0. Here and in the following, ∇s denotes all possible partial
derivatives of order s.

For 1 ≤ j ≤ 2n, we denote

Lj =

{
Xj , if 1 ≤ j ≤ n,

Yj−n, if n+ 1 ≤ j ≤ 2n,

where Xj , Yj are the left invariant vector fileds defined by (1.5). Let Bk = {La1 · · ·Laj : 1 ≤ ai ≤
2n, i = 1, . . . , j, j ≤ k} and Ak be the linear span over C of Bk ∪ {Id}.

Let Ω ⊂ H
n be an open set. Using the notations in Folland-Stein [28], we define the nonisotropic

Lipschitz space Γβ(Ω) as follows. If β ∈ (0, 1), define

Γβ(Ω) =
{
f ∈ L∞(Ω) ∩C0(Ω) : sup

ξ,ζ∈Ω

|f(ξ)− f(ξ ◦ ζ)|
|ζ|β <∞

}
.

If β = 1, define

Γ1(Ω) =
{
f ∈ L∞(Ω) ∩C0(Ω) : sup

ξ,ζ∈Ω

|f(ξ ◦ ζ)− 2f(ξ) + f(ξ ◦ ζ−1)|
|ζ| <∞

}
.

If β = k + α with k ∈ N
+ and α ∈ (0, 1), define

Γk+α(Ω) =
{
f ∈ L∞(Ω) ∩ C0(Ω) : L f ∈ Γα(Ω) for L ∈ Bk

}
.

We can also define Lipschitz space Γβ on CR manifold in terms of the normal coordinates, see [28].
Note that we can identify H

n with its Lie algebra which is Euclidean space R2n+1 with the Euclidean
norm | · | and the linear coordinates xj via the exponential map. Hence, we are able to discuss the
usual smooth space Ck for 0 ≤ k ≤ ∞. We refer to [27,28] for more details and regularity results.

The family of solutions we constuct is of the form (after using the CR equivalence for (1.2))
u =

∑k
i=1 αiwξi,λi

+ v, where the contribution of the error term v can be negligible. Moreover,
the multi-bump solutions concentrate near some critical points of R(ξ) and the bumps can be
chosen arbitrarily many. For this purpose, we assume that R(ξ) ∈ Γ2+α(H

n) satisfies the following
conditions:

(R1) R(ξ) is periodic in some ξ̂ ∈ H
n with respect to left translation, that is, R(ξ̂ ◦ ξ) = R(ξ),

∀ ξ ∈ H
n.

(R2) Let Σ be the set of the critical points ξ̄ of R(ξ) satisfying: there exists some real number
β ∈ (Q− 2, Q) such that near 0,

R(ξ) = R(0) +

n∑

j=1

(ai|xj|β + bj|yj |β) + c|t|β2 + P (ξ),

7



where R(ξ) := R(ξ ◦ ξ), ai, bi, c are some non-zero constants depending on ξ̄,
∑n

j=1(aj + bj) +
κc 6= 0 with

κ =

∫
|x1|βw2Q/(Q−2)

0,1∫
|t|β2w2Q/(Q−2)

0,1

,

and P (ξ) is C [β]−1,1 (up to [β]− 1 derivatives are Lipschitz functions, [β] denotes the integer
part of β) near 0 and satisfies

[β]∑

s=0

|∇sP (ξ)||ξ|−β+s = o(1) as ξ tends to 0.

Remark 1.1. Condition (R2) guarantees that R satisfies condition (∗)β in a neighborhood of 0.
Notably, the range β ∈ (Q − 2, Q) is a technical hypothesis to do blow up analysis based on the
earlier work in [61], where a sequence of solutions can not blow up at more than one point. We also
conjecture that if β = Q− 2, the phenomenon of multiple blowups would occur, as shown in [55].

We now establish the existence of multi-bump solutions to problem (1.7).

Theorem 1.2. Assume that R ∈ Γ2+α(H
n) satisfies (R1), (R2) and

(R3) Rmax := maxξ∈Hn R(ξ) > 0 is achieved, and R−1(Rmax) := {ξ ∈ H
n : R(ξ) = Rmax} has at

least one bounded connected component, denoted as C .

Then for any integer m ≥ 2, (1.7) has infinitely many m-bump solutions in E. More precisely, for
any ε > 0, ξ∗ ∈ C and integer m ≥ 2, there exists a constant l∗ > 0 such that for any integers
l(1), . . . , l(k) satisfying 2 ≤ k ≤ m and the conditions min1≤i≤k |l(i)|,mini 6=j |l(i) − l(j)| ≥ l∗, there
exists at least one solution u of (1.7) in V (k, ε,Bε(ξ

(1)), . . . , Bε(ξ
(k))) with kc− ε ≤ IR(u) ≤ kc+ ε,

where

c = (R(ξ∗))(2−Q)/2(Sn)
Q/Q, ξ

(i)
l = (ξ̂)l

(i) ◦ ξ∗,

and V (k, ε,Bε(ξ
(1)), . . . , Bε(ξ

(k))) are some sets of E defined according to (1.13).

From the description of (R3) we know that there exists a bounded neighborhoodO of C such that
Rmax ≥ maxξ∈∂OR(ξ) + δ with δ > 0 being a small constant. This fact together with (R2) implies
that R(ξ) has a sequence of local maximum points ξj with |ξj | → ∞ as j → ∞. Furthermore, (R3)
is sharp in the sense that one can construct examples easily to show that if (R3) is not satiesfied,
(1.7) may have no nontrivial solutions, which shows that (R3) is not merely a technical hypothesis,
see Example 1 below.

Example 1 (Nonexistence). Suppose that R(ξ) ∈ C1(Hn)∩L∞(Hn) and ∇HR are bounded in H
n,

XiR is nonnegative but not identically zero. Then the only nonnegative solution of (1.7) in E is
the trivial solution u ≡ 0.

Proof. Let u ≥ 0 be any solution of (1.7) in E. By using the Kazdan-Warner condition (1.4) we
obtain

∫
XiRu

2Q/(Q−2) = 0. The hypotheses on R(ξ) imply that u is identically zero in an open
set, hence u ≡ 0 by the unique continuation results (see, e.g., [37, 38]).

From the definition in (1.13) we know that u ∈ V (k, ε,Bε(ξ
(1)), . . . , Bε(ξ

(k))) implies u has most
of its mass concentrated in Bε(ξ

(1)), . . . , Bε(ξ
(k)). In particular, if the tuples (l(1), . . . , l(k)) and

(l̃(1), . . . , l̃(k)) are different, the solutions u and ũ are different.
A more comprehensive understanding of the solutions derived in Theorem 1.2 can be achieved.
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Theorem 1.3. Assume that R ∈ L∞(Hn) satisfies (R1), (R2) and

(R3)
′ there exist a constant A1 > 1 and a bounded open set O ⊂ H

n such that

R ∈ C1(O),

1/A1 ≤ R(ξ) ≤ A1, ∀ ξ ∈ O,

max
ξ∈O

R(ξ) = sup
ξ∈Hn

R(ξ) > max
x∈∂O

R(ξ).

Then for any ε > 0, (1.7) has infinitely many m-bump solutions u in E satisfying

c ≤ IR(u) ≤ c+ ε or 2c− ε ≤ IR(u) ≤ 2c+ ε (1.14)

and
sup{‖u‖L∞(Hn) : I

′
R(u) = 0, u > 0, u ∈ E, u satisfies (1.14)} = ∞,

where
c = (max

ξ∈O
R(ξ))(2−Q)/2(Sn)

Q/Q.

More precisely, for any ε > 0, there exists l∗ > 0 such that for any integers l(1), l(2) satisfying

|l(1) − l(2)| ≥ l∗, there exists at least one solution u of (1.7) in V (1, ε, O,R) ∪ V (2, ε, O
(1)
l , O

(2)
l , R),

where
O

(i)
l = (ξ̂)l

(i) ◦O := {(ξ̂)l(i) ◦ ξ : ξ ∈ O} for i = 1, 2,

and V (1, ε, O,R) ∪ V (2, ε, O
(1)
l , O

(2)
l , R) are some sets of E defined according to (1.13).

Remark 1.2. By utilizing (1.6), it is evident that the solutions obtained in Theorems 1.2 and 1.3
can be lifted to a solution of (1.2) on S

2n+1 which is positive except at the point {(0, . . . , 0,−1)}.
In this sense, (1.2) is solvable under the assumptions of Theorems 1.2 and 1.3.

1.3 Plan of the paper and comment on the proof

In search for metrics of constant scalar curvatures, Yamabe [76] initiates the subcritical method,
which is now one of the most natural approaches to study conformal equations with Sobolev critical
exponent. We also refer to the reader [2,24,50,51,53–55,59,69]. In this paper, we will study the CR
Nirenberg problem by using the mentioned subcritical approach. While recognizing the usefulness of
compactness in finding solutions of equation (1.2), one is left to ponder the dilemma: By selecting
those functions R̄ so that blow ups are impossible (i.e., compactness regained), we naturally miss
functions that can afford a bounded and a blow up subcritical sequences. This intriguing thought
breathes the idea that blow ups need not always be harmful in finding solutions. Under suitable
conditions, we still can use a blow up subcritical sequence to produce a solution by removing the
singularities. Such considerations will be conducted in our final arguments.

We end the introduction with some remarks and history on the variational gluing technique
developed by Seré, Coti Zelati and Rabinowitz. The basic idea is as follows: Given finitely many
solutions (at low energy), to translate their supports far apart and patch the pieces together create
many multi-bump solutions. The authors in [19–21, 65] have introduced the original and powerful
ideas which permit the construction of such solutions via variational methods. In particular, they
are able to find many homoclinic-type solutions to periodic Hamiltonian systems (see [20,65]) and
to certain elliptic equations of nonlinear Schrödinger type on R

n with periodic coefficients (see [21]).
Li has given a slight modification to the minimax procedure in [20,21] and has applied it to certain
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problems where periodicity is not present, for example, the problem of prescribing scalar curvature
on S

n (see [52–55]). Inspired by the above works, we attempt to modify the above mentioned
gluing method towards equations in the CR setting or the conformal sub-Laplacian operators under
a particular choice of contact forms. This paper also overcomes the difficulty appearing in using
Lyapunov-Schmidt reduction method to locate the concentrating points of the solutions. We also
believe that this gluing method can be applied to the construction of multi-bump solutions for
various problems in conformal CR geometry, for instance, the Nirenberg type problem involving
CR fractional sub-Laplacians, see, e.g., [14, 58].

Let us introduce the structure of the paper and comment on the proof. Theorems 1.1–1.3 and
Corollary 1.1 are derived in Section 4 from Proposition 4.1, a more general result on (1.7). To
establish Proposition 4.1, we first study a compactified problem Theorem 3.1 in Section 3. Then we
derive Proposition 4.1 by using Theorem 3.1 and some blow up analysis in [61]. Theorem 3.1 is a
technical result in our paper, which is essential to make the variational gluing methods applicable.
The proof of Theorem 3.1 will be divided into two parts: we first follow and refine the analysis of
Bahri-Coron [5] to study the subcritical interaction of two well-spaced bubbles in Subsection 3.1
and then apply the minimax procedure as in Coti Zelati-Rabinowitz [20,21] to complete the proof
of Theorem 3.1 in Subsection 3.2. Our presentation is largely influenced by the papers [52–55]
which studied existence and compactness of solutions to the classical Nirenberg problem. Although
certain parts of the proof can be obtained by some modifications of the arguments in [52–55], there
are plenty of technical difficulties which demand new ideas to handle subelliptic equations.

The present paper is organized as the following. In Section 2, we present some analytic and
geometric tools necessary to investigate the CR Nirenberg problem, and several preliminary results
will be established. In Section 3, existence and multiplicity result for the subcritical case (Theorem
3.1) will be stated, and its proof will be sketched. The details of the proof then will be carried out in
Subections 3.1 and 3.2. The main theorems are proved in Section 4 with the aid of blow up analysis
developed by Prajapat-Ramaswamy [61] and the refine analysis of blow up profile established in
Appendix A.

Notation

We collect below a list of the main notation used throughout the paper.

• We always use the notation ξ = (z, t) = (x, y, t) with z = x + iy, x = (x1, . . . , xn) ∈ R
n

and y = (y1, . . . , yn) ∈ R
n to denote an element in H

n. We denote ξ−1 as the inverse of ξ,
(ξ)k = ξ ◦ · · · ◦ ξ means k-fold composition and (ξ)−k := (ξ−1)k.

• We denote the norm on H
n by |ξ| = (|z|4 + t2)1/4 and the dilations by δλ(ξ) = (λz, λ2t) for

λ > 0. The distance function on H
n is denoted as d(ξ, ξ0) = |ξ−1

0 ◦ ξ| for any ξ, ξ0 ∈ H
n, and

the left translation on H
n by ξ0 is denoted as τξ0(ξ) = ξ0 ◦ ξ.

• For any ξ0 ∈ H
n and r > 0, denote the ball Br(ξ0) = {ξ ∈ H

n : d(ξ, ξ0) < r} and its boundary
∂Br(ξ0) = {ζ ∈ H

n : d(ξ, ξ0) = r}. We will not keep writing the center ξ0 if ξ0 = 0.

• For any q ∈ S
2n+1, we denote by B(q, ε) the geodesic ball in S

2n+1 with radius ε and center q.

• For n ≥ 1, we denote Q = 2n+ 2, Q∗ = 2Q
Q−2 and H(z, t) = ( 4

t2+(1+|z|2)2 )
(Q−2)/4.

• The integral
∫

always means
∫
Hn unless specified.

• C > 0 is a generic constant which can vary from line to line. Moreover, a notation C(α, β, . . .)
means that the positive constant C depends on α, β, . . ..
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2 Preliminaries

In this section, we present some geometric and analytical backgrounds to understand our problem.
We also collect a Pohozaev identity, establish some a priori estimates to subcritical solutions, and
study a minimization problem on exterior domain.

2.1 Review on the CR geometry

We start with recalling a basic material on CR manifolds, we refer to [23] for the details.
Let M be an orientable CR manifold without boundary of CR dimension n. This is also equiv-

alent to saying that M is an orientable differentiable manifold of real dimension (2n + 1) endowed
with a pair (H(M), J), where H(M) is a subbundle of the tangent bundle T (M) of real rank 2n
and J is an integrable complex structure on H(M). Since M is orientable, there exists a 1-form
θ called pseudo-Hermitian structure on M . Then, we can associate each structure θ to a bilinear
form Gθ, called Levi form, which is defined only on H(M) by

Gθ(X,Y ) = −(dθ)(JX, Y ), ∀X,Y ∈ H(M).

Since Gθ is symmetric and J-invariant, we then call (M,θ) strictly pseudo-convex CR manifold if
the Levi form Gθ associated with the structure θ is positive definite. The structure θ is then a
contact form which immediately induces on M the volume form θ ∧ (dθ)n.

Moreover, θ on a strictly pseudo-convex CR manifold (M,θ) also determines a normal vector
field T on M , called the Reeb vector field of θ. Via the Reeb vector field T , one can extend the Levi
form Gθ on H(M) to a semi-Riemannian metric gθ on T (M), called the Webster metric of (M,θ).
Let

πH : T (M) → H(M)

be the projection associated to the direct sum T (M) = H(M)⊕RT . Now, with the structure θ, we
can construct a unique affine connection ∇, called the Tanaka-Webster connection on T (M). Using
∇ and πH , we can define the horizontal gradient ∇θ by

∇θu = πH∇u.

Again, using the connection ∇ and the projection πH , one can define the sub-Laplacian ∆θ

acting on a C2-function u via
∆θu = div(πH∇u).

Here ∇u is the ordinary gradient of u with respect to gθ which can be written as gθ(∇u,X) = X(u)
for any X. Then integration by parts gives

∫

M
(∆θu)f θ ∧ (dθ)n = −

∫

M
〈∇θu,∇θf〉θ θ ∧ (dθ)n

for any smooth function f . In the preceding formula, 〈·, ·〉θ denotes the inner product via the Levi
form Gθ (or the Webster metric gθ since both ∇θu and ∇θv are horizontal).

Having ∇ and gθ in hand, one can talk about the curvature theory such as the curvature tensor
fields, the pseudo-Hermitian Ricci and scalar curvature. Having all these, we denote by Scalθ the
pseudo-Hermitian scalar curvature associated with the Webster metric gθ and the connection ∇,
called the Webster scalar curvature, see [23, Proposition 2.9].
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Being a pseudohermitian structure defined only up to a conformal factor on a CR manifold, the
CR Yamabe problem is a natural analogue of the Yamabe problem in Riemannian geometry. If
θ̂ = u2/nθ for some smooth function u > 0, the transformation law of the Webster curvature is

Scal
θ̂
= u−

n+2
n

(
− 2(n+ 1)

n
∆θu+ Scalθ u

)
.

Clearly, the problem of solving Scal
θ̂
= h is equivalent to finding positive solutions u to the following

PDE:
−∆θu+

n

2(n + 1)
Scalθ u =

n

2(n+ 1)
hu1+2/n on M. (2.1)

When h is constant, (2.1) is known as the CR Yamabe problem.
Basic examples of CR manifolds include real hypersurfaces in C

n+1, for example, any odd-
dimensional unit sphere S

2n+1 ⊂ C
n+1 is a strictly pseudo-convex CR manifold. Indeed, let θ0 be

the standard contact form on the sphere S
2n+1 = {ζ = (ζ1, . . . , ζn+1) ∈ C

n+1 : |ζ|2 =
∑n+1

j=1 |ζj |2 =

1} ⊂ C
n+1, i.e.,

θ0 =
√
−1(∂̄ − ∂)|ζ|2 =

√
−1

n+1∑

j=1

(ζj dζ̄j − ζ̄j dζj).

Then (S2n+1, θ0) is a compact strictly pseudoconvex CR manifold of real dimension (2n + 1). The
Heisenberg group H

n as mentioned in the previous section is a more special example. Hn plays a role
among pseudoconvex pseudohermitian manifolds analogous to the role of Rn among Riemannian
manifolds. In fact, every pseudoconvex pseudohermitian manifold can locally be appoximated with
H

n, through coordinates analogous to the normal coordinates of Riemannian geometry known as
pseudohermitian normal coordinates.

Since the Heisenberg group has zero Webster curvature and the pseudohermitian sub-Laplacian
coincides with the Heisenberg Laplacian defined formerly, the CR Nirenberg problem, up to an
inessential constant, is equivalent to finding a positive solution of (1.7).

We finally introduce the inversion map ι : Hn → H
n defined by

ι(ξ) = ι(x, y, t) := (x,−y,−t)

for every ξ = (x, y, t) ∈ H
n, and the map ϕ : Hn → H

n defined by Jerison and Lee in [47] which we
shall refer to as the CR inversion and which is defined by the following relations:

ϕ(ξ) := ξ̃,

where ξ̃ = (x̃, ỹ, t̃) and

x̃ :=
xt+ y|z|2

|ξ|4 , ỹ :=
yt− x|z|2

|ξ|4 , t̃ :=
−t
|ξ|4 . (2.2)

We explicitly remark that |ϕ(ξ)| = 1
|ξ| . Instead of using the CR inversion ϕ defined in (2.2) as one

of the generators of the group of CR maps on H
n, we will use the map ϕ̌ := ϕ ◦ ι as in [56], i.e.,

ϕ̌(ξ) = (x̌, y̌, ť) for every ξ ∈ H
n with (x̌, y̌, ť) being in turn defined by

x̌ = −xt+ y|z|2
|ξ|4 , y̌ =

yt− x|z|2
|ξ|4 , ť =

t

|ξ|4 . (2.3)

We make this choice because ϕ̌(ϕ̌(ξ)) = ξ, while ϕ(ϕ(ξ)) = (−x,−y, t) for every ξ = (x, y, t) ∈
H

n\{0}.
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2.2 Pohozaev identity

As in the Riemannian case, where the blow up analysis requires using the Pohozaev identity for
R
n, in the CR case we will need a Pohozaev formula for the Heisenberg group. Such roles of the

Pohozaev type identity in analyzing the blow ups were first observed in Schoen [66–68]. Pohozaev-
type formulas have already been studied on pseudohermitian manifold (see [1]), Heisenberg group
(see [37,61]) and more general Carnot groups (see [35]).

We associate any point (z, t) = (x, y, t) ∈ H
n with a (2n + 1) × (2n + 1) symmetric matrix

A = (aij) defined by 


In 0n 2y
0n In −2x
2y −2x 4|z|2


 ,

where In and 0n denote respectively the identity matrix and the zero matrix in R
n. The matrix A

is related to ∆H by the formula ∆H = div(A∇), where ∇ denotes the gradient in R
2n+1.

Let Ω ⊂ H
n be an open set and S2(Ω) denote the space of all continuous functions u : Ω → R such

that Xju, Yju,X
2
j u, Y

2
j u are continuous functions in Ω which can be extended to Ω. Furthermore,

let

X =

n∑

j=1

xj
∂

∂xj
+ yj

∂

∂yj
+ 2t

∂

∂t
(2.4)

be the generator for the one parameter family of dilations in H
n centered at the origin. Using this

vector field, we can derive a Pohozaev type integral identity which is stated below.

Lemma 2.1. Let Bσ be a ball in H
n centered at the origin with radius σ > 0, p ≥ 1 and R ∈ S2(Bσ).

Suppose that u is a C2 solution of

−∆Hu = R(ξ)|u|p−1u in Bσ.

Then we have∫

∂Bσ

B(σ, ξ, u,∇Hu) =
( Q

p+ 1
− Q− 2

2

)∫

Bσ

R|u|p+1

+
1

p+ 1

∫

Bσ

X (R)|u|p+1 − 1

p+ 1

∫

∂Bσ

R|u|p+1X · ν, (2.5)

where ν is the outward unit normal vector with respect to ∂Bσ, X · ν = X · ∇d
|∇d| =

Xd
|∇d| =

d
|∇d| with

d being the distance function, and

B(σ, ξ, u,∇Hu) =
Q− 2

2
(A∇u · ν)u− 1

2
|∇Hu|2X · ν + (A∇u · ν)X (u).

Proof. The proof can be found in [37, Theorem 2.1] (or [61, Theorem 4.1]), so we omit it.

The boundary term B(σ, ξ, u,∇Hu) has the following properties:

Lemma 2.2. (i) For u(ξ) = |ξ|2−Q and any σ > 0, it holds B(σ, ξ, u,∇Hu) = 0 for all ξ ∈ ∂Bσ.

(ii) For u(ξ) = |ξ|2−Q + A + h(ξ), where A > 0 is a constant and h(ξ) is differentiable near the
origin with h(0) = 0. Then we have

lim
σ→0

∫

∂Bσ

B(σ, ξ, u,∇Hu) = −
√
πΓ(n+1

2 )

2Γ(n2 + 1)
A(Q− 2)2|S2n−1| < 0,

where Γ is the Gamma function and |S2n−1| is the surface measure of the unit sphere in R
2n.

Proof. The proof can be found in [61, Proposition 4.3], we omit it here.
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2.3 Some a Priori estimates

We intend to derive some a priori estimates for solutions to subcritical equations. Our proofs are in
the spirit of those in [52, 53] with some standard rescaling arguments. We begin with introducing
some notations.

Let Ω ⊂ H
n be an open set. We define the nonisotropic Sobolev space Sp

k(Ω) (see [28]) as follows:
For 1 ≤ p ≤ ∞ and k = 0, 1, 2, . . ., we denote

Sp
k(Ω) = {f ∈ Lp(Ω) : Df ∈ Lp(Ω) for all D ∈ Ak}.

Here Df is meant as a distribution derivative. Sp
k(Ω) is a Banach space under the norm

‖f‖Sp
k(Ω) = ‖f‖Lp(Ω) +

∑

D∈Bk

‖Df‖Lp(Ω).

We say f ∈ Sp
k(loc) if φf ∈ Sp

k(H
n) for every φ ∈ C∞

c (Hn).

Proposition 2.1. Suppose that R ∈ L∞(Hn\B1) and ‖R‖L∞(Hn\B1) ≤ A0 for some constant A0 >
0. Then there exist two positive constants µ1 = µ1(n,A0) and C(n,A0) such that for any weak
solutions u of

−∆Hu = R(ξ)|u|4/(Q−2)u, |ξ| ≥ 1,

satisfying u ∈ LQ∗

(Hn\B1) and ∫

|ξ|≥1
|∇Hu|2 ≤ µ1, (2.6)

we have
sup
|ξ|≥2

|ξ|Q−2|u(ξ)| ≤ C(n,A0).

Proof. We perform a CR inversion (2.3) on u(ξ). Let

ξ̂ = ϕ̌(ξ) = (x̌, y̌, ť), |ξ| ≥ 1, and v(ξ̂) =
1

|ξ̂|Q−2
u(ξ̂).

Using [56, Corollary 2.8] we know that v satisfies

−∆Hv(ξ̂) = R(ξ̂)|v(ξ̂)|4/(Q−2)v(ξ̂), 0 < |ξ̂| < 1.

Furthermore, it follows from (2.6) that

∫

|ξ̂|≤1
|∇Hv|2 +

∫

|ξ̂|≤1
|v|Q∗ ≤ C0(n)µ1.

Thus, we duduce from [13, Lemma 2.5] that v ∈ Lq
loc(B1) for any q ≥ n, and then by the regularity

results in [28, Theorem 10.13] we have v ∈ Cα
loc(B1) for some α ∈ (0, 1). To complete the proof of

Proposition 2.1, we need to give a priori bound of ‖v‖L∞(B0.5). We claim that there exists a constant
C(n,A0) > 0 such that

‖v‖L∞(B0.5) ≤ C(n,A0). (2.7)

This will be done by contradiction argument.
Suppose the contrary of (2.7), then there exist two sequences of {Rj(ξ)}, {uj(ξ)} satisfying

‖Rj‖L∞(Hn\B1) ≥ A0,
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−∆Huj = Rj(ξ)|uj |4/(Q−2)uj , |ξ| ≥ 1,∫

|ξ̂|≤1
|∇Hvj|2 +

∫

|ξ̂|≤1
|vj |Q

∗ ≥ C0(n)µ1,

but
‖vj‖L∞(B0.5) ≥ j,

where vj is obtained by CR inversion on uj as before.

Since vj ∈ Cα
loc(B1), thus we can choose ξ̂j such that

(0.9 − |ξ̂j|)(Q−2)/2|vj(ξ̂j)| = max
|ξ̂|≤0.9

(0.9 − |ξ̂|)(Q−2)/2|vj(ξ̂)|.

Let σj =
1
2(0.9 − |ξ̂j|) > 0. Some standard calculations in [52,53] show that

|ξ̂j | ≤ 0.9,

(σj)
(Q−2)/2 max

d(ξ̂,ξ̂j)≤σj

|vj(ξ̂)| → ∞ as j → ∞,

|vj(ξ̂j)| ≥ 2(2−Q)/2 max
d(ξ̂,ξ̂j)≤σj

|vj(ξ̂)|.

Without loss of generality, we assume that vj(ξ̂j) > 0. Let

wj(ξ̃) =
1

vj(ξ̂j)
vj(ξ̂j ◦ δvj(ξ̂j)−2/(Q−2)(ξ̃)), |ξ̃| < vj(ξ̂j)

2/(Q−2)σj → ∞.

Clearly, wj satisfies
∫

|ξ̃j |≤vj(ξ̂j)2/(Q−2)σj

|∇Hwj |2 + |wj |Q
∗ ≤ C0(n)µ1,

−∆Hwj(ξ̃) = Rj(ξ̂j ◦ δvj (ξ̂j)−2/(Q−2)(ξ̃))|wj(ξ̃)|4/(Q−2)wj(ξ̃), ∀ |ξ̃| < vj(ξ̂j)
2/(Q−2)σj,

wj(0) = 1,

wj(ξ̃) ≤ 2(Q−2)/2, ∀ |ξ̃| < vj(ξ̂j)
2/(Q−2)σj.

By [27, Theorem 6.1], wj is bounded in Sq
2(loc), q > 1. Thus, modulo a subsequence, we have

wj ⇀ w in Sq
2(loc) for some function w ∈ Sq

2(loc). Moreover, w satisfies

w(0) = 1,

−∆Hw = R̄|w|4/(Q−2)w in H
n, (2.8)∫

|∇Hw|2 + |w|Q∗ ≤ C0(n)µ1,

where R̄ is the weak ∗ limit of {Rj(ξ̂j ◦ δvj (ξ̂j)−2/(Q−2)(ξ̃))} in L∞
loc(H

n) satisfying ‖R̄‖L∞(Hn) ≤ A0.

Multiplying (2.8) with w and integrating by parts, we obtain
∫

|∇Hw|2 =
∫
R̄|w|Q∗ ≤ A0

(∫
|∇Hw|2

)Q/(Q−2)
(Sn)

−Q∗

,

where Sn is defined by (1.12). Therefore,

1 ≤ A0

( ∫
|∇Hw|2

)2/(Q−2)
(Sn)

−Q∗ ≤ A0(C0(n)µ1)
2/(n−2)(Sn)

−Q∗

.
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This is a contradiction if we choose µ1 = µ1(n,A0) small enough such that

A0(C0(n)µ1)
2/(n−2)(Sn)

−Q∗

< 1.

We have proved the validity of (2.7) and thus complete the proof.

We can deduce from Proposition 2.1 the following result.

Proposition 2.2. Let µ1 and C(n,A0) be the constants in Proposition 2.1. Then for any 2 < l1 <
l2 < ∞, there exists a constant S1 = S1(n,A0, µ1, l1, l2) > l2 such that for any R ∈ L∞(BS1\B1)
with ‖R‖L∞(BS1

\B1) ≤ A0 and any weak solutions u of

−∆Hu = R(ξ)|u|4/(Q−2)u, 1 < |ξ| < S1,

satisfying ∫

1<|ξ|<S1

|∇Hu|2 +
∫

1<|ξ|<S1

|u|Q∗ ≤ µ1,

we have
sup

l1≤|ξ|≤l2

|ξ|Q−2|u(ξ)| ≤ 2C(n,A0).

Proof. Suppose the contrary, then for Sj = l2 + j, j = 3, 4, 5 . . ., there exist two sequences of {Rj},
{uj} satisfying

‖Rj‖L∞(BSj
\B1) ≤ A0,

−∆Huj = Rj(ξ)|uj |4/(Q−2)uj , 1 < |ξ| < Sj,∫

1<|ξ|<Sj

|∇Huj|2 +
∫

1<|ξ|<Sj

|uj |Q
∗ ≤ µ1,

but
sup

l1≤|ξ|≤l2

|ξ|Q−2|uj(ξ)| > 2C(n,A0).

Arguing as in the proof of Proposition 2.1, we know that for any µ ∈ (0, 1), ‖uj‖L∞(BSj/2
\B1+µ)

is bounded by a constant independent of j. Let u be the Sq
2(loc) weak limit of uj and R̄(ξ) be the

weak ∗ limit of Rj(ξ) in L
∞(Hn\B1), it holds

‖R̄‖L∞(Hn\B1) ≤ A0,

−∆Hu = R̄(ξ)|u|4/Q−2u, |ξ| > 1,

sup
l1≤|ξ|≤l2

|ξ|Q−2|u(ξ)| > 2C(n,A0). (2.9)

We immediately obtain a contradiction by (2.9) and Proposition 2.1.

Next we give a horizontal gradient estimate.

Proposition 2.3. Suppose that R ∈ L∞(Bl2\Bl1), l2 > 100l1 > 100. Then for any weak solutions
u of

−∆Hu = R(ξ)|u|4/Q−2u, l1 ≤ |ξ| ≤ l2,

satisfying
sup

l1≤|ξ|≤l2

|ξ|Q−2|u(ξ)| ≤ A
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for some constant A > 0, we have

|∇Hu(ξ)| ≤
C(n,A, ‖R‖L∞(Bl2

\Bl1
))

|ξ|Q−1
, 4l1 ≤ |ξ| ≤ l2/4.

Proof. For any r ∈ (4l1, l2/4), it holds

−∆Hu = R(ξ)|u|4/(Q−2)u, r/2 ≤ |ξ| ≤ 2r,

and

sup
r/2≤|ξ|≤2r

|u(ξ)| ≤ sup
r/2≤|ξ|≤2r

A

|ξ|Q−2
≤

(2
r

)Q−2
A.

Let v(ξ) = rQ−2u(δr(ξ)), then v satisfies

−∆Hv(ξ) =
1

r2
R(δr(ξ))|v(ξ)|4/(Q−2)v, 1/2 ≤ |ξ| ≤ 2,

sup
1/2≤|ξ|≤2

|v(ξ)| ≤ 2Q−2A,

sup
1/2≤|ξ|≤2

| −∆Hv(ξ)| ≤ ‖R‖L∞(Bl2
\Bl1

)2
Q+2A(Q+2)/(Q−2).

Now we deduce from the regularity theories in [28, Theorem 10.13] that

|∇Hv(ξ)| ≤ C(n,A, ‖R‖L∞(Bl2
\Bl1

)), |ξ| = 1.

As a consequence,

|∇Hu(ξ)| ≤
C(n,A, ‖R‖L∞(Bl2

\Bl1
))

|ξ|Q−1
, |ξ| = r.

This completes the proof.

Proposition 2.4. Let µ1, S1 and C(n,A0) be the constants in Proposition 2.2. Then for any
2 < l1 < l2 < ∞, there exist two positive constants µ2 = µ2(n,A0) ≤ µ1 and τ = τ(n,A0, l1, l2),
such that for any 0 ≤ τ ≤ τ , R ∈ L∞(BS1\B1) with ‖R‖L∞(BS1

\B1) ≤ A0, and any weak solutions
u of

−∆Hu = R(ξ)|u|4/(Q−2)−τu, 1 < |ξ| < 2S1,

satisfying ∫

1<|ξ|<2S1

|∇Hu|2 +
∫

1<|ξ|<2S1

|u|Q∗ ≤ µ2,

we have
sup

l1≤|ξ|≤l2

|ξ|Q−2|u(ξ)| ≤ 3C(n,A0)

and
sup

l1≤|ξ|≤l2

|ξ|Q−1|∇Hu(ξ)| ≤ 2C(n,A0, A),

where C(n,A0, A) is the constant in Proposition 2.3 with A replaced by 3C(n,A0).

Proof. The proof is similar to Proposition 2.2, we omit it here.
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2.4 A minimization problem

For any ξ1, ξ2 ∈ Hn satisfy d(ξ1, ξ2) ≥ 10, denote Ω := Hn\{B1(ξ1) ∪ B1(ξ2)}. We define EΩ by
taking the closure of C∞

c (Ω) under the norm

‖u‖EΩ
=

( ∫

Ω
|∇Hu|2

)1/2
+

( ∫

Ω
|u|Q∗

)1/Q∗

.

Clearly, EΩ is a Banach space. Using similar arguments in [52, Poposition 3.2], we know that u ∈ EΩ

if and only if there exists ū ∈ E such that u = ū|Ω. Moreover, for any u ∈ EΩ, we have a Sobolev
type inequality on EΩ: (∫

Ω
|u|Q∗

)1/Q∗

≤ C(n)
(∫

Ω
|∇Hu|2

)1/2
, (2.10)

where the positive constant C(n) depends only on n. In particular, it does not depend on ξ1, ξ2
provided d(ξ1, ξ2) ≥ 10.

Let R ∈ L∞(Ω) satisfy ‖R‖L∞(Ω) ≤ A0 for some constant A0 > 0. We define a functional on EΩ

by

IR,Ω(u) =
1

2

∫

Ω
|∇Hu|2 −

1

Q∗ − τ

∫

Ω
RHτ |u|Q∗−τ ,

where τ ∈ [0, 2/(Q − 2)]. For any u ∈ EΩ, using Hölder inequality and (2.10), we have

∣∣∣IR,Ω(u)−
1

2

∫

Ω
|∇Hu|2

∣∣∣ ≤ A0C0(n)
( ∫

Ω
|∇Hu|2

)(Q∗−τ)/2
(2.11)

with C0(n) being a positive constant depends only on n.

Proposition 2.5. Let EΩ be defined as above. There exist two constants r0 = r0(n,A0) ∈ (0, 1)
and C1 = C1(n) > 1 such that for any ξ1, ξ2 ∈ H

n with d(ξ1, ξ2) ≥ 10, and ϕ ∈ H1/2(∂Ω) with
r = ‖ϕ‖H1/2(∂Ω) ≤ r0, the following minimum problem is achieved:

min
u∈EΩ

{
IR,Ω(u) : u|∂Ω = ϕ,

∫

Ω
|∇Hu|2 ≤ C1r

2
0

}
. (2.12)

The minimizer is unique (denoted uϕ) and satisfies
∫
Ω |∇Huϕ|2 ≤ C1r

2/2. Furthermore, the map

ϕ 7→ uϕ is continuous from H1/2(∂Ω) to EΩ.

Remark 2.1. Note that ∂Ω is a smooth hypersurface of Hn with a finite number of non-degenerate
characteristic points, one can give a meaning to u|∂Ω and define the Sobolev space H1/2(∂Ω) by
invoking the theory of traces, see [3] for more details.

Proof of Proposition 2.5. According to the theory of traces in Bahouri-Chemin-Xu [3, Theorem 1.8]
that there exist a constant C1 = C1(n) > 0 and Φ ∈ EΩ such that

∫

Ω
|∇HΦ|2 ≤

C1

8
r2 and Φ|∂Ω = ϕ. (2.13)

We fix the value of C1 from now on and the value of r0 will be determined in the following.
First it follows from (2.11)-(2.13) that if r0(n,A0) > 0 is chosen small enough, then

IR,Ω(Φ) ≤
1

2

∫

Ω
|∇HΦ|2 +A0C0(n)

( ∫

Ω
|∇HΦ|2

)(Q∗−τ)/2
≤ 4

5

∫

Ω
|∇HΦ|2 ≤

C1

10
r2. (2.14)
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Since for any u in {u ∈ EΩ : C1r
2/2 ≤

∫
Ω |∇Hu|2 ≤ 2C1r

2
0}, we derive from (2.11) that

IR,Ω(u) ≥
(1
2
−A0C0(n)(2C1r

2
0)

2/(Q−2)−τ/2
) ∫

Ω
|∇Hu|2.

Thus, if we choose r0 > 0 to further satisfy A0C0(n)(2C1r
2
0)

2/(Q−2)−τ/2 ≤ 1/4, then using (2.13)
and (2.14) we have

IR,Ω(u) ≥
1

4

∫

Ω
|∇Hu|2 ≥

1

4

(1
2
C1r

2
)
> IR,Ω(Φ).

Therefore, the minimizer is not achieved in the set {u ∈ EΩ : C1r
2/2 ≤

∫
Ω |∇Hu|2 ≤ 2C1r

2
0}.

Next we prove the existence of the minimzer. Write u = v +Φ, v|∂Ω = 0, JR,Ω(v) =: IR,Ω(u) =
IR,Ω(v +Φ). We only need to minimize JR,Ω(v) for

∫
Ω |∇Hv|2 ≤ 2C1r

2
0 due to the above argument.

Obviously, JR,Ω is strictly convex in the ball {v ∈ EΩ : v|∂Ω = 0,
∫
Ω |∇Hv|2 ≤ 2C1r

2
0} if r0 is small

enough. Thus it is standard to conclude the existence of a unique local minimizer vϕ.
Finally, set u = vϕ + Φ, then u is a local minimizer and u satisfies

∫
Ω |∇Huϕ|2 ≤ C1r

2/2. The
uniqueness and continuity of the map ϕ 7→ uϕ follows from the strict local convexity of JR,Ω.

3 Construction of a family of approximate solutions

Due to the presence of the Sobolev critical exponent, the Euler-Lagrange functional corresponding
to (1.7) does not satisfy the Palais-Smale condition. As previously mentioned in the introduction,
we turn our attention to the following equation:

−∆Hu = R(ξ)Hτu(Q+2)/(Q−2)−τ , u > 0 in H
n, (3.1)

which is the subcritical version of (1.2) after using Green’s representation (1.3) and the Cayley
transform (1.6), where τ > 0 is a small constant and H(z, t) = ( 4

t2+(1+|z|2)2 )
(Q−2)/4. In this section,

we will construct multi-bump solutions to the above subctitical type equations.
We first introduce some notations which are used throughout the paper.
Let {Rl(ξ)} be a sequence of functions satisfying the following conditions.

(i) There exists some constant A1 > 0 such that for any l = 1, 2, 3, . . . ,

|Rl(ξ)| ≤ A1, ∀x ∈ H
n. (3.2)

(ii) For some integers m ≥ 2, there exist ξ
(i)
l ∈ H

n, 1 ≤ i ≤ m, Sl ≤ 1
2 mini 6=j d(ξ

(i)
l , ξ

(j)
l ), such

that Rl is continuous near ξ
(i)
l and

lim
l→∞

Sl = ∞, (3.3)

Rl(ξ
(i)
l ) = max

ξ∈BSl
(ξ

(i)
l )

Rl(ξ), 1 ≤ i ≤ m, (3.4)

lim
l→∞

Rl(ξ
(i)
l ) = a(i), 1 ≤ i ≤ m, (3.5)

R(i)
∞ (ξ) := (weak ∗) lim

l→∞
Rl(ξ

(i)
l ◦ ξ), 1 ≤ i ≤ m. (3.6)

(iii) There exist some constants A2, A3 > 1, δ0, δ1 > 0, and some bounded open setsO
(1)
l , . . . , O

(m)
l ⊂

H
n, such that, if we define for 1 ≤ i ≤ m,

Õ
(i)
l = {ξ ∈ H

n : dist (ξ,O
(i)
l ) < δ0},
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Ol =

m⋃

i=1

O
(i)
l , Õl =

m⋃

i=1

Õ
(i)
l ,

we have

ξ
(i)
l ∈ O

(i)
l , diam(O

(i)
l ) < Sl/10, (3.7)

Rl ∈ C1(Õl, [1/A2, A2]), (3.8)

Rl(ξ
(i)
l ) ≥ max

ξ∈∂O(i)
l

Rl(ξ) + cδ1, (3.9)

max
ξ∈Õl

|∇HRl(ξ)| ≤ A3, (3.10)

where c = c(δ0) > 0 is a constant such that dist(ξ
(i)
l , ∂O

(i)
l ) ≥ δ1/A3 for any 1 ≤ i ≤ m and

diamO := sup{d(ξ, ζ) : ξ, ζ ∈ O} for any set O in H
n.

For ε > 0 small, we define Vl(m, ε) = V (ε,O
(1)
l , . . . , O

(m)
l , Rl). In order to simplify our analysis,

we only focus on the case m = 2, as the more general result is similar in nature.
If u is a function in Vl(2, ε), one can find an optimal representation, following the ideas introduced

in [5, 6]. Namely, we have

Proposition 3.1. There exists ε0 ∈ (0, 1) depending only on A1, A2, A3, n, δ0, but independent of
l, such that for any ε ∈ (0, ε0], u ∈ Vl(2, ε), the following minimization problem

min
(α,ξ,λ)∈D4ε

∥∥∥u−
2∑

i=1

αiwξi,λi

∥∥∥ (3.11)

has a unique solution (α, ξ, λ) up to a permutation. Moreover, the minimizer is achieved in D2ε for
large l, where

Dε =
{
(α, ξ, λ) :1/(2A

(Q−2)/4
2 ) ≤ α1, α2 ≤ 2A

(Q−2)/4
2 ,

ξ = (ξ1, ξ2) ∈ O
(1)
l ×O

(2)
l , λ = (λ1, λ2), λ1, λ2 ≥ ε−1

}
.

In particular, we can write u as u =
∑2

i=1 αiwξi,λi
+ v, where v ∈ E and for each i = 1, 2, it holds

〈wξi,λi
, v〉 =

〈∂wξi,λi

∂λi
, v
〉
= 〈Xjwξi,λi

, v〉 = 〈Yjwξi,λi
, v〉 = 〈Twξi,λi

, v〉 = 0

for all j = 1, . . . , n, where 〈·, ·〉 denotes the inner product defined by (1.10) and Xj , Yj , T are the
left invariant vector fields in (1.5). In addition, the variables {αi} satisfy

|αi −Rl(ξi)
(2−Q)/4| = oε(1) for i = 1, 2, (3.12)

where oε(1) → 0 as ε→ 0.

Proof. The proof is similar to the corresponding statements in [5, 6], we omit it here.

Remark 3.1. A. Bahri introduced the theory of critical points at infinity which is a set of ideas
and techniques to handle noncompactness issues in nonlinear partial differential equations, we refer
to [4] for more explanations. This method is very powerful and has been applied to obtain so called
Bahri–Coron-type existence criterium in various noncompactness problems, including the prescribed
Webster Scalar Curvature problem on CR manifolds, see, e.g., [17,18,31–34,62–64,74,75]. We will
adopt these ideas in this section.
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In the sequel, we will often spilt u, a function in Vl(2, ε), ε ∈ (0, ε0], under the form

u = αl
1wξl1,λ

l
1
+ αl

2wξl2,λ
l
2
+ vl (3.13)

after making the minimization (3.11). Proposition 3.1 guarantees the existence and uniqueness of
αi = αi(u) = αl

i, ξi = ξi(u) = ξli and λi = λi(u) = λli for i = 1, 2 (we omit the index l for simplicity).
For any R ∈ L∞(Hn) and u ∈ E, we define energy functional related to (3.1)

IR,τ (u) :=
1

2

∫
|∇Hu|2 −

1

Q∗ − τ

∫
RHτ |u|Q∗−τ

with τ ≥ 0 small. Clearly, IR = IR,0.
Now we follow and refine the analysis of Bahri and Coron [5,6] to study the subcritical interaction

of two well-spaced bubbles. To continue our proof, let τ l > 0 be a sequence satisfying

lim
l→∞

τ l = 0, lim
l→∞

(|ξ(1)l |+ |ξ(2)l |)τ l = 1. (3.14)

We first give a lower bound energy estimate for some well-spaced bubbles.

Lemma 3.1. Let ε0 be the constant in Proposition 3.1. Suppose that ε1 ∈ (0, ε0) small enough and l
large enough, 0 ≤ τ ≤ τ l. Then there exists a constant A4 = A4(n, δ1, A2) > 1 such that for any u ∈
Vl(2, ε1) with ξ1(u) ∈ Õ

(1)
l , ξ2(u) ∈ Õ

(2)
l , and dist(ξ1(u), ∂Õ

(1)
l ) < δ1/(2A3) or dist(ξ2(u), ∂Õ

(2)
l ) <

δ1/(2A3), we have IRl,τ (u) ≥ c(1) + c(2) + 1/A4, where c
(i) = (a(i))(2−Q)/2(Sn)

Q/Q for i = 1, 2.

Proof. We assume that dist(ξ1(u), ∂O
(1)
l ) < δ1/(2A3). It follows from (1.12), (3.12), and some direct

computations that, for ε1 small and l large,

IRl,τ
(u) =

2∑

i=1

IRl,τ
(αiwξi,λi

) + oε1(1)

=

2∑

i=1

IRl,τ
(Rl(ξi)

(2−Q)/4wξi,λi
) + oε1(1)

=
2∑

i=1

{1

2
Rl(ξi)

(2−Q)/2

∫
|∇Hw0,1|2

− 1

Q∗Rl(ξi)
−Q/2

∫
Rlw

Q∗−τ
ξi,λi

}
+ oε1(1) + o(1)

≥
2∑

i=1

{1

2
Rl(ξi)

(2−Q)/2

∫
|∇Hw0,1|2

− 1

Q∗Rl(ξi)
(2−Q)/2

∫
wQ∗

0,1

}
+ oε1(1) + o(1)

=
2∑

i=1

1

Q
Rl(ξi)

(2−Q)/2(Sn)
Q + oε1(1) + o(1).

Combining above estimate with the assumption dist(ξ1(u), ∂O
(1)
l ) < δ1/(2A3), we obtain

IRl,τ
(u) ≥ 1

Q
(Rl(ξ

(1)
l )− δ1/2)

(2−Q)/2(Sn)
Q
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+
1

Q
Rl(ξ

(2)
l )(2−Q)/2(Sn)

Q + oε1(1) + o(1)

≥
2∑

i=1

c(i) + 1/A4,

where the choice of A4 is evident thanks to (3.5), (3.6), (3.9) and (3.10). The proof is now complete.

From now on, the values of A4 and ε1 are fixed. The main result in this section can be stated
as follows:

Theorem 3.1. Suppose that {Rl} is a sequence of functions satisfying (i)–(iii). If there exist some
bounded open sets O(1), . . . , O(m) ⊂ H

n and some constants δ2, δ3 > 0, such that, for all 1 ≤ i ≤ m,

(ξ
(i)
l )−1 ◦ Õ(i)

l ⊂ O(i) for all l,
{
u : I ′

R
(i)
∞

(u) = 0, u > 0, u ∈ E, c(i) ≤ I
R

(i)
∞

(u) ≤ c(i) + δ2
}
∩ V (1, δ3, O

(i), R(i)
∞ ) = ∅.

Then for any ε > 0, there exists integer lε,m > 0, such that for all l ≥ lε,m, τ ∈ (0, τ l), there exists
ul = ul,τ ∈ Vl(m, ε) which solves

−∆Hul = Rl(ξ)H
τu

(Q+2)/(Q−2)−τ
l , ul > 0 in H

n. (3.15)

Furthermore, ul satisfies
m∑

i=1

c(i) − ε ≤ IRl,τ
(ul) ≤

m∑

i=1

c(i) + ε. (3.16)

Remark 3.2. (3.16) follows from the definition of Vl(k, ε) provided that ul satisfies (3.15).

We prove Theorem 3.1 by contradiction argument. For simplicity, we only consider the case
m = 2 since the changes for m > 2 are evident.

From now on, we suppose the contrary of Theorem 3.1, namely, for some ε∗ > 0, there exist
a sequence of l → ∞ and 0 < τl < τ l, such that equation (3.15) for τ = τl has no solution in
Vl(2, ε

∗) satisfying (3.16) with ε = ε∗. Some complicated procedure will be followed to derive a
contradiction. It will be outlined now and the details will be given in the next two subsections. The
proof consists of two parts:

• Part 1. Under the contrary of Theorem 3.1, we obtain a uniform lower bound of the gradient
vectors in some annular regions. It is a standard consequence of the Palais-Smale condition
in variational argument

• Part 2. Construct an approximating minimax curve via variational method. The result in
Part 1 will be used to construct a deformation. In our setting, we will follow the nonnegative
gradient flow to make a deformation, which is an important process to derive a contradiction.

Part 1 will be carried out in Subsection 3.1 and Part 2 in Subsection 3.2.

22



3.1 First part of the proof of Theorem 3.1

For ε2 > 0, we denote Ṽl(2, ε2) the set of functions u in E satisfies: there exist α = (α1, α2) ∈ R
2,

ξ = (ξ1, ξ2) ∈ O
(1)
l ×O

(2)
l and λ = (λ1, λ2) ∈ R

2, such that

λ1, λ2 > ε−1
2 ,

|λτli − 1| < ε2, i = 1, 2,

|αi −Rl(ξi)
(2−Q)/4| < ε2, i = 1, 2,

∥∥∥u−
2∑

i=1

αiw
1+O(τl)
ξi,λi

∥∥∥ < ε2.

Throughout the paper, we denote pl =
Q+2
Q−2 − τl.

Lemma 3.2. For ε2 = ε2(n, ε1, ε
∗) > 0 small enough, we have, for large l,

Ṽl(2, ε2) ⊂ Vl(2, oε2(1)) ⊂ Vl(2, ε1) ∩ Vl(2, ε∗), (3.17)

where oε2(1) denotes some quantity which is independent of l and tends to zero as ε2 tends to zero.

Proof. It is straightforward to verify (3.17) by using the definition of Ṽl(2, ε2). Therefore, we we
omit it here.

Now we state the main result in this section, which reveals the uniform lower bounds of the
gradient vectors in certain regions of E.

Proposition 3.2. Under the hypotheses of Theorem 3.1 and the contrary of Theorem 3.1, there exist
two constants ε2 ∈ (0,min{ε0, ε1, ε∗, δ3}) and ε3 ∈ (0,min{ε0, ε1, ε2, ε∗, δ3}), which are independent
of l, such that (3.17) holds for such ε2, and there exist δ4 = δ4(ε2, ε3) > 0 and l′ε2,ε3 > 1 such

that for any l ≥ l′ε2,ε3, u ∈ Ṽl(2, ε2)\Ṽl(2, ε2/2) satisfying |IRl,τl(u) − (c(1) + c(2))| < ε3, we have
‖I ′Rl,τl

(u)‖ ≥ δ4, where I
′
Rl,τl

denotes Fréchet derivative.

Remark 3.3. Proposition 3.2 will be used to construct an approximating minimaxing curve in Part
2. Evidently we have, under the contrary of Theorem 3.1, that for each l,

inf{‖I ′Rl,τl
(u)‖ : u ∈ Ṽl(2, ε2)\Ṽl(2, ε2/2), I ′Rl ,τl

(u)− (c(1) + c(2)) < ε3} > 0.

We prove Proposition 3.2 by contradiction argument. Suppose the statement in the Proposition
3.2 is not true, then no matter how small ε2, ε3 > 0 are, there exists a subsequence (still denoted
as {ul}) such that

{ul} ∈ Ṽl(2, ε2)\Ṽl(2, ε2/2), (3.18)

|I ′Rl,τl
(ul)− (c(1) + c(2))| < ε3, (3.19)

lim
l→∞

‖I ′Rl,τl
(ul)‖ = 0. (3.20)

However, under the above assumptions, we can prove that there exists another subsequence, still
denotes by {ul}, such that ul ∈ Ṽl(2, ε2/2), which leads to a contradition. The existence of such
sequence needs some lengthy indirect analysis to the interaction of two bubbles. We break the proof
of Proposition 3.2 into several claims.

First we write
ul = αl

1wξl1,λ
l
1
+ αl

2wξl2,λ
l
2
+ vl (3.21)
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after making the minimization (3.11). By Proposition 3.1 and some standard arguments in [4–6], if
ε2 > 0 small enough, we have

(λl1)
−1, (λl2)

−1 = oε2(1), (3.22)

|αl
i −Rl(ξ

l
i)
(2−Q)/4| = oε2(1), (3.23)

‖vl‖ = oε2(1), (3.24)

dist (ξl1, O
(1)
l ), dist (ξl2, O

(2)
l ) = oε2(1). (3.25)

Next we will derive some elementary estimates of the interaction of the bubbles in (3.21) and
find another representation of ul in (3.21), from which we can deduce its location and concentrate
rate. Let us introduce a linear isometry operator first.

For any ξ ∈ H
n, we define a linear isometry Tξ : E → E by

(Tξu)(·) = u(ξ ◦ ·).

It is easy to see ‖Tξu‖ = ‖u‖.
Now we give some estimates concerning with bubble’s profile in (3.21).

Claim 1. For ε2 small enough, we have liml→∞ λl1 = liml→∞ λl2 = ∞.

Proof. Assume to the contrary that λl1 = λ1 + o(1) up to a subsequence. Here and in the following,
we use o(1) to denote any sequence tending to 0 as l → ∞. Now the proof consists of three steps.

Step 1 (Construct a positive solution). First, one observes from (3.21) that

Tξl1
ul = αl

1w0,λl
1
+ αl

2w(ξl1)
−1◦ξl2,λl

2
+ Tξl1

vl.

Then by Proposition 3.1, by passing to a subsequence, we have

lim
l→∞

αl
1 = α1 ∈

[1
2
(A2)

(2−Q)/4 − oε2(1), 2(A2)
(2−Q)/4 + oε2(1)

]
, (3.26)

and Tξl1
vl ⇀ w0 weakly in E for some w0 ∈ E. It follows from standard functional analysis

arguments and (3.24) that
‖w0‖ ≤ lim inf

l→∞
‖Tξl1vl‖ = oε2(1). (3.27)

Using the assumption (ii) (stated in the beginning of Section 3), we get

lim
l→∞

d(ξl2, ξ
l
1) ≥ lim

l→∞
Sl = ∞. (3.28)

Therefore,
Tξl1

ul ⇀ w := α1w0,λ1 + w0 weakly in E. (3.29)

Obviously, w 6= 0 if ε2 is small enough.
Next we prove that w is a weak solution of the following equation

−∆Hw = TζR
(1)
∞ (ξ)|w|(Q+2)/(Q−2)w in H

n, (3.30)

where ζ ∈ O(1) with dist(ζ, ∂O(1)) > δ0/2.
For any φ ∈ C∞

c (Hn), it follows from (3.20) that

I ′Rl,τl
(ul)(T(ξl1)−1φ) = o(1)‖T(ξl1)−1φ‖ = o(1)‖φ‖ = o(1).
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Summing up (3.14), (3.29), (3.6) and (3.10), we find that

o(1) =

∫
∇Hul∇HT(ξl1)−1φ−

∫
RlH

τl |ul|pl−1ulT(ξl1)−1φ

=

∫
∇HTξl1

ul∇Hφ−
∫
Tξl1

Rl(Tξl1
H)τl |Tξl1ul|

pl−1Tξl1
ulφ

=

∫
∇Hw∇Hφ−

∫
TζR

(1)
∞ (ξ)|w|4/(Q−2)wφ+ o(1),

where ζ = liml→∞(ξ
(1)
l )−1 ◦ ξl1 along a subsequence. This means w is a weak solution of (3.30).

The positivity of w can be verified from the following argument.
Let w = w+ −w−, where w+ = max(w, 0), w− = max(−w, 0). It follows from (3.29) and (3.27)

that ∫
(w−)Q

∗

= oε2(1). (3.31)

Multiplying (3.30) with w− and integrating by part, we have

∫
|∇Hw

−|2 ≤
∫
TζR

(1)
∞ (w−)Q

∗ ≤ oε2(1)
( ∫

(w−)Q
∗

)2/Q∗

≤ oε2(1)

∫
|∇Hw

−|2,

where we used (3.31) in the second inequality and (1.12) in the last step. If ε2 small enough, we
immediately obtain w− ≡ 0, namely, w ≥ 0. It follows from (3.30) and strong maximum principle
(see [8]) that w > 0.

Step 2 (Energy bound estimates). Now we begin to estimate the value of I
TζR

(1)
∞

(w) in order

to produce a contradiction. The estimate we are going to establish is

c(1) ≤ I
TζR

(1)
∞

(w) ≤ c(1) + oε2(1), (3.32)

where oε2(1) → 0 as ε2 → 0.

Firstly, we know from (3.30) that
∫
|∇Hw|2 =

∫
TζR

(1)
∞ wQ∗

. Thus,

I
TζR

(1)
∞

(w) =
1

2

∫
|∇Hw|2 −

1

Q∗

∫
TζR

(1)
∞ wQ∗

=
1

Q

∫
|∇Hw|2.

Then we conclude from (1.12), (3.30), and the fact TζR
(1)
∞ ≤ a(1) that

Sn ≤ (
∫
|∇Hw|2)1/2

(
∫
wQ∗)1/Q∗

≤ (
∫
|∇Hw|2)1/2

(
∫
TζR

(1)
∞ wQ∗)1/Q∗

(a(1))1/Q
∗

=
( ∫

|∇Hw|2
)1/Q

(a(1))1/Q
∗

.

Therefore, we complete the proof of the first inequality in (3.32).

On the other hand, we deduce from (3.2) that |R(1)
∞ (ξ)| ≤ A1, ∀ ξ ∈ H

n. Owing to (1.12), (3.21),
(3.22), (3.24) and (3.28), we have

IRl,τl(ul) = IRl,τl(α
l
1wξl1,λ

l
1
) + IRl,τl

(αl
2wξl2,λ

l
2
) + oε2(1)

= IT
ξl
1
Rl,τl(α

l
1w0,λl

1
) + IRl,τl(α

l
2wξl2,λ

l
2
) + oε2(1) + o(1)

= IT
ξl
1
Rl,τl(α1w0,λ1) + IRl,τl(α

l
2wξl2,λ

l
2
) + oε2(1) + o(1)

= I
TζR

(1)
∞

(α1w0,λ1) + IRl,τl(α
l
2wξl2,λ

l
2
) + oε2(1) + o(1)
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= I
TζR

(1)
∞

(w) + IRl,τl(α
l
2wξl2,λ

l
2
) + oε2(1) + o(1),

where o(1) denotes some quantity which, for fixed ε2, ε3 goes to zero as l → ∞. Consequently,

I
TζR

(1)
∞

(w) = IRl,τl(ul)− IRl,τl(α
l
2wξl2,λ

l
2
) + oε2(1) + o(1). (3.33)

Combining (3.20) and (3.21), we find

o(1) = I ′Rl,τl
(ul)(α

l
2wξl2,λ

l
2
) = I ′Rl,τl

(αl
2wξl2,λ

l
2
)(αl

2wξl2,λ
l
2
) + oε2(1) + o(1).

Namely,
∫

|∇H(α
l
2wξl2,λ

l
2
)|2 =

∫
RlH

τl(αl
2wξl2,λ

l
2
)Q

∗−τl + oε2(1) + o(1), (3.34)

IRl,τl(α
l
2wξl2,λ

l
2
) =

1

Q

∫
|∇H(α

l
2wξl2,λ

l
2
)|2 + oε2(1) + o(1). (3.35)

From (1.12) and (3.26), we obtain
∫

|∇H(α
l
2wξl2,λ

l
2
)|2 ≥ 1

2

(
A

(2−Q)/4
2 − oε2(1)

)
(Sn)

Q >
1

4
(A2)

(2−Q)/4(Sn)
Q > 0. (3.36)

Then, by (1.12), (3.3)-(3.5), (3.24), (3.28), and Hölder inequality, we have

Sn ≤
(
∫
|∇H(α

l
2wξl2,λ

l
2
)|2)1/2

(
∫
(αl

2wξl2,λ
l
2
)Q∗)1/Q∗

=
(
∫
|∇H(α

l
2wξl2,λ

l
2
)|2)1/2

(
∫
BSl

(ξ
(2)
l )

(αl
2wξl2,λ

l
2
)Q∗)1/Q∗ + o(1)

≤
(
∫
|∇H(α

l
2wξl2,λ

l
2
)|2)1/2

(
∫
BSl

(ξ
(2)
l )

(αl
2wξl2,λ

l
2
)Q∗−τl)1/Q

∗

+ o(1)

≤
(
∫
|∇H(α

l
2wξl2,λ

l
2
)|2)1/2Rl(ξ

(2)
l )1/Q

∗

(
∫
BSl

(ξ
(2)
l )

RlHτl(αl
2wξl2,λ

l
2
)Q∗−τl)1/Q∗ + o(1)

=
(
∫
|∇H(α

l
2wξl2,λ

l
2
)|2)1/2(a(2))1/Q∗

+ o(1)

(
∫
RlHτl(αl

2wξl2,λ
l
2
)Q∗−τl)1/Q∗ + o(1)

.

Thus, using (3.34), we establish that

Sn ≤
(∫

|∇H(α
l
2wξl2,λ

l
2
)|2

)1/Q
(a(2))1/Q

∗

+ o(1).

This together with (3.35) gives

IRl,τl(α
l
2wξl2,λ

l
2
) ≥ 1

Q
(a(2))(2−Q)/2(Sn)

Q + oε2(1) + o(1) = c(2) + oε2(1) + o(1). (3.37)

Putting (3.33), (3.19) and above estimate together, we obtain the right hand side of (3.23).
Step 3 (Completion of the proof). Finally, for ε2 small enough, a contradiction arises from

(3.29), (3.30), (3.32), (3.1) and the positivity of w. This proves that liml→∞ λl1 = ∞. Similarly
liml→∞ λl2 = ∞. Claim 1 has been established.
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For any λ > 0 any ξ ∈ H
n, we define Tl,λ,ξ : E → E by

Tl,λ,ξu(·) = λ2/(1−pl)u(ξ ◦ δλ−1(·)).

It is clear that
T

−1
l,λ,ξu(·) = λ2/(pl−1)u(δλ(ξ

−1 ◦ ·))
and ∫

∇Hu∇HT
−1
l,λ,ξφ = λ2(pl+1)/(pl−1)−Q

∫
∇HTl,λ,ξu∇Hφ for any φ ∈ C∞

c (Hn).

Lemma 3.3. There exists some constant C = C(n,A2), such that, for ε2 small enough and l large
enough, we have (λ′1)

τl , (λ′2)
τl ≤ C.

Proof. Applying (3.20), we deduce that I ′Rl,τl
(ul)(wξl1,λ

l
1
) = o(1). Now an explicit calculation from

(3.24), (3.28), Claim 1, bubbles’ interaction estimates in [4, Part 1], and Proposition 3.1 yields that

(αl
1)

pl

∫
RlH

τlwpl+1

ξl1,λ
l
1
= αl

1

∫
|∇Hwξl1,λ

l
1
|2 + o(1) + oε2(1). (3.38)

Then the proof of the first term completed from (3.38), (3.8), (3.23), (3.14), and Claim 1. Similarly,
we have (λl2)

τl ≤ C.

Without loss of generality, we assume that

λl1 ≤ λl2. (3.39)

A direct computation using (3.21) shows that

Tl,ξl1,λ
l
1
ul = α̃l

1w0,1 + α̃l
2wδ

λl
1
((ξl1)

−1◦ξl2),λl
2/λ

l
1
+ Tl,ξl1,λ

l
1
vl, (3.40)

where
α̃l
1 = αl

1(λ
l
1)

(Q−2)/2−2/(pl−1), α̃l
2 = αl

2(λ
l
2)

(Q−2)/2−2/(pl−1).

Then we can verify the existence of u1 ∈ E and ζ1 ∈ O(1) such that

Tl,ξl1,λ
l
1
ul ⇀ u1 weakly in E, (3.41)

lim
l→∞

(ξ
(1)
l )−1 ◦ ξl1 = ζ1, (3.42)

up to a subsequence.
Accordingly, by making use of (3.6), (3.10), (3.25) and (3.42), we have

lim
l→∞

Rl(ξ
l
1)

(2−Q)/4 = R(1)
∞ (ζ1)

(2−Q)/4. (3.43)

For any φ ∈ C∞
c (Hn), it follows from (3.20) that

o(1) =I ′Rl,τl
(ul)(T

−1
l,ξl1,λ

l
1
φ)

=(λl1)
2(pl+1)/(pl−1)−Q

{∫
∇HTl,ξl1,λ

l
1
ul∇Hφ−

∫
T
ξ
(1)
l

Rl((ξ
(1)
l )−1 ◦ ξl1 ◦ δ1/λl

1
(·))

×Hτl(ξl1 ◦ δ1/λl
1
(ξl1))|Tl,ξl1,λ

l
1
ul|pl−1(Tl,ξl1,λ

l
1
ul)φ

}
.
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Taking the limit l → ∞, and then using (3.41), (3.14), (3.42), (3.6), (3.25), and Lemma 3.3 we
obtain ∫

∇Hu1∇Hφ−
∫
R(1)

∞ (ζ1)|u1|4/(Q−2)u1φ = 0.

Namely, u1 satisfies
−∆Hu1 = R(1)

∞ (ζ1)|u1|4/(Q−2)u1. (3.44)

Moreover, we see from (3.40) that u1 6≡ 0 if ε2 is small enough. We then argue as before to obtain
u1 > 0.

By the classification theorem of positive solutions of (3.44) in E (see [48]), there exist ξ∗ ∈ H
n

and λ∗ > 0 such that
u1 = R(1)

∞ (ζ1)
4/(Q−2)wξ∗,λ∗ . (3.45)

Claim 2. For l large enough, we have |ξ∗| = oε2(1), |λ∗ − 1| = oε2(1), (λ
l
1)

τl = 1 + oε2(1).

Proof. First of all, using Lemma 3.3, we find (λl1)
τl = Aε2,ε3 + o(1) along a subsequence, where

Aε2,ε3 > 0 is a constant independent of l for fixed ε2 and ε3. Thanks to (3.23) and (3.43), we have

αl
1 = R(1)

∞ (ζ1)
(2−Q)/4 + oε2(1) + o(1). (3.46)

Note that
α̃l
1 = αl

1(λ
l
1)

(Q−2)/2−2/(pl−1) = αl
1(λ

l
1)

−(Q−2)2τl/8+O(τ2l ).

Therefore,
α̃l
1 = R(1)

∞ (ζ1)
(2−Q)/4(Aε2,ε3)

−(Q−2)2/8 + oε2(1) + o(1). (3.47)

From (3.22), (3.28) and (3.39)-(3.41), we see that

α̃l
1w0,1 + Tl,ξl1,λ

l
1
vl ⇀ u1 weakly in E. (3.48)

It follows from (3.24), (3.47), (3.48), and Lemma 3.3 that

‖R(1)
∞ (ζ1)

(2−Q)/4(Aε2,ε3)
−(Q−2)2/8w0,1 −R(1)

∞ (ζ1)
(2−Q)/4wξ∗,λ∗‖ = oε2(1) + o(1).

Finally, taking the limit l → ∞, we get |ξ∗| = oε2(1), λ
∗ = 1 + oε2(1), Aε2,ε3 = 1 + oε2(1). Claim 2

has been established.

We define φl ∈ E by
Tl,ξl1,λ

l
1
ul = u1 + Tl,ξl1,λ

l
1
φl. (3.49)

It follows from (3.41) that
Tl,ξl1,λ

l
1
φl ⇀ 0 weakly in E. (3.50)

Claim 3. For ε2 small enough, we have ‖I ′Rl,τl
(φl)‖ = o(1).

Proof. For any φ ∈ C∞
c (Hn), it follows from (3.20), (3.44), (3.49) and Lemma 3.3 that

o(1)‖φ‖ =I ′Rl,τl
(ul)(T

−1
l,ξl1,λ

l
1
φ)

=(λl1)
2(pl+1)/(pl−1)−Q

{∫
∇HTl,ξl1,λ

l
1
ul∇Hφ−

∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))

×Hτl(ξl1 ◦ δ1/λl
1
(ξl1))|Tl,ξl1,λ

l
1
ul|pl−1(Tl,ξl1,λ

l
1
ul)φ

}
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=(λl1)
2(pl+1)/(pl−1)−Q

{∫
∇Hu1∇Hφ+

∫
∇HTl,ξl1,λ

l
1
φl∇Hφ

−
∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
ul|pl−1(Tl,ξl1,λ

l
1
ul)φ

}

=(λl1)
2(pl+1)/(pl−1)−Q

{∫
R(1)

∞ (ζ1)u
(Q+2)/(Q−2)
1 φ+

∫
∇HTl,ξl1,λ

l
1
φl∇Hφ

−
∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
φl|pl−1(Tl,ξl1,λ

l
1
φl)φ

+

∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
φl|pl−1(Tl,ξl1,λ

l
1
φl)φ

−
∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
ul|pl−1(Tl,ξl1,λ

l
1
ul)φ

}

=I ′Rl,τl
(φl)(T

−1
l,ξl1,λ

l
1
φ) + (λl1)

2(pl+1)/(pl−1)−Q
{∫

R(1)
∞ (ζ1)u

(Q+2)/(Q−2)
1 φ

+

∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
φl|pl−1(Tl,ξl1,λ

l
1
φl)φ

−
∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))|Tl,ξl1,λ

l
1
ul|pl−1(Tl,ξl1,λ

l
1
ul)φ

}
. (3.51)

Then a direct calculation exploiting (3.14), (3.43), (3.45), Claim 2, Hölder inequalities and Sobolev
embedding theorems that

∣∣∣
∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(ξl1))(u1)

plφ−
∫
R(1)

∞ (ζ1)u
(Q+2)/(Q−2)
1 φ

∣∣∣ = o(1)‖φ‖. (3.52)

Finally, by (3.51), (3.52), Lemma 3.3 and some elementary inequalities, we deduce that

|I ′Rl,τl
(φl)(T

−1
l,ξl1,λ

l
1
φ)| = o(1)‖φ‖ +O(1)

∫
(|Tl,ξl1,λ

l
1
φl|pl−1u1 + Tl,ξl1,λ

l
1
φl|u1|pl−1)|φ| = o(1)‖φ‖,

where the last inequaity follows from (3.49), (3.45), Claim 2, Hölder inequalities and the Sobolev
embedding theorems. Claim 3 has been established now.

Claim 4. IRl,τl(φl) ≤ c(2) + ε3 + o(1).

Proof. By a change of variable and using Claim 2, (3.49), (3.50) and (3.45), some calculations lead
to

IRl,τl(ul) =IRl,τl(φl) + (λl1)
2(pl+1)/(pl−1)−Q

{1

2

∫
|∇Hu1|2

− 1

Q∗

∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(·))|u1|pl+1

}
+ o(1). (3.53)

We derive from (3.42), (3.6) and (1.12) that

1

2

∫
|∇Hu1|2 −

1

Q∗

∫
Rl(ξ

l
1 ◦ δ1/λl

1
(·))Hτl(ξl1 ◦ δ1/λl

1
(·))|u1|pl+1

=I
R

(1)
∞ (ζ1)

(u1) + o(1)

≥ 1

Q
R(1)

∞ (ζ1)
(2−Q)/2(Sn)

Q + o(1)

≥c(1) + o(1). (3.54)

Claim 4 follows from (3.53), (3.54), (3.19), and the fact (λl1)
2(pl+1)/(pl−1)−Q ≥ 1.
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From (3.49), (3.21) and (3.45) we have

φl = ul − T
−1
l,ξl1,λ

l
1
u1 = αl

2wξl2,λ
l
2
+ wl, (3.55)

where
wl = αl

1wξl1,λ
l
1
− (λl1)

2/(pl−1)−(Q−2)/2wξl1◦δ1/λl
1
(ξ∗),λ∗λl

1,
+ vl.

Using Claim 2 and (3.46), we have, for large l, that

‖wl‖ = oε2(1). (3.56)

Now we repeat the previous arguments on φl instead of ul. For simplicity, we only carry out
some crucial steps and omit similar proofs.

Using (3.55) we have
Tl,ξl2,λ

l
2
φl = αl

2w0,1 + Tl,ξl2,λ
l
2
wl, (3.57)

where
αl
2 = αl

2(λ
l
2)

(Q−2)/2−2/(pl−1). (3.58)

Then we can verify the existence of u2 ∈ E and ζ2 ∈ O(2) such that

Tl,ξl2,λ
l
2
φl ⇀ u2 weakly in E, (3.59)

lim
l→∞

(ξ
(2)
l )−1 ◦ ξl2 = ζ2, (3.60)

up to a subsequence.
Accordingly, by making use of (3.6), (3.10) and (3.60), we have

lim
l→∞

Rl(ξ
l
2)

(2−Q)/4 = Rl(ζ2)
(2−Q)/4. (3.61)

For any φ ∈ C∞
c (Hn), it follows from Claim 3 and Lemma 3.3 that

o(1) =I ′Rl,τl
(φl)(T

−1
l,ξl2,λ

l
2
φ)

=(λl1)
2(pl+1)/(pl−1)−Q

{∫
∇HTl,ξl2,λ

l
2
ul∇Hφ−

∫
T
ξ
(2)
l

Rl((ξ
(2)
l )−1 ◦ ξl2 ◦ δ1/λl

2
(·))

×Hτl(ξl2 ◦ δ1/λl
2
(ξl2))|Tl,ξl2,λ

l
2
ul|pl−1(Tl,ξl2,λ

l
2
ul)φ

}
.

Taking the limit l → ∞ and arguing as before, we have

∫
∇Hu2∇Hφ−

∫
R(1)

∞ (ζ2)|u2|4/(Q−2)u2φ = 0.

Namely, u2 satisfies
−∆Hu2 = R(2)

∞ (ζ2)|u2|4/(Q−2)u2. (3.62)

Arguing as before, for ε2 small enough we can prove that u2 > 0 and for some ξ∗∗ ∈ H
n and

λ∗∗ > 0,
u2 = R(2)

∞ (ζ2)
(2−Q)/4wξ∗∗,λ∗∗ . (3.63)

Claim 5. For l large enough, we have |ξ∗∗| = oε2(1), |λ∗∗ − 1| = oε2(1), (λ
l
2)

τl = 1 + oε2(1).

Proof. The proof is similar to the proof of Claim 2, we omit it here.
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We define ηl ∈ E by
Tl,ξl2,λ

l
2
φl = u2 + Tl,ξl2,λ

l
2
ηl. (3.64)

Clearly,
Tl,ξl2,λ

l
2
ηl ⇀ 0 weakly in E. (3.65)

Claim 6. For ε2 small enough, we have ‖I ′Rl,τl
(ηl)‖ = o(1).

Proof. The proof is similar to the proof of Claim 3, we omit it here.

Claim 7. IRl,τl(ηl) ≤ ε3 + o(1).

Proof. The proof is similar to the proof of Claim 4, we omit it here.

Claim 8. For ε2 small enough, we have ηl → 0 strongly in E.

Proof. The proof makes use of contradiction argument and Claims 6 and 7, we omit the details
here.

Rewriting (3.49) and (3.64), we have

ul = T
−1
l,ξl1,λ

l
1
u1 + T

−1
l,ξl1,λ

l
1
u2 + ηl. (3.66)

Claim 9. For ε2 small enough, we have (λli)
τl = 1 + oε3(1) + o(1) for i = 1, 2.

Proof. We first deduce from (3.53), (3.54), and Lemma 3.3 that

IRl,τl(ul) ≥ IRl,τl(φl) + (λl1)
2(pl+1)/(pl−1)−Qc(1) + o(1). (3.67)

In view of Claim 5, (3.63)-(3.65), some calculations similar to the proof of Claim 4 lead to

IKl,τl(φl) =IKl,τl(ηl) + (λl2)
2(pl+1)/(pl−1)−Q

{1

2

∫
|∇Hu2|2 −

1

Q∗

∫
Rl(ξ

l
2 ◦ δ1/λl

2
(·))

Hτl(ξl2 ◦ δ1/λl
2
(·))|u2|pl+1

}
+ o(1).

Similar to the calculation in (3.54), we derive from (3.6), (3.60) and (1.12) that

1

2

∫
|∇Hu2|2 −

1

Q∗

∫
Rl(ξ

l
2 ◦ δ1/λl

2
(·))Hτl(ξl2 ◦ δ1/λl

2
(·))|u2|pl+1 ≥ c(2) + o(1).

Combining the above estimates with Lemma 3.3 we have

IRl,τl(φl) ≥ IRl,τl(ηl) + (λl2)
2(pl+1)/(pl−1)−Qc(2) + o(1). (3.68)

Then we use Claim 8 to deduce that
IRl,τl(ηl) = o(1). (3.69)

Finally, we put together (3.19), (3.67)-(3.69) to obtain

2∑

i=1

{(λli)2(pl+1)/(pl−1)−Q − 1}c(i) ≤ ε3 + o(1).

This completes the proof of Claim 9.
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Claim 10. Let δ5 = δ1/(2A3) > 0. Then if ε2 is chosen to be small enough, we have, for large l,

that dist (ξli, ∂O
(i)
l ) ≥ δ5 for i = 1, 2.

Proof. The proof is similar to the proof of Lemma 3.1, we omit it here.

Now we are in the position to prove Proposition 3.2.

Proof of Proposition 3.2. Applying (3.6), (3.10), (3.42), (3.45), and Claim 9, we deduce that

T
−1
l,ξl2,λ

l
2
u1 = (λl1)

2/(pl−1)u1(δλl
1
((ξl1)

−1 ◦ ·))

= (λl1)
2/(pl−1)−(Q−2)/2R(1)

∞ (ζ1)
(2−Q)/4wξl1◦δ1/λl

1
(ξ∗),λ∗λl

1

= R(1)
∞ (ζ1)

(2−Q)/4wξl1◦δ1/λl
1
(ξ∗),λ∗λl

1,
+ oε3(1)

= Rl

(
ξl1 ◦ δ1/λl

1
(ξ∗)

)(2−Q)/4
wξl1◦δ1/λl

1
(ξ∗),λ∗λl

1
+ oε3(1) + o(1).

Similarly, we have

T
−1
l,ξl2,λ

l
2
u2 = Rl

(
ξl2 ◦ δ1/λl

2
(ξ∗∗)

)(2−Q)/4
wξl2◦δ1/λl

2
(ξ∗∗),λ∗∗λl

2,
+ oε3(1) + o(1).

Therefore, we can rewrite (3.66) as (see Claim 8 and the above)

ul =Rl

(
ξl1 ◦ δ1/λl

1
(ξ∗)

)(2−Q)/4
wξl1◦δ1/λl1

(ξ∗),λ∗λl
1,

+Rl

(
ξl2 ◦ δ1/λl

2
(ξ∗∗)

)(2−Q)/4
wξl2◦δ1/λl

2
(ξ∗∗),λ∗∗λl

2
+ oε3(1) + o(1). (3.70)

We now fix the value of ε2 small enough to make all the previous arguments hold and then make
ε3 small (depending on ε2) such that (using Claim 9):

|(λ∗λli)τl − 1| = oε3(1) + o(1) < ε2/2 for i = 1, 2. (3.71)

From (3.70), (3.71), Claims 1 and 9, we see that for ε3 small, we have, for large l, ul ∈ Ṽl(2, ε2/2).
This contradicts to (3.18). We conclude the proof of Proposition 3.2.

3.2 Complete the proof of Theorem 3.1

In this subsection we will complete the proof of Theorem 3.1. Precisely, under the contrary of
Theorem 3.1 and combining with the Proposition 3.2 established in the previous subsection, a
contradiction will be produced by adopting and modifying the minimax procedure as in [19–21,52,
65]. To reduce overlaps, we will omit the proofs of several intermediate results which closely follow
standard arguments, giving appropriate references. We start the proof by defining a certain family
of sets and minimax values and giving some notations.

Let Ω be a smooth bounded domain in H
n. Define the space S1

0(Ω) by taking the closure of
C∞
c (Ω) under the norm

‖u‖S1
0 (Ω) =

( ∫

Ω
|∇Hu|2

)1/2
+

( ∫

Ω
|u|2

)1/2
.

By means of (1.12), this norm is equivalent to the norm generated by the inner product 〈u, v〉S1
0 (Ω) =∫

Ω ∇Hu∇Hv. Using the invariance under translations and dilations, it is easy to see that Sn is also
the best Sobolev constant for the embedding S1

0(Ω) →֒ LQ∗

(Ω) and is not achieved, see [48].
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In the following part of this section, we write τl = τ , pl = p.
Now, for each i = 1, 2, we define

γ
(i)
l,τ ={g(i) ∈ C([0, 1], S1

0 (BSl
(ξ

(i)
l ))) : g(i)(0) = 0, IRl,τ (g

(i)(1)) < 0},
c
(i)
l,τ = inf

g(i)∈γ(i)
l,τ

max
0≤θi≤1

IRl,τ (g
(i)(θi)).

We have abused the notation a little by writing IRl,τ : S1
0(BSl

(ξ
(i)
l )) → R for i = 1, 2.

Proposition 3.3. Let {Rl} be a sequence of functions satisfying (3.2), (3.4) and (3.5). Then it

holds c
(1)
l,τ = c(1) + o(1) for i = 1, 2, where o(1) → 0 as l → ∞.

Proof. The proof can be completed by using the definition of c
(i)
l,τ with some standard functional

analysis arguments, we omit the details here.

We define

Γl = {G = g(1) + g(2) : g(1), g(2) satisfy (3.72)− (3.75)},
g(1), g(2) ∈ C([0, 1]2, E), (3.72)

g(1)(0, θ2) = g(2)(θ1, 0) = 0, 0 ≤ θ1, θ2 ≤ 1, (3.73)

IRl,τ (g
(1)(1, θ2)) < 0, IRl,τ (g

(2)(θ1, 1)) < 0, 0 ≤ θ1, θ2 ≤ 1, (3.74)

supp g(i)(θ) ⊂ BSl
(ξ

(i)
l ), θ = (θ1, θ2) ∈ [0, 1]2, i = 1, 2, (3.75)

bl,τ = inf
G∈Γl

max
θ∈[0,1]2

IRl,τ (G(θ)).

Remark 3.4. Observe that if G = g(1) + g(2) with g(1) ∈ γ
(1)
l,τ , g

(2) ∈ γ
(2)
l,τ , supp g

(1) ∩ supp g(2) = ∅,
then IRl,τ (G) = IRl,τ (g

(1)) + IRl,τ (g
(2)).

Proposition 3.4. Let {Rl} be a sequence of functions satisfying (3.2), (3.4) and (3.5), then it holds

bl,τ = c
(1)
l,τ + c

(2)
l,τ + o(1).

Proof. We first prove that bl,τ ≥ c
(1)
l,τ + c

(2)
l,τ . Indeed it can be achieved from the definition of c

(i)
l,τ

with additional compactness argument on [0, 1]2, we omit it here and refer to [20, Proposition 3.4]
for details.

On the other hand, for 0 ≤ θ1, θ2 ≤ 1, let g
(i)
l (θi) = θiC1Rl(ξ

(i)
l )(2−Q)/4η(ξ

(i)
l ◦ ·)w

ξ
(i)
l ,λl

for

i = 1, 2, where λl → ∞ is a sequence satisfying (λl)
τ = 1 + o(1), and C1 = C1(n,A1, A2) > 1 is a

constant, such that for l large, IRl,τg
(i)
l (1) < 0 for each i = 1, 2. We fix the value of C1 from now

on.
For θ = (θ1, θ2) ∈ [0, 1]2, let Gl(θ) = g

(1)
l (θ1) + g

(2)
l (θ2). Clearly, Gl ∈ Γl and

max
θ∈[0,1]2

IRl,τ (Gl(θ)) = max
θ∈[0,1]2

IRl,τ (g
(1)
l (θ1)) + max

θ∈[0,1]2
IRl,τ (g

(1)
l (θ1))

≤
2∑

i=1

max
0≤s<∞

IRl,τ (sη(ξ
(i)
l ◦ ·)w

ξ
(i)
l ,λl,

) + o(1)

=

2∑

i=1

1

Q
(a(i))(2−Q)/2(Sn)

Q + o(1)
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=c
(1)
l,τ + c

(2)
l,τ + o(1),

where the last equality is due to Proposition 3.3. Therefore, bl,τ ≤ c
(1)
l,τ + c

(2)
l,τ + o(1).

In the subsequent analysis, we show that under the contrary of Theorem 3.1, it is possible to
construct Hl ∈ Γl for large l, such that

max
θ∈[0,1]2

IRl,τ (Hl(θ)) < bl,τ ,

which contradicts to the definition of bl,τ . A lengthy construction is required to establish this fact
and a brief sketch of it will be given now.

Step 1: Choose some suitably small number ε4 > 0, we can construct Gl ∈ Γl such that

max
θ∈[0,1]2

IRl,τ (Gl(θ)) ≤ bl,τ + ε4.

Furthermore, Gl satisfies some further properties.
Step 2: We follow the negative gradient flow of IRl,τ to deform Gl to Ul with

max
θ∈[0,1]2

IRl,τ (Ul(θ)) ≤ bl,τ − ε4.

However, Ul is not necessarily in Γl any more since the deformation may not preserve properties
(3.75).

Step 3: Applying Propositions 3.2, 2.4 and 2.5, we modify Ul to obtain Hl ∈ Γl with

max
θ∈[0,1]2

IRl,τ (Hl(θ)) ≤ bl,τ − ε4/2.

Step 4: Complete the proof by using the minimax structure of Hl.
All four steps are completed for large l. Now we start to establish these steps.
Step 1: Construction of Gl.
Let Gl be the one we have just defined. We establish some properties of Gl which are needed.

Lemma 3.4. For any ε ∈ (0, 1), if IRl,τ (g
(i)
l (θi)) ≥ c

(i)
l,τ−ε for i = 1, 2, then there exist two constants

Λ1 = Λ1(ε,A1, A3) > 1 and C0 = C0(n) > 0, such that for any l ≥ Λ1, 0 ≤ θ1, θ2 ≤ 1, we have
|C1θi − 1| ≤ C0

√
ε for i = 1, 2, where C1 is the constant in the proof of Proposition 3.4.

Proof. We only take into account the case i = 1 since the other case can be covered in the same
way. Let s = C1θ1, a direct calculation shows that

IRl,τ (g
(1)
l (θ1)) =

1

2
s2Rl(ξ

(1)
l )(2−Q)/2

∫
|∇H(η(ξ

(1)
l ◦ ·)w

ξ
(1)
l ,λl

)|2

− 1

p+ 1
sp+1Rl(ξ

(1)
l )−(Q−2)(p+1)/4

∫
RlH

τ |η(ξ(1)l ◦ ·)w
ξ
(1)
l ,λl

|p+1

=
(1
2
+ o(1)

)
s2Rl(ξ

(1)
l )(2−Q)/2

∫
|∇Hw0,1|2

−
( 1

Q∗ + o(1)
)
sp+1Rl(ξ

(1)
l )(2−Q)/2

∫
wQ∗

0,1

=
[(Q

2
+ o(1)

)
s2 −

(Q− 2

2
+ o(1)

)
sp+1

]
c
(1)
l,τ ,

where Proposition 3.4 is used in the last step. Hence, using above identity and the hypothesis

IRl,τ (g
(1)
l (θ1)) ≥ c

(1)
l,τ − ε, we complete the proof.
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Lemma 3.5. For any ε ∈ (0, 1), there exists Λ2 = Λ2(ε,A1, A3) > Λ1 such that for l ≥ Λ2,

0 ≤ θ1, θ2 ≤ 1, we have IRl,τ (g
(i)
l (θi)) ≤ c

(i)
l,τ + ε/10 for i = 1, 2.

Proof. The proof is similar to that of Proposition 3.4, we omit the details here.

Lemma 3.6. For any ε ∈ (0, 1), there exists Λ3 = Λ3(n, ε,A1, A3) > Λ2 such that for l ≥ Λ3, we
have IRl,τ (Gl(θ))|θ∈∂[0,1]2 ≤ max{c(1) + ε, c(2) + ε}.

Proof. Lemma 3.6 follows immediately from Lemma 3.5.

Lemma 3.7. There exists some universal constant C0 = C0(n) > 1 such that for any ε ∈ (0, 1/2),

l ≥ Λ3(ε,A1, A3) and θ ∈ [0, 1]2, IRl,τ (Gl(θ)) ≥ c
(1)
l,τ + c

(2)
l,τ − ε implies that |C1θi − 1| ≤ C0

√
ε for

i = 1, 2.

Proof. Lemma 3.7 follows from Lemmas 3.4 and 3.5, we omit the details here.

Step 2: The deformation of Gl.
Let

Ml = sup{‖I ′Rl,τ
(u)‖ : u ∈ Vl(2, ε1)}, βl = dist(∂Ṽl(2, ε2), ∂Ṽl(2, ε2/2)).

One can see from the definition of Ml that there exists a constant C2 = C2(n,A1, ε2) > 1 such that
Ml ≤ C2. It is also clear from the definition of Ṽl(2, ε2) that βl ≥ ε2/4.

By Lemma 3.7, we choose ε4 to satisfy, for l large, that

ε4 < min
{
ε3,

1

2A4
,
ε2δ

2
4

8C2

}
, (3.76)

IRl,τ (Gl(θ)) ≥ c
(1)
l,τ + c

(2)
l,τ − ε4 implies that

Gl(θ) ∈ Ṽl(2, ε2/2), ξ1(Gl(θ)) ∈ O(1)
l , ξ2(Gl(θ)) ∈ O(2)

l ,
(3.77)

where δ4 = δ4(ε2, ε3) is the constant in Proposition 3.2. Gl(θ) has been defined by now.

We know from Lemma 3.5 that for l large enough, maxθ∈[0,1]2 IRl,τ (Gl(θ)) ≤ c
(1)
l,τ + c

(2)
l,τ + ε4.

For any u0 ∈ Ṽl(2, ε2/2), we consider the negative gradient of IRl,τ :

d

ds
φ(s, u0) = −I ′Rl,τ

(φ(s, u0)), s ≥ 0,

φ(0, u0) = u0.
(3.78)

Under the contrary of Theorem 3.1, we know that IRl,τ satisfies the Palais-Smale condition. Fur-
thermore, the flow defined above never stops before exiting Vl(2, ε

∗).
Now we define Ul ∈ C([0, 1]2, E) by the following.

• If IRl,τ (Gl(θ)) ≤ c
(1)
l,τ + c

(2)
l,τ − ε4, we define s∗l (θ) = 0.

• If IRl,τ (Gl(θ)) > c
(1)
l,τ +c

(2)
l,τ −ε4, then, according to (3.77), Gl(θ) ∈ Ṽl(2, ε2/2), ξ1(Gl(θ)) ∈ O

(1)
l ,

ξ2(Gl(θ)) ∈ O
(2)
l . We define s∗l (θ) = min{s > 0 : IRl,τ (φ(s,Gl(θ))) = c

(2)
l,τ − ε4}.

We set
Ul(θ) = φ(s∗l (θ), Gl(θ)).

The above definition is justified in the following.
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Lemma 3.8. For any u0 ∈ Ṽl(2, ε2/2), with ξ1(u0) ∈ O
(1)
l , ξ2(u0) ∈ O

(2)
l , and c

(1)
l,τ + c

(2)
l,τ − ε4 <

IRl,τ (u0) < c
(1)
l,τ + c

(2)
l,τ + ε4, the flow line φ(s, u0) (s ≥ 0) cannot leave Ṽl(2, ε2) before reaching

I−1
Rl,τ

(c
(1)
l,τ + c

(2)
l,τ − ε4).

Proof. The proof can be done exactly in the same way as in [6, Lemma 5], so we omit it.

Remark 3.5. We see from Lemma 3.8 that s∗l (θ) is well defined. Since IRl,τ has no critical point in

Ṽl(2, ε2)∩{u ∈ E : |IRl,τ (u)−c(1)−c(2)| ≤ ε4} ⊂ Vl(2, ε
∗)∩{u ∈ E : |IRl,τ (u)−c(1)−c(2)| ≤ ε∗} under

the contradiction hypothesis, s∗l (θ) is continuous in θ (see also [52, Proposition 5.11] and [6, Lemma
5]), hence Ul ∈ C([0, 1]2, E).

Step 3: The construction of Hl.

It follows from the construction of Ul that maxθ∈[0,1]2 IRl,τ (Ul(θ)) ≤ c
(1)
l,τ + c

(2)
l,τ − ε4. Since the

gradient flow does not keep property (3.75), Ul(θ) is not necessarily in Γl any more. It follows from

Lemma 3.8 that if IRl,τ (Gl(θ)) > c
(1)
l,τ + c

(2)
l,τ − ε4, then the gradient flow φ(s,Gl(θ)) (s ≥ 0) cannot

leave Ṽl(2, ε2) before reaching I−1
Rl,τ

(c
(1)
l,τ + c

(2)
l,τ − ε4). It follows that if IRl,τ (Gl(θ)) > c

(1)
l,τ + c

(2)
l,τ − ε4,

then Ul(θ) ∈ Ṽl(2, ε2) ⊂ Vl(2, oε(1)) with ξ1(Ul(θ)) ∈ O
(1)
l , ξ2(Ul(θ)) ∈ O

(2)
l , which implies that

∫

Ωl

|∇HUl(θ)|2 + |Ul(θ)|Q
∗

= oε2(1), (3.79)

‖Ul(θ)‖H1/2(∂Ωl)
= oε2(1), (3.80)

where

Ωl = H
n\{BS(ξ

(1)
l ) ∪BS(ξ

(2)
l )},

S = 4(diamO(1) + diamO(2)),

diamO(i) = sup{d(ξ, ξ0) : ξ, ξ0 ∈ H
n} for i = 1, 2,

and O(1), O(2) are defined by (3.1).
Without loss of generality, we can assume that ε2 > 0 has been so small that we can apply

Proposition 2.5. We modify Ul(θ) in Ωl after making the following minimization.
Let

ϕl(θ) = Ul(θ)|∂Ωl
.

Because of (3.79) and (3.80), we can apply Proposition 2.5 to obtain the minimizer uϕl
(θ) to the

problem (3.11) with ϕ = ϕl(θ), Ω = Ωl. We define for θ ∈ [0, 1]2 that

Wl(θ)(ξ) =

{
Ul(θ)(ξ), ξ ∈ H

n\Ωl,

uϕl
(θ)(ξ), ξ ∈ Ωl.

It follows from Proposition 2.5 that Wl ∈ C([0, 1]2, E) and satisfies

max
θ∈[0,1]2

IRl,τ (Wl(θ)) ≤ max
θ∈[0,1]2

IRl,τ (Ul(θ)) ≤ c
(1)
l,τ + c

(2)
l,τ − ε4, (3.81)

∫

Ωl

|∇HWl(θ)|2 + |Wl(θ)|Q
∗

= oε2(1), (3.82)

−∆HWl(θ) = Rl(ξ)H
τ |Wl(θ)|p−1Wl(θ) in Ωl. (3.83)
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Moreover, Wl(θ) ≥ 0 in Ωl can be proved by using (3.82) and (2.10), see also the proof in the Claim
1. Wl(θ) > 0 in Ωc

l can be seen from the definition of Vl(2, oε2(1)) and Proposition 3.1.
Write

Ω1
l :=(Bl1(ξ

(1)
l )\BS(ξ

(1)
l )) ∪ (Bl1(ξ

(2)
l )\Br(z

(2)
l )),

Ω2
l :=(Bl2(ξ

(1)
l )\Bl1(ξ

(1)
l )) ∪ (Bl2(ξ

(2)
l )\Bl1(ξ

(2)
l )),

Ω3
l :=(Hn\Bl2(ξ

(1)
l )) ∩ (Hn\Bl2(ξ

(2)
l )).

Obviously, Ωl = Ω1
l ∪ Ω2

l ∪ Ω3
l for large l. For l2 > 100l1 > 1000S (the values of l1, l2 will be

determined in the end), we introduce the cut-off functions ηl ∈ C∞
c (Hn) satisfying

ηl(ξ) =





1, ξ ∈ Bl1(ξ
(1)
l ) ∩Bl1(ξ

(2)
l ),

0, ξ ∈ (Hn\Bl2(ξ
(1)
l )) ∪ (Hn\Bl2(ξ

(2)
l )),

≥ 0, otherwise,

|∇Hηl(ξ)| ≤
10

l2 − l1
, ξ ∈ H

n,

and set Hl(θ) = ηlWl(θ).
Step 4: Now we complete the proof by using the minimax structure of Hl. Roughly speaking,

we will prove that Hl(θ) ∈ Γl but its energy bound contradicts to bl,τ .
Multiplying (1− ηl)Wl(θ) on both sides of (3.83) and integrating by parts, we have

∫

Ωl

∇HWl(θ)∇H((1− ηl)Wl(θ)) =

∫

Ωl

RlH
τ (1− ηl)|Wl(θ)|p+1.

A direct computation shows that
∫

Ω3
l

|∇HWl(θ)|2 −
∫

Ω3
l

RlH
τ |Wl(θ)|p+1

=−
∫

Ωl
2

∇HWl(θ)∇H((1− ηl)Wl(θ)) +

∫

Ωl
2

RlH
τ (1− ηl)|Wl(θ)|p+1

≥−
∫

Ωl
2

|∇HWl(θ)|2 −
10

l2 − l1

∫

Ωl
2

|∇HWl(θ)||Wl(θ)| − 2A1

∫

Ωl
2

|Wl(θ)|p+1.

By Proposition 2.4 we know that

|Wl(θ)(ξ)| ≤
C3(n,A1)

d(ξ, ξ
(i)
l )Q−2

, l1 ≤ d(ξ, ξ
(i)
l ) ≤ l2, (3.84)

|∇HWl(θ)(ξ)| ≤
C3(n,A1)

d(ξ, ξ
(i)
l )Q−1

, l1 ≤ d(ξ, ξ
(i)
l ) ≤ l2, (3.85)

when l is chosen large enough. By combining (3.84) and (3.85), we have
∫

Ω3
l

|∇HWl(θ)|2 −
∫

Ω3
l

RlH
τ |Wl(θ)|p+1 ≥ −C0(n)C3(n,A1)

( 1

l21
− 1

l22

)
. (3.86)

Using the above estimates (3.84)–(3.86), we obtain

IRl,τ (Hl(θ)) =
1

2

∫
|∇Hηl|2|Wl(θ))|2 +

∫
ηlWl(θ)∇Hηl∇HWl(θ)
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+
1

2

∫
η2l |∇HWl(θ)|2 −

1

p+ 1

∫
RlH

τ |ηlWl(θ)|p+1

=IRl,τ (Wl(θ)) +
1

2

∫

Ω2
l

|∇Hηl|2|Wl(θ))|2 +
∫

Ω2
l

ηlWl(θ)∇Hηl∇HWl(θ)

+
1

2

∫

Ω2
l ∪Ω3

l

(η2l − 1)|∇HWl(θ)|2 +
1

p+ 1

∫

Ω2
l∪Ω3

l

RlH
τ (1− ηp+1

l )|Wl(θ)|p+1

≤IRl,τ (Wl(θ)) + C0(n)C3(n,A1)
ln l2 − ln l1
(l2 − l1)2

+ C0(n)C3(n,A1)
1

l1l2

+ C0(n)C3(n,A1)
( 1

l21
− 1

l22

)

+
1

2

∫

Ω2
l

(|ηl|2 − 1)|∇HWl(θ)|2 +
1

p+ 1

∫

Ω2
l

RlH
τ (1− |ηl|p+1)|Wl(θ)|p+1

≤IRl,τ (Wl(θ)) + C0(n)C3(n,A1)
ln l2 − ln l1
(l2 − l1)2

+ C0(n)C3(n,A1)
1

l1l2

+ C0(n)C3(n,A1)
( 1

l21
− 1

l22

)
+ C0(n)C3(n,A1)

( 1

l41
− 1

l42

)
.

Now using (3.81) and choosing l2 > 200l1, l1 > 10S to be large enough, we have

IRl,τ (Hl(θ)) ≤ c
(1)
l,τ + c

(2)
l,τ − ε4/2.

Then for l large enough (depending on l1, l2, ε
′s, C ′s), it holds Hl ∈ Γl. Therefore, for l large enough,

we obtain
max

θ∈[0,1]2
IRl,τ (Hl(θ)) ≤ c

(1)
l,τ + c

(2)
l,τ − ε4/2 < bl,τ ,

which contradicts to the definition of bl,τ . We now complete the proof of Theorem 3.1.

4 Blow up analysis and proof of main theorems

In this section we present the main result Proposition 4.1, from which we deduce Theorems 1.1–
1.3 and Corollary 1.1. The crucial ingredients of our proofs are the understanding of the blow up
profiles, see the work in Prajapat-Ramaswamy [61].

4.1 Subcritical approximation

We state the main result as following:

Proposition 4.1. Assume that {Rl} is a sequence of functions satisfying conditions (i)-(iii) and
(R2). Assume also that there exist some bounded open sets O(1), . . . , Om ⊂ H

n and some constants
δ2, δ3 > 0, such that for all 1 ≤ i ≤ m,

(ξ
(i)
l )−1 ◦ Õ(i)

l ⊂ O(i) for all l,

{u : I ′
R

(i)
∞

(u) = 0, u > 0, u ∈ E, c(i) ≤ I
R

(i)
∞

(u) ≤ c(i) + δ2} ∩ V (1, δ3, O
(i), R(i)

∞ ) = ∅.

Then for any ε > 0, there exists integer lε,m > 0, such that, for all l ≥ lε,m, there exists ul ∈ Vl(m, ε)
which solves

−∆Hul = Rl(ξ)u
(Q+2)/(Q−2)
l , ul > 0 in H

n. (4.1)
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Furthermore, ul satisfies
m∑

i=1

c(i) − ε ≤ IRl
(ul) ≤

m∑

i=1

c(i) + ε. (4.2)

The proof of Proposition 4.1 is by contradiction argument, depending on blow up analysis for
a family of subcritical equations (3.15) approximating (4.1). More precisely, if the sequence of
subcritical solutions ul,τ (0 < τ < τ l) obtained in Theorem 3.1 is uniformly bounded as τ → 0,
some subelliptic estimates in [61, Claim 5.3] imply that there exists a subsequence converging to a
positive solution ul of (4.1) satisfying (4.2). However, a prior {ul,τ} might blow up, we have to rule
out this possibility.

Note that ul,τ ∈ Vl(m, oε2(1)), which consists of functions with m (m ≥ 2) bumps, some blow up
analysis results in [61, Sections 6-7] imply that, as τ → 0, there is no blow up occurring under the
hypotheses of Proposition 4.1. Thus we only need to show the boundedness of {ul,τ} as τ → 0, this
will be done by contradiction argument with the aid of blow up analysis established in Prajapat-
Ramaswamy [61]. We give a brief introduction for readers’ convenience.

Let {τi}∞i=1 be a sequence of nonnegative constants satisfying limi→∞ τi = 0, and set pi =
Q+2
Q−2 − τi. Suppose that 0 ≤ ui ∈ Γ2(Ω) satisfies

−∆Hui = Ri(ξ)u
pi
i in Ω, (4.3)

where Ω is a domain in H
n and Ri ∈ Γ2+α(Ω), 0 < α < 1 satisfy, for some positive constants A1

and A2,
1/A1 ≤ Ri and ‖Ri‖C1(Ω) ≤ A2. (4.4)

We recall the notion of various types of blow up points, which were introduced by Schoen
[66–68]. This incisive concept helps to regain compactness, and forms a natural demarcation to
more complicated types of blow up phenomenon.

Definition 4.1. Suppose that {ui} satisfies (4.3) and {Ri} satisfies (4.4).

(1) ξ ∈ Ω is called a blow up point of {ui} if there exists a sequence ξi ∈ Ω such that ξi is a local
maximum point of ui satisfying ui(ξi) → ∞ and ξi → ξ as i → ∞. For simplicity, we will
often say that ξi → ξ is a blow up point of {ui}.

(2) ξ ∈ Ω is an isolated blow up point of {ui} if ξi → ξ is a blow up point such that

ui(ξ) ≤ Cd(ξ, ξi)
−2/(pi−1) for any ξ ∈ Br(ξi) \ {ξi},

where 0 < r < dist(ξ,Ω) and C > 0 are some constants.

(3) For any θ ∈ ∂B1, we define the function fui,θ(s) : [0, R] → R (for a fixed R > 0) as

fui,θ(s) = s2/(pi−1)ui(ξi ◦ δsθ),

where δsθ is the dilation in H
n. We say that an isolated blow up point ξ ∈ Ω of {ui} is simple

if there exists ρ > 0 (independent of i and θ ∈ ∂B1) such that fui,θ has precisely one critical
point in (0, ρ) for every θ ∈ ∂B1 for large i.

Roughly speaking, item (2) (or (3), respectively) in the above definition describes the situation
when clustering of bubbles (or bubble towers, respectively) is excluded among various blow up
scenarios. We also remark that item (3) is a modified definition of isolated simple blow up point
when comparing with Riemannian manifold. Indeed, according to Schoen [66–68], a simple blow
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up point on a sphere S
n (n ≥ 3) is a point where the solution of (1.1), with the exponent n+2

n−2

substituted by p ∈ (1, n+2
n−2 ], approximates the standard solution up to a conformal transformation,

in a neighborhood. This definition was further reformulated by Li in [55] using spherical averages.
However, this definition does not seem to work for the Heisenberg group since the standard solution
in the case of CR sphere S

2n+1 is not radial.
Before starting the proof of Proposition 4.1, we have additional remarks on the solutions {ul,τ}.

The following statements can be found in [61]:

• By some standard blow up arguments, the blow up points cannot occur in R
n \ (∪m

j=1Õ
(j)
l )

since the energy of {ul,τ} in that region is small using the fact ul,τ ∈ Vl(m, oε2(1)). Hence the

blow up points can occur only in ∪m
j=1Õ

(j)
l .

• Using Proposition 7.1 in [61] and the definition of Vl(m, oε2(1)), there are at most m isolated

blow up points, namely, the blow up occurs in {ξ1, . . . , ξm} for some ξj ∈ Õ
(j)
l (1 ≤ j ≤ m).

Here we used the finite energy condition (3.16).

• Under the flatness condition (R2), we conclude from [61, Proposition 6.2] that an isolated
blow up point has to be an isolated simple blow up point. From the structure of functions
in Vl(m, oε2(1)) we know that if the blow up does occur, there have to be exactly m isolated
simple blow up points.

Let us consider this situation only, namely, {ξ1, . . . , ξm} is the blow up set and they are all
isolated simple blow up points. Moreover, in our situation, Ri = RHτi is the sequence of functions
in (4.3) with Ω = H

n. We assume that the blow up occurs at ui = ul,τi and we suppress the
dependence of l in the notation since l is fixed in the blow up analysis. Now we complete the proof
of Proposition 4.1 by checking balance via the Pohozeav identity (2.5).

Proof of Proposition 4.1. Let ui be the solution of (4.3) with Ri = RHτi and Ω = H
n. Without

loss of generality, we may assume that ξ1 = 0 and ξi = (x(i), y(i), t(i)) → 0 be the sequence as in
Definition 4.1. By (3.4) and (3.5), we also assume that Ri > 0 in B1. Applying the Pohozaev
identity (2.5) to ui, we obtain

∫

∂Bσ(ξi)
B(σ, ξi, ui,∇Hui) =

( Q

pi + 1
− Q− 2

2

) ∫

Bσ(ξi)
Riu

pi+1
i

+
1

pi + 1

∫

Bσ(ξi)
Xi(Ri)u

pi+1
i − 1

pi + 1

∫

∂Bσ(ξi)
Riu

pi+1
i Xi · ν, (4.5)

where ν is the outward unit normal vector with respect to ∂Bσ(ξi) and

B(σ, ξi, ui,∇Hui) =
Q− 2

2
(A∇ui · ν)ui −

1

2
|∇Hui|2Xi · ν + (A∇ui · ν)Xi(ui)

with

Xi =

n∑

j=1

(
(x− x(i))j

∂

∂xj
+ (y − y(i))j

∂

∂yj

)
+ 2(t− t(i) + 2(x(i) · y − y(i) · x)) ∂

∂t
.

We are going to derive a contradiction to (4.5), by showing that for small σ > 0,

lim inf
i→∞

ui(ξi)
2 × RHS of (4.5) ≥ 0 (4.6)
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and

lim inf
i→∞

ui(ξi)
2

∫

∂Bσ(ξi)
B(σ, ξi, ui,∇Hui) < 0. (4.7)

Hence Proposition 4.1 will be established.
Note that Q

pi+1 − Q−2
2 ≥ 0, we have

lim inf
i→∞

ui(ξi)
2
( Q

pi + 1
− Q− 2

2

)∫

Bσ(ξi)
Riu

pi+1
i ≥ 0.

Using Corollary 5.15 in [61] we know

lim inf
i→∞

ui(ξi)
2

pi + 1

∫

Bσ(ξi)
Xi(Ri)u

pi+1
i = 0.

It follows from [61, Proposition 4.3] that

0 ≤
∫

∂Bσ(ξi)
Riu

pi+1
i Xi · ν = O(ui(ξi)

−pi−1),

which leads to

lim
i→∞

−ui(ξi)
2

pi + 1

∫

∂Bσ(ξi)
Riu

pi+1
i Xi · ν = 0.

Thus, we complete the proof of (4.6). It remains to prove (4.7).
In a small punctured disc centered at 0, we derive from the Bôcher type Lemma in [61, Propo-

sition 5.7] that
lim
i→∞

ui(ξi)ui(ξ) = a|ξ|2−Q + b+ α(ξ),

where a, b > 0 are two constants and α(ξ) is a smooth function near 0 with α(0) = 0. It follows
from Lemma 2.2 that, when σ > 0 is small,

lim inf
i→∞

ui(ξi)
2

∫

∂Bσ(ξi)
B(σ, ξi, ui,∇Hui) = lim inf

i→∞

∫

∂Bσ(ξi)
B(σ, ξi, hi,∇Hhi) < 0,

where hi(ξ) := ui(ξi)ui(ξ). This gives the proof of (4.7).
In conclusion, from the above arguments we know that there will be no blow up occur under

the hypotheses of Proposition 4.1. We complete the proof.

4.2 Final arguments

We are ready to complete the proofs of the main results in this paper.

Proof of Theorem 1.1. Let q0 ∈ S
2n+1 be the south pole, we write (1.9) as the form (1.7) by using

the CR equivalence. Under the hypotheses of Theorem 1.1 we know that R(ξ) satisfies

‖R‖L∞(Hn) ≤ A1, R ∈ C0(Hn\BS), lim
|ξ|→∞

R(ξ) = R∞,

where A1 > 0, S > 1 and R∞ > 0 are some constants. Let ψ(ξ) ∈ C∞(Hn) satisfy (R2) and

‖ψ‖C2(Hn) <∞, lim
|ξ|→∞

ψ(ξ) =: ψ∞ > 0, X (ψ) < 0, ∀ ξ 6= 0,
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where X is the vector field defined by (2.4). It follows from the Kazdan-Warner type condition (1.8)
that

−∆Hu = ψ|u|4/(Q−2)u in H
n

has no nontrivial solution in E.
For any ε ∈ (0, 1), k ≥ 1 and m ≥ 2, let k be an integer such that for any 2 ≤ s ≤ m it holds

Cs
k
≥ k, where Cs

k
is a combination number. Then we choose e1, . . . , ek ∈ ∂B1 to be k distinct

points. Let
AS = max

|ξ|≥S
|R(ξ)−R∞|+ max

|ξ|≥S
|ψ(ξ)− ψ∞|, S > 1,

and Ω̃
(i)
l be the connected component of

{ξ : ε(ψ((ei)−l ◦ ξ)− ψ∞) +R∞ −A√
l > R(ξ)}

which contains (ei)
l. Define

S
(i)
l = min

1≤i≤m
sup{|(ei)−l ◦ ξ| : ξ ∈ Ω̃

(i)
l }

and

Rε,k,m,l(ξ) =

{
ε(ψ((ei)

−l ◦ ξ)− ψ∞) +R∞ −A√
l if x ∈ Ω̃

(i)
l ,

R(ξ) otherwise.

It is easy to prove that diam(Ω̃
(i)
l ) ≤

√
l for large l and liml→∞ S

(i)
l = ∞.

With the function Rε,k,m,l defined above, we claim that for large l, the equation

−∆Hu = Rε,k,m,l(ξ)u
(Q+2)/(Q−2), u > 0 in H

n (4.8)

has at least k solutions with s bumps in E. To verify it, let {ej1 , . . . , ejs} be any distinct s points
among {e1, . . . , ek}. For 1 ≤ i ≤ s, we define

ξ
(i)
l = (eji)

l,

O
(i)
l = B1(ξ

(i)
l ), Õ

(i)
l = B2(ξ

(i)
l ),

R(i)
∞ = ε(ψ − ψ∞) +R∞,

a(i) = ε(ψ(0) − ψ∞) +R∞.

By using Proposition 4.1, we conclude that there exists at least one positive solution in Vl(s, ε)
for large l. Obviously, if we choose a different set of s points among {e1, . . . , ek}, we get different
solutions since their mass are distributed in different regions by the definition of Vl(s, ε). Due to
the choice of k, (4.8) has at least k positive solutions for large l.

Finally, we fix l large enough to make the above arguments work for all 2 ≤ s ≤ m, and set
Rε,k,m = Rε,k,m,l. Evidently, there exist at least k positive solutions with s (2 ≤ s ≤ m) bumps to
the equation (1.7) with R = Rε,k,m. Theorem 1.1 is proved by using the inverse of Calay transform
(1.6).

Proof of Corollary 1.1. One can see from the proof in Theorem 1.1 that if R̄ ∈ C∞(Hn), then
R̄ε,k,m − R̄ can also be achieved.
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Proof of Theorem 1.2. We prove it by contradiction argument. Suppose not, then for some ε > 0

and k ≥ 2, there exists a sequence of integers I
(1)
l , . . . , I

(k)
l such that

lim
l→∞

|I(i)l | = ∞, lim
l→∞

|I(i)l − I
(j)
l | = ∞, i 6= j,

but (1.7) has no solution in V (k, ε,Bε(ξ
(1)
l ), . . . , Bε(ξ

(k)
l )) satisfying kc − ε ≤ IR ≤ kc + ε, where

c = (R(ξ∗))(2−Q)/2(Sn)
Q/Q and ξ

(i)
l = (ξ̂)I

(i)
l ◦ ξ∗.

For ε > 0 small, define

Rl(ξ) = R(ξ),

O
(i)
l = Bε(ξ

(i)
l ), Õ

(i)
l = B2ε(ξ

(i)
l ),

Sl = min
i 6=j

{√
|I(i)l |,

√
|I(i)l − I

(j)
l |

}
,

R(i)
∞ (ξ) = R∞(ξ) = lim

l→∞
R((ξ̂)l ◦ ξ),

a(i) = R(ξ∗).

Obviously, R∞ is periodic in ξ̂ with respect to left translation and satisfies (R2) and R∞(ξ∗) =
supξ∈Hn R∞(ξ) > 0. Let u be the positive solution of (1.7) with R(ξ) = R∞(ξ). It follows from [61,
Theorem 2.1] that u has no more than one blow up point. Furthermore, Corollary A.2 tells us one
point blow up may not occur either. Nevertheless, by Proposition 4.1, we immediately derive a
contradiction.

Proof of Theorem 1.3. The proof is similar to the proof of Theorem 1.2, we omit it here.

A Refined analysis of blow up profile

This appendix is a continuation of the blow up analysis studied in [61]. Herein, we present a more
detailed characterization of the blow up phenomenon. We keep using the notation (z, t) ∈ C

n × R

or (x, y, t) ∈ R
n × R

n × R to denote some element ξ of Hn.

Proposition A.1. Suppose that {R̄i} ⊂ Γ2+α(S
2n+1) with uniform C1 modulo of continuity and

satisfies for some point q0 ∈ S
2n+1, ε0 > 0, A1 > 0 independent of i and 2 ≤ β < n,

{R̄i} is bounded in C [β],β−[β](B(q0, ε0)), R̄i(q0) ≥ A1

and
R̄i(ξ) = R̄i(0) +Q

(β)
i (ξ) + R̄i(ξ), |ξ| ≤ ε0,

where ξ is some pseudo-Hermitian normal coordinates system centered at q0, Q
(β)
i (ξ) satisfies

Q
(β)
i (δλ(ξ)) = λβQ

(β)
i (ξ), ∀λ > 0, ξ ∈ H

n, and Ri(ξ) satisfies

[β]∑

s=0

|∇sRi(ξ)||ξ|−β+s → 0

uniformly in i as ξ → 0.

Suppose also that Q
(β)
i → Q(β) in C1(S2n+1) and for some constant A2 > 0 that

A2|ξ|β−1 ≤ |∇Q(β)(ξ)|, |ξ| ≤ ε0, (A.1)
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and 


∫
X̃Q(β)(ξ̂ ◦ ξ)w2Q/(Q−2)

0,1

∫
Q(β)(ξ̂ ◦ ξ)w2Q/(Q−2)

0,1


 6= 0, ∀ ξ̂ ∈ H

n, (A.2)

where X̃ := (X1, . . . ,Xn, Y1, . . . , Yn, T ). Let vi be positive solutions of (1.2) with R̄ = R̄i. If q0 is
an isolated simple blow up point of vi, then vi has to have at least another blow up point.

Proof. Suppose the contrary: q0 is the only blow up point of vi. We first make a Cayley transform
with q0 being the north pole with inverse C, then equation (1.2) with R̄ = R̄i is equivalent to

−∆Hui = Ri(ξ)u
(Q+2)/(Q−2)
i , ui > 0 in H

n, (A.3)

where

ui(ξ) =
( 22n+2

((1 + |z|2)2 + t2)n+1

)Q−2
2Q
vi(C(ξ)) and Ri(ξ) = R̄i(C(ξ)).

It is easy to see that our hypotheses hold in the Heisenberg coordinates.
Let ξi → 0 be the local maximum of ui. It follows from [61, Lemma 5.12] that

|∇Ri(ξi)| = O
(
ui(ξi)

−2 + ui(ξi)
−(2/(Q−2))([β]−1+β−[β])/(β−1)

)
.

First we establish that
|ξi| = O

(
ui(ξi)

−2/(Q−2)
)
. (A.4)

Since we have assumed that vi has no other blow up point other than q0, it follows from [61,
Proposition 5.7] and the Harnack inequality that ui(ξ) ≤ C(ε)ui(ξi)

−1|ξ|2−Q for |ξ| ≥ ε > 0.
Let X be any left invariant vector field in (1.5). It follows from the Kazdan-Warner type

condition (1.4) that ∫
XRiu

2Q/(Q−2)
i = 0. (A.5)

Then for ε > 0 small we have

∣∣∣
∫

Bε

∇HRi(ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)
∣∣∣ ≤ C(ε)ui(ξi)

−2Q/(Q−2).

Using our hypotheses ∇Q(β) and Ri, we have

∣∣∣
∫

Bε

(1 + oε(1))∇HQ
(β)
i (ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣ ≤ C(ε)ui(ξi)
−2Q/(Q−2).

Multiplying the above by m
(2/(Q−2))(β−1)
i with mi = ui(ξi) we have

∣∣∣
∫

Bε

(1 + oε(1))∇HQ
(β)
i (ξ̃i ◦ δm2Q/(Q−2)

i

(ξ))ui(ξi ◦ ξ)2Q/(Q−2)
∣∣∣ ≤ C(ε)ui(ξi)

(2/(Q−2))(β−1−n),

where ξ̃i = ui(ξi)
2/(Q−2)ξi. Suppose that (A.4) is false, namely, |ξ̃i| → ∞ along a subsequence.

Then it follows from [61, Proposition 5.2] (we may choose Si ≤ |ξ̃i|/4) that
∣∣∣
∫

|ξ|≤Sim
−2/(Q−2)
i

(1 + oε(1))∇HQ
(β)
i (ξ̃i ◦ δm2Q/(Q−2)

i

(ξ))ui(ξi ◦ ξ)2Q/(Q−2)
∣∣∣
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=
∣∣∣
∫

|ξ̂|≤Ri

(1 + oε(1))∇HQ
(β)
i (ξ̃i ◦ ξ̂)(m−1

i ui(ξi ◦ δm2/(Q−2)
i

(ξ̂)))2Q/(Q−2)
∣∣∣ ∼ |ξ̃i|β−1.

On the other hand, it follows from [61, Lemma 5.10] that

∣∣∣
∫

Sim
−2/(Q−2)
i ≤|ξ|≤ε

(1 + oε(1))∇HQ
(β)
i (ξ̃i ◦ δm2/(Q−2)

i

(ξ))ui(ξi ◦ ξ)2Q/(Q−2)
∣∣∣

≤C
∣∣∣
∫

Sim
−2/(Q−2)
i ≤|ξ|≤ε

(|δ
m

2/(Q−2)
i

(ξ)|β−1 + |ξ̃i|β−1)ui(ξi ◦ ξ)2Q/(Q−2)
∣∣∣

≤o(1)|ξ̃i|β−1.

It follows that
|ξ̃i|β−1 ≤ C(ε)ui(ξi)

(2/(Q−2))(β−1−Q),

which implies that

|ξi| ≤ C(ε)m
−(2Q/(Q−2))(Q/(β−1))
i = o(m

−2/(Q−2)
i ).

This contradicts to |ξ̃| → ∞. Thus (A.4) holds.
We are going to find some ξ0 such that (A.2) fails.
For 1 ≤ j ≤ n, define the vector fields

Xj =
∂

∂xj
− 2yj

∂

∂t
and Y j =

∂

∂yj
− 2xj

∂

∂t
.

Multiplying (A.3) by Xj, Y j, T and integrate by parts, together with the Kazdan-Warner condition
(1.8) we have ∫ ( n∑

j=1

(xjXj + yjYj) + 2tT
)
Ri(ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2) = 0.

Since q0 is an isolated simple blow up point and the only blow up point of vi, we have for any ε > 0,

∣∣∣
∫

Bε

( n∑

j=1

(xjXj + yjYj) + 2tT
)
Ri(ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣ ≤ C(ε)ui(ξi)
2Q/(Q−2).

It follows from [61, Lemma 5.10] and our hypotheses on Ri that

∣∣∣
∫

Bε

( n∑

j=1

(xjXj + yjYj) + 2tT
)
Q

(β)
i (ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣

≤C(ε)ui(ξi)
−2Q/(Q−2) + oε(1)

∫

Bε

|ξ||ξi ◦ ξ|β−1ui(ξi ◦ ξ)2Q/(Q−2)

+ oε(1)

∫

Bε

|ξ|2|ξi ◦ ξ|β−2ui(ξi ◦ ξ)2Q/(Q−2)

≤C(ε)ui(ξi)
−2Q/(Q−2) + oε(1)

∫

Bε

(|ξ|β + |ξ||ξi|β−1)ui(ξi ◦ ξ)2Q/(Q−2)

≤C(ε)ui(ξi)
−2Q/(Q−2) + oε(1)ui(ξi)

−2β/(Q−2),

where we used (A.4) in the last inequality.
Multiplying the above by ui(ξi)

2β/(Q−2), due to β < n we obtain

lim
i→∞

ui(ξi)
2β/(Q−2)

∣∣∣
∫

Bε

( n∑

j=1

(xjXj + yjYj) + 2tT
)
Q

(β)
i (ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣ = oε(1). (A.6)
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Let Si → ∞ as i→ ∞. We assume that ri := Riui(ξi)
−2/(Q−2) → 0. By [61, Lemma 5.10], we have

ui(ξi)
2β/(Q−2)

∣∣∣
∫

ri≤|ξ|≤ε

( n∑

j=1

(xjXj + yjYj) + 2tT
)
Q

(β)
i (ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣

≤ lim
i→∞

ui(ξi)
2β/(Q−2)

∣∣∣
∫

ri≤|ξ|≤ε
(|ξ|β + |ξ||ξi|β−1)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣ → 0 (A.7)

as i→ ∞. Combining (A.6) and (A.7), we conclude that

lim
i→∞

ui(ξi)
2β/(Q−2)

∣∣∣
∫

Bri

( n∑

j=1

(xjXj + yjYj) + 2tT
)
Q

(β)
i (ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2)

∣∣∣ = oε(1).

It follows from the change of variable ξ̄ = (z̄, t̄) = ui(ξi)
2/Q−2)ξ, applying [61, Proposition 5.2] and

then letting ε→ 0 that

∣∣∣
∫ ( n∑

j=1

(x̄jXj + ȳjYj) + 2t̄T
)
Q(β)(ξ0 ◦ ξ̄)ΛQw

2Q/(Q−2)
0,Λ dz̄ dt̄

∣∣∣ = oε(1), (A.8)

where ξ0 = limi→∞ ui(ξi)
2/(Q−2)ξi and Λ = limi→∞

√
Ri(ξi)

2Q(Q−2) .

On the other hand, from (A.5),
∫
XRi(ξi ◦ ξ)ui(ξi ◦ ξ)2Q/(Q−2) = 0.

Arguing as above, we will have
∫
XQ(β)(ξ0 ◦ ξ))ΛQw

2Q/(Q−2)
0,Λ = 0. (A.9)

It follows from (A.8) and (A.9) that
∫
Q(β)(ξ0 ◦ ξ)w2Q/(Q−2)

0,Λ = β−1

∫
(ξ0 ◦ ξ) · X̂Q(β)(ξ0 ◦ ξ)w2Q/(Q−2)

0,Λ = 0,

where X̂ = (X1, . . . ,Xn, Y1, . . . , Yn, 2T ). Therefore, (A.2) does not hold for ξ̂ = δΛ(ξ0). Proposition
A.1 is established.

Corollary A.1. Suppose that {R̄i} ∈ C1(S2n+1) with uniform C1 modulo of continuity and satisfies
for some q0 ∈ S

n+1, ε0 > 0, A1 > 0 independent of i and 2 ≤ β < Q,

R̄i ∈ C [β]−1,1(B(q0, ε0)), R̄i(q0) ≥ 1/A1,

and
R̄i(ξ) = R̄i(0) +Q

(β)
i (ξ) + Pi(ξ), |ξ| ≤ ε0,

where ξ is some pseudo-Hermitian normal coordinates system centered at q0, Ri(ξ) satisfies

[β]∑

s=0

|∇sRi(ξ)||ξ|−β+s → 0

uniformly for i as ξ → 0, Q
(β)
i (ξ) =

∑n
j=1(aj(i)|xj |β−1xj + bj(i)|yj |β−1yj) + ci|t|

β
2
−1t, aj(i) → aj ,

bj(i) → bj , ci → c as i → ∞, aj, bj , c 6= 0, ∀ 1 ≤ j ≤ n. Let vi be positive solutions of (1.2) with
R̄ = R̄i. Then if q0 is an isolated simple blow up point of vi, vi has to have at least another blow
up point.
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Proof. Let Q(β)(ξ) =
∑n

j=1 aj|xj |β−1xj +
∑n

j=1 bj|yj|β−1yj + c|t|β2 −1t. We only have to check that
(A.1) and (A.2) hold under our hypotheses. The first one (A.1) is obvious. It remains to prove
(A.2).

For any ξ0 = (x
(1)
0 , . . . , x

(n)
0 , y

(1)
0 , . . . , y

(n)
0 , t0) ∈ H

n, we have

∫
TQ(β)(ξ0 ◦ ξ)w2Q/(Q−2)

0,1 =
βc

2

∫ ∣∣∣t+ t0 + 2
n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−1
w

2Q/(Q−2)
0,1 6= 0.

Thus (A.2) is established under our hypotheses. Corollary A.1 follows immediately.

Corollary A.2. Suppose that {R̄i} ∈ C1(Sn+1) with uniform C1 modulo of continuity and satisfies
for some q0 ∈ S

n+1, ε0 > 0, A1 > 0 independent of i and 2 ≤ β < Q, that

R̄i ∈ C [β]−1,1(B(q0, ε0)), R̄i(q0) ≥ 1/A1,

and
R̄i(ξ) = R̄i(0) +Q

(β)
i (ξ) + Pi(ξ), |ξ| ≤ ε0,

where ξ is some pseudo-Hermitian normal coordinates system centered at q0, Ri(y) satisfies

[β]∑

s=0

|∇sRi(ξ)||ξ|−β+s → 0

uniformly for i as ξ → 0, Q
(β)
i (ξ) =

∑n
j=1(aj(i)|xj |β + bj(i)|yj |β) + c(i)|t|β2 , aj(i) → aj, bj(i) → bj ,

c(i) → c as i→ ∞, aj , bj , c 6= 0, ∀ 1 ≤ j ≤ n, and
∑n

j=1(aj + bj) + κc 6= 0 with

κ =

∫
|x1|βw2Q/(Q−2)

0,1∫
|t|β2w2Q/(Q−2)

0,1

.

Let vi be positive solutions of (1.2) with R̄ = R̄i. Then if q0 is an isolated simple blow up point of
vi, vi has to have at least another blow up point.

Proof. Let Q(β)(ξ) =
∑n

j=1(aj |xj |β + bj |yj|β) + c|t|β2 . We only have to check that (A.1) and (A.2)
hold under our hypotheses. The first one (A.1) is obvious. It remains to prove (A.2).

For any ξ0 = (x
(1)
0 , . . . , x

(n)
0 , y

(1)
0 , . . . , y

(n)
0 , t0) ∈ H

n, we have

XjQ
(β)(ξ0 ◦ ξ) =βaj |xj + x

(j)
0 |β−2(xj + x

(j)
0 )

+ βc
∣∣∣t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−2(

t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

)
y
(j)
0

+ βcyj

∣∣∣t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−2(

t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

)
,

YjQ
(β)(ξ0 ◦ ξ) =βbj |yj + y

(j)
0 |β−2(yj + y

(j)
0 )

− βc
∣∣∣t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−2(

t+ t0 + 2
n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

)
x
(j)
0

− βcxj

∣∣∣t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−2(

t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

)
,
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and

TQ(β)(ξ0 ◦ ξ) =
βc

2

∣∣∣t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

∣∣∣
β
2
−2(

t+ t0 + 2

n∑

i=1

(xiy
(i)
0 − yix

(i)
0 )

)
.

It is straightforward to verify that

∫
(1 + |ξ|2)−nXQ(β)(ξ0 ◦ ξ) = 0 for each X ∈ {X1 . . . ,Xn, Y1, . . . , Yn, T} iff ξ0 = 0.

Next we have
∫
Q(β)(ξ)w

2Q/(Q−2)
0,1

=

∫ ( n∑

j=1

(aj |xj |β + bj |yj|β + c|t|β2
)
w

2Q/(Q−2)
0,1

=
( n∑

j=1

(aj + bj)
)∫

|x1|βw2Q/(Q−2)
0,1 + c

∫
|t|β2w2Q/(Q−2)

0,1 6= 0.

Thus (A.2) is established under our hypotheses. Corollary A.2 follows immediately.
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