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SUP-NORM BOUNDS FOR JACOBI CUSP FORMS

ANILATMAJA ARYASOMAYAJULA, JÜRG KRAMER, AND ANNA-MARIA VON PIPPICH

Abstract. In this article, we give bounds for the natural invariant norm of cusp forms of
real weight k and character χ for any cofinite Fuchsian subgroup Γ ⊂ SL2(R). Using the
representation of Jacobi cusp forms of integral weight k and index m for the modular group
Γ0 = SL2(Z) as linear combinations of modular forms of weight k− 1

2 for some congruence
subgroup of Γ0 (depending onm) and suitable Jacobi theta functions, we derive bounds for
the natural invariant norm of these Jacobi cusp forms. More specifically, letting J

cusp
k,m (Γ0)

denote the complex vector space of Jacobi cusp forms under consideration and ‖ · ‖Pet the
pointwise Petersson norm on J

cusp
k,m (Γ0), we prove that for given ǫ > 0, the bound

sup
(τ,z)∈H×C

‖f(τ, z)‖Pet = Oǫ

(

k
3

4m
3

2
+ǫ
)

holds for any f ∈ J
cusp
k,m (Γ0), which is normalized with respect to the Petersson inner

product, where the implied constant depends only on the choice of ǫ > 0.

1. Introduction

1.1. Background. In general, bounds for automorphic forms and for their Fourier coeffi-
cients represent an area of great interest in number theory. More specifically, we mention
in this respect the results of [FJK16], where J. Friedman, J. Jorgenson, and J. Kramer
obtained optimal sup-norm bounds on average for cusp forms of even weight k for any cofi-
nite Fuchsian subgroup Γ ⊂ SL2(R). These bounds turn out to be uniform with respect
to the subgroup Γ. Moreover, in [FJK19], effective versions for these sup-norm bounds are
given. With regard to sup-norm bounds for individual Hecke eigenforms of large level, we
mention, for example, the results by V. Blomer and R. Holowinsky in [BH11].

So far, less attention has been devoted to the study of sup-norm bounds for Jacobi cusp
forms. The first comprehensive study of Jacobi forms was undertaken by M. Eichler and
D. Zagier in [EZ85]. Subsequently, various authors have built on their work. In contrast to
their analytical approach, a geometrical approach to the theory of Jacobi forms was given
by J. Kramer in [Kr91].

Let k,m be positive integers. A Jacobi form of weight k and index m for the modular group
Γ0 := SL2(Z) is a holomorphic function on the product H × C of the upper half-plane H

with the complex plane C having a suitable transformation behaviour with respect to Γ0

and vanishing “at infinity”. We denote the complex vector space of Jacobi cusp forms of
weight k and index m for Γ0 by Jcusp

k,m (Γ0). The pointwise Petersson norm of a Jacobi form

f ∈ Jcusp
k,m (Γ0) is then defined by

‖f(τ, z)‖2Pet := |f(τ, z)|2 Im(τ)k e−
4πmIm(z)2

Im(τ) (τ ∈ H, z ∈ C).

Let F be a Siegel cusp form of weight k for the Siegel modular group Sp4(Z), and let
{fm}m≥1 be the set of Jacobi forms appearing in the Fourier–Jacobi expansion of F , i. e.,
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fm ∈ Jcusp
k,m (Γ0). Then, for any ǫ > 0, W. Kohnen proved the following sup-norm bound for

the pointwise Petersson norm of fm in [Ko93]

sup
(τ,z)∈H×C

‖fm(τ, z)‖Pet = OF,ǫ

(

m
k
2
− 2

9
+ǫ
)

,(1)

where the implied constant depends on the Siegel cusp form F and on the choice of ǫ >
0. Motivated by the Ramanujan–Petersson conjecture, W. Kohnen then conjectured the
bound

sup
(τ,z)∈H×C

‖fm(τ, z)‖Pet = OF,ǫ

(

m
k−1
2

+ǫ
)

,

where the implied constant depends on the Siegel cusp form F and on the choice of ǫ > 0.

More recently, P. Anamby and S. Das established in [AD23] a general sup-norm bound for
the pointwise Petersson norm of f ∈ Jcusp

k,m (Γ0), which is normalized with respect to the
Petersson inner product, i. e., for which we have

∫

Γ0⋉Z2\H×C

‖f(τ, z)‖2Pet
dξ ∧ dη ∧ dx ∧ dy

η3
= 1 (τ = ξ + iη, z = x+ iy).

Their bound is (see Theorem 1.4 in[AD23])

sup
(τ,z)∈H×C

‖f(τ, z)‖Pet = Oǫ

(

km
)

,(2)

where the implied constant depends on the choice of ǫ > 0.

1.2. Main results. The goal of this article is to provide new sup-norm bounds for the
pointwise Petersson norm for Jacobi forms of integral weight k and integral index m for
Γ0, which are normalized with respect to the Petersson inner product. The main result in
this respect is given in Theorem 4.4 and states for f ∈ Jcusp

k,m (Γ0), which is normalized with
respect to the Petersson inner product, that

sup
(τ,z)∈H×C

‖f(τ, z)‖Pet = Oǫ

(

k
3
4 m

3
2
+ǫ
)

,(3)

where the implied constant depends only on the choice of ǫ > 0. For the proof, we essentially
use the representation of the Jacobi cusp forms under consideration as linear combinations
of modular forms of weight k− 1

2
for some congruence subgroup of Γ0 (depending onm) and

suitable Jacobi theta functions; we then need to derive bounds for the pointwise Petersson
norms of these functions to arrive at our result. Comparing our bound with the bound (2)
by P. Anamby and S. Das, we realize an improvement with regard to the polynomial growth
in k, while there is a price to be paid with regard to the polynomial growth in m.

In order to be able to derive our bound (3), we need sup-norm bounds for the pointwise
Petersson norm of cusp forms of positive real weight k and character χ for any cofinite
Fuchsian subgroup Γ of SL2(R). While such bounds could be derived from [FJK16] with
some extra work, due to the lack of a precise reference, we provide new, alternative proofs
for the results of [FJK16] applying to any positive real weight k and any character χ by
using the Bergman kernel for the modular curve associated to Γ.

More specifically, given Γ ⊂ SL2(R) a Fuchsian subgroup, k ∈ R>0, and χ : Γ → C× a
character, we let Sk,χ(Γ) denote the space of cusp forms of weight k and character χ for Γ.
Denoting by dk the dimension of Sk,χ(Γ) and letting {f1, . . . , fdk} be an orthonormal basis
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of Sk,χ(Γ) with respect to the Petersson inner product, the Bergman kernel associated to
Sk,χ(Γ) is then defined by

Bk,χ(τ, τ
′) :=

dk
∑

j=1

fj(τ)fj(τ ′);

it is straightforward that this definition does not depend on the choice of an orthonormal
basis of Sk,χ(Γ). The pointwise Petersson norm of the Bergman kernel is defined by

‖Bk,χ(τ, τ
′)‖Pet = |Bk,χ(τ, τ

′)| (Im(τ)Im(τ ′))
k
2 ,

which gives on the diagonal

‖Bk,χ(τ, τ)‖Pet =
dk
∑

j=1

‖fj(τ)‖2Pet.(4)

As a second main result of this article, we establish in Theorem 3.3, assuming that k ∈ R≥5,
for Γ being cocompact without elliptic elements the bound

sup
z∈H

‖Bk,χ(τ, τ)‖Pet = OΓ(k);

moreover, for Γ being cofinite, we give the bound

sup
z∈H

‖Bk,χ(τ, τ)‖Pet = OΓ

(

k
3
2

)

,

where the implied constants depend only on the Fuchsian subgroup Γ. Due to the rela-
tion (4), these results reprove the sup-norm bounds on average obtained in [FJK16], but
now for any real weight k ∈ R≥5 and any character χ. Based on these results, we are then
also able to prove the uniformity of the above bounds with respect to the subgroup Γ in
Theorem 3.5.

1.3. Outline. Let us briefly outline the contents of this article. In the subsequent, second
section we collect all the necessary prerequisites for the sequel of the paper. In particu-
lar, we introduce the definitions of cusp forms and Jacobi cusp forms together with their
respective (pointwise) Petersson inner products. Furthermore, we define the Bergman ker-
nel for modular curves and state its basic properties. We close the section by recalling
asymptotics of Bergman kernels associated to tensor powers of holomorphic line bundles
on compact complex Kähler manifolds due to [Bo96], which are crucial in the derivation
of the bound (3).

The third section is devoted to the revisiting of the sup-norm bounds on average obtained
in [FJK16], but now for any real weight k ∈ R≥5 and any character χ. Here, the proofs of
Theorem 3.3 and Theorem 3.5 are provided.

In the fourth section, the bound (3) is proven in Theorem 4.4. In addition to some straight-
forward bounds established for the relative L2-norm of classical Jacobi theta functions, the
above mentioned asymptotics of Bergman kernels associated to tensor powers of holomor-
phic line bundles corresponding to these Jacobi theta functions are crucial in the derivation
of the proof of Theorem 4.4.

2. Preliminaries

2.1. Hyperbolic metric. Let H := {τ ∈ C | τ = ξ + iη, η > 0} be the upper half-plane.
We denote by ds2hyp(τ) the line element and by µhyp(τ) the volume form corresponding to
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the hyperbolic metric on H, which is compatible with the complex structure of H and has
constant curvature equal to −1. Locally on H, we have

ds2hyp(τ) =
dξ2 + dη2

η2
and µhyp(τ) =

dξ ∧ dη

η2
.

For τ, τ ′ ∈ H, we let disthyp(τ, τ
′) denote the hyperbolic distance between these two points.

For later purposes, it is useful to introduce the displacement function

σ(τ, τ ′) := cosh2

(

disthyp(τ, τ
′)

2

)

=
|τ − τ ′|2

4 Im(τ)Im(τ ′)
.(5)

2.2. Quotient space. Let Γ ⊂ SL2(R) be a Fuchsian subgroup acting by fractional linear
transformations on H. Let XΓ be the quotient space Γ\H and gΓ the genus of XΓ. In
the sequel, we identify XΓ with a fundamental domain FΓ ⊂ H for the group Γ, which we
assume to be closed and connected.

Denote by

PΓ = {p1, . . . , ps}
the set of cusps of FΓ. Let σP,j ∈ SL2(R) be a scaling matrix of the cusp pj , that is,
pj = σP,ji∞ with stabilizer subgroup Γpj described as

σ−1
P,jΓpjσP,j =























〈

(

1 1

0 1

)

〉

, if − id 6∈ Γ,

〈

±
(

1 1

0 1

)

〉

, if − id ∈ Γ,

(j = 1, . . . , s).(6)

For Y > 0, we let FY
j ⊂ FΓ denote the neighborhood of the cusp pj characterized by

σ−1
P,jFY

j = {τ = ξ + iη ∈ H | − 1/2 ≤ ξ ≤ 1/2, η ≥ Y } (j = 1, . . . , s).

With these notations, we define FY to be the closure of the complement of the union
FY

1 ∪ . . . ∪ FY
s in FΓ, i. e.,

FY := cl
(

FΓ \
(

FY
1 ∪ . . . ∪ FY

s

))

,(7)

which is compact; we note that FY = FΓ, if Γ is cocompact. We choose 0 < mY < MY

such that for all τ ∈ FY the inequalities

mY ≤ Im(σ−1
P,jτ) ≤ MY

hold for all j = 1, . . . , s; we note that mY and MY depend on the choice of Y .

Denote by

EΓ = {e1, . . . , et}
the set of elliptic fixed points of FΓ. Let Γej and mj denote the stabilizer subgroup and
order of the elliptic fixed point ej , respectively.

We denote the hyperbolic length of the shortest closed geodesic on XΓ by ℓΓ. For a domain
D ⊂ H, we denote its hyperbolic diameter by diamhyp(D) and its hyperbolic volume by
volhyp(D). Finally, the injectivity radius rΓ is defined by

rΓ := inf

{

disthyp(τ, γτ)

∣

∣

∣

∣

τ ∈ FΓ, γ ∈ Γ \
( s
⋃

j=1

Γpj ∪
t
⋃

j=1

Γej

)}

.(8)

We note that if XΓ is compact without elliptic fixed points, i. e., PΓ = EΓ = ∅, then the
injectivity radius rΓ equals the length of the shortest closed geodesic ℓΓ of XΓ.
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2.3. Cusp forms and Bergman kernel. For k ∈ R>0 and a character χ : Γ → C×, we
let Sk,χ(Γ) denote the space of cusp forms of weight k and character χ for Γ, i. e., the space
of holomorphic functions f : H → C, which have the transformation behavior

f(γz)(cz + d)−k = χ(γ)f(z)

for all γ =
(

a b
c d

)

∈ Γ, and which vanish at all the cusps of FΓ. Given f ∈ Sk,χ(Γ), we
define

‖f(τ)‖2Pet := |f(τ)|2 ηk (τ = ξ + iη),

which defines a Γ-invariant function on H called the pointwise Petersson norm of f .

The space Sk,χ(Γ) is equipped with the Petersson inner product

〈f1, f2〉Pet :=
∫

FΓ

f1(τ)f2(τ) η
kµhyp(τ) (f1, f2 ∈ Sk,χ(Γ)).(9)

Let dk denote the dimension of Sk,χ(Γ) and let {f1, . . . , fdk} be an orthonormal basis of
Sk,χ(Γ) with respect to the Petersson inner product. Then, the Bergman kernel associated
to Sk,χ(Γ) is defined by

Bk,χ(τ, τ
′) :=

dk
∑

j=1

fj(τ)fj(τ ′).

It is obvious that this definition does not depend on the choice of an orthonormal basis of
Sk,χ(Γ).

The Bergman kernel Bk,χ(τ, τ
′) is a holomorphic cusp form of weight k and character χ for

Γ in the τ -variable, and an anti-holomorphic cusp form of weight k and character χ for Γ
in the τ ′-variable. Hence, the pointwise Petersson norm of the Bergman kernel is given by

‖Bk,χ(τ, τ
′)‖Pet = |Bk,χ(τ, τ

′)| (ηη′) k
2 ,

which is a Γ-invariant function on H×H with respect to both variables.

Moreover, Bk,χ(τ, τ
′) is the reproducing kernel for Sk,χ(Γ), i. e., we have
∫

FΓ

Bk,χ(τ, τ
′)f(τ ′)η′kµhyp(τ

′) = f(τ) (τ ′ = ξ′ + iη′)

for any f ∈ Sk,χ(Γ). Therefore, for k ∈ R>3, the Bergman kernel Bk,χ(τ, τ
′) can also be

represented in the following form (see Proposition 1.3 on p. 77 in [Fr90])

Bk,χ(τ, τ
′) =

(2i)k(k − 1)

4π

∑

γ=( a b
c d )∈Γ

1

(τ − γτ ′)k
1

χ(γ)(cτ ′ + d)k
.(10)

Note that the formula for the Bergman kernel given in [Fr90] is missing a factor of (2i)k.

2.4. Counting function. Given τ ∈ H and ρ ∈ R≥0, we recall from [JL95] the counting
function

NΓ(τ ; ρ) := |NΓ(τ ; ρ)|,
where

NΓ(τ ; ρ) :=

{

γ ∈ Γ \
( s
⋃

j=1

Γpj ∪
t
⋃

j=1

Γej

)
∣

∣

∣

∣

disthyp(τ, γτ) ≤ ρ

}

.
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Let now f be a positive, smooth, and decreasing function on R≥0. Then, adapting the
arguments from [JL95] to Fuchsian subgroups of SL2(R), we have for any τ ∈ H and any
δ ≥ rΓ/2 the inequality

∞
∫

0

f(ρ) dNΓ(τ ; ρ) ≤
δ
∫

0

f(ρ) dNΓ(τ ; ρ) +
2|Cent(Γ)| cosh(rΓ/4)

sinh(rΓ/4)
sinh(δ)f(δ)(11)

+
|Cent(Γ)|

2 sinh2(rΓ/4)

∞
∫

δ

f(ρ) sinh(ρ+ rΓ/2
)

dρ;

here Cent(Γ) denotes the center of Γ. Note that our definition (8) of injectivity radius
differs from the one used in [JL95] by a factor of 2, and the inequality (11) takes this fact
into account.

2.5. Jacobi forms. For k,m ∈ N, we let Jcusp
k,m (Γ0) denote the space of Jacobi cusp forms of

weight k and index m for Γ0 = SL2(Z), i. e., the space of holomorphic functions f : H×C →
C, which have the transformation behaviour

f
(aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)

(cτ + d)−k exp
(

2πim
(

λ2τ + 2λz − c(z + λτ + µ)2

cτ + d

))

= f(τ, z)

for all
[(

a b
c d

)

, (λ, µ)
]

∈ Γ0 ⋉ Z2, and which have a Fourier expansion of the form

f(τ, z) =
∑

n∈N, r∈Z
4mn−r2>0

c(n, r) qnζr (q = e2πiτ , ζ = e2πiz).

Given f ∈ Jcusp
k,m (Γ0), we define

‖f(τ, z)‖2Pet := |f(τ, z)|2 ηk e− 4πmy2

η (τ = ξ + iη, z = x+ iy),

which defines a Γ0 ⋉ Z2-invariant function on H× C called the pointwise Petersson norm
of f .

Let DΓ0 denote a fundamental domain of the quotient space YΓ0
:= Γ0 ⋉Z2\H×C, which

is a 2-dimensional complex manifold. The space Jcusp
k,m (Γ0) is equipped with the Petersson

inner product

〈f1, f2〉Pet :=
∫

DΓ0

f1(τ, z)f2(τ, z) η
k e−

4πmy2

η
dξ ∧ dη ∧ dx ∧ dy

η3
(f1, f2 ∈ Jcusp

k,m (Γ0)).

(12)

For f ∈ Jcusp
k,m (Γ0), one has the decomposition

f(τ, z) =
2m−1
∑

µ=0

ϕµ(τ)ϑµ,m(τ, z),(13)

where the function ϕµ is a cusp form of weight (k − 1
2
) for the finite index subgroup

Γ1 := Γ0(4m) of Γ0, and ϑµ,m is the Jacobi theta function

ϑµ,m(τ, z) :=
∑

n∈Z

e2πimτ
(

n− µ
2m

)2

+2πiz(2mn−µ).(14)
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As we will see below, the theta functions ϑµ,m (µ = 0, . . . , 2m− 1) arise for fixed τ ∈ H as
global sections of a suitable line bundle on the elliptic curve associated to τ . In fact, it is
shown in Theorem 5.1 of [EZ85] that the decomposition (14) gives rise to the isomorphism

Jcusp
k,m (Γ0) ∼= Vk− 1

2
(Γ0),

where Vk− 1
2
(Γ0) denotes the complex vector space of vector-valued cusp forms of weight

(k − 1
2
) with suitable transformation behaviour with respect to Γ0.

Let now

f1(τ, z) =
2m−1
∑

µ=0

ϕµ,1(τ)ϑµ,m(τ, z) and f2(τ, z) =
2m−1
∑

µ=0

ϕµ,2(τ)ϑµ,m(τ, z)

be two Jacobi cusp forms of weight k and index m for Γ0. Then, the decomoposition (13)
gives rise to the equality (see Theorem 5.3 in [EZ85])

〈f1, f2〉Pet =
1√
4m

∫

FΓ0

2m−1
∑

µ=0

ϕµ,1(τ)ϕµ,2(τ) η
k− 1

2
dξ ∧ dη

η2
,(15)

where we recall that FΓ0 is a fundamental domain for the quotiemt space XΓ0 = Γ0\H.

For a fixed τ = ξ + iη ∈ H, consider the elliptic curve Eτ := C/Λτ with Λτ := Z ⊕ τZ.
Let Oτ denote the identity element of Eτ , when considered as an abelian group with ⊕τ

denoting the group operation, and let

[2] : Eτ −→ Eτ

be multiplication by 2, given by the assignment z 7→ 2z := z ⊕τ z, which is an isogeny of
degree 4. Let Mτ be the line bundle associated to the divisor Oτ . Then, the theorem of
the cube gives the isomorphism

[2]∗Mτ
∼= M⊗4

τ .

We then put Lτ := M⊗2
τ and find that the theta functions ϑµ,m (µ = 0, . . . , 2m− 1) arise

as global holomorphic sections of the line bundle L⊗m
τ .

The pointwise norm of ϑµ,m ∈ H0(Eτ ,L⊗m
τ ) at the point z = x + iy ∈ Eτ (identifying Eτ

with its universal cover C) is given by the following formula

‖ϑµ,m(τ, z)‖2L⊗m
τ

:= |ϑµ,m(τ, z)|2
√
η e−

4πmy2

η .(16)

Let µeucl denote the Euclidean metric on Eτ ; at the point z = x + iy ∈ Eτ , it is given by
the formula

µeucl(z) =
i

2
· dz ∧ dz

η
=

dx ∧ dy

η
.(17)

Furthermore, the L2-norm of ϑµ,m ∈ H0(Eτ ,L⊗m
τ ) is given by the following formula

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

=

∫

Eτ

‖ϑµ,m(τ, z)‖2L⊗m
τ

µeucl(z)

=

η
∫

0

1
∫

0

|ϑµ,m(τ, z)|2
√
η e−

4πmy2

η
dx ∧ dy

η
.
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2.6. Asymptotics for Bergman kernels. In this subsection, we recall asymptotics of
Bergman kernels associated to tensor powers of holomorphic line bundles on compact com-
plex Kähler manifolds, which are used in section 4 to derive bounds for theta functions.

Let (M,ω) be a compact complex Kähler manifold of dimension n with positive closed
(1, 1)-form ω. Let L be a positive hermitian holomorphic line bundle on M and let
H0(M,L⊗m) denote the vector space of global holomorphic sections its m-th tensor power
L⊗m for m ∈ Z≥1. Let | · |L⊗m and 〈 · , · 〉L2,L⊗m denote the pointwise hermitian metric and
the L2-inner product on H0(M,L⊗m), respectively.

Let {sj} denote an orthonormal basis of H0(M,L⊗m) with respect to the L2-inner product.
For any z ∈ M , the function

BL⊗m(z) :=
∑

j

|sj(z)|2L⊗m

is called the Bergman kernel associated to the line bundle L⊗m. We note that the above
definition is independent on the choice of an orthonormal basis of H0(M,L⊗m).

Let

c1(L, | · |L)(z) := − i

2π
∂z∂z log |s(z)|2L(18)

denote the curvature form of the line bundle L at the point z ∈ M , where s is any
meromorphic section of L. At any z ∈ M , there exists a coordinate chart around the point
z such that

ω(z) =
n
∑

j=1

i

2
· dzj ∧ dzj and c1(L, | · |L)(z) =

n
∑

j=1

i

2
· αj · dzj ∧ dzj .

The complex numbers α1, . . . , αn are called the eigenvalues of the curvature form
c1(L, | · |L)(z) at the point z ∈ M . We set

detω
(

c1(L, | · |L)(z)
)

:=
n
∏

j=1

αj.

Since the line bundle L is positive, we have αj > 0 for j = 1, . . . , n. Finally, we recall from
Theorem 2.1 in [Bo96] the bound

BL⊗m(z) = detω
(

c1(L, | · |L)(z)
)

mn +O(mn−1),(19)

provided that L is a positive line bundle for any z ∈ M .

3. Sup-norm bounds for cusp forms revisited

Refining arguments of [AM17] and [AM18], we first derive bounds for the Bergman kernel
along the diagonal.

Proposition 3.1. With notations as above, let Γ ⊂ SL2(R) be a cocompact Fuchsian
subgroup without elliptic elements. Then, for k ∈ R≥5 and τ ∈ H, we have the bound

‖Bk,χ(τ, τ)‖Pet ≤
k − 1

2π
+

3(k − 1)

π coshk−4(rΓ/4)

(

1 +
1

sinh2(rΓ/4)

)

.
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Proof. Letting k ∈ R≥5 and considering the Bergman kernel (10) on the diagonal, we derive
by means of relation (5) the bound

‖Bk,χ(τ, τ)‖Pet =
2k(k − 1)

4π

∣

∣

∣

∣

∑

γ=( a b
c d )∈Γ

1

(τ − γτ)k
1

χ(γ)(cτ + d)k

∣

∣

∣

∣

Im(τ)k

≤ k − 1

4π

∑

γ∈Γ

(

4 Im(τ)Im(γτ)

|τ − γτ |2
)k/2

=
k − 1

4π

∑

γ∈Γ

1

coshk(disthyp(τ, γτ)/2)

=
k − 1

4π

(

|Cent(Γ)|+
∑

γ∈Γ\Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)

)

.(20)

Substituting δ = rΓ/2 in inequality (11) and using the fact that |Cent(Γ)| ≤ 2, we derive

∑

γ∈Γ\Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)

≤
rΓ/2
∫

0

dNΓ(τ ; ρ)

coshk(ρ/2)
+

8

coshk−2(rΓ/4)
+

1

sinh2(rΓ/4)

∞
∫

rΓ/2

sinh(ρ+ rΓ/2)

coshk(ρ/2)
dρ.(21)

From the defining equation (8) of the injectivity radius rΓ, we find for the first term of (21)
that

rΓ/2
∫

0

dNΓ(τ ; ρ)

coshk(ρ/2)
= 0.(22)

With regard to the third term of (21), we recall the bound (12) in [AM17], which states
for any k ∈ R≥5 and any δ ≥ 0 (note that we have replaced 2k by k) that

1

sinh2(rΓ/4)

∞
∫

δ

sinh(ρ+ rΓ/2)

coshk(ρ/2)
dρ

≤ 4

(k − 2) coshk−2(δ/2)

(

2 +
1

sinh2(rΓ/4)

)

+
8

(k − 4) coshk−4(δ/2)
· 1

sinh2(rΓ/4)
.(23)

From the elementary inequality coshk−4(rΓ/4) ≤ coshk−2(rΓ/4) and recalling that k ∈ R≥5,
we now derive from (23) with δ = rΓ/2 the bound

1

sinh2(rΓ/4)

∞
∫

rΓ/2

sinh(ρ+ rΓ/2)

coshk(ρ/2)
dρ

≤ 4

(k − 2) coshk−2(rΓ/4)

(

2 +
1

sinh2(rΓ/4)

)

+
8

(k − 4) coshk−4(rΓ/4)
· 1

sinh2(rΓ/4)

≤ 4

coshk−4(rΓ/4)

(

1 +
1

sinh2(rΓ/4)

)

+
8

(k − 4) coshk−4(rΓ/4)
· 1

sinh2(rΓ/4)
.(24)

Combining the bounds (20), (21) with (22), (24), and using the fact that k ∈ R≥5, completes
the proof of the proposition. �
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Proposition 3.2. With notations as above, let Γ ⊂ SL2(R) be a cofinite Fuchsian subgroup.
Then, for k ∈ R≥5 and τ ∈ H, we have the bound

‖Bk,χ(τ, τ)‖Pet ≤
k − 1

2π
+

3(k − 1)

π coshk−4(rΓ/4)

(

1 +
1

sinh2(rΓ/4)

)

+
k − 1

4π

∑

ej∈EΓ

(mj − 1) +
2(k − 1)√

π
· Γ((k − 1)/2)

Γ(k/2)

∑

pj∈PΓ

Im(σ−1
P,jτ),

where σP,j is the scaling matrix associated to the cusp pj ∈ PΓ defined in (6).

Proof. For k ∈ R≥5 and τ ∈ H, using the bound (20) and the fact that |Cent(Γ)| ≤ 2, we
derive

‖Bk,χ(τ, τ)‖Pet ≤
k − 1

2π
+

k − 1

4π

∑

γ∈Γ\
(⋃

ej∈EΓ
Γej ∪

⋃
pj∈PΓ

Γpj

)

1

coshk(disthyp(τ, γτ)/2)

+
k − 1

4π

∑

ej∈EΓ

∑

γ∈Γej \Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)

+
k − 1

4π

∑

pj∈PΓ

∑

γ∈Γpj
\Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)
.(25)

Adapting our arguments from Proposition 3.1 to the second summand on the right-hand
side of (25), we arrive at the bound

k − 1

4π

∑

γ∈Γ\
(⋃

ej∈EΓ
Γej ∪

⋃
pj∈PΓ

Γpj

)

1

coshk(disthyp(τ, γτ)/2)

≤ 3(k − 1)

π coshk−4(rΓ/4)

(

1 +
1

sinh2(rΓ/4)

)

.(26)

For the third term on the right-hand side of (25), we trivially have the bound

k − 1

4π

∑

ej∈EΓ

∑

γ∈Γej \Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)
≤ k − 1

4π

∑

ej∈EΓ

(mj − 1).(27)

From the definition of the scaling matrix (6) and using the fact that |Cent(Γ)| ≤ 2, we find

k − 1

4π

∑

pj∈PΓ

∑

γ∈Γpj \Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

2π

∑

pj∈PΓ

∑

n∈Z\{0}

1

coshk(disthyp(σ
−1
P,jτ, σ

−1
P,jτ + n)/2)

.(28)

We now recall the bound (18) in [AM17], which gives for k ∈ R≥5, pj ∈ PΓ, and τ, τ ′ ∈ H

(note that we have replaced 2k by k) the bound

k − 1

2π

∑

pj∈PΓ

∑

n∈Z\{0}

1

coshk(disthyp(σ
−1
P,jτ, σ

−1
P,jτ

′ + n)/2)

≤ k − 1√
π

· Γ
(

(k − 1)/2
)

Γ(k/2)

∑

pj∈PΓ

(

4 Im(σ−1
P,jτ)Im(σ−1

P,jτ
′)
)k/2

(

Im(σ−1
P,jτ) + Im(σ−1

P,jτ
′)
)k−1

.(29)
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Substituting τ = τ ′ in (29) and combining it with (28), we arrive for the fourth term on
the right-hand side of (25) at the bound

k − 1

4π

∑

pj∈PΓ

∑

γ∈Γpj
\Cent(Γ)

1

coshk(disthyp(τ, γτ)/2)

≤ 2(k − 1)√
π

· Γ
(

(k − 1)/2
)

Γ(k/2)

∑

pj∈PΓ

Im(σ−1
P,jτ).(30)

Combining the bounds (26), (27), and (30) with (25) completes the proof of the proposition.
�

Theorem 3.3. With notations as above, let Γ ⊂ SL2(R) be a cofinite Fuchsian subgroup
and k ∈ R≥5. Then, if Γ is cocompact without elliptic elements, we have the bound

sup
τ∈H

‖Bk,χ(τ, τ)‖Pet = OΓ(k).(31)

Moreover, if Γ is cofinite, we have the bound

sup
τ∈H

‖Bk,χ(τ, τ)‖Pet = OΓ

(

k
3
2

)

.(32)

The implied constants in the bounds (31) and (32) depend only on the Fuchsian subgroup Γ.

Proof. When Γ is cocompact without elliptic elements, the claimed bound (31) follows
directly from Proposition 3.1.
Let next Γ be a cofinite Fuchsian subgroup. From the proof of Theorem 6.1 in [FJK16], it
follows that

sup
τ∈H

‖Bk,χ(τ, τ)‖Pet = sup
τ∈∂FY

Y=k/(2π)

‖Bk,χ(τ, τ)‖Pet,(33)

where ∂FY denotes the boundary of the truncated fundamental domain FY defined in (7).
Combining Proposition 3.2 with (33) and employing the fact that

Γ
(

(k − 1)/2
)

Γ(k/2)
= O

(

1√
k

)

,

we derive

sup
τ∈H

‖Bk,χ(τ, τ)‖Pet

≤ k − 1

2π
+

3(k − 1)

π coshk−4(rΓ/4)

(

1 +
1

sinh2(rΓ/4)

)

+ (k − 1)CΓ,ell + k
3
2 CΓ,par

for some positive constants CΓ,ell, CΓ,par, which depend only on the Fuchsian subgroup Γ.
This completes the proof of the theorem. �

Corollary 3.4. With notations as above, let Γ ⊂ SL2(R) be a cofinite Fuchsian subgroup.
For k ∈ R≥5, let f ∈ Sk,χ(Γ) be a cusp form, which is normalized with respect to the
Petersson inner product (9). If Γ is cocompact without elliptic elements, we have the
bound

sup
τ∈H

‖f(τ)‖2Pet = OΓ(k).(34)

Moreover, if Γ is cofinite, we have the bound

sup
τ∈H

‖f(τ)‖2Pet = OΓ

(

k
3
2

)

.(35)
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The implied constants in the bounds (34) and (35) depend only on the Fuchsian subgroup Γ.

Proof. Choose an orthonormal basis {f1 = f, . . . , fdk} of Sk,χ(Γ) with respect to the Pe-
tersson inner product (9). For τ ∈ H, we then have the bound

‖f(τ)‖2Pet ≤ ‖Bk,χ(τ, τ)‖Pet.

The proof of the corollary now immediately follows from Theorem 3.3. �

Theorem 3.5. With notations as above, let Γ0 ⊂ SL2(R) be a fixed cofinite Fuchsian
subgroup and let Γ ⊆ Γ0 be a finite index subgroup of Γ0. For k ∈ R≥5, let f ∈ Sk,χ(Γ) be
a cusp form, which is normalized with respect to the Petersson inner product (9). If Γ0 is
cocompact without elliptic elements, we have the bound

sup
τ∈H

‖f(τ)‖2Pet = OΓ0(k).(36)

Moreover, if Γ0 is cofinite, we have the bound

sup
τ∈H

‖f(τ)‖2Pet = OΓ0

(

k
3
2

)

.(37)

The implied constants in the bounds (36) and (37) depend only on the Fuchsian subgroup Γ0.

Proof. Choose an orthonormal basis {f1 = f, . . . , fdk} of Sk,χ(Γ) with respect to the Pe-
tersson inner product (9).

Let now Γ0 be a cocompact Fuchsian subgroup without elliptic elements. From the proof
of Proposition 3.1,we derive the bound

sup
τ∈H

‖f(τ)‖2Pet ≤ sup
τ∈H

‖Bk,χ(τ, τ)‖Pet

≤ k − 1

4π
sup
τ∈H

∑

γ∈Γ

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

4π
sup
τ∈H

∑

γ∈Γ0

1

coshk(disthyp(τ, γτ)/2)
= OΓ0(k),

which completes the proof of the theorem in the case that Γ0 is cocompact without elliptic
elements.

Let next Γ0 be a cofinite Fuchsian subgroup. Given Y > 0, we recall from (7) the funda-
mental domain decomposition

FΓ = FY ∪
(

FY
1 ∪ . . . ∪ FY

s

)

,

where FY is a compact subset of FΓ and the FY
j ’s are neighborhoods of the cusps pj ∈ PΓ

(j = 1, . . . , s). Choosing Y large enough, we can assume without loss of generality in the
sequel that the neighborhoods FY

j are pairwise disjoint. We now first provide a bound
for the pointwise Petersson norm of f , when τ ranges across the compact set FY , and
subsequently we compute bounds for the pointwise Petersson norm of f , when τ ranges
across the neighborhoods FY

j of the cusps for fixed, large enough Y .
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Adapting arguments from the proof of Proposition 3.2, we obtain the bound

sup
τ∈FY

‖Bk,χ(τ, τ)‖Pet ≤
k − 1

4π
sup
τ∈FY

∑

γ∈Γ

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

4π
sup
τ∈FY

∑

γ∈Γ0

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

2π
+

3(k − 1)

π coshk−4(rΓ0,Y /4)

(

1 +
1

sinh2(rΓ0,Y /4)

)

+
k − 1

4π

∑

ej∈EΓ0

(mej − 1),(38)

where

rΓ0,Y = inf

{

disthyp(τ, γτ)

∣

∣

∣

∣

τ ∈ FY , γ ∈ Γ0 \
⋃

ej∈EΓ0

Γ0,ej

}

> 0.

From this, we immediately conclude that

sup
τ∈FY

‖f(τ)‖2Pet ≤ sup
τ∈FY

‖Bk,χ(τ, τ)‖Pet = OΓ0,Y (k),(39)

where the implied constant depends on Γ0 and the choice of Y .

We are left to provide bounds for the pointwise Petersson norm of f , when τ ranges across
the neighborhoods FY

j of the cusps. For this, we will have to distinguish between the

two cases Y > k
2π

and Y < k
2π
. Without loss of generality, we can assume that j = 1,

when p1 ∈ PΓ is the cusp at infinity for Γ lying above the cusp p at infinity for Γ0 with
ramification index [Γ0,p : Γp1] (note that Γ0,p denotes the stabilizer subgroup of p in Γ0).
With the above notations, we obtain the inclusion Γ \ Γp1 ⊆ Γ0 \ Γ0,p.

We first treat the case Y > k
2π
, which implies that FY

1 ⊂ Fk/(2π)
1 . Arguing as in the proof

of Theorem 6.1 in [FJK16], we deduce, recalling the inclusion Γ \ Γp1 ⊆ Γ0 \ Γ0,p, that

sup
τ∈FY

1

‖Bk,χ(τ, τ)‖Pet ≤ sup
τ∈F

k/(2π)
1

‖Bk,χ(τ, τ)‖Pet ≤ sup
τ∈∂F

k/(2π)
1

‖Bk,χ(τ, τ)‖Pet

≤ k − 1

4π

(

sup
τ∈∂F

k/(2π)
1

∑

γ∈Γ\Γp1

1

coshk(disthyp(τ, γτ)/2)
+ sup

τ∈∂F
k/(2π)
1

∑

γ∈Γp1

1

coshk(disthyp(τ, γτ)/2)

)

≤ k − 1

4π

(

sup
τ∈∂F

k/(2π)
1

∑

γ∈Γ0\Γ0,p

1

coshk(disthyp(τ, γτ)/2)
+ sup
τ∈∂F

k/(2π)
1

∑

γ∈Γp1

1

coshk(disthyp(τ, γτ)/2)

)

.

(40)

Arguments similar to the ones used to derive the bound (38), lead for the first term of (40)
to the bound

k − 1

4π
sup

τ∈∂F
k/(2π)
1

∑

γ∈Γ0\Γ0,p

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

2π
+

3(k − 1)

π coshk−4(rΓ0,k/(2π)/4)

(

1 +
1

sinh2(rΓ0,k/(2π)/4)

)

+
k − 1

4π

∑

ej∈EΓ0

(mej − 1),

where

rΓ0,k/(2π) = inf

{

disthyp(τ, γτ)

∣

∣

∣

∣

τ ∈ ∂Fk/(2π)
1 , γ ∈ Γ0 \

(

Γ0,p ∪
⋃

ej∈EΓ0

Γ0,ej

)}

> 0.
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Since it is easy to see that

1

sinh2(rΓ0,k/(2π))
= OΓ0(1),

we arrive for the first term of (40) at the bound

k − 1

4π
sup

τ∈∂F
k/(2π)
1

∑

γ∈Γ0\Γ0,p

1

coshk(disthyp(τ, γτ)/2)
= OΓ0(k).(41)

Using the same arguments as in the proof of Proposition 3.2, we derive for the second term
of (40) the bound

k − 1

4π
sup

τ∈∂F
k/(2π)
1

∑

γ∈Γp1

1

coshk(disthyp(τ, γτ)/2)
= O

(

k
3
2

)

.(42)

By means of (40), we thus deduce from (41) and (42) in the case Y > k
2π

the bound

sup
τ∈FY

1

‖f(τ)‖2Pet ≤ sup
τ∈FY

1

‖Bk,χ(τ, τ)‖Pet = OΓ0

(

k
3
2

)

.(43)

We finally turn to the case Y < k
2π
, which implies that Fk/(2π)

1 ⊂ FY
1 . Here we find, arguing

as in the preceding case that

sup
τ∈FY

1

‖Bk,χ(τ, τ)‖Pet ≤ sup
τ∈FY

1 \F
k/(2π)
1

‖Bk,χ(τ, τ)‖Pet

≤ k − 1

4π
sup

τ∈FY
1 \F

k/(2π)
1

∑

γ∈Γ0\Γ0,p

1

coshk(disthyp(τ, γτ)/2)

+
k − 1

4π
sup

τ∈FY
1 \F

k/(2π)
1

∑

γ∈Γp1

1

coshk(disthyp(τ, γτ)/2)
.(44)

As before, we now obtain the bounds

k − 1

4π
sup

τ∈FY
1 \F

k/(2π)
1

∑

γ∈Γ0\Γ0,p

1

coshk(disthyp(τ, γτ)/2)

≤ k − 1

2π
+

3(k − 1)

π coshk−4(r′Γ0,Y
/4)

(

1 +
1

sinh2(r′Γ0,Y
/4)

)

+
k − 1

4π

∑

ej∈EΓ0

(mej − 1)

= OΓ0,Y (k),(45)

noting that

r′Γ0,Y
= inf

{

disthyp(τ, γτ)

∣

∣

∣

∣

τ ∈ FY
1 , γ ∈ Γ0 \

(

Γ0,p ∪
⋃

ej∈EΓ0

Γ0,ej

)}

> 0,

as well as the bound

k − 1

4π
sup

τ∈FY
1 \F

k/(2π)
1

∑

γ∈Γp1

1

coshk(disthyp(τ, γτ)/2)
= O

(

k
3
2

)

.(46)

By means of (44), we thus deduce from (45) and (46) in the case Y < k
2π

the bound

sup
τ∈FY

1

‖f(τ)‖2Pet ≤ sup
τ∈FY

1

‖Bk,χ(τ, τ)‖Pet = OΓ0,Y

(

k
3
2

)

.(47)

Since Y has been fixed, the claim of the theorem follows from (39), (43), and (47). �
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Remark 3.6. If f ∈ Sk,χ(Γ) is not a Hecke eigenform, then there is no evidence from
the literature to suggest that the estimates (34) and (35) can be improved. Thus the
estimates (34) and (35) are expected to be optimal.

4. Sup-norm bounds for Jacobi cusp forms

For k ∈ Z≥5 and m ∈ Z≥1, let f ∈ Jcusp
k,m (Γ0) be a Jacobi cusp form of weight k and index m

for the full modular group Γ0 = SL2(Z), which is normalized with respect to the Petersson
inner product defined by (12). We now aim at bounding the quantity

sup
(τ,z)∈H×C

‖f(τ, z)‖Pet.

Recall from (13) that we have the decomposition

f(τ, z) =
2m−1
∑

µ=0

ϕµ(τ)ϑµ,m(τ, z),

where the functions ϕµ are cusp forms of weight (k − 1
2
) with respect to the finite index

subgroup Γ1 = Γ0(4m) of Γ0 and the theta functions ϑµ,m are defined in (14).

Proposition 4.1. With notations as above, given ǫ > 0, we have the bound

sup
(τ,z)∈H×C

‖f(τ, z)‖2Pet = Oǫ

(

k
3
2 m

5
2
+ǫ ‖ϑm‖2L⊗m

τ

)

,

where

‖ϑm‖2L⊗m
τ

:= sup
(τ,z)∈H×C

0≤µ≤2m−1

‖ϑµ,m(τ, z)‖2L⊗m
τ

,

and the implied constant depends only on the choice of ǫ.

Proof. Substituting the decomposition (13) of the Jacobi form f(τ, z) into its pointwise
Petersson norm, we compute

‖f(τ, z)‖2Pet =
∣

∣

∣

∣

2m−1
∑

µ=0

ϕµ(τ)ϑµ,m(τ, z)

∣

∣

∣

∣

2

ηk e−
4πmy2

η

=

2m−1
∑

µ=0

2m−1
∑

µ′=0

ϕµ(τ)ϑµ,m(τ, z)ϕµ′(τ)ϑµ′,m(τ, z) η
k e−

4πmy2

η

≤
2m−1
∑

µ=0

2m−1
∑

µ′=0

|ϕµ(τ)ϑµ,m(τ, z)| |ϕµ′(τ)ϑµ′,m(τ, z)| ηk e−
4πmy2

η

≤ 1

2

2m−1
∑

µ=0

2m−1
∑

µ′=0

(

|ϕµ(τ)ϑµ,m(τ, z)|2 + |ϕµ′(τ)ϑµ′,m(τ, z)|2
)

ηk e−
4πmy2

η .
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From this we immediately derive

‖f(τ, z)‖2Pet ≤
4m

2

2m−1
∑

µ=0

|ϕµ(τ)|2 ηk−1/2 · |ϑµ,m(τ, z)|2 η1/2 e−
4πmy2

η

≤ 2m

2m−1
∑

µ=0

‖ϕµ(τ)‖2Pet · ‖ϑm(τ, z)‖2L⊗m
τ

≤ 2m ‖ϑm‖2L⊗m
τ

2m−1
∑

µ=0

‖ϕµ(τ)‖2Pet.(48)

Since f is normalized with respect to the Petersson inner product, we have from (15) that

〈f, f〉Pet =
1√

4m [Γ0 : Γ1]

2m−1
∑

µ=0

〈ϕµ, ϕµ〉Pet = 1.(49)

Combining (49) with Theorem 3.5, we have the bound

2m−1
∑

µ=0

‖ϕµ(τ)‖2Pet =
2m−1
∑

µ=0

〈ϕµ, ϕµ〉Pet
‖ϕµ(τ)‖2Pet
〈ϕµ, ϕµ〉Pet

≤ C
√
4m [Γ0 : Γ1] k

3
2 ,(50)

where C is a positive constant depending on Γ0. Finally, recalling that

[Γ0 : Γ1] = [SL2(Z) : Γ0(4m)] = Oǫ

(

m1+ǫ
)

,(51)

where the implied constant depends only on the choice of ǫ > 0, the claim follows combining
the bounds (48), (50), and (51). �

Proposition 4.2. With notations as above, we have for fixed τ ∈ H and 0 ≤ µ ≤ 2m− 1
the bound

sup
z∈C

‖ϑµ,m(τ, z)‖2L⊗m
τ

= O
(

m ‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

)

.

Proof. Let BL⊗m
τ

denote the Bergman kernel associated to the space of global holomorphic

sections H0(Eτ ,L⊗m
τ ) of the line bundle L⊗m

τ on the elliptic curve Eτ equipped with the
Kähler form ω = µeucl (see formula (17)). From the bound (19), we then derive for
0 ≤ µ ≤ 2m− 1 that

BL⊗m
τ

(z) = detω
(

c1(Lτ , ‖ · ‖Lτ )(z)
)

m+O(1),

where c1(Lτ , ‖ · ‖Lτ )(z) is the curvature form of Lτ at a point z ∈ Eτ . Using equations (16)
and (18), the curvature form c1(Lτ , ‖ · ‖Lτ )(z) is given by the formula (identifying Eτ with
its universal cover C and writing z = x+ iy)

c1(Lτ , ‖ · ‖Lτ )(z) = − i

2π
∂z∂z log ‖ϑµ,1(τ, z)‖2Lτ

= − i

2π
∂z∂z

(

− 4πy2

η

)

= 2µeucl(z) = 2ω(z).

Finally, observing that we have by the definition of the Bergman kernel BL⊗m
τ

that

‖ϑµ,m(τ, z)‖2L⊗m
τ

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

≤ BL⊗m
τ

(z),

the claim follows. �
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Proposition 4.3. With notations as above, for 0 ≤ µ ≤ 2m− 1, we have the bound

sup
τ∈H

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

= O
(

1/
√
m
)

.

Proof. Let τ = ξ + iη ∈ H, z = x + iy ∈ C, and 0 ≤ µ ≤ 2m − 1. For τ ∈ H, we need to
bound the quantity

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

=

∫

Eτ

‖ϑµ,m(τ, z)‖2L⊗m
τ

µeucl(z)

=

η
∫

0

1
∫

0

|ϑµ,m(τ, z)|2
√
η e−

4πmy2

η
dx ∧ dy

η
,(52)

where we have used (16) and (17). Recalling (14) and setting a(n) := n− µ/(2m) as well
as b(n) := 2mn− µ in (52), we then compute

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

=

η
∫

0

∑

n∈Z

∑

n′∈Z

e2πimτa(n)2e2πimτa(n′)2

(

1
∫

0

e2πizb(n)e2πizb(n′) dx

)

e−
4πmy2

η
dy√
η
.(53)

Since

1
∫

0

e2πizb(n)e2πizb(n′) dx = e−2πy(b(n)+b(n′))

1
∫

0

e2πix(b(n)−b(n′)) dx =

{

e−4πyb(n), if n = n′,

0, else,

we arrive at

∑

n∈Z

∑

n′∈Z

e2πimτa(n)2e2πimτa(n′)2

1
∫

0

e2πizb(n)e2πizb(n′) dx

=
∑

n∈Z

e−4πmη
(

n− µ
2m

)2

−4πy(2mn−µ).(54)

Substituting (54) into (53) and using an integral test, we find the bound

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

=
∑

n∈Z

η
∫

0

e−4πmη
(

n− µ
2m

)2

−4πy(2mn−µ) e−
4πmy2

η
dy√
η

≤
η
∫

0

∞
∫

−∞

e−4πmη
(

ν− µ
2m

)2

−4πy(2mν−µ)− 4πmy2

η dν
dy√
η

(55)

+

η
∫

0

e−
πηµ2

m
+4πyµ− 4πmy2

η
dy√
η
.(56)
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Now, we rewrite the exponent of the integrand in (55) in the form

4πmη

(

ν − µ

2m

)2

+ 4πy(2mν − µ) +
4πmy2

η

=

(
√

πη

m
(2mν − µ)

)2

+ 4πy(2mν − µ) +

(

2

√

πm

η
y

)2

=

(
√

πη

m
(2mν − µ) + 2

√

πm

η
y

)2

.

Substituting

ρ :=

√

πη

m
(2mν − µ) + 2

√

πm

η
y

into (55), we obtain for the inner integral

∞
∫

−∞

e−4πmη
(

ν− µ
2m

)2

−4πy(2mν−µ)− 4πmy2

η dν =
1

2
√
πmη

∞
∫

−∞

e−ρ2 dρ =
1

2
√
m

1√
η
.

From this, we compute the double integral (55) as

η
∫

0

∞
∫

−∞

e−4πmη
(

ν− µ
2m

)2

−4πy(2mν−µ)− 4πmy2

η dν
dy√
η
=

1

2
√
m

1√
η

η
∫

0

dy√
η
=

1

2
√
m
.(57)

For the integral (56), we find in a similar way

η
∫

0

e−
πηµ2

m
+4πyµ− 4πmy2

η
dy√
η
≤

∞
∫

−∞

e
−
(

−
√

πη
m

µ+2
√

πm
η

y
)2 dy√

η
=

1

2
√
m
.(58)

Adding up the bounds (57) and (58), yields

‖ϑµ,m(τ, ·)‖2L2,L⊗m
τ

≤ 1

2
√
m

η
∫

0

dy

η
=

1√
m
,

which proves the claim. �

Theorem 4.4. For k ∈ Z≥5 and m ∈ Z≥1, let f ∈ Jcusp
k,m (Γ0) be a Jacobi cusp form of

weight k and index m for the full modular group Γ0 = SL2(Z), which is normalized with
respect to the Petersson inner product. Then, we have the bound

sup
(τ,z)∈H×C

‖f(τ, z)‖2Pet = Oǫ

(

k
3
2 m3+ǫ

)

,(59)

where the implied constant depends only on the choice of ǫ > 0.

Proof. The proof of the theorem follows from combining Propositions 4.1–4.3. �

Remark 4.5. The bound (59) is polynomial in k and m, and thus improves W. Kohnen’s
bound (1), which is exponential in k. Comparing our bound with the one obtained by
P. Anamby and S. Das in [AD23], there is an improvement with regard to the polynomial
growth in k, while the polynomial growth in m is slightly worse.
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