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Abstract. In this paper, we present an innovative particle system characterized by moderate
interactions, designed to accurately approximate kinetic flocking models that incorporate singular
interaction forces and local alignment mechanisms. We establish the existence of weak solutions to
the corresponding flocking equations and provide an error estimate for the mean-field limit. This
is achieved through the regularization of singular forces and a nonlocal approximation strategy
for local alignments. We show that, by selecting the regularization and localization parameters
logarithmically with respect to the number of particles, the particle system effectively approximates
the mean-field equation.
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1. INTRODUCTION

In this work, we explore the following kinetic Cucker-Smale (C-S) flocking model characterized
by its inclusion of confinement, a nonlocal interaction, a local alignment force, and a diffusion
component

∂tf + v · ∇xf −∇v · [
(
γv + λ(∇xV +∇xW ∗ ρ)

)
f ] = ∇v · [β(v − u)f + σ∇vf ], (1.1)

subject to the initial data
f(x, v, 0) = f0, (x, v) ∈ R

d × R
d.

Here d ≥ 3, f = f(x, v, t) is the particles distribution function at (x, v, t) ∈ R
d×R

d×R+, ρ = ρ(x, t)
and u = u(x, t) are local particles density and velocity respectively, which are given by

ρ =

∫

Rd

fdv and u =

∫
Rd vfdv

ρ
.

The function V (x) = |x|2/2 is a smooth confinement potential andW (x) is an interaction potential,
which is chosen to be the Newtonian potential case as following form

W (x) =
1

(d− 2)|B(0, 1)|
1

|x|d−2
,

where |B(0, 1)| denotes the volume of unit ball B(0, 1) in R
d, i.e. |B(0, 1)| = π

d
2 /Γ(d/2 + 1),

Γ(·) denotes the Gamma function. In (1.1), the first two terms account for the free transport of
particles, while the third term consists of linear damping with strength γ > 0 and the confinement
and interaction forces due to potentials with strength λ > 0. The right-hand side of (1.1) represents
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the local alignment forces with β > 0 and the diffusion term in velocity with σ > 0. It denotes the
nonlinear Fokker–Planck operator in [31] given by

∇v · [β(v − u)f + σ∇vf ] = σ∇v ·
(
f∇v log

f

Mu

)

with the local Maxwellian

Mu :=
βd/2

(2πσ)d/2
exp

(
− β|u− v|2

2σ

)
.

Note that this local alignment force had been introduced in [18] for swarming models. In fact, it
can be understood as the localized version of the nonlinear damping term introduced by [23] as a
suitable normalization of the C-S model [9]. And it is also a nonlinear damping relaxation towards
the local velocity used in classical kinetic theory [4, 31].

The kinetic C-S equation, pivotal in describing the motion of self-propelled particles such as bird
flocking, fish schooling, and phenomena across biology, the internet, and sociology, was first intro-
duced by Cucker and Smale in 2007 [9, 10]. This foundational work has been further examined and
applied in various studies, including those by [12, 16, 22, 23, 27, 30, 32]. In 2008, Ha and Tadmor
[13] expanded upon this by deriving a Vlasov-type mean-field model incorporating the C-S particles
term and demonstrating its time-asymptotic flocking behavior for compactly supported initial data.
Motsch and Tadmor, in 2011 [23], proposed a modified C-S model featuring normalized and non-
symmetric alignment. Although this variant was not the central focus of their study, it introduced
an important perspective on alignment mechanisms. The exploration of the C-S model continued
with Karper, Mellet, and Trivisa in 2013 [18], who investigated the model’s dynamics with strong
local alignment, noise, self-propulsion, and friction, proving the existence of weak solutions. Their
subsequent works in 2014 [19] and 2015 [20] further validated the existence of weak solutions for the
Motsch–Tadmor model and examined the singular limits of the C-S model under conditions of strong
noise and alignment, respectively, illustrating convergence to the Euler-flocking system. Choi’s 2016
study [8] on the global well-posedness and asymptotic behavior of the Vlasov–Fokker–Planck equa-
tion with local alignment forces marked a significant advancement, demonstrating global existence
and uniqueness of classical solutions. Lastly, in 2018, Figalli and Kang [11] rigorously analyzed
the singular limit of the C-S model with strong local alignment, showing its convergence to a pres-
sureless Euler system with nonlocal flocking dissipation. More recently, Carrillo and Choi explored
the kinetic C-S flocking model, focusing on aspects of confinement, nonlocal interaction, and local
alignment forces. In their 2020 study [2], they not only discussed the existence of weak solutions to
this model but also established quantitative bounds on the error between the kinetic equation and
the aggregation equation through the limit of large friction. Building on this work, they further in-
vestigated a class of Vlasov-type equations with nonlocal forces in 2021 [3], paying special attention
to the existence of weak solutions for a continuity type equation as in (1.1).

The primary goal of this paper is to deduce equation (1.1) from a stochastic many-particle system.
To this end, we consider a filtered probability space defined by (Ω,F , (F)t≥0,P) and introduce
{Bi}1≤i≤N , a collection of independent Ft-Brownian motions. The dynamics of the system, which
features moderate interactions among numerous particles, are described in relation to a set of
parameters denoted by ξ := (ε, δ, ν). The model’s formulation is as follows:





dXi
ξ,N (t) =V i

ξ,N(t)dt, i ∈ [N ] := {1 · · · · · ·N},
dV i

ξ,N (t) =
√
2σdBi(t)− γV i

ξ,N(t)dt− β
(
V i
ξ,N(t)− uξ

(
Xi

ξ,N (t)
))
dt

− λ
(
∇xV (Xi

ξ,N (t)) +
1

N

N∑

i 6=j

∇xWε

(
Xi

ξ,N(t)−Xj
ξ,N (t)

))
dt,

(1.2)
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where Xi
ξ,N , V

i
ξ,N denote the position and velocity of the ith particles at time t, and we assume the

initial data {(Xi
ξ,N (0), V i

ξ,N (0))}Ni=1 are i.i.d. with the common distribution f0. Here Wε(x) is the

regularized function of W (x), which is given by

Wε(x) = Cd(ε+ |x|2)− d−2
2 , Cd =

1

(d− 2)|B(0, 1)| ,

and we can directly compute

‖∇Wε‖L∞(Rd) ≤ Cε−
d
2 , ‖D2Wε‖L∞(Rd) ≤ Cε−

d+2
2 . (1.3)

The approximated local particle’s velocity is

uξ(X
i
ξ,N (t)) =

1
N

∑N
j=1 V

j
ξ,N(t)φδ2(V

j
ξ,N (t)) · φε1(Xi

ξ,N (t)−Xj
ξ,N (t))

1
N

∑N
j=1 φ

ε
1(X

i
ξ,N (t)−Xj

ξ,N (t)) + ν
. (1.4)

For each ε > 0, φ1 is the standard mollifier, the function φε1(x) ∈ C∞
c (Rd) satisfying

∫
Rd φ

ε
1dx =

1, spt(φε1) ⊂ B(0, ε). For φ2(v) ∈ C2[0,+∞) satisfying

φ2(v) =

{
1, v ≤ 1,

0, v ≥ 2,
0 ≤ φ2 ≤ 1, |φ′2| ≤ C and |φ′′2 | ≤ C,

and taking φδ2(v) = φ2(δ|v|), v ∈ R
d, we have

‖ vφδ2(v) ‖L∞(Rd)≤ 2/δ, ‖ ∇
(
vφδ2(v)

)
‖L∞(Rd)≤ C.

We will demonstrate that the proposed particle system (1.2) accurately approximates the kinetic
equation (1.1) in the limit as N → ∞ and ξ → 0.

Firstly, we study the large particle limit. Specifically, with ξ > 0 held fixed, we illustrate how
the system (1.2) approaches an intermediate stochastic system in the limit of N → ∞





dX
i
ξ(t) =V

i
ξ(t)dt,

dV
i
ξ(t) =

√
2σdBi(t)− γV

i
ξ(t)dt− β

(
V

i
ξ(t)− uξ

(
X

i
ξ(t)

))
dt

− λ
(
∇xV (X

i
ξ(t)) +∇xWε ∗ ρξ

(
X

i
ξ(t)

))
dt,

(1.5)

where ρξ(x) =
∫
Rd fξ(x, dv) and fξ(x, v, t) is the probability density of (X

i
ξ(t), V

i
ξ(t)). The initial

data {(X i
ξ(0), V

i
ξ(0))}Ni=1 have the same distribution as the initial data of (1.2). Here uξ is given by

uξ(X
i
ξ(t)) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fξ(X

i
ξ(t))dv

φε1 ∗ ρξ(X
i
ξ(t)) + ν

. (1.6)

System (1.5) is uncoupled, since X
i
ξ depends on N only through the initial datum. In Section 3, we

present a key contribution of this paper: an error estimate of the mean-field limit through comparing
the solutions of the moderately interacting many-particle system, {(Xi

ξ,N (t), V i
ξ,N (t))0≤t≤T }Ni=1 from

(1.2), with those of the intermediate system, {(X i
ξ(t), V

i
ξ(t))0≤t≤T }Ni=1 from (1.5):

sup
0<t<T

sup
i=1...N

E

[
|Xi

ξ,N (t)−X
i
ξ(t)|2 + |V i

ξ,N (t)− V
i
ξ(t)|2

]
≤ CT 3 ln(Nα)

N

(
1 + T 3NT 3α ln(Nα)

)
,

where for fixed 0 < α ≤ 1, ln(Nα) ∼ 1/(δ2ν4ε4d+2), namely we have chosen ξ to be logarithmically
with respect to the number of particles.

The rigorous derivation of mean-field equations from their underlying many-particle systems
has been a subject of investigation since the 1980s, with seminal contributions from Sznitman
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[28, 29]. To address the singularity presented in the interaction force W , the use of a cut-off
parameter has become a common approach, as highlighted in works such as [1, 14, 15, 21]. For
the treatment of the local alignment term u, a strategy known as moderate interaction is applied
within uξ, resulting in interactions that are more localized compared to those found in the mean-
field regime. A closely related work by Oelschläger [24] demonstrated that interacting stochastic
particle systems weakly converge to a deterministic nonlinear process as the number of particles
increases. He further elucidated the derivation of the porous-medium equation from the limit
dynamics of a large interacting particle system [25], with subsequent applications found in [17, 26].
In more recent developments, Chen, Göttilich and Knapp [6] applied Oelschläger’s approach to
rigorously derive error estimates for solutions to stochastic particle systems and their diffusion-
aggregation equation limits. Additionally, Chen, Daus and Jüngel [5] established the mean-field
limit for weakly interacting stochastic many-particle systems across multiple population species in
the entire space. Finally, Chen, Holzinger, Jüngel and Zamponi [7] executed a mean-field-type limit
for stochastic moderately interacting many-particle systems with singular Riesz potential, leading
to the emergence of nonlocal porous-medium equations.

Furthermore, for a fixed ξ > 0, applying Itô’s formula to the intermediate stochastic system yields
a regularized version of the equation (1.1) for fξ-the probability density function of the solutions

X
i
ξ(t) to (1.5):

∂tfξ + v · ∇xfξ −∇v · [
(
γv + λ(∇xV +∇xWε ∗ ρξ)

)
fξ] = ∇v · [β(v − uξ)fξ + σ∇vfξ], (1.7)

fξ(x, v, 0) = f0, (x, v) ∈ R
d × R

d,

where

uξ(x, t) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fξdv

ν +
∫
Rd φε1 ∗ fξdv

. (1.8)

Lastly, by taking the limit as ξ → 0 in the regularized equation (1.7), we establish that the
limit function f , derived from fξ, fulfills the equation (1.1). In Section 2, we provide proofs for the
existence of solutions to both (1.1) and (1.7). Our proof methodology draws upon the approaches
found in the works of Carrillo et al. [2, 3] and Karper et al. [18], yet it introduces a novel perspective
through the application of our different regularized equation.

This paper is organized as follows: Section 2 details the establishment of global existence for
weak solutions to the kinetic equation (1.1) and its regularized counterpart, alongside deriving
the convergence relations between their solutions. In Section 3, we demonstrate the existence and
uniqueness for the moderately interacting particle system (1.2) and the intermediate system (1.5).
Moreover, this section highlights the main contribution of our study: mean-field limit error estimates
between the solutions of the moderately interacting many-particle system and the intermediate
system, quantified in terms of expectation.

2. EXISTENCE OF WEAK SOLUTIONS

This section focuses on establishing the global existence of weak solutions for the kinetic equation
(1.1) and its associated regularized problem, drawing inspiration from the methodologies detailed
in [3] and [18]. In the first subsection, we address the global existence of weak solutions to the
regularized problem (1.7). Subsequently, the subsection 2.2 demonstrates the derivation of weak
solutions for the kinetic equation (1.1) by considering the limit as ξ → 0.

We first show the following lemma, which is quoted from [3, Lemma 5.3, Lemma 5.4] and [18,
Lemma 2.7].
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Lemma 2.1. Let {fn}n∈N+ and {Gn}n∈N+ be bounded in Lp
loc([0, T ] × R

d × R
d) with 1 < p < ∞.

If fn and Gn satisfy

fnt + v · ∇xf
n = ∂vG

n, fn|t=0 = f0 ∈ Lp(Rd × R
d), (2.1)

and assume that for r ≥ 2,

sup
n∈N+

‖fn‖L∞([0,T ]×Rd×Rd) + sup
n∈N+

‖(|v|r + |x|2)fn‖L∞(0,T ;L1(Rd×Rd)) <∞.

Then for any ϕ(v) such that |ϕ(v)| ≤ c(1 + |v|), the sequence
{∫

Rd

fnϕ(v)dv
}

n∈N+

is relatively compact in Lq([0, T ] × R
d) for any q ∈ (1, d+r

d+1 ).

To clarify the limit of
{∫

Rd f
nϕ(v)dv

}

n∈N+

, we further give the following lemma.

Lemma 2.2. For any r ≥ 2, let {fn}n∈N+ be a sequence satisfying

sup
n∈N+

‖fn‖L∞([0,T ]×Rd×Rd) + sup
n∈N+

‖(|v|r + |x|2)fn‖L∞(0,T ;L1(Rd×Rd)) <∞

and
fn ⇀ f in L∞(0, T ;Lp(Rd × R

d)) ∀p ∈ (1,∞] .

Assume that for any ϕ(v) satisfying |ϕ(v)| ≤ c(1+|v|), the sequence
{∫

Rd f
nϕ(v)dv

}
n∈N+

converges

strongly to some h ∈ Lq([0, T ]× R
d) for any q ∈ (1, d+r

d+1). Then it holds that
∫

Rd

fnϕ(v)dv →
∫

Rd

fϕ(v)dv in Lq([0, T ] ×R
d) as n→ ∞ .

Proof. Firstly, according to the assumption, it holds that for q ∈ (1, d+r
d+1 ),

fn ⇀ f in Lq([0, T ] × R
2d) . (2.2)

Then we claim that ∫

Rd

ϕ(v)fndv ⇀

∫

Rd

ϕ(v)fdv in Lq([0, T ] × R
d) . (2.3)

To prove the claim, we consider the text function Ψ(t, x) ∈ Lq′([0, T ]×R
d) with 1

q +
1
q′ = 1. Then

for any Rε > 0 it holds that
∣∣∣
∫ T

0

∫

Rd

∫

Rd

fnϕ(v)dvΨ(t, x)dxdt −
∫ T

0

∫

Rd

∫

Rd

fϕ(v)dvΨ(t, x)dxdt
∣∣∣

≤
∣∣∣
∫ T

0

∫

Rd

∫

|v|≤Rε

(fn − f)ϕ(v)Ψ(t, x)dvdxdt
∣∣∣ +

∣∣∣
∫ T

0

∫

Rd

∫

|v|≥Rε

(fn − f)ϕ(v)Ψ(t, x)dvdxdt
∣∣∣.

On the one hand, for any ε > 0, there exists some Rε sufficiently large such that
∣∣∣
∫ T

0

∫

Rd

∫

|v|≥Rε

(fn − f)ϕ(v)Ψ(t, x)dvdxdt
∣∣∣
q

≤C
∥∥∥Ψ(t, x)

∥∥∥
q

Lq′ ([0,T ]×Rd)

∥∥∥
∫

|v|≥Rε

ϕ(v)(fn − f)dv
∥∥∥
q

Lq([0,T ]×Rd)

≤C
∫ T

0

∫

Rd

∣∣∣
∫

|v|≥Rε

c(1 + |v|)|fn − f |dv
∣∣∣
q
dxdt
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≤C
∫ T

0

∫

Rd

∣∣∣
∫

|v|≥Rε

(c(1 + |v|))
r
q |fn − f |

1
q

|fn − f |
1
q′

(c(1 + |v|))
r
q
−1
dv

∣∣∣
q
dxdt

≤C
∫ T

0

∫

Rd

∫

|v|≥Rε

cr(1 + |v|)r |fn − f |dv
( ∫

|v|≥Rε

|fn − f |
(c(1 + |v|))

rq′

q
−q′

dv
) q

q′

dxdt

≤
C‖fn − f‖

q
q′

L∞([0,T ]×R2d)

R
r−q− dq

q′

ε

∫ T

0

∫

Rd

∫

Rd

(1 + |v|)r|fn − f |dvdxdt ≤ ε, (2.4)

where rq′

q − q′ > d is equivalent to 1 < q < d+r
d+1 .

On the other hand, for fixed Rε > 0, it is easy to check that
∫ T

0

∫

Rd

∫

Rd

|ϕ(v)I|v|≤Rε
Ψ(t, x)|q′dvdxdt

≤
∫ T

0

∫

Rd

cq
′

(1 + |v|)q′I|v|≤Rε
dv

∫

Rd

|Ψ(t, x)|q′dxdt

≤C(Rε, c, d)‖Ψ‖q′
Lq′ ([0,T ]×Rd)

<∞.

This means that ϕ(v)I|v|≤Rε
Ψ(t, x) can be seen as a test function in Lq′([0, T ]×R

d), which according
to (2.2) leads to

∣∣∣
∫ T

0

∫

Rd

∫

|v|≤Rε

(fn − f)ϕ(v)Ψ(t, x)dvdxdt
∣∣∣ → 0 as n→ ∞. (2.5)

This combining with (2.4) concludes that
∫

Rd

fnϕ(v)dv ⇀

∫

Rd

fϕ(v)dv as n→ ∞ in Lq([0, T ] × R
d)

for any q ∈ (1, d+r
d+1).

Notice that by relative compactness assumption there exists some h ∈ Lq([0, T ] × R
d) such that

{
∫
Rd f

nϕ(v)dv}n∈N+ converges to h strongly. Due to the uniqueness of the limit we have
∫

Rd

fnϕ(v)dv → h =

∫

Rd

fϕ(v)dv as n→ ∞ in Lq([0, T ] × R
d).

�

2.1. Solvability of the regularized problem. As already noted in the introduction, the regu-
larized problem for fξ is

∂tfξ + v · ∇xfξ −∇v · [
(
γv + λ(∇xV +∇xWε ∗ ρξ)

)
fξ] = ∇v · [β(v − uξ)fξ + σ∇vfξ], (2.6)

fξ(x, v, 0) = f0, (x, v) ∈ R
d × R

d,

where uξ is defined in (1.8) and has the following form

uξ(x, t) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fξdv

ν +
∫
Rd φε1 ∗ fξdv

.

The purpose of this subsection is to prove existence of weak solutions for regularized problem
(2.6). The main theorem is as follows.
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Theorem 2.1. Let T > 0. Suppose that f0 satisfies

f0 ∈ L1
+ ∩ L∞(Rd × R

d) and (|v|2 + V +W ∗ ρ0)f0 ∈ L1(Rd × R
d).

Then for any λ, β, γ > 0, there exists a weak solution fξ, ξ = (ε, δ, ν) of Eq.(2.6) satisfying

fξ ∈ L∞(0, T ;Lp(Rd × R
d)), ∀p ∈ [1,∞],

ρξ ∈ L∞(0, T ;Lq1(Rd)), ∀q1 ∈ [1, (d + 2)/d),

jξ ∈ L∞(0, T ;Lq2(Rd)), ∀q2 ∈ [1, (d + 2)/(d + 1)).

And fξ satisfies the following entropy inequality
∫

R2d

( |v|2
2

+
|x|2
2

+ V + σ|logfξ|
)
fξdxdv +

1

2

∫

R2d

Wε(x− y)ρξ(x)ρξ(y)dxdy

≤−
∫ T

0

∫

R2d

1

fξ

∣∣∣σ∇vfξ − (v − uξ)fξ

∣∣∣
2
dxdvdt+

∫

R2d

( |v|2
2

+
|x|2
2

+ V + σ|logf0|
)
f0dxdv

+
1

2

∫

R2d

Wε(x− y)ρ0(x)ρ0(y)dxdy +

∫ T

0

∫

R2d

(|v|2 + |x|2)fξdxdvdt+ C, (2.7)

where C = C(T ) is a positive constant depending on γ, β, λ, T and ‖f0‖L1 .

Proof. Step 1: Establish the regularized equation of (2.6) with respect to regularization parameter
η := (R, ζ, ξ) as follows

∂tf
η + v · ∇xf

η −∇v · [
(
γv + λ(∇xV

R +∇xWε ∗ ρη)
)
fη]

= ∇v · [β(v − χζ(u
η))fη + σ∇vf

η], (2.8)

subject to initial data

fη0 = fη(x, v, 0) :=

{
f0, |v| ≤ ζ,

0, |v| > ζ.

Where ρη = ρη(x, t) and uη = uη(x, t) are given by

ρη :=

∫

Rd

fηdv, uη :=
kη

ν + φε1 ∗ ρη
,

and

kη(x, t) =

∫

Rd

vφδ2(v) · φε1 ∗ fηdv,

for convenience, we assume that

jη(x, t) :=

∫

Rd

vfηdv.

Moreover, χζ , V
R are defined by

χζ(u) =

{
u, |u| ≤ ζ,

0, |u| > ζ,
V R(x) := V (x)M(

x

R
),

where M(x) ∈ C∞
c (Rd) is a smooth function defined by

M(x) =

{
1, |x| < 1,

0, |x| > 2,
and 0 ≤M(x) ≤ 1.

Step 2: In this step, we prove existence of weak solutions to (2.8).
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Firstly, similarly as in Ref.[18], we partially linearize (2.8) as follows

∂tf
η + v · ∇xf

η −∇v · [
(
γv + λ(∇xV

R +∇xWε ∗ ρη)
)
fη]

= ∇v · [β(v − χζ(ũ))f
η + σ∇vf

η], (2.9)

where ũ is in S = L2([0, T ] × R
d). Since for any fixed ε > 0, ∇xWε is bounded and Lipschitz

continuous from (1.3), existence of weak solutions fη to (2.9) comes from almost the same argument
in Ref.[18, Theorem 6.3], and fη satisfies

‖ fη ‖L∞(0,T ;Lp(R2d)) +σ ‖ ∇v(f
η)

p
2 ‖2L2([0,T ]×R2d)≤ eCT ‖ fη0 ‖Lp(R2d) (2.10)

for any p ∈ [1,∞), where C is a constant independent of p, η. In particular, we have for t ∈ [0, T ],

‖fη(·, ·, t)‖L1(R2d) ≤ ‖f0‖L1(R2d), ‖fη(·, ·, t)‖L∞(R2d) ≤ eCT ‖f0‖L∞(R2d). (2.11)

Its velocity moment satisfies the following boundedness estimate from Ref.[3, Lemma 5.1],

sup
t∈(0,T )

∫

Rd

∫

Rd

|v|Nfηdvdx ≤ C ∀ N ≥ 0, (2.12)

where C is a constant independent of R, ζ.

Then, we define the mapping T : S → S, where S = Lq([0, T ]× R
d), q ∈ [1, d+2

d+1) by

ũ→ T (ũ) := uη(x, t) =
kη

ν + φε1 ∗ ρη
. (2.13)

In the following, we show T is well-defined. Noticing the definition of φδ2 and using the Hölder
inequality, it holds for each δ > 0,

‖kη‖q
Lq([0,T ]×Rd)

=

∫ T

0

∫

Rd

∣∣∣
∫

|v|< 2
δ

vφε1 ∗ fηdv
∣∣∣
q
dxdt

≤
∫ T

0

∫

Rd

( ∫

|v|< 2
δ

1dv
)q−1

∫

|v|< 2
δ

|φε1 ∗ vfη|qdvdxdt

≤ C(d)

δd(q−1)

∫ T

0

∫

Rd

∫

|v|< 2
δ

∣∣∣
∫

Rd

φε1(x− y) · vfη(y, v)dy
∣∣∣
q
dvdxdt.

Moreover, we have

‖kη‖q
Lq([0,T ]×Rd)

≤ C(d)

δd(q−1)

∫ T

0

∫

Rd

∫

|v|< 2
δ

(∫

Rd

φε1(x− y)dy

∫

Rd

φε1(x− y)(vfη(y, v))qdy
)
dvdxdt

≤ C(d)

δd(q−1)

∫ T

0

∫

Rd

(∫

Rd

φε1(x− y)dx

∫

|v|< 2
δ

|v|qfη(y, v)qdv
)
dydt

≤ C(d)

δd(q−1)
‖fη‖q−1

L∞([0,T ]×R2d)

∫ T

0

∫

Rd

∫

Rd

|v|qfη(y, v)dvdydt. (2.14)

By the velocity moment estimate (2.12), we obtain the boundedness of kη in Lq([0, T ]×R
d). Thus

we have

‖uη‖Lq([0,T ]×Rd) =
∥∥∥

kη

ν + φε1 ∗ ρη
∥∥∥
Lq([0,T ]×Rd)

≤ 1

ν
‖kη‖Lq([0,T ]×Rd) < C ∀t ∈ [0, T ], (2.15)

where C is a constant independent of R, ζ.
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Next, we prove the compactness of T . Similar to (2.13), define uηm by

ũm → T (ũm) := uηm(x, t) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fηmdv

ν +
∫
Rd φε1 ∗ fηmdv

∀m ∈ N+,

where {ũm}m∈N+ is a bounded and compact sequence in S = Lq([0, T ]×R
d). It is similar to discuss

the compactness of T i.e. the convergence of {uηm}m∈N+ in Ref.[18, Lemma 3.5], we present here
for readers’convenience. Set

Gm :=
(
γv + λ(∇xV

R +∇xWε ∗ ρηm) + β(v − χζ(u
η
m))

)
fηm + σ∇vf

η
m. (2.16)

Now we verify that {Gm}m∈N+ is bounded in L∞(0, T ;Lp
loc(R

2d)), p ∈ [1, 2]. In fact, the Hölder
inequality gives that for t ∈ [0, T ],

‖Gm‖L∞(0,T ;Lp
loc(R

2d)) ≤(γ + β)‖vfηm‖L∞(0,T ;Lp(R2d)) + σ‖∇vf
η
m‖L∞(0,T ;Lp(R2d))

+
(
Cλ(1 +

1

R
) + Cλε−

d
2 + βζ

)
‖fηm‖L∞(0,T ;Lp(R2d)),

where we use that in a bounded region D ⊂ R
d ×R

d,

|∇xV
R| =

∣∣∣∇V (x)M(
x

R
) +

1

R
V (x)∇M(

x

R
)
∣∣∣

≤ |∇V (x)|+
‖ ∇M ‖L∞(D)

R
|V (x)| ≤ C(1 +

1

R
),

and for t ∈ [0, T ],

‖∇xWε ∗ ρηm‖L∞(Rd) ≤ ε−
d
2 ‖ρηm‖L1(Rd) ≤ Cε−

d
2 , ‖χζ(ũm)‖L∞(Rd) ≤ ζ.

It remains to bound the term involving ∇vf
η
m. By the Hölder inequality , we get that ∀p ∈ [1, 2),

∫

Rd

∫

Rd

|∇vf
η
m|pdvdx =

∫

Rd

∫

Rd

(fηm)
p
2 (fηm)−

p
2 |∇vf

η
m|pdvdx

≤ ‖(fηm)
p
2 ‖

L
2

2−p (R2d)

(∫

Rd

∫

Rd

1

fηm
|∇vf

η
m|2dvdx

) p
2
,

and when p = 2,
∫

Rd

∫

Rd

|∇vf
η
m|2dvdx ≤ ‖fηm‖L∞(R2d)

∫

Rd

∫

Rd

1

fηm
|∇vf

η
m|2dvdx.

Here (2.10) provides the following estimate
∫

Rd

∫

Rd

1

fηm
|∇vf

η
m|2dvdx =

∫

Rd

∫

Rd

4|∇v(f
η
m)

1
2 |2dvdx ≤ C,

where C is a constant independent of R, ζ. Thus, for t ∈ [0, T ],
∫

Rd

∫

Rd

|∇vf
η
m|pdvdx ≤ C ∀p ∈ [1, 2]. (2.17)

By (2.10), (2.12) and (2.17), we have

‖Gm‖L∞(0,T ;Lp
loc(R

2d)) ≤ C ∀p ∈ [1, 2]. (2.18)

By the uniform estimates of fηm, |v|fηm and Gm in (2.10), (2.12) and (2.18), we know that there is
a subsequence of fηm (without relabeling for convenience) and fη ∈ L∞(0, T ;Lp(R2d)) such that as
m→ ∞

fηm ⇀ fη in L∞(0, T ;Lp(R2d)) ∀p ∈ [1, 2].
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Moreover, applying Lemma 2.1 gives for any ϕ(v) satisfying |ϕ(v)| ≤ c(1 + |v|), the sequence{∫
Rd f

η
mϕ(v)dv

}

m∈N+

converges strongly to some h ∈ Lq([0, T ] × R
d) for any q ∈ (1, d+2

d+1). Thus,

in Lemma 2.2 (with ϕ(v) = 1 and ϕ(v) = vφδ2(v)), we show the following strong convergences in
Lq([0, T ] × R

d),
∫

Rd

fηmdv →
∫

Rd

fηdv,

∫

Rd

vφδ2(v)f
η
mdv →

∫

Rd

vφδ2(v)f
ηdv as m→ ∞. (2.19)

Without relabeling for convenience, we also can get the following convergent subsequences
∫

Rd

fηmdv →
∫

Rd

fηdv,

∫

Rd

vφδ2(v)f
η
mdv →

∫

Rd

vφδ2(v)f
ηdv as m → ∞ a.e..

Moreover, we give the convergence of {uηm}m∈N+ up to a subsequence in Lq((0, T )×R
d). Consider

|uηm − uη| =
∣∣∣
kηm

(
ν + φε1 ∗ ρη

)
− kη

(
ν + φε1 ∗ ρηm

)
(
ν + φε1 ∗ ρ

η
m

)(
ν + φε1 ∗ ρη

)
∣∣∣

=
∣∣∣
ν
(
kηm − kη

)
+ φε1 ∗ ρη

(
kηm − kη

)
− φε1 ∗ (ρηm − ρη

)
kη

(ν + φε1 ∗ ρηm)(ν + φε1 ∗ ρη)
∣∣∣

≤ 2

ν
|kηm − kη|+

∣∣∣
φε1 ∗

(
ρηm − ρη

)
kη

(ν + φε1 ∗ ρηm)(ν + φε1 ∗ ρη)
∣∣∣. (2.20)

For the first term in the right hand side of (2.20), using (2.19) gives that

‖kηm − kη‖Lq([0,T ]×Rd) =
∥∥∥
∫

Rd

vφδ2(v) · φε1 ∗ (fηm − fη)dv
∥∥∥
Lq([0,T ]×Rd)

≤
∥∥∥
∫

Rd

vφδ2(v)(f
η
m − fη)dv

∥∥∥
Lq([0,T ]×Rd)

→ 0 as m→ ∞. (2.21)

Then, from (2.14), we have

∣∣∣
(
φε1 ∗ ρηm − φε1 ∗ ρη

)
kη

(ν + φε1 ∗ ρ
η
m)(ν + φε1 ∗ ρη)

∣∣∣ ≤ 1

ν
|kη|+ 1

ν
|kη| = 2

ν
|kη | ∈ Lq([0, T ] × R

d),

and using convergence of {ρηm}m∈N+ , we find

∣∣∣
φε1 ∗

(
ρηm − ρη

)
kη

(ν + φε1 ∗ ρηm)(ν + φε1 ∗ ρη)
∣∣∣ → 0 as m→ ∞ a.e..

Thus by the Lebesgue dominated convergence theorem, we have

lim
m→∞

∫ T

0

∫

Rd

∣∣∣
φε1 ∗

(
ρηm − ρη

)
kη

(ν + φε1 ∗ ρηm)(ν + φε1 ∗ ρη)
∣∣∣
q
dxdt = 0. (2.22)

Substitute (2.21) and (2.22) into (2.20), we can obtain

uηm → uη in Lq([0, T ] ×R
d) as m → ∞.

To sum up, we finish the proof of compactness to T .

Since the operator T is well-defined, continuous and compact, we can use the Schauder’s fixed
point theorem to obtain weak solutions of equation (2.8) and the following entropy inequality in
Ref.[3, Subsection 5.1],

∫

R2d

( |v|2
2

+
|x|2
2

+ V R + σ|logfη |
)
fηdxdv +

1

2

∫

R2d

Wε(x− y)ρη(x)ρη(y)dxdy
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+

∫ T

0

∫

R2d

1

fη

∣∣∣σ∇vf
η − (v − χζ(u

η))fη
∣∣∣
2
dxdvdt

≤
∫

R2d

( |v|2
2

+
|x|2
2

+ V R + σ|logfη0 |
)
fη0 dxdv + σdT‖f0‖L1

+
1

2

∫

R2d

Wε(x− y)ρη0(x)ρ
η
0(y)dxdy +

∫ T

0

∫

R2d

(|v|2 + |x|2)fηdxdvdt+ C, (2.23)

where C is a constant independent of R, ζ.

Step 3: we prove the existence of weak solutions to (2.6).
It remains to prove the convergence as R, ζ → ∞. Set R = ζ and we tend R to infinity. (Indeed,

although fη is only integrable, it can be approached by a function in C∞
c ([0, T ]×R

2d). Multiplying
by p(fη)p−1, p ≥ 1 on both side of equation (2.8) and integrating on R

d × R
d leads to

d

dt

∫

Rd

∫

Rd

(fη)pdxdv

=(p − 1)

∫

Rd

∫

Rd

(fη)p∇v ·
(
γv + λ(∇xV

R +∇xWε ∗ ρη) + β(v − χR(u
η))

)
dxdv

− σp(p− 1)

∫

Rd

∫

Rd

(fη)p−2|∇vf
η|2dxdv

=d(γ + β)(p − 1)

∫

Rd

∫

Rd

(fη)pdxdv − 4σ(p − 1)

p

∫

Rd

∫

Rd

|∇v(f
η)p/2|2dxdv.

This together with Grönwall’s lemma gives that for p ∈ [1,∞), it holds

‖fη‖p
L∞(0,T ;Lp(R2d))

+
4σ(p − 1)

p

∫ T

0
‖∇v(f

η)p/2(·, ·, t)‖2L2(R2d)dt ≤ ‖f0‖pLp(R2d)
ed(γ+β)(p−1)T . (2.24)

In particular, we have for any t ∈ [0, T ],

‖fη(·, ·, t)‖L1(R2d) ≤ ‖f0‖L1(R2d), ‖fη(·, ·, t)‖L∞(R2d) ≤ eCt‖f0‖L∞(R2d). (2.25)

Moreover, we use Grönwall’s lemma to yield, for t ∈ [0, T ], by the entropy inequality (2.23) we can
obtain

∫

Rd

∫

Rd

( |v|2
2

+
|x|2
2

)
fηdxdv ≤ C(T ). (2.26)

From [18, Lemma 2.4], we know that

‖ ρη ‖L∞(0,T ;Lq1 (Rd))≤ C ∀q1 ∈ [1, (d + 2)/d), (2.27)

‖ jη ‖L∞(0,T ;Lq2 (Rd))≤ C ∀q2 ∈ [1, (d + 2)/(d + 1)), (2.28)

where C is a constant independent of η. Thus, by (2.24), (2.27) and (2.28), we have that there
exist subsequences of fη, ∇vf

η, ρη and jη , without relabeling for convenience, we have the following
weak convergences as R→ ∞

fη ⇀ fξ in L∞(0, T ;Lp(R2d)) ∀p ∈ [1,∞], (2.29)

ρη ⇀ ρξ in L∞(0, T ;Lq1(Rd)) ∀q1 ∈ [1, (d + 2)/d), (2.30)

jη ⇀ jξ in L∞(0, T ;Lq2(Rd)) ∀q2 ∈ [1, (d + 2)/(d + 1)), (2.31)

∇vf
η ⇀ ∇vfξ in L2([0, T ] × R

2d). (2.32)
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Next, we define Gη as

Gη :=
(
γv + λ(∇xV

R +∇xWε ∗ ρη) + β(v − χR(u
η))

)
fη + σ∇vf

η. (2.33)

Just like the estimate to (2.16) in Step 2, the only additional difficulty is to bound uniformly the
term χR(u

η)fη. For t ∈ [0, T ],

‖χR(u
η)fη‖Lp(R2d) ≤ ‖uηfη‖Lp(R2d) ≤ ‖uη‖Lp(Rd)‖fη‖L∞(R2d)

≤ 1

ν

∥∥∥
∫

Rd

vφδ2 · φε1 ∗ fηdv
∥∥∥
Lp(Rd)

‖fη‖L∞(R2d)

≤ 1

ν
‖
∫

Rd

vφδ2 · fηdv
∥∥∥
Lp(Rd)

‖fη‖L∞(R2d).

Here by the definition of φδ2, we have
∫

Rd

vφδ2f
ηdv ≤

∫

Rd

(1 + |v|)fηdv ≤
( ∫

Rd

(1 + |v|)2fηdv
) 1

p
( ∫

Rd

fη

(1 + |v|)2q/p−q
dv

) 1
q
.

Noticing that p ∈ [1, (d + 2)/(d + 1)) implies 2q/p− q > d, we have
∫

Rd

vφδ2f
ηdv ≤ C‖fη‖1/q

L∞(R2d)

( ∫

Rd

(1 + |v|)2fηdv
)1/p

,

which indicates that
∥∥∥
∫

Rd

vφδ2f
ηdv

∥∥∥
Lp(Rd)

≤ C

∫

Rd

∫

Rd

(1 + |v|)2fηdvdx. (2.34)

Thus, by (2.26) and (2.34), we get

‖χR(u
η)fη‖L∞(0,T ;Lp(R2d)) ≤ C,

where C is a constant independent of R, ε, δ. The boundednesses of others are as in the previous
estimates. So we have Gη in L∞(0, T ;Lp

loc(R
2d)) for all p ∈ [1, (d+2)/(d+1)). Thus, we can set r = 2

and apply Lemma 2.2 to show that the following strong convergences for q ∈ (1, (d + 2)/(d + 1)),
∫

Rd

fηdv →
∫

Rd

fξdv,

∫

Rd

vφδ2f
ηdv →

∫

Rd

vφδ2fξdv in Lq([0, T ] × R
d) as R→ ∞,

and we consider

‖kη − kξ‖Lq([0,T ]×Rd) =
∥∥∥
∫

Rd

vφδ2(v) · φε1(x) ∗ (fη − fξ)dv
∥∥∥
Lq([0,T ]×Rd)

≤
∥∥∥
∫

Rd

vφδ2(v)(f
η − fξ)dv

∥∥∥
Lq([0,T ]×Rd)

→ 0 as R→ ∞.

Without relabeling for convenience, we can get the following convergent subsequences for q ∈
(1, (d + 2)/(d + 1)),

ρη → ρξ, k
η → kξ in Lq([0, T ] × R

d) as R→ ∞ a.e.. (2.35)

Hence, refer to [3, (5.7)], we have

(∇Wε ∗ ρη)fη ⇀ (∇Wε ∗ ρξ)fξ, χR(u
η)fη ⇀ uξfξ

as R → ∞ and the processes of proofs used (2.35). By combining the weak convergences of fη,
vfη and ∇vf

η in (2.29)-(2.32), we conclude that fξ is a weak solution of (2.6) in the following weak
sense

∫ T

0

∫

Rd

∫

Rd

−fξϕt − vfξ∇xϕ+
[(
γv + λ(∇xV +∇xWε ∗ ρξ)

)
fξ
]
∇vϕdvdxdt
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+

∫ T

0

∫

Rd

∫

Rd

(
β(v − uξ)fξ + σ∇vfξ

)
∇vϕdvdxdt =

∫

Rd

∫

Rd

f0ϕ(0, ·)dvdx (2.36)

for any ϕ ∈ C∞
c ([0, T ] ×R

2d), and fξ satisfies the entropy inequality (2.7) as Ref.[3, (5.6)]. �

Now, we provide uniform estimates respect to ε, δ for the solutions of the model (2.6).

Lemma 2.3. Let f0 be in Theorem 2.1, fξ is a weak solution of the regularized problem (2.6). Then
for any λ, β, γ > 0, there are following uniform estimates

‖ fξ ‖L∞(0,T ;Lp(Rd×Rd)) + ‖ ∇vf
p/2
ξ ‖L2([0,T ]×Rd×Rd)

+ ‖ ρξ ‖L∞(0,T ;Lq1 (Rd)) + ‖ jξ ‖L∞(0,T ;Lq2 (Rd))≤ C(T ),

where p ∈ [1,∞], q1 ∈ [1, (d + 2)/d) and q2 ∈ [1, (d + 2)/(d + 1)). In particular, the L∞- estimate
holds

‖fξ(·, ·, t)‖L∞(Rd×Rd) ≤ eCt‖f0‖L∞(Rd×Rd),

where C is a positive constant independent of ε, δ.

Proof. Taking p(fξ)
p−1, p ≥ 1 as a test function in (2.36). (Indeed, although fξ is only integrable,

it can be approached by a function in C∞
c ([0, T ] × R

2d).)

d

dt

∫

Rd

∫

Rd

(fξ)
pdxdv

=(p − 1)

∫

Rd

∫

Rd

(fξ)
p∇v ·

(
γv + λ(∇xV +∇xWε ∗ ρξ) + β(v − uξ)

)
dxdv

− σp(p − 1)

∫

Rd

∫

Rd

(fξ)
p−2|∇vfξ|2dxdv

=d(γ + β)(p − 1)

∫

Rd

∫

Rd

(fξ)
pdxdv − 4σ(p − 1)

p

∫

Rd

∫

Rd

|∇v(fξ)
p/2|2dxdv.

Hence using Grönwall’s lemma, we have that for p ∈ [1,∞), it holds

‖ fξ ‖pL∞(0,T ;Lp(R2d))
+
4σ(p − 1)

p

∫ T

0
‖ ∇v(fξ)

p/2(·, ·, t) ‖2L2(R2d) dt ≤‖ f0 ‖pLp(R2d)
ed(γ+β)(p−1)T .

Moreover, by the entropy inequality (2.7), we can obtain
∫

Rd

∫

Rd

( |v|2
2

+
|x|2
2

)
fξdxdv ≤ C, (2.37)

where C is a positive constant independent of ε, δ. From [18, Lemma 2.4], we know that

‖ ρξ ‖L∞(0,T ;Lq1 (Rd))≤ C ∀q1 ∈ [1, (d + 2)/d),

‖ jξ ‖L∞(0,T ;Lq2 (Rd))≤ C ∀q2 ∈ [1, (d + 2)/(d + 1)).

Thus, we conclude the proof.
�

2.2. Existence of solutions to the model (1.1). In this subsection, we establish the existence
of weak solutions to the problem described in equation (1.1). Our proof is structured in two parts:
initially, we demonstrate the existence of weak solutions as ε and δ approach zero. Subsequently,
we examine the convergence of these solutions as ν → 0. The main findings are detailed in the
theorem below.
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Theorem 2.2. Let T > 0. Suppose that f0 satisfies

f0 ∈ L1
+ ∩ L∞(Rd × R

d) and (|v|2 + V +W ∗ ρ0)f0 ∈ L1(Rd × R
d).

Then for any λ, β, γ > 0, there exists a weak solution f of Eq.(1.1) satisfying

f ∈ C([0, T ];L1(Rd × R
d)) ∩ L∞([0, T ] × R

d × R
d),

(|v|2 + V +W ∗ ρ)f ∈ L∞(0, T ;L1(Rd × R
d)),

and the following integral equation
∫ T

0

∫

Rd

∫

Rd

−fϕt − vf∇xϕ+
[(
γv + λ(∇xV +∇xW ∗ ρ)

)
f
]
∇vϕdvdxdt

+

∫ T

0

∫

Rd

∫

Rd

(
β(v − u)f + σ∇vf

)
∇vϕdvdxdt =

∫

Rd

∫

Rd

f0ϕ(0, ·)dvdx (2.38)

for any ϕ ∈ C∞
c ([0, T ] × R

d × R
d).

Proof. Step1: In this step, we prove the solution of (2.6) converges to the solution of the following
equation as ε, δ → 0

∂tfν + v · ∇xfν −∇v · [
(
γv + λ(∇xV +∇xW ∗ ρν)

)
fν ] = ∇v · [β(v − uν)fν + σ∇vfν ], (2.39)

where uν is defined in the following form

uν(x, t) =

∫
Rd vfνdv

ν +
∫
Rd fνdv

.

By the uniform estimate in Lemma 2.3, there exist subsequences of fξ, ∇vfξ , ρξ and jξ, without
relabeling for convenience, such that the following weak convergences hold as ε, δ → 0

fξ ⇀ fν in L∞(0, T ;Lp(R2d)) ∀p ∈ [1,∞], (2.40)

ρξ ⇀ ρν in L∞(0, T ;Lq1(Rd)) ∀q1 ∈ [1, (d + 2)/d), (2.41)

jξ ⇀ jν in L∞(0, T ;Lq2(Rd)) ∀q2 ∈ [1, (d + 2)/(d + 1)), (2.42)

∇vfξ ⇀ ∇vfν in L2([0, T ] ×R
2d). (2.43)

Define Gξ as

Gξ :=
(
γv + λ(∇xV +∇xWε ∗ ρξ) + β(v − uξ)

)
fξ + σ∇vfξ.

Just like the estimate to (2.16) and (2.33) in Theorem 2.1, we see that Gξ ∈ L∞(0, T ;Lp
loc(R

2d)),
p ∈ [1, (d + 2)/(d + 1)). The additional difficulty is to bound the term ∇xWε ∗ ρξ · fξ uniformly
bounded independent of ε, δ. Thus, we consider for any t ∈ [0, T ],

‖∇xWε ∗ ρξ · fξ‖Lp(R2d) ≤ ‖∇xWε ∗ ρξ‖Lp(Rd)‖fξ‖L∞(R2d)

≤ ‖∇xW‖
L
d/(d−1)
w (Rd)

‖ρξ‖Lq1 (Rd)‖fξ‖L∞(R2d) ≤ C,

where p ∈ [1, d/(d − 1)] and ∇xW = C(d)|x|1−d. The boundednesses of others are as in the
previous estimate. Thus, we can obtain Gξ ∈ L∞(0, T ;Lp

loc(R
2d)) for all p ∈ [1, (d + 2)/(d + 1))

and apply Lemma 2.2 to show that the following strong convergences similarly as before, for q ∈
(1, (d + 2)/(d + 1)),

∫

Rd

fξdv →
∫

Rd

fνdv,

∫

Rd

vφδ2(v)fξdv →
∫

Rd

vfνdv in Lq([0, T ] × R
d) as ε, δ → 0. (2.44)

and since the weak convergence (2.42), we have

‖kξ − jν‖Lq([0,T ]×Rd) =
∥∥∥
∫

Rd

vφδ2(v) · φε1 ∗ fξdv −
∫

Rd

vfνdv
∥∥∥
Lq([0,T ]×Rd)
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=
∥∥∥
∫

Rd

vφδ2(v) · φε1 ∗ fξdv −
∫

Rd

vφδ2(v)fξdv
∥∥∥
Lq([0,T ]×Rd)

+
∥∥∥
∫

Rd

vφδ2(v)fξdv −
∫

Rd

vfνdv
∥∥∥
Lq([0,T ]×Rd)

According to the properties of mollifier,
∥∥∥φε1 ∗

∫

Rd

vφδ2(v) · fξdv −
∫

Rd

vφδ2(v)fξdv
∥∥∥
Lq([0,T ]×Rd)

→ 0 as ε→ 0,

and by (2.44), we have
∥∥∥
∫

Rd

vφδ2(v)fξdv −
∫

Rd

vfνdv
∥∥∥
Lq([0,T ]×Rd)

→ 0 as ε, δ → 0.

Thus, we can get the following convergent subsequences for q ∈ (1, (d + 2)/(d + 1)),

ρξ → ρν , kξ → jν in Lq([0, T ] × R
d) as ε, δ → 0 a.e.. (2.45)

Hence, refer to [3, (5.7),(5.10)], we also have

∇Wε ∗ ρξ ⇀ ∇W ∗ ρν , uξfξ ⇀ uνfν as ε, δ → 0.

The processes of proofs used (2.45). By combining the weak convergences of fξ, vfξ and ∇vfξ in
(2.40)-(2.43), we conclude that fν is a weak solution of (2.39). And as Lemma 2.3, we have the
following uniform estimates

‖ fν ‖L∞(0,T ;Lp(R2d)) + ‖ ∇v(fν)
p/2 ‖L2([0,T ]×R2d)

+ ‖ ρν ‖L∞(0,T ;Lq1 (Rd)) + ‖ jν ‖L∞(0,T ;Lq2 (Rd))≤ C(T ), (2.46)

where p ∈ [1,∞), q1 ∈ [1, (d + 2)/d) and q2 ∈ [1, (d + 2)/(d + 1)). In particular, it is also true that

‖fν(·, ·, t)‖L∞(R2d) ≤ eCt‖f0‖L∞(R2d),

where C is a positive constant independent of ν.
Step2: In this step, we prove existence of weak solution to (1.1). By the uniform estimate (2.46),

there exist subsequences of fν , ∇vfν , ρν and jν , without relabeling for convenience, we have the
following weak convergences hold as ν → 0

fν ⇀ f in L∞(0, T ;Lp(R2d)) ∀p ∈ [1,∞], (2.47)

ρν ⇀ ρ in L∞(0, T ;Lq1(Rd)) ∀q1 ∈ [1, (d + 2)/d), (2.48)

jν ⇀ j in L∞(0, T ;Lq2(Rd)) ∀q2 ∈ [1, (d+ 2)/(d + 1)), (2.49)

∇vfν ⇀ ∇vf in L2([0, T ] × R
2d). (2.50)

For the existence of weak solutions to (1.1), it remains to prove the convergence as ν → 0 to (2.39).
we define Gν as

Gν :=
(
γv + λ(∇xV +∇xW ∗ ρν) + β(v − uν)

)
fν + σ∇vfν.

We see that Gν ∈ L∞(0, T ;Lp
loc(R

2d)), p ∈ [1, (d+2)/(d+ 1)). The additional difficulty is to bound
the term uνfν uniformly with respect to ν. Thus, we consider for t ∈ [0, T ],

‖uνfν‖Lp(R2d) ≤ ‖fν‖1/2Lp/(2−p)(R2d)
‖uν

√
fν‖L2(R2d), (2.51)

where p ∈ (1, (d + 2)/(d + 1)) and p/(2− p) ∈ (1, (d + 2)/(d + 1)). We notice that

∫

Rd

∫

Rd

(uν)
2fνdvdx ≤

∫

Rd

∫
Rd fνdv

( ∫
Rd |v|2fνdv

)

(ν + ρν)2
ρνdx ≤

∫

Rd

∫

Rd

|v|2fνdvdx < C.
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The boundedness of other terms can be obtained using the same method as in the preceding esti-
mates. Thus, we obtain Gν ∈ L∞(0, T ;Lp

loc(R
2d)) for all p ∈ [1, (d + 2)/(d + 1)) and apply Lemma

2.2 to show that the following strong convergences similarly as before, for q ∈ (1, (d + 2)/(d + 1)),

ρν → ρ, jν → j in Lq([0, T ] × R
d) as ν → 0. (2.52)

To show that f is a weak solution to (1.1), it is necessary for us to consider the following
convergences in distribution sense, using the weak convergences of fν , vfν and ∇vfν have been
showed in (2.47)-(2.50), we have

∇W ∗ ρν ⇀ ∇W ∗ ρ, uνfν ⇀ uf as ν → 0. (2.53)

The first term has already been proofed in [3, (5.10)]. For the second term, choose a test function
ψ ∈ C∞

c ([0, T ] × R
d) and ϕ ∈ C∞

c (Rd), we write ρνϕ :=
∫
Rd fνϕ(v)dv. Let Ψ(x, v, t) := ψ(x, t)ϕ(v),

then
∫ T

0

∫

Rd

∫

Rd

uνfνΨ(x, v, t)dxdvdt =

∫ T

0

∫

Rd

uνρ
ν
ϕψ(x, t)dxdt.

Similar to (2.54), we can obtain the boundedness of uνρ
ν
ϕ in L∞(0, T ;Lp(Rd)), namely,

‖uνρνϕ‖Lp(Rd) ≤ ‖ϕ‖L∞(Rd)‖ρν‖1/2Lp/(2−p)(Rd)
‖uν

√
ρν‖L2(Rd)

≤ C

∫

Rd

∫
Rd fνdv

( ∫
Rd |v|2fνdv

)

(ν + ρν)2
ρνdx ≤ C

∫

Rd

∫

Rd

|v|2fνdvdx. (2.54)

Thus, there is M such that, up to a subsequence,

uνρ
ν
ϕ ⇀M in L∞(0, T ;Lp(Rd)) ∀p ∈ (1, (d + 2)/(d + 1)). (2.55)

Next, we derive what M is. Let h1, h2 > 0 and define

Ah2
h1

:=
{
(x, t) ∈ B(0, h1)× (0, T ) : ρ(x, t) > h2

}
.

For each h1 and h2, we combine the almost everywhere convergence of
(
ρν , jν

)
to (ρ, j) in (2.52)

with the Egorov’s theorem to deduce that for every µ > 0, choose Aµ ⊂ Ah2
h1

satisfying
∣∣Ah2

h1
\Aµ

∣∣ < µ and
(
ρν , jν

)
→ (ρ, j) as ν → 0 uniformly on Aµ.

Then, for a sufficiently small ν, we can obtain ρν > h2/2 on Aµ. Consider∫

Aµ

uνρ
ν
ϕ − uρϕdxdt =

∫

Aµ

(uν − u)ρνϕdxdt+

∫

Aµ

u(ρνϕ − ρϕ)dxdt

=

∫

Aµ

( 1

ν + ρν
− 1

ρ

)
jν · ρνϕdxdt+

∫

Aµ

1

ρ
(jν − j) · ρνϕdxdt

+

∫

Aµ

∫

Rd

u(fν − f)ϕ(v)dvdxdt := K1 +K2 +K3.

For K1, since ρν → ρ a.e. in (2.52) and

‖ρνϕ‖L∞([0,T ]×Rd) =
∥∥∥
∫

Rd

fνϕ(v)dv
∥∥∥
L∞([0,T ]×Rd)

≤‖fν‖L∞([0,T ]×R2d)

∫

Rd

ϕ(v)dv ≤ CeCt‖f0‖L∞(R2d),

we have that
∣∣∣
( 1

ν + ρν
− 1

ρ

)
jν · ρνϕ

∣∣∣ ≤
C‖ρνϕ‖L∞(Rd)

h2
|jν | ≤

C

h2
|jν | on Aµ.
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Thus, we can use the dominated convergence theorem to get

K1 =

∫

Aµ

( 1

ν + ρν
− 1

ρ

)
jν · ρνϕdxdt→ 0 as ν → 0.

For K2, since ρ > h2 in Aµ, we estimate from (2.52),

K2 =

∫

Aµ

1

ρ
(kν − j) · ρνϕdxdt ≤

1

h2
‖jν − j‖Lq(Aµ)‖ρνϕ‖Lq′ (Aµ)

→ 0 as ν → 0,

where q ∈ (1, (p + 2)/(p + 1)). For the estimate of K3, since uϕ ∈ Lp(Aµ × R
d) and fν ⇀ f in

L∞(0, T ;Lq(R2d)) for some q ∈ [1,∞], obviously,

K3 =

∫

Aµ

∫

Rd

u(fν − f)ϕdvdxdt → 0 as ν → 0.

In summary, ∫

Aµ

uνρ
ν
ϕ − uρϕdxdt → 0 as ν → 0,

and by (2.55), we have
M = uρϕ on Aµ.

Since the choices of h1, h2 and µ are arbitrary, we now obtain

M = uρϕ on {ρ > 0}.
Furthermore,

∫ T

0

∫

Rd

∫

Rd

uνfνΨdxdvdt =

∫ T

0

∫

Rd

uνρ
ν
ϕψdxdt

→
∫ T

0

∫

Rd

uρϕψdxdt =

∫ T

0

∫

Rd

∫

Rd

ufΨdxdvdt as ν → 0.

Thus, for all test functions Ψ, we obtain

lim
ν→0

∫ T

0

∫

Rd

∫

Rd

uνfνΨdxdvdt =

∫ T

0

∫

Rd

∫

Rd

ufΨdxdvdt,

which implies uνfν weakly converges to uf . Therefore, f is a weak solution to (1.1).
�

3. Error Estimation for the Mean-Field Limit

In this section, we primarily focus on establishing the error estimate for solutions in the expec-
tation sense for the stochastic system with moderately many particles, denoted as (1.2), and the
mean-field system, denoted as (1.5), as outlined in Theorem 3.2. Additionally, we demonstrate the
existence and uniqueness of solutions for these systems.

3.1. Unique existence of solutions to systems (1.2) and (1.5). Firstly, we establish the ex-
istence and uniqueness of solutions for systems (1.2) and (1.5). Notice that for fixed ξ > 0, since
∇xWε is bounded and Lipschitz continuous in (1.3), we can obtain the following result by standard
SDE theory.

Lemma 3.1. For any fixed ξ, the problem (1.2) has a unique global solution (Xi
ξ,N (t), V i

ξ,N (t)).

Then, with the help of Theorem 2.1 and 2.2, we have the following result.

Theorem 3.1. If the regularized problem (2.6) has a unique solution fξ ∈ L∞
(
0, T ;L1 ∩L∞(Rd ×

R
d)
)
, then the initial value problem (1.5) has a unique global solution (Xξ(t), V ξ(t), fξ).
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Proof. Let fξ ∈ L∞
(
0, T ;L1 ∩ L∞(R2d)

)
be the unique solution of the regularized problem (2.6)

with the initial data fξ(x, v, 0) = f0. Then the following stochastic particles system




dX̃ξ(t) =Ṽξ(t)dt,

dṼξ(t) =
√
2σdB(t)− γṼξ(t)dt− β

(
Ṽξ(t)− uξ(X̃ξ(t))

)
dt

− λ
(
∇V (X̃ξ(t)) +∇Wε ∗ ρξ(X̃(t))

)
dt,

where

ρξ(X̃(t)) =

∫

Rd

fξ(X̃(t), v)dv, uξ(X̃(t)) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fξ(X̃(t), v)dv

φε1 ∗ ρξ(X̃(t)) + ν
,

has a unique global solution (X̃(t), Ṽ (t)) because the coefficients are globally Lipschitz for any fixed

ξ. Denote by f̃ξ as the probability density function of (X̃(t), Ṽ (t)), then it follows from Itô’s formula

that for any smooth test function ϕ(x, v, t) ∈ C∞
c ([0, T ] × R

2d), it holds

ϕ
(
X̃ξ(T ), Ṽξ(T ), T

)
− ϕ

(
X̃ξ(0), Ṽξ(0), 0

)

=

∫ T

0

[
− ∂tϕ

(
X̃ξ(t), Ṽξ(t), t

)
− Ṽξ(t)∇xϕ

(
X̃ξ(t), Ṽξ(t), t

)
+ γṼξ(t)∇vϕ

(
X̃ξ(t), Ṽξ(t), t

)

+
(
λ
(
∇V (X̃ξ(t)) +∇Wε ∗ ρξ(X̃ξ(t))

)
+ β

(
Ṽξ(t)− uξ(X̃ξ(t))

))
∇vϕ

(
X̃ξ(t), Ṽξ(t), t

)

− σ∆vϕ
(
X̃ξ(t), Ṽξ(t), t

)]
dt+

√
2σ

∫ T

0
∇vϕ

(
X̃ξ(t), Ṽξ(t), t

)
dB(t),

by taking the expectation, we get
∫

Rd

∫

Rd

f̃ξ(x, v, T )ϕ(x, v, T )dxdv −
∫

Rd

∫

Rd

f0ϕ(x, v, 0)dxdv

=

∫ T

0

∫

Rd

∫

Rd

f̃ξ(x, v, t)
[
− ∂tϕ(x, v, t) − v∇xϕ(x, v, t) + γv∇vϕ(x, v, t)

+
(
λ(∇V +∇Wε ∗ ρξ(x, t)) + β

(
v − uξ(x, t)

))
∇vϕ(x, v, t) − σ∆vϕ(x, v, t)

]
dxdvdt .

Thus f̃ξ satisfies the weak formulation of (2.6) also. Thus we have f̃ξ = fξ due to the uniqueness.

In other words, the unique solution to (1.5) is given by (X̃ξ(t), Ṽξ(t), fξ), which then can be denoted

as (Xξ(t), V ξ(t), fξ). �

3.2. Convergence estimates for N → ∞. In the following subsection, we establish the error
estimate between solutions of the stochastic moderately many-particle system (1.2) and the mean-
field stochastic system (1.5). Prior to this analysis, we offer an estimate for the disparity between
their respective local alignment terms.

Lemma 3.2. Let {(Xi
ξ,N (t), V i

ξ,N (t))0≤t≤T }Ni=1 and {(X i
ξ(t), V

i
ξ(t))0≤t≤T }Ni=1 be solutions of equa-

tions (1.2) and (1.5) up to T . Then the following estimate for the local alignment terms uξ and uξ
holds

∫ T

0
E
[∣∣uξ(Xi

ξ,N (t))− uξ(X
i
ξ(t))

∣∣2]dt ≤ C
( 1

δ2ν4ε4d+2

∫ T

0
E
[
|Xi

ξ,N (t)−X
i
ξ(t)|2

]
dt

+
1

ν4ε4d

∫ T

0
E
[
|V i

ξ,N(t)− V
i
ξ(t)|2

]
dt+

T

Nδ2ν4ε4d

)
,

for any i ∈ [N ], where C is a constant only depending on ‖f0‖L1(Rd×Rd).
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Proof. Let ∀ i ∈ [N ]. From (1.4) and (1.6), uξ and uξ can be rewritten as follows

uξ(X
i
ξ,N (t)) =

1
N

∑N
j=1 V

j
ξ,N(t)φδ2(V

j
ξ,N (t)) · φε1(Xi

ξ,N (t)−Xj
ξ,N (t))

1
N

∑N
j=1 φ

ε
1(X

i
ξ,N (t)−Xj

ξ,N (t)) + ν
,

uξ(X
i
ξ(t)) =

∫
Rd vφ

δ
2(v) · φε1 ∗ fξ(X

i
ξ(t))dv

φε1 ∗ ρξ(X
i
ξ(t)) + ν

.

By taking their difference and applying the expectation lead to
∫ T

0
E
[∣∣uξ(Xi

ξ,N (t))− uξ(X
i
ξ(t))

∣∣2]dt

≤ 1

ν4

∫ T

0
E

[∣∣∣
1

N

N∑

j=1

V j
ξ,N(t)φδ2(V

j
ξ,N(t))φε1(X

i
ξ,N (t)−Xj

ξ,N(t))
(
φε1 ∗ ρξ(X

i
ξ(t)) + ν

)

−
∫

Rd

vφδ2(v)φ
ε
1 ∗ fξ(X

i
ξ(t))dv

( 1

N

N∑

j=1

φε1(X
i
ξ,N (t)−Xj

ξ,N (t)) + ν
)∣∣∣

2]
dt

≤ 2

ν4

∫ T

0
E

[∣∣∣
(
φε1 ∗ ρξ(X

i
ξ) + ν

)( 1

N

N∑

j=1

V j
ξ,Nφ

δ
2(V

j
ξ,N )φε1(X

i
ξ,N −Xj

ξ,N )

−
∫

Rd

vφδ2(v)φ
ε
1 ∗ fξ(X

i
ξ)dv

)∣∣∣
2]
dt

+
2

ν4

∫ T

0
E

[∣∣∣
∫

Rd

vφδ2(v)φ
ε
1 ∗ fξ(X

i
ξ)dv

(
φε1 ∗ ρξ(X

i
ξ)−

1

N

N∑

j=1

φε1(X
i
ξ,N −Xj

ξ,N )
∣∣∣
2]
dt

:=
2

ν4
(I1 + I2). (3.1)

The estimate for I1 is

I1 ≤‖φε1 ∗ ρξ + ν‖2L∞(Rd)

∫ T

0

1

N2
E

[∣∣∣
N∑

j=1

(
V j
ξ,N (t)φδ2(V

j
ε,N (t))φε1

(
Xi

ξ,N (t)−Xj
ξ,N (t)

)

−
∫

Rd

vφδ2(v)φ
ε
1 ∗ fξ(X

i
ξ(t))dv

)∣∣∣
2]
dt.

Here by Young’s convolution inequation, we have

‖φε1 ∗ ρξ + ν‖2L∞(Rd) ≤ 2‖φε1 ∗ ρξ‖2L∞(Rd) + 2ν2 ≤ 2

ε2d
‖ρξ‖2L1(Rd) + 2ν2,

and
∫ T

0

1

N2
E

[∣∣∣
N∑

j=1

(
V j
ξ,Nφ

δ
2(V

j
ξ,N )φε1(X

i
ξ,N −Xj

ξ,N )−
∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)∣∣∣
2]
dt

≤ 3

N2

∫ T

0
E

[∣∣∣
N∑

j=1

(
V j
ξ,Nφ

δ
2(V

j
ξ,N )φε1(X

i
ξ,N −Xj

ξ,N )− V
j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ,N −Xj

ξ,N )
)∣∣∣

2]
dt

+
3

N2

∫ T

0
E

[∣∣∣
N∑

j=1

(
V

j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ,N −Xj

ξ,N)− V
j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ)
)∣∣∣

2]
dt



20 JINHUAN WANG 1, KEYU LI 1, AND HUI HUANG 2

+
3

N2

∫ T

0
E

[∣∣∣
N∑

j=1

(
V

j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)∣∣∣
2]
dt

:=3(I11 + I21 + I31 ).

Now, we derive the estimates for I11 , I
2
1 and I31 separately. For the I11 ,

I11 =
1

N2

∫ T

0
E

[∣∣∣
N∑

j=1

φε1(X
i
ξ,N −Xj

ξ,N )
(
V j
ξ,Nφ

δ
2(V

j
ξ,N )− V

j
ξφ

δ
2(V

j
ξ)
)∣∣∣

2]
dt

≤ 1

N2
‖φε1‖2L∞(Rd)

∫ T

0
N2

E

[∣∣∣
(
V i
ξ,Nφ

δ
2(V

i
ξ,N )− V

i
ξφ

δ
2(V

i
ξ)
)∣∣∣

2]
dt

≤ 1

ε2d
‖∇(·φδ2(·))‖2L∞(Rd)

∫ T

0
E
[∣∣V i

ξ − V i
ξ,N

∣∣2]dt ≤ C

ε2d

∫ T

0
E
[∣∣V i

ξ − V i
ξ,N

∣∣2]dt.

The I21 can be handled similarly,

I21 =
1

N2

∫ T

0
E

[∣∣∣
N∑

j=1

V
j
ξφ

δ
2(V

j
ξ)
(
φε1(X

i
ξ,N −Xj

ξ,N )− φε1(X
i
ξ −X

j
ξ)
)∣∣∣

2]
dt

≤ 1

N2
‖ · φδ2(·)‖2L∞(Rd)

∫ T

0
E

[∣∣∣
N∑

j=1

(
φε1(X

i
ξ,N −Xj

ξ,N)− φε1(X
i
ξ −X

j
ξ)
)∣∣∣

2]
dt

≤ 4

N2δ2
‖∇φε1‖2L∞(Rd)

∫ T

0
E
[
N2

∣∣Xi
ξ −Xi

ξ,N

∣∣2]dt

≤ 4

δ2ε2d+2

∫ T

0
E
[∣∣Xi

ξ −Xi
ξ,N

∣∣2]dt.

The I31 is estimated as follows

I31 =
1

N2

∫ T

0
E

[∣∣∣
N∑

j=1

(
V

j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)∣∣∣
2]
dt

≤ 1

N2

∫ T

0
E

[ N∑

j=1

(
V

j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)

N∑

l=1

(
V

l
ξφ

δ
2(V

l
ξ)φ

ε
1(X

i
ξ −X

l
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)]
dt

≤ 1

N2

N∑

j=1

N∑

l=1

∫ T

0
E

[(
V

j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ(t))−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)

(
V

l
ξφ

δ
2(V

l
ξ)φ

ε
1(X

i
ξ −X

l
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

)]
dt,

where for j 6= l the expectation is zero. Hence,

|I31 | ≤
1

N2

N∑

j=1

∫ T

0
E

[∣∣∣V j
ξφ

δ
2(V

j
ξ)φ

ε
1(X

i
ξ −X

j
ξ)−

∫

Rd

vφδ2(v) · φε1 ∗ fξ
(
X

i
ξ

)
dv

∣∣∣
2]
dt
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≤ 1

N2
‖ · φδ2(·)‖2L∞(Rd)

N∑

j=1

∫ T

0
E

[∣∣∣φε1(X
i
ξ −X

j
ξ) + φε1 ∗ ρξ

(
X

i
ξ

)∣∣∣
2]
dt ≤ 4T

Nδ2ε2d
‖fξ‖2L1(R2d),

while exploiting the fact that

‖φε1 ∗ ρξ‖L∞(Rd) ≤ ‖φε1‖L∞(Rd)‖ρξ‖L1(Rd) ≤
1

εd
‖ρξ‖L1(Rd).

Thus,

I1 ≤ 3(
2

ε2d
‖ρξ‖2L1(Rd) + 2ν2)

( 1

δ2ε2d+2

∫ T

0
E
[
|Xi

ξ,N (t)−X
i
ξ(t)|2

]
dt

+
1

ε2d

∫ T

0
E
[
|V i

ξ,N (t)− V
i
ξ(t)|2

]
dt+

4T‖fξ‖2L1(R2d)

Nδ2ε2d

)
. (3.2)

On the other hand, the estimate for I2 is

I2 ≤
∥∥∥
∫

Rd

vφδ2(v)φ
ε
1 ∗ fξdv

∥∥∥
2

L∞(Rd)

∫ T

0

1

N2
E

[∣∣∣
N∑

j=1

(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ,N (t)−Xj

ξ,N(t))
)∣∣∣

2]
dt.

Here by the Young’s convolution inequation, we have
∥∥∥
∫

Rd

vφδ2(v) · φε1 ∗ fξdv
∥∥∥
L∞(Rd)

≤ ‖ · φδ2(·)‖L∞(Rd)‖φε1 ∗ ρξ‖L∞(Rd)

≤ 2

δ
‖φε1‖L∞(Rd)‖ρξ‖L1(Rd) ≤

2

δεd
‖ρξ‖L1(Rd),

and

∫ T

0

1

N2
E

[∣∣∣
N∑

j=1

(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ,N (t)−Xj

ξ,N(t))
)∣∣∣

2]
dt

≤ 2

N2

∫ T

0
E

[∣∣∣
N∑

j=1

(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ(t)−X

j
ξ(t))

)∣∣∣
2]

+ E

[∣∣∣
N∑

j=1

(
φε1(X

i
ξ(t)−X

j
ξ(t))− φε1(X

i
ξ,N (t)−Xj

ξ,N (t))
)∣∣∣

2]
dt

:= 2(I12 + I22 ).

The first term is estimated as follows

I12 ≤ 1

N2

∫ T

0
E

[ N∑

j=1

(
φε1 ∗ ρξ(X

i
ξ(t)) − φε1(X

i
ξ(t)−X

j
ξ(t))

)

N∑

l=1

(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ(t)−X

l
ξ(t))

)]
dt

=
1

N2

N∑

j=1

N∑

l=1

∫ T

0
E

[(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ(t)−X

j
ξ(t))

)

(
φε1 ∗ ρξ(X

i
ξ(t))− φε1(X

i
ξ(t)−X

l
ξ(t))

)]
dt,
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where for j 6= l the expectation is zero. Hence,

|I12 | ≤
1

N2

N∑

j=1

∫ T

0
E

[∣∣∣φε1 ∗ ρξ(X
i
ξ(t))− φε1(X

i
ξ(t)−X

j
ξ(t))

∣∣∣
2]
dt ≤ T

Nε2d
‖fξ‖2L1(R2d).

The second term is estimated as follow

I22 ≤ 2

N2
‖∇φε1‖2L∞(Rd)

∫ T

0
N2

E
[∣∣(Xδ,i

ε,N (t)−X
i
ξ(t))

∣∣2]dt ≤ 2

ε2d+2

∫ T

0
E
[∣∣Xi

ξ,N (t)−X
i
ξ(t)

∣∣2]dt.

Thus,

I2 ≤ C
4

δ2ε2d
‖ρξ‖L1(Rd)

( T

Nε2d
‖fξ‖2L1(R2d) +

1

ε2d+2

∫ T

0
E
[
|Xi

ξ,N (t)−X
i
ξ(t)|2

]
dt
)
. (3.3)

Finally, bring (3.2) and (3.3) into the inequality (3.1), we have
∫ T

0
E
[∣∣uξ(Xi

ξ,N (t))− uξ(X̄
i
ξ(t))

∣∣2]dt ≤ C
( 1

δ2ν4ε4d+2

∫ T

0
E
[
|Xi

ξ,N (t)−X
i
ξ(t)|2

]
dt

+
1

ν4ε4d

∫ T

0
E
[
|V i

ξ,N (t)− V
i
ξ(t)|2

]
dt+

T

Nδ2ν4ε4d

)
,

where C is a constant only depending on ‖f0‖L1 .
�

3.3. Error estimations of the particles solutions. In this section, by Lemma 3.2 and discussion
of Section 2, we are able to state the main theorem as following.

Theorem 3.2. Let {(Xi
ξ,N (t), V i

ξ,N (t))0≤t≤T }Ni=1 and {(X i
ξ(t), V

i
ξ(t))0≤t≤T }Ni=1 be solutions of equa-

tions (1.2) and (1.5) up to some T > 0. Then for any γ, λ, β > 0 and fixed 0 < α ≪ 1,
1/(δ2ν4ε4d+2) ∼ ln(Nα), it holds that

sup
0<t<T

sup
i=1...N

E

[
|Xi

ξ,N (t)−X
i
ξ(t)|2 + |V i

ξ,N (t)− V
i
ξ(t)|2

]
≤ CT 3 lnNα

N

(
1 + T 3NT 3α lnNα

)
,

where C is a constant depending on γ, λ, β and ‖f0‖L1(Rd×Rd).

Proof. Let ∀ i ∈ [N ]. By taking the difference of two problems (1.2) and (1.5), we obtain

Mi(t) = |Xi
ξ,N (t)−X

i
ξ(t)|2 ≤t

∫ t

0
|V i

ξ,N(s)− V
i
ξ(s)|2ds,

N i(t) = |V i
ξ,N (t)− V

i
ξ(t)|2 ≤t

∫ t

0

∣∣∣(β + γ)
(
V

i
ξ(s)− V i

ξ,N (s)
)
+ λ∇V

(
X

i
ξ(s)−Xi

ξ,N (s)
)

+
λ

N

N∑

j=1

(
∇Wε ∗ ρξ

(
X

i
ξ(s)

)
−∇Wε

(
Xi

ξ,N (s)−Xj
ξ,N (s)

))

+ β
(
uξ
(
Xi

ξ,N (s)
)
− uξ

(
X

i
ξ(s)

))∣∣∣
2
ds.

Applying the expectation leads to

E[Mi(t)] ≤ t

∫ t

0
E[|V i

ξ,N(s)− V
i
ξ(s)|2]ds ≤ t

∫ t

0
E[N i(s)]ds,

and

E[N i(t)] ≤ 4(β + γ)2t

∫ t

0
E[|V i

ξ(s)− V i
ξ,N(s)|2]ds+ 4β2t

∫ t

0
E[|uξ(Xi

ξ,N (s))− uξ(X
i
ξ(s))|2]ds
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+ 4λ2t

∫ t

0
E
[∣∣∇V

(
X

i
ξ(s)

)
−∇V

(
Xi

ξ,N(s)
)∣∣2]ds

+ 4
λ2

N2
t

∫ t

0
E
[∣∣∣

N∑

j=1

(
∇Wε ∗ ρ(X i

ξ(s), s)−∇Wε

(
Xi

ξ,N (s)−Xj
ξ,N(s)

))∣∣∣
2]
ds

:= 4(β + γ)2t

∫ t

0
E[N i(s)]ds + 4β2tJ1 + 4λ2tJ2 + 4λ2tJ3. (3.4)

By Lemma 3.2, J1 can be estimated

J1 ≤ C
( 1

δ2ν4ε4d+2

∫ t

0
E[Mi(s)]ds+

1

ν4ε4d

∫ t

0
E[N i(s)]ds +

t

Nδ2ν4ε4d

)
, (3.5)

where C is a constant only depending on ‖f0‖L1(R2d). For J2, simply,

J2 ≤‖∇(∇V )‖2L∞(Rd)

∫ t

0
E
[∣∣X i

ξ(s)−Xi
ξ,N (s)

∣∣2]ds ≤ C

∫ t

0
E[Mi(s)]ds, (3.6)

The J3 can be handled

J3 ≤ 3

N2

∫ t

0
E

[∣∣∣
N∑

j=1

(
∇Wε

(
Xi

ξ,N (s)−Xj
ξ,N (s)

)
−∇Wε

(
Xi

ξ,N (s)−X
j
ξ(s)

))∣∣∣
2]

+ E

[∣∣∣
N∑

j=1

(
∇Wε

(
Xi

ξ,N (s)−X
j
ξ(s)

)
−∇Wε

(
X

i
ξ(s)−X

j
ξ(s)

))∣∣∣
2]

+ E

[∣∣∣
N∑

j=1

(
∇Wε(X

i
ξ(s)−X

j
ξ(s))−∇Wε ∗ ρ(X i

ξ(s), s)
)∣∣∣

2]
ds

:=3(J1
3 + J2

3 + J3
3 ).

Now, we derive the estimates for J1
3 , J

2
3 and J3

3 separately. For the J1
3 ,

J1
3 ≤ 1

N2

∫ t

0
‖∇(∇Wε)‖2L∞(Rd)E

[( N∑

j=1

|Xj
ξ,N (s)−X

j
ξ(s)|

)2]
ds

≤ 1

Nεd+2

∫ t

0
E
[ N∑

j=1

∣∣Xj
ξ,N (s)−X

j
ξ(s)

∣∣2]ds ≤ 1

εd+2

∫ t

0
E[Mi(s)]ds,

where ‖∇(∇Wε)‖L∞(Rd) ≤ ε−(d+2)/2. The J2
3 can be handled

J2
3 ≤ 1

N2

∫ t

0
‖∇(∇Wε)‖2L∞(Rd)E

[( N∑

j=1

∣∣Xi
ξ,N (s)−X

i
ξ(s)

∣∣
)2]

ds

≤ 1

N2εd+2

∫ t

0
E
[
N2|Xi

ξ,N (s)−X
i
ξ(s)|2

]
ds ≤ 1

εd+2

∫ t

0
E[Mi(s)]ds.

The J3
3 is estimated as follows

J3
3 =

1

N2

∫ t

0
E

[∣∣∣
N∑

j=1

(
∇Wε(X

i
ξ(s)−X

j
ξ(s))−∇Wε ∗ ρ(Xi

ξ(s), s)
)∣∣∣

2]
ds
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≤ 1

N2

∫ T

0
E

[ N∑

j=1

(
∇Wε(X

i
ξ(s)−X

j
ξ(s))−∇Wε ∗ ρ(Xi

ξ(s))
)

N∑

l=1

(
∇Wε(X

i
ξ(s)−X

l
ξ(s))−∇Wε ∗ ρ(X i

ξ(s))
)]
dt

=
1

N2

N∑

j=1

N∑

l=1

∫ t

0
E

[(
∇Wε(X

i
ξ(s)−X

j
ξ(s))−∇Wε ∗ ρ(X i

ξ(s))
)

(
∇Wε(X

i
ξ(s)−X

l
ξ(s))−∇Wε ∗ ρ(X i

ξ(s))
)]
ds,

where for j 6= l the expectation is zero. Hence,

|J3
3 | ≤

1

N2

N∑

j=1

∫ t

0
E

[∣∣∣∇Wε(X
i
ξ(s)−X

j
ξ(s))−∇Wε ∗ ρ(X i

ξ(s), s)
∣∣∣
2]
ds ≤

t ‖ f ‖2
L1(R2d)

Nεd
,

while exploiting the fact that

‖∇Wε ∗ ρ‖L∞(Rd) ≤ ‖∇Wε‖L∞(Rd)‖ρ ‖L1(Rd)≤
1

εd/2
‖f‖L1(R2d).

Combining J1
3 , J

2
3 and J3

3 , we have

J3 ≤
2

εd+2

∫ t

0
E[Mi(s)]ds+

t ‖ f ‖2
L1(R2d)

Nεd
. (3.7)

Thus, bring J1, J2 and J3 into the inequality (3.4), we can obtain

sup
i=1...N

E[N i(t)] ≤ C
(
t
( 1

δ2ν4ε4d+2
+

1

εd+2
+ 1

) ∫ t

0
sup

i=1...N
E
[
Mi(s)

]
ds

+ t
( 1

ν4ε4d
+ 1

) ∫ t

0
sup

i=1...N
E
[
N i(s)

]
ds+ t2

( 1

Nδ2ν4ε4d
+

1

Nεd
))

≤ C
( t2

δ2ν4ε4d+2

∫ t

0
sup

i=1...N
E
[
N i(s)

]
ds+

t2

Nδ2ν4ε4d

)
,

where C is a constant depending on γ, λ, β and ‖f0‖L1(R2d). By the Grönwall’s inequation and
taking the supremum in time on both sides, we get

sup
0<t<T

sup
i=1...N

E[N i(t)] ≤ CT 2

Nδ2ν4ε4d

(
1 +

T 3

δ2ν4ε4d+2
exp

T 3

δ2ν4ε4d+2

)
.

Further, we have the following estimate

sup
0<t<T

sup
i=1...N

E[Mi(t)] ≤ T

∫ T

0
E[N i(s)]ds ≤ CT 3

Nδ2ν4ε4d

(
1 +

T 3

δ2ν4ε4d+2
exp

T 3

δ2ν4ε4d+2

)
.

Finally, for any 0 < α ≪ 1, we can choose ε, ν and δ so small that 1/(δ2ν4ε4d+2) ∼ ln(Nα),
having

sup
0<t<T

sup
i=1...N

E[Mi(t)] ≤ CT 3 lnNα

N

(
1 + T 3NT 3α ln(Nα)

)
,

sup
0<t<T

sup
i=1...N

E[N i(t)] ≤ CT 2 lnNα

N

(
1 + T 3NT 3α ln(Nα)

)
,

where C is a constant depending on γ, λ, β and ‖f0‖L1(R2d). �
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