
SURFACES WITH CONCENTRIC OR PARALLEL K-CONTOURS

SHOICHI FUJIMORI, YU KAWAKAMI, AND MASATOSHI KOKUBU∗

Abstract. Surfaces with concentric K-contours and parallel K-contours in

Euclidean 3-space are defined. Crucial examples are presented and character-

ization of them are given.

1. Introduction

The contours of the Gaussian curvature function K on the graph surface

z =
x

x2 + y2
(1.1)

in the Euclidean 3-space (R3;x, y, z) map to concentric circles on the xy-plane by
orthogonal projection, so it would be permissible to say that the surface (1.1) has
weak symmetry in some sense. We will refer to this property by saying a surface has
concentric K-contours. We can immediately note that helicoidal surfaces have the
same property. (Here a helicoidal surface is, by definition, a surface in R3 which is
invariant under a one-parameter group of rigid screw motions; it is a generalization
of both surfaces of revolution and right helicoids. A helicoidal surface is also called
a generalized helicoid (cf. [1])). We also found that the surface called a monkey
saddle has the same property. (See Section 22.2 in [2], where the monkey saddle
appears as an example for which the converse of Gauss’ Theorema Egregium does
not hold.) In view of these circumstances, simple questions come to mind:

(i) Are there any surfaces with concentric K-contours other than (1.1), helicoidal
surfaces or the monkey saddle?

(ii) Can we find all surfaces with concentric K-contours?

The authors searched the literature, but failed to find research on this.
One of our purposes is to provide a family of examples, denoted by xm,c in this

paper, which includes both (1.1) and the monkey saddle. Another purpose is to
give a partial answer to the question (ii). In fact, under a certain assumption, any
surface with concentric K-contours must be a surface xm,c or a helicoidal surface
(Theorem 2.4).

On the other hand, it has been an interesting problem to understand how much
the behavior of the Gauss map determines the surface. For instance, Kenmotsu
[4] showed a representation theorem for an arbitrary surface in R3 in terms of the
Gauss map and the mean curvature function of the surface. In addition to this,
Hoffman, Osserman and Schoen [3] proved that for a complete oriented surface of
constant mean curvature in R3, if its Gauss image lies in some open hemisphere,
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then it is a plane; if the Gauss image lies in a closed hemisphere, then it is a plane
or a right circular cylinder. In this paper, we will show that a behavior of the Gauss
map, called semi-rotational equivariance, characterizes the surfaces xm,c (Theorem
2.5).

This paper also reports on the case where concentric circles are replaced by
parallel straight lines. We say that a surface has parallel K-contours if the contours
of the Gaussian curvature function K produce parallel straight lines on a plane by
orthogonal projection.

We refer to standard textbooks [1], [5], [6], etc, for fundamental facts about
surface theory.

2. Surfaces with concentric K-contours

Throughout this paper, we shall use the following notation and assumption: M
denotes a connected, smooth 2-manifold and x : M → R3 a smooth immersion. K
denotes the Gaussian curvature function on M . We set Mk := {p ∈M | K(p) = k}
for a real number k, and consider the family C := {Mk}k∈R. It is always assumed
that M has no open subset where gradK = 0 because we wish to study the case
where C is formed by a family of curves.

Definition 2.1. We say that x : M → R3 has concentric K-contours if there exists
a plane in R3 such that the orthogonal projection π : R3 → P maps C to a family
of concentric circles on P .

It is obvious that helicoidal surfaces have concentric K-contours.

2.1. A non-helicoidal example. Let m be an integer not equal to 0, 1, and let c
be a non-zero real number. Consider a graph surface

xm,c(z) = (Re z, Im z, cRe(zm)) =
(
x, y,

c

2
{(x+ iy)m + (x− iy)m}

)
(2.1)

for z = x + iy. Note that x−1,1 and x3,1 coincide with the surface (1.1) and the
monkey saddle, respectively. In terms of the polar coordinates z = reiθ, xm,c is
expressed as

xm,c(r, θ) = (r cos θ, r sin θ, crm cosmθ) . (2.2)

See Figures 1 and 2. The first and second fundamental forms I, II and a unit
normal n are as follows:

I = (1 + c2m2r2m−2 cos2mθ)dr2 + 2(−c2m2r2m−1 cosmθ sinmθ)drdθ

+ (r2 + c2m2r2m sin2mθ)dθ2,

n(r, θ) =
1

r
√
1 + c2m2r2m−2

(−cmrm cos(m− 1)θ, cmrm sin(m− 1)θ, r) , (2.3)

II =
cm(m− 1)

r
√
1 + c2m2r2m−2

{
rm−1 cosmθdr2 − 2rm sinmθdrdθ − rm+1 cosmθdθ2

}
.

From these, the Gaussian curvature K and the mean curvature H are

K = K(r) = −c
2m2(m− 1)2r2m−4

(1 + c2m2r2m−2)2
, (2.4)

H = H(r, θ) = −c
3m3(m− 1)r3m−4 cosmθ

2(1 + c2m2r2m−2)3/2
.
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Figure 1. The surfaces xm,c (left) and their projections to the
xy-plane (right) with positive integers m. Each surface is gray-
scaled by its Gaussian curvature.

It follows directly from (2.4) that xm,c has concentric K-contours with respect to
the xy-plane. Note that the first fundamental form I does not have rotational
symmetry but the Gaussian curvature K does.

Remark 2.2. (1) It follows from (2.1) that xm,c is an entire graph over the
xy-plane if m is a positive integer. In particular, xm,c is a hyperbolic
paraboloid if m = 2 and a monkey saddle if m = 3. In the case where m is
a negative integer, xm,c is a graph punctured at the origin.

(2) Although xm,c can be defined for m = 0, 1 or c = 0, it is a plane hence has
constant Gaussian curvature zero. Therefore we exclude the case m = 0, 1
and the case c = 0.

It follows from (2.2) that xm,c can be defined even if m is a non-integer as a
multi-valued graph over R2 \ {(0, 0)} or a surface defined on the universal cover.
See Figure 3. From now on, we assume that the number m for xm,c does not have
to be an integer, that is, m ∈ R \ {0, 1}.
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Figure 2. The surfaces xm,c (left) and their projections to the
xy-plane (right) with negative integers m. Each surface is gray-
scaled by its Gaussian curvature.

2.2. Semi-rotational equivariance. We also call the unit normal (2.3) the Gauss
map of xm,c according to custom. One can see from (2.3) that

n(r, θ + α) = R(1−m)α ◦ n(r, θ),

where R(1−m)α denotes the rotation of angle (1 −m)α with respect to the z-axis.
Focusing on this property, we give the following definition:

Definition 2.3. A surface x : M → R3 is said to have semi-rotational Gauss map
if there exist a straight line l ⊂ R3, a plane P ⊂ R3, and a 1-parameter group {ϕt}
of diffeomorphisms of M such that

(1) l is orthogonal to P ,
(2) π ◦ x ◦ ϕt = Rt ◦ π ◦ x, and
(3) n ◦ ϕt = Rkt ◦ n for some constant k

with a suitable choice of orientations of l and P , where π : R3 → P is orthogonal
projection, Rt denotes a rotation on P of angle t with the center P ∩ l, and Rkt

denotes a rotation in R3 of angle kt with respect to the axis l.
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Figure 3. The surfaces xm,c (left) and their projections to the
xy-plane (right) with non integers m. Each surface is gray-scaled
by its Gaussian curvature.

Note that a helicoidal surface has semi-rotational Gauss map with k = 1, which
should be said to have rotational Gauss map. So we shall use the term ‘strictly
semi-rotational’ in the sense of ‘semi-rotational but not rotational’.

2.3. Characterizations of the surface xm,c.

Theorem 2.4. Let x : M → R3 be a surface with concentric K-contours. If the
area element dA is invariant along each K-contour, then x is a helicoidal surface
or locally congruent to a surface xm,c for some m, c.

Theorem 2.5. Let a surface x : M → R3 have semi-rotational Gauss map. Then
x is a helicoidal surface or locally congruent to a surface xm,c for some m, c.

Corollary 2.6. Let a surface x : M → R3 have strictly semi-rotational Gauss map.
Then x is locally congruent to a surface xm,c for some m, c.

Before proving the theorems above, we write down formulas for the area element
dA, the Gaussian curvature K and the unit normal field n for a surface x(r, θ) =
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(r cos θ, r sin θ, F (r, θ)) :

dA = ∆dr ∧ dθ, (2.5)

n =
1

∆
(Fθ sin θ − rFr cos θ, −rFr sin θ − Fθ cos θ, r) , (2.6)

K =
1

∆4

{
r2Frr(rFr + Fθθ)− (Fθ − rFrθ)

2
}
, (2.7)

where

∆ =
√
r2 + r2F 2

r + F 2
θ . (2.8)

Proof of Theorem 2.4. Considering a rigid motion in R3, we may assume that the
plane P is the xy-plane and K-contours draw concentric circles with the cen-
ter (0, 0) in the xy-plane. x is at least locally re-parameterized as x(r, θ) =
(r cos θ, r sin θ, F (r, θ)). The function ∆ is of one variable r because of (2.5) and
the assumption of invariance of dA. It follows from (2.8) that r2F 2

r + F 2
θ is also a

function of one variable r. Therefore, there exist functions α = α(r), β = β(r, θ)
such that

rFr = α cosβ, Fθ = α sinβ. (2.9)

By differentiating (2.9), we have

r2Frr = (rα′ − α) cosβ − rαβr sinβ, (2.10)

r(Fr)θ = −α sinβ · βθ, (2.11)

(Fθ)r = α′ sinβ + α cosβ · βr, (2.12)

Fθθ = α cosβ · βθ. (2.13)

It follows from (2.11), (2.12) that the equality (Fr)θ = (Fθ)r turns out to be

βθ
r

+ βr
cosβ

sinβ
= −α

′

α
. (2.14)

Note that the right side of (2.14) is of one variable r, so the left side is as well.
Thus

∂

∂θ

(
βθ
r

+ βr
cosβ

sinβ

)
= 0. (2.15)

On the other hand, using (2.10)–(2.13), we can rewrite (2.7) as

K =
α(1 + βθ)(rα

′ − α)

∆4
.

Here, K must be a non-constant function of one variable r by the assumption of
concentric K-contours. It implies that βθ is a function of one variable r. Therefore,
we may set βθ = ϕ(r) and hence

β = ϕ(r) · θ + ψ(r) (2.16)

for some functions ϕ(r), ψ(r). It follows from (2.15) with (2.16) that

ϕ′(r){1
2
sin 2β − ϕ(r) · θ}+ ψ′(r)ϕ(r) = 0.

This implies that (i) 1
2 sin 2β − ϕ(r) · θ is independent of θ or (ii) ϕ′(r) = 0. In the

case (i), by differentiating 1
2 sin 2β − ϕ(r) · θ by θ, we have (cos 2β − 1)ϕ(r) = 0,

that is,

β = nπ for some integer n or β = ψ(r). (2.17)
6



In the case (ii), the function ϕ is constant and ψ′ϕ = 0. Therefore (ϕ, ψ) = (k, l)
for some constants k, l or (ϕ, ψ) = (0, ψ(r)); in other words,

β = kθ + l or β = ψ(r). (2.18)

Since the condition (2.18) includes the condition (2.17), we continue to discuss
under the condition (2.18).

In the case where β = kθ + l, the equation (2.14) reduces to α′ = −kα/r. Hence

we have α = Cr−k for some constant C. It follows from (2.9) that F = C1r
k cos(kθ+

l) + C2 for some constants C1, C2. Thus the surface x is congruent to xk,C1
.

In the case where β = ψ(r), the equation (2.14) reduces to ψ′ cotψ = α′/α. It

is solved as α sinψ = C for some constant C. The system of equations (2.9) turns
out to be

rFr = α(r) cos(ψ(r)), Fθ = C.

Therefore, we obtain

F = Cθ +

∫
α(r)

r
cos(ψ(r))dr = Cθ +A(r)

for some function A(r). Thus the surface x is helicoidal. □

Proof of Theorem 2.5. Considering a rigid motion in R3, we may assume that the
plane P is the xy-plane and the line l is the z-axis. The surface x is at least locally
re-parameterized as x(r, θ) = (r cos θ, r sin θ, F (r, θ)). The Gauss map (2.6) is

n =
1

∆

 Fθ sin θ − rFr cos θ
−rFr sin θ − Fθ cos θ

r

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 1

∆

−rFr

−Fθ

r


in the column-vector form. Since n is semi-rotational,

(i) the vector-valued function

1

∆

(
−rFr,−Fθ, r

)
(2.19)

is of one variable r, or
(ii) there exist m ∈ R and ϕ1 = ϕ1(r), ψ = ψ(r) such that

1

∆

(
−rFr,−Fθ, r

)
=

(
ϕ1(r) cosmθ, ϕ1(r) sinmθ,ψ(r)

)
.

In the case (i), each component of (2.19) is of one variable r. Hence, ∆, Fr

and Fθ are functions of one variable r. This implies that F must be of the
form F = aθ + ψ(r) for a constant a and a function ψ(r). Therefore x(r, θ) =
(r cos θ, r sin θ, aθ + ψ(r)), that is, x is a helicoidal surface.

In the case (ii), the third component of (2.19) is of one variable r. Hence, ∆ is
a function of one variable r. Setting −ϕ1(r) ·∆ = φ(r), we have{

Fr = φ(r)
r cosmθ

Fθ = φ(r) sinmθ.
(2.20)

Thus the equality (Fr)θ = (Fθ)r turns out to be

−mφ(r)

r
sinmθ = φ′(r) sinmθ. (2.21)

In the case where m = 0, the system of equations (2.20) turns out to be Fr =
φ(r)/r, Fθ = 0. Therefore, F = F (r). This implies that x is a rotational surface.
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In the case where m ̸= 0, the equation (2.21) leads to −mφ(r)
r = φ′(r). There-

fore, φ(r) = Cr−m (C is a constant.) Then the solution to the system of equations
(2.20) is

F (r, θ) = C1r
−m cosmθ + C2 (C1, C2 are constants).

Thus x is congruent to x−m,C1 . □

3. Surfaces with parallel K-contours

We shall discuss here using the same notations and assumption as in Section 2.

Definition 3.1. We say that a surface x : M → R3 has parallel K-contours if there
exists a plane in R3 such that the orthogonal projection π : R3 → P maps C to a
family of parallel straight lines on P .

3.1. An example. Let k, c be non-zero real numbers. Consider a graph surface of

z = cekx cos ky,

that is,

pk,c(x, y) =
(
x, y, cekx cos ky

)
.

See Figure 4. The first and second fundamental forms I, II and a unit normal n
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Figure 4. The surface pk,c (left) and its projection to the xy-
plane (right) for c = 1 and k = 1. The surface is gray-scaled by its
Gaussian curvature.

are as follows:

I = (1 + c2k2e2kx cos2 ky)dx2 − 2c2k2e2kx cos ky sin ky dxdy

+ (1 + c2k2e2kx sin2 ky)dy2,

n(x, y) =
1√

1 + c2k2e2kx

(
−ckekx cos ky, ckekx sin ky, 1

)
,

II =
ck2ekx√

1 + c2k2e2kx

(
cos ky dx2 − 2 sin ky dxdy − cos ky dy2

)
.
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From these, the Gaussian curvature K and the mean curvature H are

K = K(x) = − c2k4e2kx

(1 + c2k2e2kx)2
, (3.1)

H = H(x, y) = − c3k4e3kx cos ky

2(1 + c2k2e2kx)3/2
.

It follows directly from (3.1) that pk,c has parallel K-contours.

3.2. Characterizations of the surface pk,c. An assertion similar to Theorem 2.4
holds for surfaces with parallel K-contours:

Theorem 3.2. Let x : M → R3 be a surface with parallel K-contours. If the area
element dA is invariant along each K-contour, then x is locally congruent to a
surface pk,c for some k, c.

We omit the proof because it is quite similar to that of Theorem 2.4 by discussing
about a graph surface (x, y, F (x, y)).

As well as a surface xm,c in Section 2, the Gauss map n of a surface pk,c satisfies
the following property:

n(x, y + α) = R−kα ◦ n(x, y),
where R−kα denotes the rotation of angle −kα with respect to the z-axis. Focusing
on this property, we give the following definition:

Definition 3.3. An immersed surface x : M → R3 is said to have quasi-rotational
Gauss map if there exist a straight line l ⊂ R3, a plane P ⊂ R3, a vector v parallel
to P , and a 1-parameter group {ϕt} of diffeomorphisms of M such that

(1) l is orthogonal to P ,
(2) π ◦ x ◦ ϕt = Ttv ◦ π ◦ x, and
(3) n ◦ ϕt = Rkt ◦ n for some constant k

with a suitable choice of orientations of l and P , where π : R3 → P is the orthogonal
projection, Ttv denotes a parallel translation on P of the translation vector tv, and
Rkt denotes a rotation in R3 of angle kt with respect to the axis l.

Note that a cylindrical surface has quasi-rotational Gauss map with k = 0,
however it should be said to have parallel Gauss map. So we shall use the term
‘strictly quasi-rotational’ in the sense of ‘quasi-rotational but not parallel’.

An assertion similar to Corollary 2.6 holds for surfaces with strictly quasi-
rotational Gauss map.

Theorem 3.4. Let x : M → R3 be a surface with strictly quasi-rotational Gauss
map. Then x is locally congruent to a surface pk,c for some k, c.

We omit the proof because it is quite similar to that of Theorem 2.5 by discussing
about a graph surface (x, y, F (x, y)).
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