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Abstract

Over the past decade, deep learning helped solve manipulation problems across all domains of robotics. At the same time, industrial robots
continue to be programmed overwhelmingly using traditional program representations and interfaces. This paper undertakes an analysis of this
“AI adoption gap” from an industry practitioner’s perspective. In response, we propose the BANSAI approach (Bridging the AI Adoption Gap
via Neurosymbolic AI). It systematically leverages principles of neurosymbolic AI to establish data-driven, subsymbolic program synthesis and
optimization in modern industrial robot programming workflow. BANSAI conceptually unites several lines of prior research and proposes a path
toward practical, real-world validation.
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1. Introduction

Deep neural networks and subsymbolic learning have pro-
gressed tremendously over the past decade, producing increas-
ingly promising results in the domain of program synthesis and
robot control [1]. While the use of robots in the manufacturing
industries is ubiquitous, the current degree of industry adoption
of artificial intelligence-based robot program synthesis and op-
timization remains very limited, particularly with regard to deep
learning (DL) [2]. This reflects a broader phenomenon in the
manufacturing industry, where artificial intelligence (AI) adop-
tion lags behind the academic state of the art, with a “lack of
substantial evidence of industrial success” at technology readi-
ness levels (TRLs) 5 and beyond [3]. The lack of AI adoption
for robot programming stands in stark contrast to perception
tasks such as visual inspection, object recognition or anomaly
detection, where AI systems have found widespread acceptance
[4]. Facing rising prevalence of high-mix, low-volume applica-
tions, bridging this “AI adoption gap” can greatly reduce robot
programming overhead and make robotic automation viable for

use cases requiring frequent reprogramming or reparameteriza-
tion.

In this paper, we propose that neurosymbolic programming
- a principled combination of symbolic AI and deep learn-
ing (DL) for program representation, synthesis and optimiza-
tion - can overcome this gap. We describe BANSAI (Bridging
the AI Adoption Gap via Neurosymbolic AI), an approach for
the application of neurosymbolic programming to industrial
robotics. To that end, we contribute an analysis of the AI adop-
tion gap, highlighting a mismatch between the requirements
imposed by the industrial robot programming and deployment
process and the exigencies of state-of-the-art AI-based manip-
ulation, program synthesis and optimization approaches. We
propose that the unique properties of neurosymbolic AI can
serve as the basis for AI technologies which are fundamen-
tally compatible with the real safety, performance and human-
machine-interaction constraints faced by robot programmers
and automation engineers. We then describe BANSAI, a novel
approach to robot programming designed specifically for real-
world industrial application, which leverages neurosymbolic AI
to provide AI assistance across the complete programming and
deployment process.
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2. The AI Adoption Gap in Industrial Robot Programming

The comparatively slow pace of adoption of AI by indus-
try practitioners has been noted both in a recent survey of in-
dustrial AI [3] as well as industry reports [5, 6]. In recent sur-
veys of industrial robot programming methods [2, 7], AI-based
methods are not mentioned, despite considerable research ac-
tivity. We provide an analysis of the reasons behind this “AI
adoption gap”, as well as an approach to overcome it (see chap-
ter 4). Because upfront robot programming comprises only a
small part of the effort involved in bringing a robotic worksta-
tion from conception to production, we consider the complete
deployment process up to the final operation of the programmed
robot within the larger production context.

2.1. Industrial Robot Programming and Deployment

While the process of bringing an industrial robot worksta-
tion1 from conception to operation can vary widely between
companies, most follow variations of the robot programming
and deployment process illustrated in Fig. 1:

1. Programming. The initial robot program is created by
the robot programmer. This requires considerable domain
expertise, particularly for complex manipulation tasks in-
volving force-dynamic interaction with workpieces (e.g.
tight insertion, cable manipulation or sanding).

2. Commissioning. The robot software is deployed in the
physical robot workstation. It is iteratively refined until
requirements with respect to cycle time, robustness and
quality are met. The refinement of program parameters is
time-consuming and requires a high degree of expertise.

3. Handover. Most robot workstations are commissioned
offsite by systems integrators or in-house engineers. Ac-
ceptance testing and safety certification typically occur ei-
ther directly before or soon after integration of the work-
station into the factory. For many large companies such as
automotive manufacturers, robot programs must addition-
ally comply with formal internal company standards.

4. Ramp-Up. After certification, the workstation is inte-
grated into the assembly line and the production velocity
is incrementally increased until the final production cy-
cle times and robustness are achieved. Ramp-up is char-
acterized by repeated optimization of program parameters
to compensate process noise (different suppliers, lighting
conditions, vibrations, ...). Changes to program structure
are infrequent, as the robot workstation may already have
passed safety certification.

5. Operation. The robot workstation is used in production,
possibly over very long timeframes. Central challenges
during operation are the degradation of performance due
to wear and tear; the need for re-parameterization after
repairs; and adaptation to new product variants (e.g. for
small-batch production).

1We use the term “workstation” instead of “workcell” or “robot cell”, as
flexible human-robot co-workspaces become increasingly common.

2.2. AI Challenges in Industrial Robot Programming

The described process of programming industrial robots has
unique properties distinguishing it from other domains. In the
following paragraphs, we highlight five such properties, which
must inform the design of AI systems for robot programming.
Conversely, limited AI adoption can be partially explained by
challenges posed by these properties.

High program complexity. Typical industrial robot programs
span thousands of lines comprising varied motion and manip-
ulation skills [2]. Symbolic program synthesis approaches can
handle structural complexity but lack expression for subsym-
bolic skill optimization. End-to-end DL learns complex skills
but does not scale to long sequences, particularly with rein-
forcement learning (RL) [8]. Moreover, data issues such as
scarcity and drift severely limit DL in production [3].

Heterogeneous execution environments. Industrial robots are
typically embedded into a complex digital production infras-
tructure spanning product lifecycle management (PLM), man-
ufacturing excution systems (MESs) and process control sys-
tems, requiring complex communication and synchronization
logic. Therefore, “robust integration with legacy IT systems
(such as ERP, PLM and MES applications) should be addressed
proactively” [3].

Real-world physical manipulation. Industrial robot programs
aim to cause effects in the physical world, subject to sensor and
process noise. While purely DL-based approaches excel at per-
ception and planning problems in observable discrete spaces,
reliably solving real-world manipulation remains challenging
[4, 1]. As it requires exploratory executions during training,
RL is difficult for industrial contexts [4, 8]. Likewise, human
demonstrations are impossible for many industrial tasks ex-
ceeding human strength or precision.

Human involvement. Industrial robot programming currently
involves cycles of re-programming and re-parameterization by
experts. However, DL models’ input-output relationships are
typically not interpretable by humans [3]. This ”intelligibility”
aspect of explainability [9] has been identified as crucial for
AI-assisted programming [10] - it is doubly crucial in indus-
trial contexts where human expertise remains core [11]. The
requirement of human-editability calls for modular rather than
end-to-end approaches, allowing engineers to modify parts of
programs [4].

High trust requirements. Beyond intelligibility for human in-
teraction, industrial application demand trustworthy programs
able to afford explanation and certification [12]. Certification
requires robot programs to be able to make hard guarantees
about their behavior. However, deep networks can be highly
sensitive to small perturbations in their inputs [13], and formal
verification does not scale beyond small networks [12]. Low in-
terpretability entails lack of perceived trust and reliability [3],
hindering adoption. Conversely, explainable systems are more
likely adopted by industry practitioners [9].
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Fig. 1. A simplified model of the industrial robot programming process, the roles and involvement of human actors, as well as opportunities for AI assistance.

3. Neurosymbolic Robot Programming

In recent years, neurosymbolic AI has received greatly in-
creased attention [14, 15]. Neurosymbolic AI combines sym-
bolic AI methods such as AI planning, knowledge bases and
symbolic reasoning with subsymbolic, neural representations
and algorithms such as deep neural networks (DNNs) and back-
propagation. A neurosymbolic program is “a program that uses
neural components and either symbolic components or sym-
bolic compositions” [16]: Examples include hybrid program
representations in which some computations are realized by
neural networks but where control flow or I/O is handled by
symbolic primitives [17, 18]; hierarchical neural architectures
[19, 20]; or subsymbolic learning algorithms synthesizing sym-
bolic programs [21, 22]. In the context of robot programming,
state-of-the-art neurosymbolic approaches typically represent
robot programs as graphs of modules with well-defined, docu-
mented behavior and interfaces, where the modules themselves
are (partially) subsymbolic [23, 24]. This allows for module
reuse, explainability and use of intuitive user interfaces for
manual programming at the symbolic (structural) level, while
retaining most advantages of neural architectures such as learn-
ability and partial model-freeness at the module level.

We propose that neurosymbolic programming combines the
benefits of symbolic and subsymbolic AI in a way which makes
it uniquely suited for industrial robot programming: By virtue
of their reliance on symbolic composition, neurosymbolic pro-
gram representations are inherently modular [16], allowing to
leverage the scalability of symbolic planners to the highly com-
plex program structures typical for industrial appliations.

Symbolic composition further permits the use of symbolic
knowledge representation and reasoning (KR&R) systems for
program synthesis [15, 25, 26]. Symbolic knowledge represen-
tations can efficiently encode existing domain knowledge of e.g.
assembly-line workers and robot programmers, without requir-
ing the conversion of this knowledge into training data for a
neural network. Crucially for practical applications, symbolic
composition enables the re-use of algorithmic knowledge em-
bedded in existing planners [22].

An additional consequence of symbolic composition is the
intellegibility of neurosymbolic programs at the structural level

[16]. Symbolic composition requires neural program compo-
nents to be hidden behind well-defined interfaces, permitting
human programmers to symbolically compose complex pro-
grams from encapsulated neural primitives without requiring
DL expertise. Moreover, it enables the gradual replacement of
traditional program components by neural components without
disrupting the overall programming and deployment process.

Lastly, symbolic composition enables the mixture of neu-
ral and symbolic program components within a hybrid program
representation. Such representations greatly facilitate the inte-
gration of learnable components with the I/O and synchroniza-
tion “glue code” required to integrate industrial robot programs
into the larger factory context.

4. BANSAI: A Neurosymbolic Approach to Industrial
Robot Programming

We propose BANSAI (Bridging the AI Adoption Gap via
Neurosymbolic AI), an approach for practical AI-assisted in-
dustrial robot programming using principles of neurosymbolic
learning and inference. At its core, BANSAI follows a “bottom-
up” philosophy [11]: AI solutions and workflows should be
designed to fit the needs of the application and context in
which they are employed. Consequently, BANSAI (a) reflects
the robot programming and deployment process (see Fig. 1)
as it is practiced across the manufacturing industry, with the
aim of allowing a gradual introduction of AI assistance with-
out disturbing the overall process; and (b) uses neurosymbolic
AI to address the AI challenges posed by industrial robot pro-
gramming and deployment, with the aim of facilitating its adop-
tion by practitioners and decisionmakers. BANSAI unifies prior
work by the authors [18, 27, 28, 25, 29] into a coherent neu-
rosymbolic robot programming approach and proposes a con-
crete workflow for the AI-assisted programming of industrial
robots.

4.1. Neurosymbolic Programming with a Dual Program Rep-
resentation

The technical foundation of BANSAI is a dual symbolic-
subsymbolic representation of robot programs [18, 27]. It com-
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Fig. 2. The BANSAI workflow for AI-assisted industrial robot programming. The use of a dual symbolic-subsymbolic program representation (red/grey) enables
the seamless integration of AI assistance (j) into typical industrial robot programming processes.

bines a traditional, skill-based robot program representation for
user interaction, motion planning and robot control with a neu-
ral “surrogate” representation of the same program for learning
and parameter optimization.

Graphical robot programming. The symbolic component of
the program representation is a traditional, skill-based repre-
sentation, which is used for execution on the robot as well
as for interaction with human users (see Fig. 2 (red)). Rep-
resenting programs as graphs of primitive skills with well-
defined and documented behavior allows human programming
experts to use intuitive interfaces to create, modify or read pro-
grams and fosters trust in both the programming system and
the programs themselves. Moreover, industrial skill-based pro-
gram representations (e.g. ArtiMinds ARTM [30], Universal
Robots PolyScope[31]) and most skill frameworks proposed by
researchers (e.g. DMPs [32], ProMPs [33]) allow establishing
guarantees about the behavior of the robot at runtime, making
certification a possibility. BANSAI does not impose any spe-
cific constraints on the implementation of the skills (and their
combination into programs) themselves: The only requirement
is that skills provide a degree of explainability and allow for
symbolic composition [18].

Learning & optimization via neural surrogates. To enable AI-
based program synthesis and optimization, the dual program
representation proposes a neural surrogate (see Fig. 2 (grey))
to the symbolic robot program [18]. Neural surrogates are neu-
ral networks which are trained to approximate a system, and
are then used as surrogates for the system in downstream tasks
[34]. BANSAI proposes to use learned neural surrogates (“sur-
rogate models”) of robot skills to optimize the original skills’
parameters, e.g. with respect to different workpieces, changing
environments or to compensate for long-horizon drifts. To that
end, a library of neural surrogates, one for each available robot
skill, is trained (on simulated data) offline. For a given graph-
ical robot program, the corresponding graph of neural surro-

gate models (“surrogate program”, a differentiable computation
graph (DCG)) can be constructed automatically. During com-
missioning, the surrogate program is trained to approximate
the behavior of the robot program it represents. The learned
surrogate program can then be used to optimize the original
program’s parameters via a gradient-based optimizer. For fur-
ther details, we refer to prior work by the authors [18], which
provides a detailed description of the algorithm and a compre-
hensive evaluation for multiple different symbolic skill frame-
works, robots and application scenarios.

KR&R-based metaprogramming. A corollary of using a dual
symbolic-subsymbolic program representation is that it affords
symbolic composition, which in turn enables the use of sym-
bolic KR&R systems for program synthesis. BANSAI pro-
poses to realize program synthesis in the form of KR&R-driven
metaprogramming: To encode domain and process knowledge
in a semantic knowledge base, which, along with a set of gen-
eral inference rules (metaprograms), permits the bootstrapping
of complex robot (sub-)programs to solve tasks in a variety of
domains. Program synthesis via symbolic KR&R is inherently
explainable, as it is always possible to enumerate the facts in the
knowledge base which made an inference query true or false.
Moreover, it permits the efficient use of existing process and
domain knowledge. In prior work [25], we have proposed a
KR&R-based metaprogramming system using KnowRob [35]
and the ARTM industrial robot program representation [30].
The proposed system has been evaluated in retail fetch-and-
place [25] as well as industrial surface treatment applications
[29].

4.2. The BANSAI Workflow

One core intuition behind the BANSAI approach is that
AI assistance functions must seamlessly integrate into the in-
dustrial robot programming and deployment processes used
in practice. Our proposed workflow for AI-assisted industrial
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robot programming is shown in figure 2, though the flexibil-
ity of BANSAI ensures its applicability to other, domain- or
company-specific variants of this process.

Programming. The initial robot program is created automati-
cally via the KR&R-metaprogramming [25, 29], given a high-
level description or demonstration of the task by a human ex-
pert. The generated program is a skill-based robot program in
an established industrial robot program representation, allow-
ing robot programmers to refine it as needed using graphical
tools and offline simulators [30].

Commissioning. During commissioning, the equivalent surro-
gate program to the robot program can be created automati-
cally and fine-tuned in an unsupervised manner on data col-
lected passively over the course of the commissioning process
[18]. The parameters of the robot skills are optimized using a
gradient-based optimizer over the surrogate program. For the
robot programmer, the time-consuming trial-and-error of pa-
rameter tweaking is reduced to specifying a loss function for the
automatic optimization, typically a function of the cycle time
and robustness requirements.

Handover. One of the core technical principles of BANSAI is
that the skill-based robot program, as opposed to its neural sur-
rogate, is executed on the robot. For this reason, the handover
process, including acceptance tests and safety certification, is
not impacted, despite both the structure and parameters of the
robot program were created and optimized using AI systems.

Ramp-Up. The ramp-up phase is characterized by iterative re-
parameterization of the program until performance and robust-
ness criteria are met in the operative environment. As during
commissioning, gradient-based optimization over neural surro-
gate models can automate this parameter tweaking [18]. If the
robot workstation has been safety-certified for a range of pro-
gram parameters (e.g. robot velocities, forces or torques), AI-
based parameter optimization in these limits does not require
re-certification.

Operation. During operation, challenges involve program
reparameterization in response to drift caused by e.g. wear and
tear, but also sudden changes to the program parameterization
in response to mechanical reconfiguration of the workstation or
adaptation to new product variants. In [28], we have shown that
the surrogate model architecture proposed in [18] affords un-
supervised lifelong learning on data gathered passively during
operation, which keeps the surrogate program up-to-date with
slow drifts or sudden shifts. This allows the proposed AI-based
parameter optimizer to constantly keep program parameters in
the optimal range. Fig. 3 illustrates lifelong learning of surro-
gate models in the BANSAI context.

To our knowledge, BANSAI is the first concept for AI-
assisted robot programming which respects the requirements
and constraints of industrial applications. It is also the first AI-
based industrial robot programming concept to take a process-
centric view, aiming to provide solutions to the programming

challenges arising during the entire robot program lifecycle. In-
stead of tailoring the robot programming workflow around the
requirements of an AI assistant, it leverages neurosymbolic AI
to integrate AI asisstance functions into the existing robot pro-
gramming process. The dual program representation enables
the learning and gradient-based optimization afforded by neu-
ral architectures as well as the use of symbolic planners and rea-
soners. Reliance on the neural surrogate pattern ensures that the
program executed on the robot is always explainable, human-
editable and certifiable. While the technology components of
BANSAI have been individually evaluated on real-world sce-
narios [18, 25, 27, 28, 29], an implementation and evaluation of
BANSAI as a whole is currently being undertaken.

5. Conclusion

We have characterized the AI adoption gap in industrial
robot programming and proposed several AI challenges posed
by the robot programming process practiced in the manufac-
turing industry. Neurosymbolic programming combines sym-
bolic and subsymbolic AI in ways uniquely suited to address
the particular requirements of industrial robot programming.
Based on this insight, we presented BANSAI, a neurosym-
bolic approach which addresses the specific challenges faced
by robot programmers. Our insights highlight the importance
of considering the needs of practitioners when designing AI al-
gorithms, particularly in applied disciplines such as industrial
robotics. BANSAI proposes an overarching workflow that com-
bines state-of-the-art approaches from DL-based program opti-
mization [18, 27, 28] and symbolic program synthesis [25, 29]
to realize highly flexible workflows, where some functionality
is realized autonomously by AI, while enabling intuitive human
involvement where beneficial. Future work will focus on the
implementation of a unified software framework and user inter-
face for neurosymbolic robot programming, and the evaluation
of the overall approach on a real-world production scenario.
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