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We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system
as a platform. The first aspect involves unraveling the relationship between the phenomenon of self-
trapping (or lack thereof) and integrability (or quantum chaos). Secondly, we uncover the possibility
of mixed behavior in this quantum system using diagnostics based on random matrix theory and
make an in-depth study of classical-quantum correspondence. The setup chosen for the study is
precisely suited as it (i) enables a transition from delocalized to self-trapped states and (ii) has
a well-defined classical limit, thereby amenable to studies involving classical-quantum conjectures.
The obtained classical model in itself has rich chaotic and ergodic properties which were probed via
maximal Lyapunov exponents. Furthermore, we present aspects of chaos in the corresponding open
quantum system and make connections with non-Hermitian random matrix theory.

I. INTRODUCTION

The study of self-trapping (localization) - delocaliza-
tion physics in both quantum and classical systems [1–9]
is an area of active research. This phenomenon of self-
trapping becomes even more interesting when the quan-
tum system under consideration has a well-defined classi-
cal limit [10–13] which provides an excellent platform to
investigate potential quantum-classical correspondence.
Such a correspondence lies within the realm of quan-
tum chaos and relies on two conjectures, namely the
Berry-Tabor conjecture [14] and the Bohigas-Giannoni-
Schmit (BGS) conjecture [15], which form the founda-
tion for defining and characterizing quantum chaos. The
Berry-Tabor conjecture states that a generic system that
is classically integrable and has two or more degrees of
freedom has quantum levels that cluster together and the
level spacing of adjacent levels has Possoin distribution.
On the other hand, the BGS conjecture proposes that
classically chaotic systems have quantum levels that are
correlated and exhibit repulsion. The spectrum of such
systems follows random matrix theory (RMT) statistics.

The set of diagnostic tools to explore the aspects men-
tioned above stems from RMT [16–18]. More precisely,
quantities of interest are level spacing statistics, adja-
cent gap ratio [19], and the spectral form factor [20–23].
There have been experimental developments in measur-
ing such quantities [24–27]. Recently, in Ref. 28, the
spectral form factor has been experimentally measured
using a superconducting quantum processor to probe the
presence of (or lack thereof) quantum chaos in quantum
many-body systems. These quantities probe the nature
of eigenvalues and the correlations between them. Chaos
in many quantum models has been studied extensively
[29–34]. Several studies have shown a transition from
integrability to quantum chaos in different models [35–
38]. Other studies include probing symmetries in quan-
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tum systems using RMT [39]. More recently, important
progress has been made in characterizing chaos in non-
Hermitian Hamiltonians [40–45], open quantum systems
[45–48], and connecting to non-Hermitian RMT [49, 50].
Here, the quantities of interest include important gener-
alizations of the Hermitian analogs such as the complex
spacing ratio [50] and the dissipative spectral form fac-
tor [51, 52]. Furthermore, with the realization of non-
Hermitian systems in experiments [53, 54], the study of
such models becomes even more imperative.
In the field of self-trapping-delocalization physics, the

phenomenon of macroscopic self-trapping in a quantum
network is of interest for potential relevance in quantum
computation [55–61] and simulations [61, 62]. This phe-
nomenon has been reported in several theoretical as well
as experimental studies. These include bosonic Joseph-
son junctions (BJJs) consisting of cold-atomic Bose-
Einstein condensates (BECs) [1, 2, 63–67] and photonic
systems [5, 6, 68–72]. Circuit and cavity QED mod-
els like Jaynes Cummings, Tavis Cummings, Dicke, and
Bose Hubbard models serve as interesting platforms to
study the effect of non-trivial interactions on localiza-
tion physics. Several of these models of hybrid quan-
tum systems have a well-defined classical limit making
them amenable to exploring classical-quantum conjec-
tures. Several studies have verified the validity of the
BGS and the Berry-Tabor conjecture for various quan-
tum systems. However, most of the existing literature
has focused on investigating the classical limit when the
quantum system exhibits either RMT or Poisson behav-
ior. Thus there is a need to understand these conjectures
when the systems are neither fully RMT nor Poisson
class. This is especially important given recent interests
in systems that exhibit mixed phases [33, 73, 74].
This article focuses on two main key aspects, using

the Tavis-Cummings dimer (TCD) model as the plat-
form. Firstly, it delves into exploring the connection
between delocalization and quantum chaos. In particu-
lar, we highlight instances of self-trapping (localization)
in the parameter space where the system demonstrates
Poisson statistics and delocalization when the system ex-
hibits GOE statistics. The second aspect involves the
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identification of possible mixed behavior in the quantum
system, as revealed by diagnostic tools based on RMT
where the quantities of interest turn out to be neither
GOE nor Poisson. The platform used for this study has
a well-defined classical limit. In this work, we make an
in-depth study of the resulting classical dimer model and
the classical-quantum correspondence. For investigating
the quantum dynamics (for example, imbalance of excita-
tions) and assessing the spectral statistics, we apply exact
diagonalization (ED). Utilizing tools from RMT, includ-
ing the distribution of adjacent gap ratio, level spacing
statistics, and spectral form factor, enables the exami-
nation of quantum chaos. Additionally, employing the
well-known method of maximal Lyapunov exponent al-
lows for the exploration of chaos and ergodicity in the
classical limit.

This paper is structured as follows. In Sec. II we intro-
duce the system of Tavis Cummings dimer in detail. In
Sec. III we introduce the total imbalance operator which
quantifies the excitation imbalance in the system. We
present numerical results showing a transition from a
delocalized to a self-trapped state with increasing light-
matter interaction. In Sec. IV we evaluate the energy
spectrum of the system using exact diagonalization and
calculate the level spacing statistics, the distribution of
adjacent gap ratio, and the spectral form factor (SFF).
We present results showing a transition from GOE statis-
tics to Poisson statistics. We also unravel parameter
regimes where the statistics are neither GOE nor Pois-
son, thereby indicating the possibility of mixed behavior.
In Sec. V we explore the classical limit of the system
where we compute the maximal Lyapunov exponent to
probe chaos and ergodicity in the system. Finally, we
extend our analysis of chaos to open quantum systems.
In Sec. VI we connect our system to Markovian baths,
mimicking gain-loss dynamics, using the Lindblad for-
malism and study the complex spectral statistics of the
Liouvillian. In Sec. VII, we consider a non-Hermitian
gain-loss Hamiltonian model and also compute its com-
plex spectral statistics. In both the Liouvillian and the
non-Hermitian case, we show deep connections to non-
Hermitian RMT and 2D Poisson statistics. Certain de-
tails are relegated to the appendices.

II. TAVIS-CUMMINGS DIMER SYSTEM

The Tavis Cummings (TC) Hamiltonian models a sys-
tem of N identical two-level systems (TLS) interacting
with a single mode radiation field in the dipole approxi-
mation [75–77]. The Hamiltonian (ℏ = 1) is given by

HTC = ωca
†a+ωs

N∑
i=1

szi +
λ√
N

(
a†

N∑
i=1

s−i + a

N∑
i=1

s+i

)
,

(1)
where ωc is the frequency of the radiation field in the
cavity, ωs is the energy gap between the two levels of the

TLS and λ is the light-matter interaction strength. a†

and a are the cavity creation and annihilation operators,
sx,y,zi are the angular momentum operators for the ith

TLS and s±i = sxi ± isyi . We define the collective spin

operators as, Sz =
∑N

i=1 s
z
i , and S

± =
∑N

i=1 s
±
i , which

further simplifies the Hamiltonian to

HTC = ωca
†a+ ωsS

z +
λ√
N

(
a†S− + aS+

)
. (2)

We consider the case where the quantum number for Ŝ2

is set to S =
∑N

i=1(1/2) = N/2, i.e., the subspace which
is totally symmetric under the exchange of any two spins.
As evident from equation Eq. (2), the Hamiltonian does
not mix different S sectors [35].
In our study, we consider a TC dimer (TCD) [Fig. 1].

The different TC units/monomers (left and right) couple
to one another through the cavity modes with strength
J . There is no direct coupling among the spin modes.
The Hamiltonian for such a dimer is given by

HTCD = HL
TC +HR

TC + J
(
a†LaR + a†RaL

)
, (3)

where H
L/R
TC is given by Eq. (2). The labels L and R

indicate the left and right units respectively. The dimer
in Eq. (3) conserves the total excitation number

N̂ = a†LaL + S+
LS

−
L + a†RaR + S+

RS
−
R , (4)

whose expectation value is fixed to Np. It is worth not-
ing that albeit the single TC unit is integrable [75], the
dimer system is non integrable and allows for interesting
regimes as one tune the parameter space, in particular
λ/J .

III. IMBALANCE

In this section, we introduce the notion of imbalance
of excitations. In the context of hybrid circuit-QED
systems, localization-delocalization transition has been
studied in systems such as the Jaynes-Cummings dimer
both theoretically [5] and experimentally [6]. We find
that the TCD, which is a higher spin generalization of the
Jaynes-Cummings dimer, also exhibits a transition from
a delocalized state to a self-trapped state by varying λ
(in units of J). To study this behavior of the excitations,
we define the imbalance operator as

Î =
1

Np

(
a†LaL + S+

LS
−
L − a†RaR − S+

RS
−
R

)
, (5)

which gives the excitation population difference between
the left and right monomers, normalized by the total ex-
citation number Np. The imbalance at a time t is given
by

I(t) = ⟨ψ(t)|Î|ψ(t)⟩ ,where |ψ(t)⟩ = e−iHTCDt |ψ(0)⟩ .
(6)
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FIG. 1: A schematic representation of the Tavis Cum-
mings dimer. The two units in the dimer couple to each
other with coupling strength J . Both the units in the
dimer are identical with cavity frequency ωc and qubit
level spacing ωs. There are N identical atoms (TLS)
that do not interact with one another and lead to a large
spin system within each unit. This total spin mode cou-
ples to bosonic cavity mode via the interaction λ. The
Hamiltonian for this setup is given in Eq. (3).

As mentioned before, we work in a fixed excitation sector
Np and initiate the system in an imbalanced condition
where all the excitations are localized in the cavity mode

of the left monomer, i.e.,
〈
a†LaL

〉
= Np and

〈
S+
LS

−
L

〉
=〈

a†RaR

〉
=
〈
S+
RS

−
R

〉
= 0.

In Fig. 2 (a), using exact numerics, we plot I given in
Eq. (6) as a function of Jt for λ = 2.0J and λ = 10.0J .
In the former case, we observe that the system is delo-
calized with I saturating close to zero, and in the latter
case, it is self-trapped with I saturating close to Np. For
intermediate values of λ, we find that the imbalance sat-
urates to values between zero and Np. As a measure of
localization, we evaluate the steady state time average of
I [Eq. (6)] which is denoted by ⟨I⟩SS. In Fig. 2 (b) we
plot ⟨I⟩SS as function of λ for various excitations, keeping
Np/N = 5/2 fixed. We observe a transition from delo-
calized to localized state with increasing λ. We notice
that all the curves collapse on each other when the ratio
Np/N is kept fixed which indicates that the critical point
of transition λc is a function of Np/N . Interestingly, from
our computations we find that the critical point of tran-
sition (λc) from delocalized to self-trapped state has a
square root dependence on the ratio N/N . We estimate
this critical point to be

λc ≈ 1.9J

√
Np

N
, (7)

when both Np and N are large enough.
To differentiate between the two cases (self-trapped

and delocalized), we further evaluate the imbalance and
its standard deviation when the system is in the eigen-

FIG. 2: (a) Imbalance for the TCD defined in Eq. (5),
with Np = 50 and N = 20 is plotted as a function of time
(in units 1/J) for λ = 2.0J and 10.0J . (b) Total steady-
state imbalance is plotted as a function of λ for different
system sizes keeping the ratio Np/N = 5/2 fixed. For all
the cases we have considered a 10% disorder in the cavity
frequency.

states of HTCD [Eq. (3)]. The quantum mechanical stan-

dard deviation for any observable Ô with respect to the
state |ψ⟩ is defined as,

σÔ =

√
⟨ψ|Ô2|ψ⟩ − ⟨ψ|Ô|ψ⟩2. (8)

In Fig. 3, we plot σI as a function of ⟨I⟩ for all the eigen-
states of the TCD for Np = 50 and N = 20 for (a)
λ = 2.0J and (b) λ = 10.0J . We consider a 10% disorder
in the cavity frequency. We see a stark difference between
the two cases. For the λ = 2.0J case, the mean imbal-
ance is mostly spread within ±0.05 with a few scattered
points near -0.2 and +0.1. Whereas for the λ = 10.0J
case, the mean imbalance ranges between ±1 which is
consistent with the results obtained in Fig. 2. Further-
more, yet another difference between the two cases is the
value of σI . For λ = 2.0J , most of the bulk states have
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FIG. 3: Quantum mechanical standard deviation
[Eq. (8)] in imbalance I, σI is plotted as a function of
the mean ⟨I⟩ for all the eigenvectors of the TC dimer
Hamiltonian for (a) λ = 2.0J and (b) λ = 10.0J . We
take Np = 50 and N = 20. The energy scaled by N is
represented by the color map. Note the big difference in
the x-axis scale between λ = 2.0J and λ = 10.0J .

a high standard deviation, but for λ = 10.0J this is not
the case.

IV. CHAOS AND INTEGRABILITY

In this section, we present a detailed analysis of the
spectrum {En} of the TCD and its relation to random
matrix theory (RMT). To generate the distribution, we
consider 500 realizations of the TCD Hamiltonian with a
10% disorder in the cavity frequency ωc centered around

1. That is, the disorder was introduced by choosing the
cavity frequencies from U(0.9, 1.1), where U(a, b) is a uni-
form distribution between a and b. Introducing the dis-
order ensures that any symmetry such as the mirror sym-
metry (i.e., swapping left and right units) is broken and
we do not end up with spurious statistics. The Hamil-
tonian is constructed in the Fock basis for the given ex-
citation sector Np and the sorted eigenspectrum {En}
is evaluated using exact diagonalization. Furthermore,
while evaluating the spectral statistics, to capture the
typical behavior of the system, we have discarded the
eigenvalues on the edges and considered only the mid-
dle third of the spectrum. Several diagnostic tools are
used to classify the system as either quantum chaotic or
integrable. The term “integrable” here is used in the
sense of spectral properties, where the levels show Pois-
son statistics and should not be misinterpreted for exact
solvability or conventional notions of quantum integrabil-
ity [78, 79]. To probe the short-range correlations of the
spectrum we compute the distribution of adjacent level
spacing (sn = En+1 − En) and the adjacent gap ratio
[19, 80–82]. To investigate the long-range correlations
in the spectrum, we compute the spectral form factor
(SFF).
The adjacent level spacing distribution P (s) is plotted

in Fig. 4, for (a) λ = 2.0J which agrees with PGOE(s)
and (b) λ = 10.0J which agrees with PPoisson(s). The
theoretical expressions for the two cases are given by

PGOE(s) =
πs

2
e−

πs2

4 , (9)

PPoisson(s) = e−s. (10)

The process of evaluating the level spacing statistics in-
volves unfolding of the spectrum (details in App. A 1)
which can be complicated and often becomes unreliable.
To circumvent this issue, Ref. 19 introduced the diagnos-
tic tool of adjacent gap ratio defined as

rn =
min{sn, sn−1}
max{sn, sn−1}

. (11)

In Fig. 4 (c) and (d) we present the distribution of r for
both λ = 2.0J and λ = 10.0J . The former agrees with
PGOE(r),

PGOE(r) =
27

4

r + r2

(1 + r + r2)5/2
Θ(1− r), (12)

and the later agrees with PPoisson(r),

PPoisson(r) =
2

(1 + r)2
Θ(1− r). (13)

Furthermore, we compute the SFF,

K(t,N ) =

〈 N∑
m,n=1

eit(Em−En)

〉
, (14)



5

for both the delocalized and self-trapped regime in Fig. 4
(e) λ = 2.0J and (f) λ = 10.0J respectively. The symbol
⟨⟩ in Eq. (14) denotes average over disorder realizations.
The theoretically predicted behavior of the SFF for the
GOE [17, 21–23] and Poisson levels is given by [20, 83, 84]

KGOE(t,N ) = Kc
GOE(t,N ) +

[
π

t
J1

(
2N t

π

)]2
, (15)

where,

Kc
GOE(t,N ) = N

{
µτ
π − µτ

2π log
(
1 + µτ

π

)
0 < µτ < 2π

2− t
2π log

(
t+π
t−π

)
2π < t <∞

,

(16)

and

KPoisson(t,N ) = N +
2

t2
− (1 + it)1−N + (1− it)1−N

t2
,

(17)

where J1(x) is the Bessel function of the first kind and
N is the number of eigenvalues considered. As discussed
in App. A 2, the signatures of chaos indicated by the
presence of the ramp in K(t,N ) is present in the case of
λ = 2.0J and is absent in the case of λ = 10.0J .
To quantify the chaotic behavior in the system we

evaluate the average adjacent gap ratio ⟨r⟩. For a
chaotic system, the average adjacent gap ratio is given by
⟨r⟩GOE ≈ 0.536 and for an integrable system it is given by
⟨r⟩Poisson ≈ 0.386. In Fig. 5 we plot ⟨r⟩ as function of λ
for different values of Np keeping Np/N fixed at 5/2. For
λ = 0 the spin modes decouple from the oscillator modes
and we get an exactly solvable coupled oscillator model.
The spectral statistics for such a limit is likely to be spu-
rious and hence we do not consider λ < 2.0J . We notice
a transition from ⟨r⟩GOE to ⟨r⟩Poisson with increasing λ.
Another point of interest is the fact that the transition
is not a sharp one and for an intermediate value of λ
we get neither GOE nor Poisson statistics. This tran-
sition does not seem to become sharper for larger local
Hilbert space dimensions. The absence of a sharp transi-
tion, for Hilbert space dimensions feasible for computa-
tion, indicates that there might be a mixed behavior for
intermediate λ even in the limit of infinite local Hilbert
space. Therefore a naturally interesting question is what
happens in the classical limit of the TCD. In the next
section [Sec. V], we show that such mixed behavior is
very apparent in the classical limit which is indicated by
the coexistence of both regular and chaotic trajectories.

V. CLASSICAL LIMIT

Motivated by the onset of chaos observed in the quan-
tum TCD for small non-zero λ, the possible presence of a
mixed behavior regime, and the potential for direct com-
parison of equivalent quantities, we explore the classical

FIG. 4: The spectral analysis described in Sec. IV is pre-
sented. The distribution of the adjacent level spacing is
plotted for (a) λ = 2.0J and (b) λ = 10.0J for a TCD
[Eq. (3)]. In (c) and (d), the distribution of the adjacent
gap ratio [Eq. (11)] is plotted for λ = 2.0J and λ = 10.0J
respectively. In (e) and (f), the spectral form factor de-
scribed in Eq. (14) is plotted as a function of time (in
units of J) for λ = 2.0J and λ = 10.0J respectively. For
all six cases, we have fixed Np = 50, N = 20 and consid-
ered 500 realizations of the HTCD with a 10% disorder in
the cavity frequency ωc.

limit of the system. Such a study is of paramount impor-
tance in the light of the Bohigas, Giannoni, and Schmit
(BGS) conjecture. The BGS conjecture proposes that
the spectrum of quantized classically chaotic systems fol-
lows RMT statistics. In the case of TCD, unlike several
quantum systems where the classical limit is not quite
clear, there is a systematic protocol to go to the classi-
cal limit from the quantum model. This is detailed in
App. B. The classical TC Hamiltonian is given by,

HclTC =
1

2

(
p2 + ω2

cx
2
)
+ ωsS

z + λ

√
2

ωc
(ωcxS

x − pSy) ,

(18)
and the TC dimer Hamiltonian is given by,

HclTCD = HL
clTC +HR

clTC +
J

ωc

(
ω2
cxLxR + pLpR

)
, (19)
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FIG. 5: The average adjacent gap ratio ⟨r⟩ [Eq. (11)] is
plotted as function of λ for N = 20, 30, 40, 50, and 60,
keeping the ratio Np/N = 5/2 fixed. We notice that
as we increase Np and N , keeping their ratio fixed, the
curve seems to converge to a limiting shape, which indi-
cates the possible presence of a mixed behavior. We have
generated 500 realizations of HTCD with a 10% disorder
in ωc for each set of parameters.

where H
L/R
clTC is given by Eq. (18). The labels L and R in-

dicate the left and right units respectively. The variables
transform as

(xL/R, pL/R) 7→
(xL/R, pL/R)√

N
(20)

(Sx
L/R, S

y
L/R, S

z
L/R) 7→

(Sx
L/R, S

y
L/R, S

z
L/R)

N
, (21)

and the energy and imbalance transform as

E 7→ E

N
, I 7→ I

N
. (22)

Therefore, one must scale the values appropriately to
compare quantities such as energy or imbalance (which
has the same scaling as energy) with the quantum case.
We use Eq. (19) to evaluate the classical equations of
motion (EOMs) and numerically solve them to compute
the total imbalance defined as

I(t) =
NL(t)−NR(t)

Np
, (23)

where the excitation in the left/right monomer is given
by

NL/R =
ωc

2
x2L/R +

p2L/R

2ωc
+ Sz

L/R +
1

2
. (24)

We employ the explicit Runge-Kutta method of order 8
[85] to solve the classical equations of motion (EOMs)
[see classical EOMs in Eq. (B8)] in App. B. This algo-
rithm dynamically adjusts the time step to preserve the
trajectory within specified relative and absolute toler-
ances. For all classical data, unless otherwise specified,

FIG. 6: (a) Total classical imbalance for the TCD de-
fined in Eq. (23) with Np = 2.5 is plotted as a function
of time for λ = 2.0J and 10.0J . (b) Total steady-state
imbalance is plotted as a function of λ for different tra-
jectory precisions. In the legend, “rtol” and “atol” stand
for relative and absolute tolerances. For all the cases we
have considered a 10% disorder in the cavity frequency.

we set both the relative and absolute tolerances to 10−12.
In Fig. 6 (a), we depict the behavior of I against Jt for
λ = 2.0J and λ = 10.0J . Here, we observe self-trapping
at λ = 10.0J and delocalization at λ = 2.0J , consis-
tent with the quantum case shown in Fig. 2. In Fig. 6
(b), we illustrate the average long-time imbalance as a
function of the interaction strength λ for various trajec-
tory precisions. To compute the long-time average of the
imbalance, we consider values from Jt = 0.8 × 104 to
Jt = 104. Once again, we observe good agreement with
the quantum case depicted in Fig. 2, although the transi-
tion point is a bit higher and the transition itself is more
abrupt in the classical case. It is noteworthy that for
λ values lower than the transition point, the agreement
among data for different absolute and relative tolerances
deteriorates compared to λ values higher than the tran-
sition point. This outcome aligns with expectations, as
in the delocalized regime, numerical errors can magnify
due to chaotic system behavior.

To characterize the chaotic nature of the classical sys-
tem we compute the Lyapunov exponent Λ using the
method described in App. D. To do so, we generate
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500 random initial states using the method described
in App. C for each λ for a given energy up to a toler-
ance of 10−5. In Fig. 7, we plot the distribution of the
long-time Lyapunov exponent for (a) λ = 2.0J and (b)
λ = 10.0J . For both the values of λ, an indication of the
lack of ergodicity is evident from the scattered nature
of the Lyapunov exponents. However, for low values of
λ, the scattering is relatively less, suggesting a more er-
godic character in that parameter regime. For λ = 2.0J ,
we notice that most of the trajectories are chaotic with a
few initial states that lead to regular motion (character-
ized by non-positive Λ). Whereas, for λ = 10.0J , a much
larger percentage of the trajectories are regular.

FIG. 7: Long time Lyapunov exponent Λ is plotted for
500 different initial states for Np = 2.5 and E = 1.5J .
Two different values of the λ are chosen to show the tran-
sition from near ergodic to nonergodic phase.

We recall that in the quantum model (Sec. IV), we in-
vestigate the imbalance when the system is in the eigen-
state of HTCD. In the classical model, we do not have
a notion of eigenstates. Motivated to find an analog to
Fig. 3 (quantum case), we generate multiple random ini-
tial states using the method described in App. C. We
choose initial states with the same energy as the eigen-
states of HTCD up to a tolerance of 10−5 and that has
a fixed excitation given by Np = 5/2. These states are
scattered randomly throughout the manifold Np = 5/2
in the phase space and are similar to the eigenstates
of HTCD which span the fixed excitation sector of the
Hilbert space. Calculating the imbalance in the eigen-
states is analogous to calculating the mean imbalance in
the trajectory of the system starting from these initial
states. Similarly one can calculate the standard devia-

tion in I for a given trajectory using

σI =

√√√√ 1

N

N∑
i=1

(Ii − ⟨I⟩)2, (25)

where ⟨I⟩ is the mean value of I, and Ii is the value of
I(t) at the ith time step and N is the total number of time
steps. In Fig. 8 we plot σI vs. ⟨I⟩ for the classical TCD
with Np = 5/2 and we find that remarkably it has the
same scattered structure as the quantum case [Fig. 3]
for both values of λ in the two different regimes. At
first glance it might seem that the quantum mechanical
standard deviation [Eq. (8)] and the classical standard
deviation [Eq. (25)] are incompatible for comparison as
the first one is the uncertainty in the state and the second
one is the fluctuation in time around the mean value.
However, one can envisage the quantum fluctuation in
the state as the smearing of the observable around the
mean value (which remains constant for an eigenstate),
akin to classical fluctuation.

VI. OPEN TAVIS-CUMMINGS DIMER

In this section, we present results for the open TCD
where we couple the cavity mode at each site with a
Markovian bath. The effect of the bath is modeled using
the Lindblad operators and the evolution of the system
density matrix is given by the Liouvillian superoperator

ρ̇ = Lρ . (26)

The superoperator L is defined as

L⋆ = −i [HTCD, ⋆]+
∑
k

[
Ok ⋆O†

k − 1

2
{O†

kOk, ⋆}
]
, (27)

where Ok are the Lindblad jump operators. For our sys-
tem, the jump operators are given by,

O1 =
√
2κaL (28)

O2 =
√
2κa†R , (29)

where κ is the cavity dissipation rate. Such a model cor-
responds to a gain-loss dynamics in the system. To clas-
sify the system into a chaotic or regular system we inves-
tigate the spectral statistics of L, which is non-hermitian.
As mentioned before, the closed TCD system has a U(1)

symmetry where the total excitation number N̂ is con-
served. In the case of the open system, the L has a weak
U(1) symmetry N− , such that [L,N−] = 0. The weak
U(1) symmetry is defined as

N−⋆ =
[
N̂ , ⋆

]
, (30)

A more detailed discussion on this weak symmetry in
open TCD is mentioned in App. E. It is important to note
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FIG. 8: Classical standard deviation in total imbalance
I, σI [Eq. (25)] is plotted as a function of ⟨I⟩ for initial
states with the same Np and energy as the eigenstates in
Fig. 3 for (a) λ = 2.0J and (b) λ = 10.0J . The energy
of the states is represented by the color map. Note the
big difference in the x-axis scale between λ = 2.0J and
λ = 10.0J .

that the number of excitations is no longer conserved and
we need to introduce a cut-off Ncut for the cavity modes.
We compute the spectrum of L using ED and compute
the complex spacing ratio (CSR)

ξn =
zNN
n − zn

zNNN
n − zn

= rne
iθn (31)

where zNN
n and zNNN

n are the nearest and next-nearest
neighbor of the complex eigenvalue zn of the Hamilto-
nian, and rn and θn are the absolute value and argument
of ξn respectively. The distance between two eigenval-
ues is measured by the absolute value of the difference
between the two values. This diagnostic tool is indepen-
dent of the distribution of the underlying spectrum and
hence does not require any unfolding. Furthermore, as
done in the closed hermitian case, we also compute a gen-

eralization of the spectral form factor for non-hermitian
systems, known as the dissipative form factor (DSFF)
K(τ, τ∗) [41, 51],

K(τ, τ∗) =

〈 N∑
m,n

eiτ⃗ .z⃗mn

〉
, (32)

where τ = t + is is the generalized time variable and
z⃗mn = {Re(zm) − Re(zn), Im(zm) − Im(zn)} is the dif-
ference between eigenvalues zm and zn. The averaging is
done over disorder realizations. For computing the DSFF
efficiently it is convenient to write it in the following form,

K(τ, τ∗) =

〈∣∣∣∣∣
N∑
n

ei(znτ
∗+z∗

nτ)/2

∣∣∣∣∣
2〉

, (33)

which has a single sum over the eigenvalues instead
of two. Much like the hermitian case, the signature
for chaos can be seen from the presence of a ramp in
K(τ, τ∗). To avoid capturing any edge effects of the
spectrum, we consider the inner eigenvalues for each real-
ization while computing the spectral statistics. In Fig. 9
(a-b) we indicate the eigenvalues selected with a rectan-
gular box. We compute the CSR [Eq. 31] using these
selected eigenvalues. In Fig. 9 (c-f), we plot the distribu-
tion of r and θ described in Eq. (31) for λ = 1.0J (left
column) and λ = 10.0J (right column). In Fig. 9 (g-h)
we plot the DSFF as a function of the |τ/τH |, where τH
is the Heisenberg time, for both the chaotic and regular
regimes. In all the diagnostic tools used, we find that
for λ = 1.0J the spectral statistics agree with that of
non-Hermitian RMT, in particular, the GinUE symme-
try class, and for λ = 10.0J we find 2D Poisson statistics.
Although there is a marked distinction between λ = 1.0J
and λ = 10.0J , we notice a slight deviation from the 2D
Poisson statistics in the λ = 10.0J case. This is indica-
tive of the fact that the mixed nature of the open quan-
tum system still has not yet disappeared at λ = 10.0J .
It is noteworthy that such remnants of mixed behavior
are also evident in the closed quantum system case for
λ = 10.0J [see for e.g. Fig. 4 b and d].

Regarding the computation of the SFF in the Hermi-
tian case, we recall that we unfolded the spectrum to
bring out the underlying universal features. However, in
the case of DSFF, for a complex spectrum, there is no
well-established method to unfold the spectrum. Thus,
to capture the universal features we need to scale |τ | by
the Heisenberg time τH . This Heisenberg time for our
system can be computed numerically by fitting the ramp
in the data of the RMT regime with the fitting function

fK(τ,m) = 1 − e−m|τ |2 by varying m, and τH is given
by τH = 1/2

√
m [41]. This fitting function is inspired by

the analytical form of the DSFF for GinUE matrices.
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FIG. 9: The eigenvalues for the open TCD Liouvillian,
described in Eq. (27), is plotted in the complex plane
for (a) λ = 1.0J and (b) λ = 10.0J . The rectangular
box in (a) and (b) indicates the eigenvalues selected for
the spectral analysis. The distribution of the absolute
value of the CSR, r is plotted for (c) λ = 1.0J and (d)
λ = 10.0J for the open TCD discussed in Sec. VI. In
(e) and (f) the distribution of the argument of the CSR
θ is plotted for λ = 1.0J and λ = 6.8J respectively.
In (g) and (h) we have plotted the dissipative spectral
form factor as a function of rescaled time τ̃ = τ/τH for
λ = 2.0J and λ = 10.0J respectively. For all the plots
we have considered 6 realizations of the Liouvillian with
Ncut = 3, S = 3, and with a 10% disorder in the real
part of the cavity frequency. The cavity dissipation rate
κ = 1.0J .

VII. NON-HERMITIAN TAVIS-CUMMINGS
DIMER

In this section, we show that the analysis done in this
paper can also be extended to the non-hermitian gener-
alization of the TC model where the Hamiltonian at each
site is given by

HTCNH = (ωc + i∆)a†a+ ωSS
z +

λ√
S

(
a†S− + aS+

)
,

(34)

and the dimer Hamiltonian is described by

HTCDNH = HL
TCNH+HR

TCNH+J
(
a†LaR + a†RaL

)
. (35)

Even in the case of non-Hermitian Hamiltonians, we con-
sider terms that mimic the gain-loss mechanism. To
achieve this, we set ∆ = κ for the left unit and ∆ = −κ
for the right unit. Such gain-loss mechanisms in oscilla-
tors, realized as a non-Hermitian Hamiltonian, have been
studied in Refs. 86 and 87. Since the Hamiltonian pre-
serves the transposition symmetry, this model belongs to
the AI† symmetry class and hence the spectral statistics
for the chaotic regime should conform with this symme-
try class. As was done in the case of the Liouvillian,
to avoid capturing any edge effects of the spectrum, we
consider the 5000 inner eigenvalues for each realization
while computing the DSFF. In Fig. 10 (a-b) we indicate
the eigenvalues selected with a rectangular box. We com-
pute the CSR described in Eq. 31 using these selected
eigenvalues. In Fig. 10 (c-f), we plot the distribution
of r and θ described in Eq. (31) for λ = 2.0J (left col-
umn) and λ = 10.0J (right column). In Fig. 10 (g-h)
we plot the DSFF as a function of the |τ/τH |, where τH
is the Heisenberg time, for both the chaotic and regular
regimes. In all the diagnostic tools used, we find that for
λ = 2.0J the spectral statistics agree with that of non-
Hermitian RMT, in particular, the AI† symmetry class,
and for λ = 10.0J we find 2D Poisson statistics.

VIII. CONCLUSIONS AND OUTLOOK

To conclude, using the Tavis-Cummings dimer as a
platform, we explore two facets of quantum systems
which are extremely relevant, both from theoretical as
well as experimental perspectives. Firstly, we do a de-
tailed analysis of the relationship between the macro-
scopic phenomenon of self-trapping and the integrability
of the system. We employ tools from RMT to show self-
trapping in regions of integrability and delocalization in
regions of chaos. We show that self-trapping in the dimer
can be achieved by increasing the light-matter interaction
strength λ. While doing so, the spectral statistics of the
system agree with uncorrelated Poisson levels. When λ
is small, the system is delocalized and its energy levels
become correlated and the spectral statistics agree with
RMT. However, we report that the transition from GOE
statistics to Poisson statistics is not abrupt, and the tran-
sition does not seem to become sharper on increasing the
local Hilbert space dimension. This indicates the possible
presence of a mixed behavior regime.
In the second part of our investigation, we delve into

the concept of quantum-classical correspondence, which
is defined by the Berry-Tabor and the BGS conjectures.
The TCD used in this paper is precisely suited for such
a study as it has a well-defined classical limit. Specifi-
cally, we address the presence of mixed phase space in
the classical model. Recent studies have explored mixed
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FIG. 10: The eigenvalues for the non-hermitian TCD
Hamiltonian, described in Eq. (35), is plotted in the com-
plex plane for (a) λ = 2.0J and (b) λ = 10.0J . The
rectangular box in (a) and (b) indicates the eigenvalues
selected for the spectral analysis. The distribution of the
absolute value of the CSR, r is plotted for (c) λ = 2.0J
and (d) λ = 10.0J for a non-hermitian TCD discussed
in Sec. VII. In (e) and (f) the distribution of the argu-
ment of the CSR θ is plotted for λ = 2.0J and λ = 10.0J
respectively. In (g) and (h) we have plotted the dissipa-
tive spectral form factor as a function of rescaled time
τ̃ for λ = 2.0J and λ = 10.0J respectively. For all the
plots we have considered 500 realizations ofHTCDNH with
Np = 50, S = 20 and with a 10% disorder in the real part
of the cavity frequency. The imaginary part of the cavity
frequency (non-hermiticity) is set to 1.0J and −1.0J for
the left and right units respectively.

phase space in various models, including the three-site
Bose-Hubbard model [33], kicked top model [73], and the
Dicke model [74]. Our study contributes to the burgeon-
ing interest in understanding mixed phase spaces within
quantum systems and their classical limits. In partic-
ular, we take the classical limit of the TCD and show
similar transitions from delocalized to self-trapped states
as was shown in the exact quantum model. Furthermore,
we compute the Lyapunov exponent for an ensemble of
initial states uniformly chosen over the manifold of fixed

energy and excitation. We show signatures of mixedness
in the Lyapunov distribution which is consistent with
the signatures of mixedness seen in the quantum system
based on RMT diagnostics.
Furthermore, we also extend our analysis of the model

to an open quantum system where we connect the two
sites of the dimer to Markovian baths that mimic gain-
loss dynamics. We compute the CSR and DSFF of the
Liouvillian spectrum for the delocalized and the self-
trapped regime and show agreement with the statistics of
the GinUE symmetry class and 2D Poisson statistics re-
spectively. Our analysis of open quantum systems shows
the possible existence of mixed behavior. Finally, we con-
sider a non-Hermitian gain-loss Hamiltonian, where the
non-hermiticity is introduced by making the cavity fre-
quency complex. We show that for smaller values of λ,
the system agrees with the AI† symmetry class, and for
larger values of λ the system shows 2D Poisson statistics.
Our findings make important contributions to the

existing literature on macroscopic self-trapping, quan-
tum chaos, quantum-classical correspondence, and mixed
phase space. Although our analysis was numerically ex-
tensive, there are several challenges given the complexity
of the model. For example, the classical TCD model
has eight DOFs, which makes analysis using Poincare
maps very difficult, thereby leading to significant chal-
lenges while probing the mixed behavior of the system.
As a future direction, it would be interesting and numer-
ically more accessible to consider simpler models with
fewer DOFs to study the presence of mixed phase spaces
and their signatures in the quantummodel. Furthermore,
studying a non-hermitian model with the non-hermiticity
introduced in the interaction term [88] would be interest-
ing.
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Appendix A: Details of diagnostics for chaos

In this section, we discuss the other diagnostics used
to identify signatures of chaos in a quantum system. In
App. A 1 we discuss the level spacing statistics and in
App. A 2 we discuss the spectral form factor.
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1. Level spacing

One of the fundamental distinctions between a non in-
tegrable and an integrable quantum system is the pres-
ence and absence of level repulsion within the energy
spectrum respectively. Therefore we compute the level
spacing sn = En+1 − En where the real spectrum {En}
is arranged in ascending order. Before computing the
distribution, we perform the unfolding of the spectrum.
This process of unfolding involves the following steps -

i. Evaluate the cumulative distribution function
(CDF) of the eigen spectrum, F̂ (E) =

∑
n Θ(E −

En), where Θ is the Heaviside step function.

ii. Fit F̂ (E) to a polynomial function F(E).

iii. Construct the unfolded spectrum {Ẽn } using,

Ẽn = F (En). (A1)

2. Spectral form factor

Yet another diagnostic tool used to differentiate be-
tween integrable and non integrable Hermitian quantum
systems is the spectral form factor (SFF) of the unfolded
spectrum. The SFF, K(t,N ), which is defined as the
Fourier transform of the two-point density correlation
function ⟨ρ(E)ρ(E + ω)⟩ , is defined for an ensemble of
N eigenvalues as,

K(t,N ) =

〈 N∑
m,n=1

eit(Em−En)

〉
, (A2)

where ⟨. . .⟩ indicates the average over an ensemble of re-
alisations of these N eigen values. The SFF probes cor-
relations in the spectrum on scales inversely proportional
to t. The behavior of K(t,N) can be broadly described
for three different regions in t [17, 20, 84] -

i. For small values of t << τT , K(t,N ) probes the
spectrum on the scale of the bandwidth. This part
is sensitive to the tail of the spectrum.

ii. For τT < t < τH , K(t,N ) is dominated by the
universal global correlations, if present.

iii. For t >> τH , K(t,N ) probes the spectrum at the
level of the mean level spacing (which is set to
one for the unfolded spectrum) where the levels
are quantized. Without the presence of acciden-
tal degeneracies, this region is dominated by terms
with m = n in Eq. (A2) and eventually saturates
at K ≈ N .

τT ∼ 1/N is called the Thouless time and τH ∼ 1 is
known as the Heisenberg time.

Appendix B: Classical limit

In this section, we demonstrate how to shift to the
classical limit of the system. To construct the classical
Hamiltonian, we follow the following steps -

i. Write down all annihilation and creation opera-
tors in terms of the corresponding position

(
xL/R

)
and momentum

(
pL/R

)
operators and replace them

with their real values.

ii. Write down all the spin raising and lowering opera-
tors in terms of Sx

L/R, S
y
L/R and Sz

L/R which obeys

(Sx
L/R)

2 + (Sy
L/R)

2 + (Sz
L/R)

2 = N
2

(
N
2 + 1

)
.

iii. Now we take the limit N → ∞ and transform(
Sx
L/R, S

y
L/R, S

z
L/R

)
7→

(
Sx
L/R, S

y
L/R, S

z
L/R

)
/N .

This leads us to a classical spin vector on a circle
of radius 1/2.

iv. Finally we also transform
(
xL/R, pL/R

)
7→(

xL/R, pL/R

)
/
√
N .

Following the above steps, we get the classical TC Hamil-
tonian,

HclTC =
1

2

(
p2 + ωcx

2
)
+ ωsS

z + λ

√
2

ωc
(ωcxS

x − pSy) ,

(B1)
and the dimer Hamiltonian is given by,

HclTCD = HL
clTC+HR

clTC+
J

ωc

(
ω2
cxLxR + pLpR

)
. (B2)

The energy transforms as E 7→ E/N . The result-
ing EOMs for the rescaled variables are obtained using
Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂q
,

˙⃗
S = ∇S⃗HclTCD × S⃗, (B3)

we get

ẋL/R = pL/R − λ

√
2

ωc
Sy
L/R +

J

ωc
pR/L, (B4)

ṗL/R = −ω2
cxL/R − λ

√
2

ωc
Sx
L/R − JωcxR/L, (B5)

Ṡx
L/R = −λ

√
2

ωc
pL/RS

z
L/R − ωsS

y
L/R, (B6)

Ṡy
L/R = −λ

√
2ωcxL/RS

z
L/R + ωsS

x
L/R (B7)

Ṡz
L/R = λ

√
2

ωc

(
ωcxL/RS

y
L/R + pL/RS

x
L/R

)
. (B8)

Appendix C: Sampling of classical initial states

In this section, we write down in detail, how to sample
initial states for classical computations. To ensure that
we sample states from all over the manifold of a fixed
excitation sector Np, we follow the following procedure -
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i. Randomly select an excitation sector (left cavity
mode, left spin mode, right cavity mode, and right
spin mode) and subtract δn ∼ U(−1, 1) excitation
from this sector, where we recall that U(a, b) is a
uniform distribution from a to b.

ii. Check the validity conditions for the new excitation
value:

(a) For the cavity mode: new excitation ≥ 0.

(b) For the spin sector: 0 ≤ new excitation ≤ 1.

If the conditions are not met, return to step 1, else
proceed to step 3.

iii. Randomly choose another sector different from the
previous step and add δn excitation to this sector.
Check the validity conditions again. If the condi-
tions are not met, repeat this step else, accept the
state.

iv. Ignore the first 5000 acceptable states. Starting
from the 5001st state, collect every 200th valid
state obtained by repeating steps 1-3.

To facilitate the addition and removal of excitation from
the excitation sectors, we employ the following protocols:

Cavity sector: The excitation of the cavity sector is
represented by

N cav
p =

ωc

2
x2 +

p2

2ωc
. (C1)

Consequently, the quantities
√
ωcx and p/

√
ωc lie on a

circle with a radius of
√

2N cav
p . To determine the new

state, we randomly select θ ∼ U(0, 2π). The new values
of x and p corresponding to the new excitation are given
by:

x =

√
2(N cav

p ± δn)

ωc
cos θ, (C2)

p =
√
2ωc(N cav

p ± δn) sin θ. (C3)

Spin sector: The excitation of the spin sector is de-
scribed by

N spin
p = Sz + 1/2. (C4)

The new value of Sz is given by:

Sz = (N spin
p ± δn)− 1

2
. (C5)

As the classical spin vector resides on a sphere with a
radius of 1/2, we must update Sx and Sy accordingly. For
this purpose, we once again select θ ∼ U(0, 2π) randomly,
and the new values are determined as follows:

Sx =

√
1

4
− (Sz)2 cos θ, (C6)

Sy =

√
1

4
− (Sz)2 sin θ. (C7)

Appendix D: Calculation of maximal Lyapunov
exponent

In this section, we discuss the algorithm used to com-
pute the Lyapunov exponent using method described in
Refs. 89–91. We start with two initial states (A and
B) such that they differ by a phase space distance of
δ0. We let them evolve with the HclTCD [Eqs. (B4)-
(B8)] for a time τ and calculate the phase space distance
δ1 = ∥xB(τ)− xA(τ)∥ between the two trajectories. We
then reset trajectory B to the initial distance from tra-
jectory A, keeping the direction fixed,

xreset
B = xA + δ0

xB(τ)− xA(τ)

δ1
. (D1)

This process is repeated M times and the finite time
Lyapunov exponent is given by -

ΛM = lim
δ0→0

1

Mτ

M∑
j=1

log

(
δj
δ0

)
. (D2)

The maximal Lyapunov exponent Λ is obtained by con-
sidering the limit Mτ → ∞. It must be noted that the
value of τ must be chosen such that it is much less than
the time taken for the Lyapunov to saturate. In our com-
putations, we set τ = 1.

An important point to note is that when we reset the
trajectories, conserved quantities such as energy, total
excitation, and spin length may no longer be conserved.
This is an inherent issue with this resetting method of
computing the Lyapunov exponent. Nevertheless, since
trajectory B differs from trajectory A only by an absolute
difference of δ0 after resetting, we can assume that the
violation of the conserved quantities is small (depends on
δ0). In our computations, we set δ0 = 10−8.

Appendix E: Weak symmetries of the Liouvillian

In this section, we show that the weak U(1) symmetry
defined in Eq. (30) is indeed a symmetry of the Liouvil-
lian given in Eq. (27). For this we have to show that

[L,N−] = 0. (E1)

For simplicity, we will only consider the left cavity dissi-
pation channel with the jump operator O =

√
2κaL. We

expand the action of the commutator on a generic state
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ρ as follows -

[L,N−] (ρ) = LN−(ρ)−N−L(ρ)

= L0

(
N̂ρ− ρN̂

)
+ LJ

(
N̂ρ− ρN̂

)
−
[
N̂L0(ρ)− L0(ρ)N̂

]
−
[
N̂LJ(ρ)− LJ(ρ)N̂

]
= −1

2

[
O†O

(
N̂ρ− ρN̂

)
+
(
N̂ρ− ρN̂

)
O†O

]
+
1

2

[
N̂
(
O†Oρ+ ρO†O

)
+
(
O†Oρ+ ρO†O

)
N̂
]

+LJ

(
N̂ρ− ρN̂

)
−
[
N̂LJ(ρ)− LJ(ρ)N̂

]
(E2)

where we have used the fact that
[
HTCDNH, N̂

]
= 0.

Furthermore, using
[
O†O, N̂

]
= 0, we can show that the

first four terms in Eq. (E2) cancel out and we are left
with

[L,N−] (ρ) = LJ

(
N̂ρ− ρN̂

)
−
[
N̂LJ(ρ)− LJ(ρ)N̂

]
= O

(
N̂ρ− ρN̂

)
O† − N̂OρO† +OρO†N̂

= 0. (E3)

In the final step, we have used the relations
[
O, N̂

]
= O

and
[
O†, N̂

]
= −O†. It can be shown that the above

calculation is valid even when we consider O =
√
2κa†R

with a few minor changes.
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Hernández, L. F. Santos, and J. G. Hirsch, Quantum and
classical lyapunov exponents in atom-field interaction
systems, Phys. Rev. Lett. 122, 024101 (2019).

[30] L. K. Joshi, A. Elben, A. Vikram, B. Vermersch, V. Gal-
itski, and P. Zoller, Probing many-body quantum chaos

with quantum simulators, Phys. Rev. X 12, 011018
(2022).

[31] Ángel L Corps, R. A. Molina, and A. Relaño, Chaos in a
deformed dicke model, Journal of Physics A: Mathemat-
ical and Theoretical 55, 084001 (2022).

[32] J.-L. Ma, Q. Li, and L. Tan, Ergodic and nonergodic
phases in a one-dimensional clean jaynes-cummings-
hubbard system with detuning, Phys. Rev. B 105, 165432
(2022).

[33] G. Nakerst and M. Haque, Chaos in the three-site bose-
hubbard model: Classical versus quantum, Phys. Rev. E
107, 024210 (2023).

[34] A. V. Kirkova and P. A. Ivanov, Quantum chaos and ther-
malization in the two-mode dicke model, Physica Scripta
98, 045105 (2023).

[35] C. Emary and T. Brandes, Chaos and the quantum phase
transition in the dicke model, Phys. Rev. E 67, 066203
(2003).

[36] L. F. Santos and M. Rigol, Onset of quantum chaos
in one-dimensional bosonic and fermionic systems and
its relation to thermalization, Phys. Rev. E 81, 036206
(2010).

[37] W.-Y. Wang, W.-L. Zhao, and J. Liu, Numerical simu-
lation on many-body quantum chaos of ultracold atoms
with synthetic gauge fields, Results in Physics 34, 105222
(2022).

[38] M. Prasad, H. K. Yadalam, M. Kulkarni, and C. Aron,
Transition to chaos in extended systems and their quan-
tum impurity models, Journal of Physics A: Mathemati-
cal and Theoretical 57, 015308 (2023).
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