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Abstract

We consider an n agents distributed optimization problem with imperfect information characterized in a paramet-
ric sense, where the unknown parameter can be solved by a distinct distributed parameter learning problem. Though
each agent only has access to its local parameter learning and computational problem, they mean to collaboratively
minimize the average of their local cost functions. To address the special optimization problem, we propose a coupled
distributed stochastic approximation algorithm, in which every agent updates the current beliefs of its unknown pa-
rameter and decision variable by stochastic approximation method; then averages the beliefs and decision variables of
its neighbors over network in consensus protocol. Our interest lies in the convergence analysis of this algorithm. We
quantitatively characterize the factors that affect the algorithm performance, and prove that the mean-squared error of

the decision variable is bounded by O( 1
nk )+O

(
1

√
n(1−ρw)

)
1

k1.5 +O
( 1

(1−ρw)2

) 1
k2 , where k is the iteration count and (1− ρw)

is the spectral gap of the network weighted adjacency matrix. It reveals that the network connectivity characterized by
(1− ρw) only influences the high order of convergence rate, while the domain rate still acts the same as the centralized
algorithm. In addition, we analyze that the transient iteration needed for reaching its dominant rate O( 1

nk ) is O( n
(1−ρw)2 ).

Numerical experiments are carried out to demonstrate the theoretical results by taking different CPUs as agents, which
is more applicable to real-world distributed scenarios.

Keywords: Distributed Coupled Optimization, Stochastic Approximation, Misspecification, Convergence Rate
Analysis

1. Introduction

In recent years, distributed optimization has drawn much research attention in various fields including economic
dispatch[1, 2], smart grids [3, 4, 5], automatic controls[6, 7, 8] and machine learning [9, 10]. In distributed scenarios,
each agent only preserves its local information, while they can exchange information with others over a connected
network to cooperatively minimize the average of all agents’ cost functions [11, 12]. There are several approaches
for resolving distributed optimization problems such as (primary) consensus-based, duality-based, and constraint
exchange methods, where the primal approaches characterized by gradient-based algorithms have attracted the most
research attention due to their satisfactory performance and well-scalable nature[13]. The distributed dual approaches
based on Lagrange method regularly use dual decomposition like the alternating direction method of multipliers
(ADMM)[14]. Constraint exchange method is another prevalent scheme where the information exchanged by agents
amounts to constraints[15].
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However, among various formulations in distributed optimization, a crucial assumption is that we need precise
objective functions (or problem information), i.e., all parameters in the model are precisely known. Yet in many
economic and engineering problems, parameters of the functions are unknown but we may have access to observations
that can aid in resolving this misspecification. For example, in the Markowitz profile problem, it is routinely assumed
that the expectation or covariance matrices associated with a collection of stocks are accurately available, but in reality,
it needs empirical estimates via past data[16].

This paper is devoted to proposing distributed algorithms for resolving optimization problems with parametric
misspecification, and quantitatively characterizing the influence of network properties, the heterogeneity of agents,
initial states, etc. on the algorithm performance. This work is primarily centered around conducting a comprehensive
theoretical analysis of convergence. We begin by initiating the problem formulation.

1.1. Problem Formulation

In this article, we consider a static misspecified distributed optimization problem defined as follows:

Cx(θ∗) : min
x∈Rp

f (x, θ∗) =
1
n

∑n

i=1
fi(x, θ∗), (1)

where fi(x, θ∗) ≜ E[ f̃i(x, θ, ξi)] is the local cost function only accessible for agent i ∈ N ≜ {1, 2, ..., n}. Suppose that
for any i ∈ N , ξi : Ωx → Rd are mutually independent random variables defined on a probability space (Ωx,Fx,Px).
Here, θ∗ ∈ Rq denotes the unknown parameter, which is a solution to a distinct convex problem.

Lθ : min
θ∈Rq

h(θ) =
1
n

∑n

i=1
hi(θ), (2)

where hi(θ) ≜ E[h̃i(θ, ζi)] is the local parameter learning function only accessible for agent i ∈ N , and for any i ∈ N ,
ζi : Ωθ → Rm are mutually independent random variables defined on a probability space (Ωθ,Fθ,Pθ). Problems in
the form eq. (1) and eq. (2) jointly formulate an unknown coupled distributed optimization scheme consisting of both
computational problem and learning problem, where the learning problem is independent of the computational one.
We have depicted the problem setting in fig. 1.

𝒉𝒊(𝜽)

𝒇𝒊(𝒙, 𝜽)

𝜽 ∈ ℝ𝒒

(𝒙, 𝜽) ∈ ℝ𝒑×𝒒

agent 𝑖

Figure 1: The problem setup: a connected network of communicating agents, where each agent preserving a local learning problem hi and
computational problem fi correlated with hi through the unknown parameter θ, while they cooperate to solve the distributed coupled optimization
problem.

1.2. Prior Work

We now give a review of prior work for resolving optimization problems with unknown parameters.

2



Robust optimization approach. Robust optimization considers the optimization problem where the parameter θ
is unavailable but one can have access to its uncertainty set, say Uθ[17]. The key idea is to optimize against the
worst-case realization within this set, i.e.,

min
x∈Rp

max
θ∈Uθ

f (x, θ).

Robust optimization is shown to be a useful technique in the resolution of problems arising from control, design, and
optimization [18]. However, it usually produces conservative solutions and sometimes is intractable when poor set
Uθ is chosen (e.g. the set is given by unexplicit systems of non-convex inequalities)[19].

Stochastic optimization. Unlike robust optimization, in a stochastic optimization scenario one may obtain statis-
tical or distributional information about the unknown parameter. For example, θ follows a probability distribution
D[20], the optimal solution is gained by minimizing the expectation of cost functions,

min
x∈Rp

Eθ∼D[ f (x, θ)].

Stochastic optimization has been widely investigated in telecommunication, finance and machine learning [21]. In
the scenario of a multi-agent network dealing with large datasets, stochastic optimization has become popular since it
is challenging to calculate the exact gradient while the stochastic gradient is much easier to obtain. A key shortcoming
in using stochastic optimization models for resolving optimization problems with unknown parameters lies in that it
needs the distribution of θ, which might be a stringent requirement when the available data for estimating is limited or
noisy. In such cases, the resulting distribution estimates may be unreliable or biased, leading to suboptimal solutions
or even infeasible solutions[22]. Alternatively, suppose that θ∗ can be learnt by a suitably defined estimation problem,
then it brings about the following approach.

Data-driven learning approach. As data availability reaches hitherto unseen in recent years, we can use data-
driven approaches to lessen or even eliminate the impact of model uncertainty. For example, the model parameter θ
can be obtained by solving a suitably defined learning problem l(θ) (see e.g., [23]),

min
x∈Rp

{
f (x, θ∗) : θ∗ ∈ arg min

θ∈Rq
l(θ)

}
. (3)

Computational evidence in portfolio management and queueing confirm that data-driven sets significantly outperform
traditional robust optimization techniques[19].

A natural question is whether this problem could be solved in a sequential method, i.e., first accomplish estimating
θ∗ with high accuracy and then solve the core computational optimization problem with the achieved estimation θ̂.
However, they have some disadvantages discussed in [23, 24, 25]: on the one hand, the large-scale parameter learning
problem will lead to long time waiting for solving the original problem. On the other hand, this scheme provides an
approximate solution θ̂, then the corrupt error might propagates into the computational problem. As such, sequential
methods cannot provide asymptotically accurate convergence. Therefore, an alternative simultaneous approach is
designed (see e.g., [23, 26]), which use observations to get an estimation θk of unknown parameters θ∗ at each time
instant k; then update the upper optimization problem by taking the estimated parameter θk as “true” parameter. This
simultaneous approach can generate a sequence {(xk, θk)} that converges to a minimizer of f (x, θ∗) and l(θ) respectively
[23].

Such data-driven learning approaches for unknown parameter has gradually attracted research attention recently.
For example, the authors of [23] presented a centralized coupled stochastic optimization scheme to solve problem (3)
and showed the convergence properties in regimes when the function is either strongly convex or merely convex. Then
[25] extended it smooth or nonsmooth functions f and presented an averaging-based subgradient approach, but it is
still a centralized scheme. In addition, the authors of [24] divided the optimization problem with uncertainty into two
paradigms: robust optimization and joint estimation optimization, and they exploited these two problem structures in
online convex optimization and gave regret analysis under different conditions. The recent work [16] investigated the
misspecified conic convex programs, and developed a centralized first-order inexact augmented Lagrangian scheme
for computing the optimal solution while simultaneously learning the unknown parameters. The aforementioned work
[16, 24, 23, 25] all investigated centralized methods, while there are some other work exploit distributed approaches.
For example, [27] considered the distributed stochastic optimization with imperfect information, while it only showed
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that the generated iterates converge almost surely to the optimal solution. Though the work [28] presented a distributed
problem with a composite structure consisting of an exact engineering part and an unknown personalized part, it
exhibits a bounded regret under certain conditions.

1.3. Gaps and Motivation

Recalling the problem setup in section 1.1, our research falls into distributed data-driven stochastic optimization
scenario. Taking into account the research that is most pertinent to this paper, the majority of previous studies have
primarily concentrated on centralized inquiries (see e.g. [16, 24, 23, 25]), while the distributed schemes [27, 28]
mainly investigated the asymptotic convergence. It remains unknown how to design an efficient distributed algorithm,
how does the network connectivity influence the algorithm performance, and whether the rate can reach the same
order as the centralized scheme? To be specific, this paper is motivated by the following gaps: (i) previous work
on unknown parameter learning problems focused on the centralized scheme, the distributed data-driven stochastic
approximation method is less studied; (ii) the discussion of convergence analysis especially how factors such as the
number of agents, the network connectivity, and the heterogeneity of agents influence the rate of algorithm is rarely
studied in details; (iii) the gap between centralized and distributed algorithm under imperfect information need to be
specified, or in other words can we find the transient time when the rate of distributed algorithms reach the same order
as that of the centralized scheme?

1.4. Outline and Contributions

To address these gaps, we propose a data-driven coupled distributed stochastic approximation method to resolve
this special optimization problem and give a precise convergence rate analysis of our algorithm. The main contribu-
tions are summarized as follows, and the comparison with previous works is shown in table 1.

Table 1: Work comparation with previous studies

Paper Distributed Imperctect Information Stochastic Rate Factor Influence
[24, 23, 25] % ! % O

(
1
k

)
%

[29, 30] ! % ! O
(

1
k

)
!

[28] ! ! % \ !

[27] ! ! ! \ %

[31] ! % % O

(
1√
k

)
%

Our Work ! ! ! O
(

1
k

)
!

(1) We propose a coupled distributed stochastic approximation algorithm that generates iterates {(xxx(k), θθθ(k))} for
the distributed stochastic optimization problem (1) with the unknown parameter learning prescribed by a separate
distributed stochastic optimization problem (2). Our model framework builds upon previous research involving deter-
ministic and stochastic gradient schemes. This is particularly relevant for certain studies where waiting for parameter
learning to complete over an extended period is not feasible, or for real-world problems in which parameter learning
and objective optimization are intertwined.

(2) We characterize the convergence rate of the presented algorithm that combined the distributed consensus
protocol with stochastic gradient descent methods. On the one hand, we prove that the upper bound of expected
consensus error for every agent decay at rateO( 1

k2 ); on the other hand, we also show that the upper bounded of expected
optimization error is O( 1

k ). We then give the sublinear convergence rate and quantitatively characterize some factors
affecting the convergence rate, such as the network size, spectral gap of the weighted adjacency matrix, heterogenous
of individual function, and initial values. We emphasize that the mean-squared error of the decision variable is

bounded by O( 1
nk ) + O

(
1

√
n(1−ρw)

)
1

k1.5 + O
( 1

(1−ρw)2

) 1
k2 , which indicates that the network connectivity characterized by

(1 − ρw) only influences the high order of convergence rate, while the domain rate O( 1
k ) still acts the same as the

centralized algorithm.
(3) We analyze the transient time KT for the proposed algorithm, namely, the number of iterations before the

algorithm reaches its dominant rate. Specially, we show that when the iterate k ≥ KT , the dominant factor influencing
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the convergence rate is related to stochastic gradient descent, while for small k < KT , the main factor influencing
the convergence rate originates from the distributed average consensus method. Finally, we show that the algorithm
asymptotically achieves the same network-independent convergence rate as the centralized scheme.

The paper is organized as follows. We present the algorithm and the related assumptions in section 2. In sec-
tion 3, the auxiliary results supporting the convergence rate analysis is proved. Our main results are in section 4.
Experimental results are implemented in section 5, while the concluding remarks are given in section 6.

Notation. All vectors in this paper are column vectors. The structure of the communication network is modeled
by an undirected weighted graph G = (N ,E,W) in which N = {1, 2, ..., n} represents the set of vertices. E ⊆ N × N
is the set of edges. W = [wi j]n×n ∈ Rn×n denotes the weighted adjacency matrix, wi j > 0 if and only if agent i and
agent j are connected, wi j = w ji = 0 otherwise. Each agent(vertice) has a set of neighbors Ni = { j|(i, j) ∈ E}. The
graph is connected means for every pair of nodes (i, j) there exists a path of edges that goes from i to j. || · || denotes
L2-norm for vectors and Euclidean norm for matrices. The optimal solution denote as (x∗, θ∗).

2. Algorithm and Assumptions

To solve this special optimization problem consisting of the computational problem eq. (1) and the learning
problem eq. (2), we will propose a Coupled Distributed Stochastic Approximation (CDSA) Algorithm and impose
some conditions for rate analysis in this section.

2.1. Algorithm Set Up

As mentioned previously, each agent i only knows its local core computational function fi(x, θ) and parameter
learning function hi(θ), while they are connected by a network G = (N ,E,W) in which agents may communicate and
exchange information with their neighborsNi = { j|(i, j) ∈ E}. At each step k ≥ 0, every agent i holds an estimate of the
decision variable and unknown parameter, denoted by xi(k) and θi(k), respectively. Suppose that every agent has access
to a stochastic first-order oracle that can generate stochastic gradients gi(xi(k), θi(k), ξi(k)) ≜ ∇x fi(xi(k), θi(k), ξi(k))
and ϕi(θi(k), ζi(k)) ≜ ∇θhi(θi(k), ζi(k)) respectively (where ξi, ζi, i = 1, 2, ..., n are independent random variables).
Then, every agent updates its parameters through stochastic gradient descent method to obtain temporary estimates
x̃i(k) and θ̃i(k). Next, each agent communicates with its local neighbors and gathers temporary parameters information
over a static connected network to renew the iterates xi(k + 1) and θi(k + 1) based on the consensus protocol. We
summarize the pseudo-code is in algorithm 1.

Algorithm 1 Coupled Distributed Stochastic Approximation (CDSA)

Initialization: W = [wi j]n×n; (xi(0), θi(0)),∀i ∈ N
Evolution: for k = 0, 1, 2, ...;∀i ∈ N

Compute: stochastic gradient ϕi (θi(k), ζi(k)) and gi(xi(l), θi(k), ξi(k))
Choose: stepsize αk and γk (To be introduced in section 3.3)
Update according to the following stochastic gradient descent method.

x̃i(k) = xi(k) − αkgi(xi(k), θi(k), ξi(k))
θ̃i(k) = θi(k) − γkϕi (θi(k), ζi(k))

Gather information x̃ j(k), θ̃ j(k) from its neighbors j ∈ Ni and renew the iterates by the consensus protocol
below.

xi(k + 1) =
∑

j∈Ni
wi j x̃ j(k)

θi(k + 1) =
∑

j∈Ni
wi jθ̃ j(k)
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We can rewrite Algorithm 1 in a more compact form as follows.

xi(k + 1) =
∑

j∈Ni
wi j(x j(k) − αkg j(xi(l), θi(k), ξi(k))), (4)

θi(k + 1) =
∑

j∈Ni
wi j

(
θ j(k) − γkϕ j (θi(k), ζi(k))

)
. (5)

Define

xxx ≜ [x1, x2, · · · , xn]T ∈ Rn×p, θθθ ≜ [θ1, θ2, · · · , θn]T ∈ Rn×q, (6)
ξ ≜ [ξ1, ξ2, · · · , ξn]T ∈ Rn, ζ ≜ [ζ1, ζ2, · · · , ζn]T ∈ Rn, (7)

g(xxx, θθθ, ξξξ) ≜ [g1(x1, θ1, ξ1), g2(x2, θ2, ξ2), · · · , gn(xn, θn, ξn)]T ∈ Rn×p, (8)
ϕ(θθθ, ζζζ) ≜ [ϕi (θ1, ζ1) , ϕi (θ2, ζ2) , · · · , ϕi (θn, ζn)]T ∈ Rn×q. (9)

Then equation (4) and (5) can be reformulated in the following vector formula.

xxx(k + 1) = W (xxx(k) − αkg(xxx(k), θθθ(k), ξξξ(k))) , (10)
θθθ(k + 1) = W (θθθ(k) − αkϕ(θθθ(k), ζζζ(k))) . (11)

2.2. Assumptions

In this subsection, we will specify the conditions for rate analysis of the CDSA algorithm. We need to make
some assumptions about the properties of objective functions in both learning and computation metrics to get the
global optimal solution. Besides, we impose some constraints on conditional first and second moments of “stochastic
gradient”. Last but not least, we inherit the typical assumptions about communication networks as that of distributed
algorithms.

Assumption 2.2.1 (Function properties) (i) For every θ ∈ Rq, fi(x, θ), i = 1, · · · , n is strongly convex and Lipschitz
smooth in x with constants µx and Lx, i.e.

(∇x fi(x′, θ) − ∇x fi(x, θ))T (x′ − x) ≥ µx||x′ − x||2,∀x, x′ ∈ Rp,
||∇x fi(x′, θ) − ∇x fi(x, θ)|| ≤ Lx||x′ − x||,∀x, x′ ∈∈ Rp.

(ii) For every x ∈ Rp, fi(x, θ), i = 1, · · · , n is strongly convex and Lipschitz smooth in θ with constants µθ and Lθ
respectively, i.e.

(∇x fi(x, θ′) − ∇x fi(x, θ))T (θ′ − θ) ≥ µθ||θ′ − θ||2,∀θ, θ′ ∈ Rq,
||∇x fi(x, θ′) − ∇θ f (x, θ)|| ≤ Lθ||θ′ − θ||,∀θ, θ′ ∈ Rq.

(iii)The learning metric hi(θ) for every i ∈ {1, 2, ..., n} is strongly convex and Lipschitz smooth with constants νθ
and Cθ, i.e.

(h(θ) − h(θ′))T (θ − θ′) ≥ νθ||θ − θ′||2,∀θ, θ′ ∈ Rq,
||∇h(θ) − ∇h(θ′)|| ≤ Cθ||θ − θ′||,∀θ, θ′ ∈ Rq.

Strong convexity assumptions indicate that both computational problem and learning problem have a unique optimal
solution x∗ ∈ Rp and θ∗ ∈ Rq [32]. The Lipschitz continuity of gradient functions ensure that the gradient doesn’t
change arbitrarily fast concerning the corresponding parameter vector. It is widely used in the convergence analyses
of most gradient-based methods, without it, the gradient wouldn’t provide a good indicator for how far to move to
decrease the objective function[32]. These assumptions are satisfied for many machine learning problems, such as
logistic regression, linear regression, and support vector machine (SVM).

Next, we define a new probability space (Z,F ,P), where Z ≜ Ωx × Ωθ,F ≜ Fx × Fθ and P ≜ Px × Pθ. We use
F (k) to denote the σ-algebra generated by {(xi(0), θi(0)), (xi(1), θi(1)), ..., (xi(k), θi(k))|i ∈ N}. Then give the following
assumptions related to the stochastic gradient estimator, which assume that the stochastic gradient is an unbiased
estimator of the true gradient, and the variance of the stochastic gradient is restricted.
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Assumption 2.2.2 (Conditional first and second moments) For all k ≥ 0 and i ∈ N ,there exist σx > 0, σθ >
0,Mx > 0,Mθ > 0, such that

(a) Eξi(k)[gi(xi(k), θi(k), ξi(k))|F (k)] = ∇x fi(xi(k), θi(k)), a.s.,
(b) Eζi(k)[ϕi(θi(k), ζi(k))|F (k)] = ∇hi(θi(k)), a.s.,
(c) Eξi(k)[||gi(xi(k), θi(k), ξi(k)) − ∇x fi(xi(k), θi(k))||2|F (k)],

≤ σ2
x + Mx||∇x fi(xi(k), θi(k))||2 a.s.,

(d) Eζi(k)[||ϕi(θi(k), ζi(k)) − ∇hi(θi(k))||2|F (k)] ≤ σ2
θ + Mθ||∇hi(θi(k))||2, a.s.,

Next, we impose the connectivity condition on the graph, which indicates that after multiple rounds of commu-
nication, information can be exchanged between any two agents. This inherits the typical assumptions on consensus
protocols [33].

Assumption 2.2.3 (Graph and weighted matrix) The graph G is static, undirected, and connected. The weighted
adjacency matrix W is nonnegative and doubly stochastic, i.e.,

W1 = 1, 1T W = 1T (12)

where 1 is the vector of all ones.

Next, we state two lemmas that partially explain the practicability of algorithm 1 based on the aforementioned
assumptions.

Lemma 2.2.1 [34, Lemma 10] For any x ∈ Rp, define x+ = x − α∇ f (x). Suppose that f is strongly convex with
constant µ and its gradient function is Lipschitz continuous with constant L. If α ∈ (0, 2/L), we then have ||x+ − x∗|| ≤
λ||x − x∗||, where λ ≜ max(|1 − αµ|, |1 − αL|).

It can be observed from the above lemma that as long as we choose a proper stepsize (0 < α < 2/L), the distance to
optimizer shrinks by a ratio λ < 1 at each step for strongly convex and smooth functions. While the following lemma
reveals that under distributed algorithm with linear iteration, the gap between the current iteration and consensus
optimal solution is decreased by a ratio ρw < 1 compared to the last iteration.

Lemma 2.2.2 [33, Theorem 1] Let Assumption 2.2.3 hold, and ρw denote the spectural norm of matrix W − 111111T

n . Thus
ρw < 1. Defineωωω+ = Wωωω for anyωωω ∈ Rn×p. We then have ||ωωω+ − 111ω̄|| ≤ ρw||ωωω − 111ω̄||, where ω̄ ≜ 1

n111Tωωω.

The aforementioned lemmas show that both the gradient descent method and distributed linear iteration can move
the decision variable towards the optimal solution with linear decaying rates. Thus, our algorithm consisting of both
approaches might find the optimal solution efficiently. We will rigorously prove the convergence rate of algorithm 1
in the following two sections.

3. Auxiliary Results

In this section, we will present some results to assist subsequent convergence rate analysis. We first give some
preliminary bound which will be used for later proof, then present the supporting lemmas concerning recursions for
expected optimization error and expected consensus error, and finally, we prove that under diminishing stepsize, the
mean-squared distance between the current iterate and the optimal solution is uniformly bounded.

3.1. Preliminary Bound
For simplicity, we denote

x̄(k) ≜
1
n

∑n

i=1
xi(k), θ̄(k) ≜

1
n

∑n

i=1
θi(k), (13)

ḡ(xxx(k), θθθ(k), ξξξ(k)) ≜
1
n

∑n

i=1
gi(xi(k), θi(k), ξi(k)), (14)

∇̄xF(xxx(k), θθθ(k)) ≜
1
n

∑n

i=1
∇x fi (xi(k), θi(k)) . (15)
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We will show in the following lemma that with Assumptions 2.2.1 and 2.2.2, the conditional squared distance
between the gradient ∇̄xF(xxx(k), θθθ(k)) and its estimate can be bounded by linear combinations of squared errors ||xxx(k)−
111xT
∗ ||

2 and ||θθθ(k) − 111θT∗ ||
2. For completeness, its proof is given in appendix Appendix A.

Lemma 3.1.1 Let Assumption 2.2.1 and 2.2.2 hold. Then for any k ≥ 0,

E[||ḡ(xxx(k), θθθ(k), ξξξ(k)) − ∇̄xF(xxx(k), θθθ(k))||2|F (k)]

≤
3MxL2

x

n2 ||xxx(k) − 111xT
∗ ||

2 +
3MxL2

θ

n2 ||θθθ(k) − 111θT∗ ||
2 +

M̄
n
, (16)

where M̄ =
3Mx

∑n
i=1 ||∇x fi(x∗, θ∗)||2

n
+ σ2

x. (17)

The following lemma shows the gap between the gradient of objective function at the consensual points (x̄(k), θ̄(k)),
denoted by 1

n
∑n

i=1 ∇x fi(x̄(k), θ̄(k)), and at current iterates 1
n
∑n

i=1 ∇x fi(xi(k), θi(k)) can also be bounded by linear com-
binations of ||xxx(k) − 111xT

∗ ||
2 and ||θθθ(k) − 111θT∗ ||

2. The precise proof is in appendix Appendix B.

Lemma 3.1.2 Let Assumption 2.2.1 hold. Then for any k ≥ 0,

||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))|| ≤
Lx
√

n
||xxx(k) − 111x̄(k)T || +

Lθ
√

n
||θθθ(k) − 111θ̄(k)T ||. (18)

The above two lemmas, providing the related upper bounds of functions, are derived by virtue of the Lipschitz
smooth assumption. They are essential for the subsequent convergence analysis.

3.2. Supporting Lemmas

In this subsection, we present some results concerning expected optimization error E[||x̄(k) − x∗||2] and expected
consensus error E[||xxx(k) − 111x̄(k)T ||2] for core computational problem, while the discussion of parameter learning
problem can be found in [30]. For ease of presentation, we denote

U1(k) ≜E[||x̄(k) − x∗||2],V1(k) ≜ E[||xxx(k) − 111x̄(k)T ||2], (19)
U2(k) ≜E[||θ̄(k) − θ∗||2],V2(k) ≜ E[||θθθ(k) − 111θ̄(k)T ||2]. (20)

Next we will bound U1(k + 1) and V1(k + 1) by error terms at iteration k. The precise proof of Lemma 3.2.1 is in
appendix Appendix C.

Lemma 3.2.1 Let Assumption 2.2.1∼2.2.3 hold, under algorithm 1,
(AAA) Supposing stepsize αk ≤

1
Lx

, we have

U1(k + 1) ≤ (1 − αkµx)2U1(k) +
α2

k L2
x

n
V1(k) +

α2
k L2
θ

n
V2(k)

+
2LxLθα2

k

n
E[||xxx(k) − 111x̄(k)T ||||θθθ(k) − 111θ̄(k)T ||]

+
2αkLx
√

n
(1 − αkµx)E[||x̄(k) − x∗||||xxx(k) − 111x̄(k)T ||]

+
2αkLθ
√

n
(1 − αkµx)E[||x̄(k) − x∗||||θθθ(k) − 111θ̄(k)T ||]

+ α2
k

3MxL2
x

n2 E[||xxx(k) − 111xT
∗ ||] +

3MxL2
θ

n2 E[||θθθ(k) − 111θT∗ ||] +
M̄
n

 , (21)
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(BBB) Supposing stepsize αk ≤ min{ 1
Lx
, 1

3µx
}, we have

U1(k + 1) ≤(1 −
3
2
αkµx)U1(k) +

6αkL2
x

nµx
V1(k) +

6αkL2
θ

nµx
V2(k)

+ α2
k

3MxL2
x

n2 E[||xxx(k) − 111xT
∗ ||

2] +
3MxL2

θ

n2 E[||θθθ(k) − 111θT∗ ||
2] +

M̄
n

 . (22)

Result BBB restricts the stepsize to smaller one than that of Result AAA. It thus simplifies Result AAA eq. (21) by removing
the cross term to facilitate the later analysis. We can revisit Inequality eq. (22) and reformulate it as U1(k + 1) ≤
(1 − 3

2αkµx)U1(k) + error(αk), where error(α) means an error function that is proportional to α. We should mention
that, since αk > 0 and µx > 0, expected optimization error U1(k) roughly shrinks by a ratio (1 − 3

2αkµx) < 1. Though
there is an error term related to αk, when we choose diminishing stepsize policy and the consensus errors V1(k),V2(k)
as well as E(||xxx(k)−111xT

∗ ||
2), E(||θθθ(k)−111θT∗ ||

2) are bounded, the error may decrease to 0, which indicates the convergence
of U1(k).

We define
∇xF(xxx, θθθ) ≜ [∇x f1(x1, θ1),∇x f2(x2, θ2), · · · ,∇x fn(xn, θn)]T ∈ Rn×p. (23)

In the next lemma, we will show the recursive formulation of expected consensus error V1(k), which is critical for
convergence analysis. For completeness, we give its proof in appendix Appendix D.

Lemma 3.2.2 Let Assumption 2.2.1∼2.2.3 hold, and consider algorithm 1. Then for any k ≥ 0, we have

V1(k + 1) ≤
3 + ρ2

w

4
V1(k) + α2

kρ
2
wnσ2

x + 3α2
kρ

2
w

(
3

1 − ρ2
w
+ Mx

) (
L2

xE[||xxx(k) − 111xT
∗ ||

2]

+L2
θE[||θθθ(k) − 111θT∗ ||

2] + ||∇xF(111xT
∗ ,111θ

T
∗ )||2

)
. (24)

The recursion of expected consensus error can be reformulate as V1(k + 1) ≤ 3+ρ2
w

4 V1(k) + error(α2
kρ

2
w). It is worth

mentioning that V1(k) can roughly shrink by 3+ρ2
w

4 < 1 since ρw < 1. Note that the extra error term in the consensus
error is proportional to α2

k , compared to U1(k) with an error term proportional to αk. We might obtain a qualitative
conclusion that expected consensus error decrease faster than expected optimization error. We will present the precise
proof in the next part that consensus error decrease to 0 at an order O( 1

k2 ) while optimization error at O( 1
k ).

Remark 1 Recalling recursion of U1(k) in (22) and recursion of V1(k) in (24), we could notice that the expected
consensus error is more related to the network connectivity ρw, which is natural because “consensus” is induced from
the distributed algorithm, while “optimization” mainly comes from original optimization method such as stochastic
gradient descent.

3.3. Uniform Bound

From now on, we consider stepsize policy as follows

αk ≜
β

µx(k + K)
, γk ≜

β

µθ(k + K)
, ∀k, (25)

where the β is a positive constant , and

K ≜

⌈
max

3β(1 + Mx)L2
x

µ2
x

,
3β(1 + Mθ)L2

θ

µ2
θ

 ⌉
(26)

with ⌈·⌉ denoting the ceiling function.
Next, We present a lemma that derives a uniform bound on the iterates {θθθ(k)}, {xxx(k)} generated by algorithm 1.

Such a result is helpful for bounding the expected optimization error and expected consensus error.
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Lemma 3.3.1 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize policy (25). We then obtain from
[30, Lemma 8] that for all k ≥ 0,

E[∥θi(k) − θ∗∥2] ≤ Θ̂i ≜ max
∥θi(0) − θ∗∥2,

9∥∇hi(θ∗)∥
µθ

2

+
σ2
θ

(1 + Mθ)L2
θ

 . (27)

Based on (27), we can obtain the following result with Θ̂ ≜
∑n

i=1 Θ̂i,

E[||xxx(k) − 111xT
∗ ||

2] ≤ X̂, where (28)

X̂ ≜ max
{
||xxx(0) − 111xT

∗ ||
2,

11L2
θΘ̂

µ2
x
+

11||∇xF(111xT
∗ ,111θ

T
∗ )||2

µ2
x

+
7nσ2

x

9(1 + Mx)L2
x

}
. (29)

We will give the proof of (28) in appendix Appendix E. Lemma 3.3.1 indicates that although the problem we
consider is unconstrained, the gap between the iterates generated by algorithm CDSA and the optimal solution is
uniformly bounded. It is critical for the analysis of sublinear convergence rates of U1(k) and V1(k). Then based on
this lemma, we will provide uniform upper bounds for the expected optimization error and expected consensus error.

Lemma 3.3.2 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize policy (25). We then have U1(k) ≤
X̂
n ,V1(k) ≤ 4X̂.

Proof By recalling (28) and using Cauchy-Schiwaz inequality, we obtain that

U1(k) = E[||x̄(k) − x∗||2] = E
[∥∥∥∥∥1

n

∑n

i=1
xi(k) −

1
n

∑n

i=1
x∗

∥∥∥∥∥2]
=

1
n2 E

[∥∥∥∥∑n

i=1
(xi(k) − x∗)

∥∥∥∥2]
≤

1
n2 × nE[||xxx(k) − 111xT

∗ ||
2] ≤

X̂
n
,

V1(k) = E[||xxx(k) − 111x̄(k)T ||2] = E[||xxx(k) − 111xT
∗ + 111xT

∗ − 111x̄(k)T ||2]
≤ 2E[||xxx(k) − 111xT

∗ ||
2] + 2E[||111(x∗ − x̄(k)||2)]

≤ 2X̂ + 2n ×
X̂
n
≤ 4X̂.

□

4. Main Results

In this section, we will make full use of previous results and then give a precise convergence rate analysis of
algorithm 1. The elaboration will be divided into three parts. Firstly, we respectively establish the O( 1

k ) and O( 1
k2 )

convergence rate of U1(k) = E[||x̄(k) − x∗||2] and V1(k) = E[||xxx(k) − 111x̄(k)T ||2] based on two supporting lemmas
in section 3.2. Secondly, we show that the convergence rate, measured by the mean-squared error of the decision
variables, is as follows.

1
n

∑n

i=1
E[||xi(k) − x∗||2] ≤

β2M̄
(2β − 1)nµ2

x(k + K)
+

O

(
1

√
n(1−ρw)

)
(k + K)1.5 +

O
(

1
(1−ρw)2

)
(k + K)2 ,

where the first term is only concerned with the stochastic gradient descent method which is network independent,
while the higher-order depends on (1 − ρw). Finally, we characterize the transient time needed for CDSA to approach
the asymptotic convergence rate is O

(
n

(1−ρw)2

)
.

4.1. Sublinear Convergence

We first prove that the expected consensus error V1(k) = E[||xxx(k) − 111x̄(k)T ||2] decays with rate V1(k) = O( 1
k2 ).
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Lemma 4.1.1 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize (25). Recall the definitions of K.
Define

∇HHH(θ) ≜ [∇h1(θ1),∇h2(θ2), · · · ∇hn(θn)] ∈ Rn×q, (30)

K1 ≜
⌈

max
{
2K,

16
1 − ρ2

w

}⌉
. (31)

We then obtain from [30, Lemma 10] that for any k ≥ K1 − K,

V2(k) ≤
V̂2

(k + K)2 with V̂2 ≜ max
{
K2

1Θ̂,
8β2ρ2

wc
′

4

µ2
θ(1 − ρ

2
w)

}
, (32)

where c
′

4 ≜ 2
(

3
1 − ρ2

w
+ Mθ

) (
L2
θΘ̂ + ∥∇HHH(111θT∗ )∥

)
+ nσ2

θ . (33)

Furthermore, we achieve that

V1(k) ≤
V̂1

(k + K)2 with V̂1 ≜ max
{

4K2
1 X̂,

8β2ρ2
wc4

µ2
x(1 − ρ2

w)

}
, (34)

where c4 ≜ 3
(

3
1 − ρ2

w
+ Mx

) (
L2

xX̂ + L2
θΘ̂ + ||∇xF(111xT

∗ ,111θ
T
∗ )||2

)
+ nσ2

x. (35)

Proof We now prove (34). From Lemma 3.2.2 and 3.3.1 it follows that

V1(k + 1) ≤
3 + ρ2

w

4
V1(k) + α2

kρ
2
wc4, ∀k ≥ 0. (36)

We use induction method to show that (34) holds for any k ≥ K1 − K. Recall from Lemma 3.3.2 that V1(k) ≤ 4X̂.

Then for k = K1 −K, V1(k) ≤ 4K2
1 X̂

K2
1
=

4K2
1 X̂

(k+K)2 ≤
V̂1

(k+K)2 by the definition of V̂1 in (34). Suppose that (34) holds for k = k̃.

It suffices to show that (34) holds for k = k̃ + 1.
Note from (31) that k̃ + K ≥ 16

1−ρ2
w

for any k̃ ≥ K1 − K. We then have

(
k̃ + K

k̃ + K + 1

)2

−
3 + ρ2

w

4
= 1 −

2
k̃ + K + 1

+
1

(k̃ + K + 1)2
−

3 + ρ2
w

4

≥
1 − ρ2

w

4
−

2
k̃ + K

≥
1 − ρ2

w

8
.

Divide both sides of above inequality by β
2ρ2

wc4

µ2
x

. Recalling the definition of V̂1 in (34), we have

β2ρ2
wc4

µ2
x

( k̃ + K
k̃ + K + 1

)2

−
3 + ρ2

w

4

−1

≤
8β2ρ2

wc4

µ2
x(1 − ρ2

w)
≤ V̂1. (37)

This implies that
3 + ρ2

w

4
V̂1

(k̃ + K)2
+
β2ρ2

wc4

µ2
x

1
(k̃ + K)2

≤
V̂1

(k̃ + K + 1)2
. (38)

Then by using (36) and the definition of αk in (25), we derive that V1(k̃ + 1) ≤ V̂1

(k̃+K+1)2 , i.e., (34) holds for k = k̃ + 1.
Then the lemma is proved. □

In light of Lemma 4.1.1 and other auxiliary results, we establish the O( 1
k ) convergence rate of expected optimiza-

tion error U1(k) = E[||x̄(k) − x∗||2] in the following lemma.
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Lemma 4.1.2 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize (25), where β > 2. We then have

U1(k) ≤
β2c5

(1.5β − 1)nµ2
x(k + K)

+
(K1 + K)1.5β

(k + K)1.5β

X̂
n

+

3β2(1.5β − 1)c5

(1.5β − 2)nµ2
x
+

12βL2
xV̂1

(1.5β − 2)nµ2
x
+

12βL2
θ V̂2

(1.5β − 2)nµ2
x

 · 1
(k + K)2

for any k ≥ K1 − K, where

c5 ≜
3MxL2

x

n
X̂ +

3MxL2
θ

n
Θ̂ + M̄, (39)

X̂,K1, V̂2, V̂1, M̄ are defined by (29) (31) (32) (34) (17) respectively.

Proof Since αk =
β

µx(k+K) by (25), recalling the definition of K and K1 in (26) and (31), we can see that αk ≤
β
µK1
≤

β
2µK ≤

µx

6(1+Mx)L2
x
≤ min{ 1

3µx
, 1

Lx
}. Then Lemma 3.2.1(B) holds. Together with 3.3.1 it follows that for any k ≥ K1 − K,

U1(k + 1) ≤ (1 −
3
2
αkµx)U1(k) +

6αkL2
x

nµx
V1(k) +

6αkL2
θ

nµx
V2(k) +

α2
kc5

n
. (40)

Recalling the definition of αk =
β

µx(k+K) , we have

U1(k + 1) ≤ (1 −
3β

2(k + K)
)U1(k) +

6βL2
xV1(k)

nµ2
x(k + K)

+
6βL2

θV2(k)
nµ2

x(k + K)
+
β2c5

nµ2
x
·

1
(k + K)2 . (41)

Thus
U1(k) ≤

∏k+K−1

t=K1+K
(1 −

3β
2t

)U1(K1)

+
∑k+K−1

t=K1+K

∏k+K−1

j=t+1
(1 −

3β
2 j

)
6βL2

x

nµ2
x
·

V1(t − K)
t

+
6βL2

θ

nµ2
x
·

V2(t − K)
t

+
β2c5

nµ2
x
·

1
t2

 .
Recall from [30, lemma 11] that for any ∀1 < j < k, j ∈ N and 1 < γ ≤ j/2,

∏k−1
t= j (1 − γt ) ≤ jγ

kγ . Then we achieve

U1(k) ≤
(K1 + K)1.5β

(k + K)1.5β U1(K1)

+
∑k+K−1

t=K1+K

(t + 1)1.5β

(k + K)1.5β

6βL2
x

nµ2
x
·

V1(t − K)
t

+
6βL2

θ

nµ2
x
·

V2(t − K)
t

+
β2c5

nµ2
x
·

1
t2


=

(K1 + K)1.5β

(k + K)1.5β U1(K1) +
6βL2

θ

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5βV2(t − K)
t

+

6βL2
x

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5βV1(t − K)
t

+
β2c5

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5β

t2 .

In light of Lemma 4.1.1, we have V1(k − K) ≤ V̂1
k2 and V2(k − K) ≤ V̂2

k2 for any k ≥ K1 − K. Hence

U1(k) ≤
β2c5

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5β

t2 +
(K1 + K)1.5β

(k + K)1.5β U1(K1)

+
6βL2

xV̂1

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5β

t3 +
6βL2

θ V̂2

nµ2
x(k + K)1.5β

∑k+K−1

t=K1+K

(t + 1)1.5β

t3 . (42)

By the proof in [30, lemma 12], when b > a ≥ K1, we have∑b

t=a

(t + 1)1.5β

t2 ≤
b1.5β−1

1.5β − 1
+

3(1.5β − 1)b1.5β−2

1.5β − 2
,

∑b

t=a

(t + 1)1.5β

t3 ≤
2b1.5β−2

1.5β − 2
. (43)
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Thus

U1(k) ≤
β2c5

(1.5β − 1)nµ2
x(k + K)

+
3β2(1.5β − 1)c5

(1.5β − 2)nµ2
x
·

1
(k + K)2 +

(K1 + K)1.5β

(k + K)1.5β U1(K1)

+
12βL2

xV̂1

(1.5β − 2)nµ2
x
·

1
(k + K)2 +

12βL2
θ V̂2

(1.5β − 2)nµ2
x
·

1
(k + K)2 .

(44)

Recalling Lemma 3.3.2 yields the desired result. □

4.2. Rate Estimate

In this subsection, we will discuss the factors that affect the convergence rate of the algorithm, especially the
network size n, the spectral gap (1−ρw), the summation of initial optimization errors

∑n
i=1 ||xi(0)− x∗||2 and consensus

errors
∑n

i=1 ||θi(0) − θ∗||2, and the heterogenous of computational functions and learning functions characterized by∑n
i=1 ||∇x fi(x∗, θ∗)||2 and

∑n
i=1 ||∇hi(θ∗)||2. Firstly, we bound the constants appearing in Lemmas 4.1.1 and 4.1.2 by the

aforementioned factors. We then utilize them to simplify the sublinear rate of the expected optimization error, based
on which, we can improve the convergence rate and derive the main result for Algorithm 1.

Lemma 4.2.1 Denote A1 ≜
∑n

i=1 ||xi(0) − x∗||2, B1 ≜
∑n

i=1 ||∇x fi(x∗; θ∗)||2,
A2 ≜

∑n
i=1 ||θi(0) − θ∗||2, and B2 ≜

∑n
i=1 ||∇hi(θ∗)||2. Then the orders of constants’ X̂ (29), Θ̂ (27), V̂1 (34), V̂2 (32), c4

(35) and c5 (39) are as follow.

X̂ = O(A1 + A2 + B1 + B2 + n), Θ̂ = O(A2 + B2 + n),

V̂1 = O

(
A1 + A2 + B1 + B2 + n

(1 − ρw)2

)
, V̂2 = O

(
A2 + B2 + n

(1 − ρw)2

)
,

c4 = O

(
A1 + A2 + B1 + B2 + n

1 − ρw

)
, c5 = O

(A1 + A2 + B1 + B2 + n
n

)
.

Proof The upper bound of Θ̂ and V̂2 deal only with unknown parameter θ, which can be inherited directly from [30,
lemma 13]. As for X̂, recalling (29) we have

X̂ ≤||xxx(0) − 111xT
∗ ||

2 +
11L2

θΘ̂

µ2
x
+

11||∇xF(111xT
∗ ,111θ

T
∗ )||2

µ2
x

+
7nσ2

x

9(1 + Mx)L2
x

=O(A1 + A2 + B1 + B2 + n).
(45)

From the definition of c4 in (35), it follows that

c4 = 3
(

3
1 − ρ2

w
+ Mx

)
(L2

xX̂ + L2
θΘ̂ + ||∇xF(111xT

∗ ,111θ
T
∗ )||2) + nσ2

x = O

(
A1 + A2 + B1 + B2 + n

1 − ρw

)
(46)

Note from (31) and (26) that K1 = O
(

1
1−ρw

)
. Then by (34) , we obtain

V̂1 = max
{

4K2
1 X̂,

8β2ρ2
wc4

µ2
x(1 − ρ2

w)

}
= O

(
A1 + A2 + B1 + B2 + n

(1 − ρw)2

)
. (47)

In light of equation (39), we can achieve

c5 =
3MxL2

x

n
X̂ +

3MxL2
θ

n
Θ̂ + M̄x = O

(A1 + A2 + B1 + B2 + n
n

)
. (48)

□
The simplification of these constants makes it convenient for later analysis. In light of relation (34), since V̂1 is the

only constant, the convergence result of expected consensus error V1(k) can be easily obtained. While the expected
optimization error U1(k) needs to be reformulated more concisely.
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Corollary 4.1 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize policy (25), where β > 2. Then
we obtain from [30, Corollary 1] that

U2(k) ≤
β2c′5

(1.5β − 1)nµ2
x
·

1
(k + K)

+
c′6

(k + K)2 , ∀k ≥ K1 − K,

where c′5 ≜
2MθL2

θ

n Θ̂+
2Mθ

∑n
i=1 ∥∇hi(θ∗)∥2

n +σ2
θ , c′6 = O

(
A2+B2+n
n(1−ρw)2

)
. Based on which, we further have that for any k ≥ K1−K,

U1(k) ≤
β2c5

(1.5β − 1)nµ2
x
·

1
(k + K)

+
c6

(k + K)2 , (49)

where c5 is defined in (39), and c6 = O
(

A1+A2+B1+B2+n
n(1−ρw)2

)
.

Proof In light of Lemma 4.1.2 and Lemma 4.2.1, we can obtain that

U1(k) ≤
β2c5

(1.5β − 1)nµ2
x(k + K)

+
(K1 + K)1.5β−2

(k + K)1.5β−2

X̂
n
·

1
(k + K)2

+

3β2(1.5β − 1)c5

(1.5β − 2)nµ2
x
+

12βL2
xV̂1

(1.5β − 1)nµ2
x
+

12βL2
θ V̂2

(1.5β − 1)nµ2
x

 · 1
(k + K)2

=
β2c5

(1.5β − 1)nµ2
x
·

1
(k + K)

+ O

(A1 + A2 + B1 + B2 + n
n

) 1
(k + K)2

+

[
O

(A1 + A2 + B1 + B2 + n
n2

)
+ O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2

)
+ O

(
A2 + B2 + n
n(1 − ρw)2

)]
1

(k + K)2

≤
β2c5

(1.5β − 1)nµ2
x
·

1
(k + K)

+ O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2

)
1

(k + K)2 .

□
Based on this corollary, together with Lemma 3.2.1, we further elaborate the convergence result of Algorithm

1. Especially, we give an upper bound of 1
n
∑n

i=1 E
[
∥xi(k) − x∗∥2

]
and formulate it in a way to make an intuitive

comparison with the centralized algorithm.

Theorem 4.1 Let Assumption 2.2.1∼2.2.3 hold. Consider algorithm 1 with stepsize policy (25), where β > 2. Then
for any k ≥ K1 − K, we have

1
n

∑n

i=1
E[||xi(k) − x∗||2] ≤

β2M̄
(2β − 1)nµ2

x(k + K)

+ O

(
A1 + A2 + B1 + B2 + n

n
√

n(1 − ρw)

)
1

(k + K)1.5 + O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2

)
1

(k + K)2 , (50)

where M̄ is defined in (17).

Proof For k ≥ K1 − K, by recalling Lemma 3.2.1(AAA) and the definition of U1(k),V1(k) and U2(k),V2(k) in (19) and
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(20), we have

U1(k + 1) ≤ (1 − αkµx)2U1(k) +
α2

k L2
x

n
V1(k) +

α2
k L2
θ

n
V2(k) +

2LxLθα2
k

n

√
V1(k)V2(k)

+
2αkLx
√

n

√
U1(k)V1(k) +

2αkLθ
√

n

√
U1(k)V2(k)

+ α2
k

3MxL2
x

n2 (nU1(k) + V1(k)) +
3MxL2

θ

n2 (nU2(k) + V2(k)) +
M̄
n


= (1 − 2αkµx)U1(k) + α2

k

(
µ2

x +
3MxL2

x

n

)
U1(k) + α2

k ·
3MxL2

θ

n
U2(k)

+
α2

k L2
x

n

(
1 +

3Mx

n

)
V1(k) +

α2
k L2
θ

n

(
1 +

3Mx

n

)
V2(k) +

2LxLθα2
k

n

√
V1(k)V2(k)

+
2αkLx
√

n

√
U1(k)V1(k) +

2αkLθ
√

n

√
U1(k)V2(k) +

α2
k M̄
n
,

where the first inequality follows the Cauchy-Schwarz inequality in the probabilistic form and the fact that

E[||xxx(k) − 111xT
∗ ||

2] = E
[
∥x(k) − 111x̄T + 111x̄T − 111xT

∗ ∥
2
]

≤ 2E
[
∥x(k) − 111x̄T ∥2

]
+ 2E

[
∥111x̄T − 111xT

∗ ∥
2
]

(51)

= 2E
[
∥x(k) − 111x̄T ∥2

]
+ 2nE

[
∥x̄ − x∗∥2

]
= 2V1(k) + 2nU1(k).

Thus, due to αk =
β

µx(k+K) , we have

U1(k + 1) ≤
(
1 −

2β
k + K

)
U1(k) +

β2U1(k)
(k + K)2

(
1 +

3MxL2
x

nµ2
x

)
+

3MxL2
θβ

2U2(k)
nµ2

x(k + K)2

+
β2L2

x

nµ2
x

(
1 +

3Mx

n

)
V1(k)

(k + K)2 +
β2L2

θ

nµ2
x

(
1 +

3Mx

n

)
V2(k)

(k + K)2

+
2LxLθβ2

nµ2
x

√
V1(k)V2(k)
(k + K)2 +

2βLx
√

nµx

√
U1(k)V1(k)

k + K
+

2βLθ
√

nµx

√
U1(k)V2(k)

k + K
+
β2M̄
nµ2

x

1
(k + K)2

Denote by c7 = 1 + 3MxL2
x

nµ2
x

and c8 = 1 + 3Mx
n . Then in light of [30, Lemma 11], we obtain that

U1(k) ≤
∏k+K−1

t=K1+K

(
1 −

2β
t

)
U1(K1) +

∑k+K−1

t=K1+K

(∏k+K−1

i=t+1

(
1 −

2β
i

)) [
β2M̄
nµ2

xt2

+
3MxL2

θβ
2

nµ2
x

U2(t − K)
t2 +

β2L2
xc8

nµ2
x

V1(t − K)
t2 +

β2L2
θc8

nµ2
x

V2(t − K)
t2 +

2LxLθβ2

nµ2
x

√
V1(t − K)V2(t − K)

t2

+
β2c7U1(t − K)

t2 +
2βLx
√

nµx

√
U1(t − K)V1(t − K)

t
+

2βLθ
√

nµx

√
U1(t − K)V2(t − K)

t

]
≤

(K1 + K)2β

(k + K)2β U1(K1) +
∑k+K−1

t=K1+K

(t + 1)2β

(k + K)2β

[
β2M̄
nµ2

xt2 +
β2c7U1(t − K)

t2

+
β2L2

xc8

nµ2
x

V1(t − K)
t2 +

β2L2
θc8

nµ2
x

V2(t − K)
t2 +

2LxLθβ2

nµ2
x

√
V1(t − K)V2(t − K)

t2

+
3MxL2

θβ
2U2(t − K)

nµ2
xt2 +

2βLx
√

U1(t − K)V1(t − K)
√

nµxt
+

2βLθ
√

U1(t − K)V2(t − K)
√

nµxt

]
.

(52)
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According to Corollary 4.1 and Lemma 4.1.1, we have

U1(k) ≤
(K1 + K)2β

(k + K)2β U1(K1) +
1

(k + K)2β ·
β2M̄
nµ2

x

∑k+K−1

t=K1+K

(t + 1)2β

t2

+
β2c7

(k + K)2β

∑k+K−1

t=K1+K

(t + 1)2β

t2

[
β2c5

(1.5β − 1)nµ2
x
·

1
t
+

c6

t2

]
+

3MxL2
θβ

2

nµ2
x(k + K)2β

∑k+K−1

t=K1+K

(t + 1)2β

t2

 β2c
′

5

(1.5β − 1)nµ2
θ

·
1
t
+

c
′

6

t2


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β2L2
xc8

nµ2
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t2 ·
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+
β2L2
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nµ2
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2LxLθβ2

nµ2
x(k + K)2β
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√
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+
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√
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(t + 1)2β

t

√
β2c5

(1.5β − 1)nµ2
x
·

1
t
+

c6

t2

√
V̂1

t2

+
2βLθ

√
nµx(k + K)2β

∑k+K−1

t=K1+K

(t + 1)2β

t

√
β2c5

(1.5β − 1)nµ2
x
·

1
t
+

c6

t2

√
V̂2

t2 .

Since
√

a + b ≤
√

a +
√

b, we can achieve√
β2c5

(1.5β − 1)nµ2
x
·

1
t
+

c6

t2 ·

√
V̂1

t2 ≤ β

√
c5V̂1

(1.5β − 1)nµ2
x
·

1
t1.5 +

√
c6V̂1

t2 , (53)

then

U1(k) ≤
β2M̄

∑k+K−1
t=K1+K

(t+1)2β

t2

(k + K)2βnµ2
x
+

(K1 + K)2βU1(K1)
(k + K)2β +

2β2 √c5(Lx

√
V̂1 + Lθ

√
V̂2)

∑k+K−1
t=K1+K

(t+1)2β

t2.5√
1.5β − 1 × nµ2

x(k + K)2β

+
1

(k + K)2β

 β4c5c7

(1.5β − 1)nµ2
x
+

3Mxβ
4L2
θc
′

5
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2
θ

+
2β(Lx

√
c6V̂1 + Lθ

√
c′6V̂2)

√
nµx


∑k+K−1

t=K1+K

(t + 1)2β

t3

+
1

(k + K)2β

β2c6c7 +
3Mxβ

2L2
θc
′

6

nµ2
x

+
β2(L2

xV̂1 + L2
θ V̂2)c8

nµ2
x

+
2LxLθβ2

√
V̂1V̂2

nµ2
x

∑k+K−1

t=K1+K

(t + 1)2β

t4 .

Recall (43) and note that∑b

t=a

(t + 1)2β

t2.5 ≤
∑b

t=a

2(t + 1)2β

(t + 1)2.5 ≤

∫ b+1

a+1
2t2β−2.5dt ≤

2(b + 1)2β−1.5

2β − 1.5
,∑b

t=a

(t + 1)2β

t4 ≤
∑b

t=a

2(t + 1)2β

(t + 1)4 ≤

∫ b+1

a+1
2t2β−4dt ≤

2(b + 1)2β−3

2β − 4
, ∀a ≥ 16.

(54)

Then by noticing that c7 = c8 = O(1) and using Lemma 4.2.1, we have

U1(k) ≤
β2M̄

(2β − 1)nµ2
x(k + K)

+ O

(
A1 + A2 + B1 + B2 + n

n
√

n(1 − ρw)

)
1

(k + K)1.5 + O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2

)
1

(k + K)2

+ O

(
A1 + A2 + B1 + B2 + n
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)
1

(k + K)3 + O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2β

)
1

(k + K)2β

=
β2M̄

(2β − 1)nµ2
x(k + K)

+ O

(
A1 + A2 + B1 + B2 + n

n
√

n(1 − ρw)

)
1

(k + K)1.5 + O

(
A1 + A2 + B1 + B2 + n

n(1 − ρw)2

)
1

(k + K)2 .
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By recalling (51), we have 1
n
∑n

i=1 E[||xi(k) − x∗||2] ≤ 2U1(k) + 2V1(k)
n . This together with (34) and the estimate of V̂1 in

Lemma 4.2.1 prove the result. □
In light of relation (50), by recalling the definitions of A1, A2, B1, B2 in Lemma 4.2.1, we can see that the conver-

gence rate is proportional to initial errors for both computational problem
∑n

i=1 ∥xi(0) − x∗∥2 and parameter learning
problem

∑n
i=1 ∥θi(0) − θ∗∥2. It is worth noting that the heterogeneity of agents’ individual cost functions, measured by

B1 =
∑n

i=1 ||∇x fi(x∗; θ∗)||2, B2 =
∑n

i=1 ||∇hi(θ∗)||2, also influence the convergence rate in a similar way. Though θ∗, x∗
are respectively the optimal solutions to minθ 1

n
∑n

i=1 hi(θ) and minx
1
n
∑n

i=1 fi (x; θ∗), they are usually not the optimal
solution to each local function hi(θ), fi(x, θ). Therefore, the bigger the difference between the local costs, the slower
the convergence rate of the algorithm.

Remark 2 Here we give some comments regerading the influence of the network size n and the spectral gap (1 − ρw)
on the convergence rate. Since A1, A2, B1 and B2 are all O(n), we can simplify the relation (50) as follow.

1
n

∑n

i=1
E[||xi(k) − x∗||2] ≤

β2M̄
(2β − 1)nµ2

x(k + K)
+

O

(
1

√
n(1−ρw)

)
(k + K)1.5 +

O
(

1
(1−ρw)2

)
(k + K)2 . (55)

It is noticed that the algorithm converges faster for better network connectivity (i.e., smaller ρw). For example, a fully
connected graph is the most efficient connection topology since ρw = 0. In contrast, it holds 1 − ρw → 0 as n → ∞
for the cycle graph, which indicates that the algorithm will converge very slowly for large-scale cycle graphs. The
following table taken from [35, Chapter 4] characterizes the relation between network size n and the spectral gap.
Considering plugging the order concerning n from the table into relation (55), we may obtain the quantitive influence
of the network size on the convergence rate.

Table 2: Relation between the network size n and the spectral gap 1 − ρw

Network Topology Spectral Gap(1 − ρw) Network Topology Spectral Gap(1 − ρw)

Path Graph O( 1
n2 ) 2D-mesh Graph O( 1

n )

Cycle Graph O( 1
n2 ) Complete Graph 1

There are other factors such as the strong convexity and Lipschitz smoothness parameters, as well as the variance
of the stochastic gradient, all of which can also affect the convergence rate. We will not include a quantitative analysis
of these factors since the big O constant in the convergence rate is already quite complex and we often use the relation
like µx ≤ Lx for simplicity. While some intuitive property can be naturally obtained from (55): the larger convexity
and Lipschitz smoothness parameters can lead to the faster rate; the higher variance of stochastic gradient descent
leads to a lower convergence rate since term M̄ defined by (17) gets bigger.

4.3. Transient Time

In this subsection, we will establish the transient iteration needed for the CDSA algorithm to reach its dominant
rate.

Firstly, we recall the convergence rate from [30, Theorem 2] for the centralized stochastic gradient descent,

E
[
∥x(k) − x∗∥2

]
≤

β2M̄
(2β − 1)nµ2k

+ O

(
1
n

)
1
k2 . (56)

Comparing it to (55), we may conclude that our distributed algorithm converges to the optimal solution at a comparable
rate to the centralized algorithm, since they are both of the same order O( 1

k ). Besides, our work demonstrates that
the network connectivity ρw does not influence the term O( 1

k ), it only appears in higher-order terms O( 1
k1.5 ) and O( 1

k2 ).
Though our distributed algorithm asymptotically reaches the same order of convergence rate as that of the centralized
algorithm, it’s unclear how many iterations it takes to reach the dominate order O( 1

k ) since there are two extra error
terms O( 1

k1.5 ) and O( 1
k2 ) induced by averaging consensus. We refer to the number of iterations before distributed

stochastic approximation method reaches its dominant rate as transient iterations, i.e., when iteration k is relatively
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small, the terms other than n and k still dominate the convergence rate[36, Section 2]. The next theorem state the
iterations needed for Algorithm 1 to reach its dominant rate.

Theorem 4.2 Let Assumption 2.2.1∼2.2.3 hold, and set stepsize as (25), where β > 2. It takes KT = O
( n

(1−ρw)2

)
itera-

tion counts for algorithm 1 to reach the asymptotic rate of convergence, i.e. when k ≥ KT , we have 1
n
∑n

i=1 E[||xi(k) −

x∗||2] ≤ β2 M̄
(2β−1)nµ2

xkO(1).

Proof Recalling relation in eq. (55), we see that for any k ≥ O
(

n
(1−ρw)2

)
,

β2M̄
(2β − 1)nµ2

x(k + K)
≥ O(

1
√

n(1 − ρw)
)

1
(k + K)1.5 ,

β2M̄
(2β − 1)nµ2

x(k + K)
≥ O

(
1

(1 − ρw)2

)
1

(k + K)2 .

□
5. Experiments

In this section, we will provide numerical examples to verify our theoretical findings, and carry out experiments
by Bluefog1. It is a python library that can be connected to the NVIDIA Collective Communications Library (NCCL)
for multi-GPU computing or Message Passing Interface (MPI) library for multi-CPU computing[37], i.e., each agent
in our distributed experiment scenario is CPU.

5.1. Ridge Regression
Consider the following ridge-distributed regression problem with an unknown regularization parameter θ∗,

Cx(θ∗) : min
x∈Rp

∑n

i=1
Eui,vi

[(
uT

i x − vi

)2
+ θ∗||x||2

]
,

where θ∗ can be obtained by the distributed learning problem below,

Lθ : θ∗ = argmin
∑n

i=1
(θ − αi)2 .

Specially, for agent i ∈ N ≜ {1, · · · , n}, its local objective functions are specified as

fi(x; θ) = min
x

Eui,vi

[(
uT

i x − vi

)2
+ θ||x||2

]
, hi(θ) = min

θ
(θ − αi)2.

Here (ui, vi) are data sample collected by each agent i, where ui ∈ Rp are the sample features, while vi ∈ R represent
the observed outputs.

Parameter settings. Set p = 5 and suppose that for all i ∈ N , each component of ui ∈ Rp is an independent
identical distribution in U(−0.5, 0.5), and vi is drawn according to vi = uT

i x̃i + ϵi, where ϵi is an gaussian random
variable specified by N(0, 0.01), and x̃i = (1 3 5 4 9) is a predefined parameter. Set αi = 0.01 × i. It can be
easily calculated that the optimal solutions are θ∗ = 0.005(n + 1), and x∗ =

[∑n
i=1 Eui (uiuT

i ) + nθ∗I
]
Eui (uiuT

i ) =
1
12 ( 1

12 + θ∗)
−1 1

n
∑n

i=1 x̃i.
We compare the performance of Algorithm 1 under the path graph and complete graph topology with different

network size n. In light of the results in table 2 of the path graph and complete graph, convergence rate estimation can
be reformulated.

Path :
1
n

∑n

i=1
E[||xi(k) − x∗||2] ≤

β2M̄
(2β − 1)nµ2

x(k + K)
+
O(n3/2)

(k + K)1.5 +
O(n2)

(k + K)2 , (57)

Complete :
1
n

∑n

i=1
E[||xi(k) − x∗||2] ≤

β2M̄
(2β − 1)nµ2

x(k + K)
+
O(1/

√
n)

(k + K)1.5 +
1

(k + K)2 . (58)

1https://github.com/Bluefog-Lib/bluefog
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We run Algorithm 1, where the initial values are set as (xi(0), θi(0)) = (0005, 1)∀i, and the weighted adjacency matrix
of the communication network is built according to the Metropolis-Hastings rule [12]. According to (25), we choose
the stepsizes as αk = γk =

20
k+20 for any k ≥ 0.

(a.1)n=10 path graph topology (b.1)n=10 complete graph topology
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(a.2) The performance of path graph
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(b.2) The performance of complete graph

Figure 2: The performance of CDSA between path graph and complete graph topology. The results are averaged over 200 Monte Carlo sampling.

We demonstrate the empirical results in Fig. 2, where the empirical mean-squared error 1
n
∑n

i=1 E[||xi(k) − x∗||2]
is calculated by averaging through 200 sample paths. We can see from the Subfigure (a.2) that for the path graph,
when the iterate k is small, the larger network size n will lead to the higher mean-squared error 1

n
∑n

i=1 E[||xi(k)− x∗||2].
However, with the increase of k, we observe a phase transition that a larger network size n will lead to a smaller mean-
squared error 1

n
∑n

i=1 E[||xi(k)−x∗||2] (namely faster convergence rate). This phenomenon matches the theoretical result
(57): when k is small, the main factor influencing the convergence rate is the second and third term concerning the
network size n via the distributed consensus protocol, while when k is large, the first term inherited from centralized
stochastic gradient descent dominates the convergence rate.

Compared it to the empirical performance of the complete graph shown in subfigure (b.2), we can find that from
the beginning to the end, a larger network n generates smaller errors, which also matches (58).
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5.2. Logistic Regression

We further consider convex but not strongly convex problem, and use logistic regression to demonstrate that our
algorithm can also leads to asymptotic convergence.

Consider the binary classification via logistic regression with unknown regularization parameter θ∗,

Cη(θ∗) : min
η

∑n

i=1

∑mi

j=1
ln

(
1 + e−η

T xi jli j
)
+
θ∗
2
||η||2,

where θ∗ can be obtained by a distributed parameter learning problem as follow,

Lθ : θ∗ = argmin
∑n

i=1
(θ − αi)2 .

As for agent i, its its own local computational problem and parameter learning problem are as follows.

fi(η; θ) = min
η

∑mi

j=1
ln

(
1 + e−η

T xi jli j
)
+
θ∗
2n
||η||2, hi(θ) = min

θ
(θ − αi)2.

In this scenario, we set αi = 0.01 × i and let each agent i ∈ N possess dataset Di ≜ {(xi j, li j) : j = 1, · · ·mi},
where xi j represents a three-dimensional sample feature where the first dimension is 1 and the other two dimension
are selected from N((1, 0)T , III) or N((0, 1)T , III), while li j is the related sample label 1 or −1 respectively. Suppose that
every agent holds a number of positive samples and negative samples which only accessible to itself.
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Figure 3: The performance of CDSA of 25 agents under four topologies in table 2 for binary classification via logistic regression. The results are
averaged over 200 Monte Carlo sampling.

We now compare the empirical performance of Algorithm 1 under four classes of graph topologies, path graph,
cycle graph, 2D-mesh graph, and complete graph. We set n = 25 and run Algorithm 1 with initial values (ηi(0), θi(0)) =
0004 for all i ∈ N , where the stepsize and weighted adjacency matrix are set the same as Ridge Regression. The empirical
results are shown in fig. 3, which shows that the complete graph has best performance, 2D-mesh graph has the second-
best performance, while the path graph displays the worst performance. These empirical findings match that listed in
table 2, where the 2D-mesh graph has a larger spectral gap than the path graph and cycle path, hence leads to a lower
mean-squared error.
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6. Conclusions

In this work, we consider the distributed optimization problem minx
1
n
∑n

i=1 fi(x; θ∗) with the unknown parameter
θ∗ collaboratively solved by a distributed parameter learning problem minθ 1

n
∑n

i=1 hi(θ). Each agent only has access
to its local computational problem fi(x, θ) and its parameter learning problem hi(θ). We propose a coupled distributed
stochastic approximation algorithm for resolving this special distributed optimization, where agents can exchange
information about decision variables x and learning parameter θ with neighbors over a connected network. We quanti-
tatively characterize the factors that influence the rate of convergence, and validates that the algorithm asymptotically
achieves the optimal network-independent convergence rate compared to the centralized algorithm scheme. In addi-
tion, we analyze the transient time KT , and show that when the iterate k ≥ KT , the dominate factor influencing the
convergence rate is related to stochastic gradient descent, while for small k < KT , the main factor influencing the
convergence rate originates from the distributed average consensus method. Future work will consider more gen-
eral problems under weakened assumptions. It is of interests to explore the accelerated algorithm to obtain a faster
convergence rate.
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Appendix A. Proof of Lemma 3.1.1

Proof By using Assumption 2.2.2, we obtain that

E[||ḡ(xxx(k), θθθ(k), ξξξ(k)) − ∇̄xF(xxx(k), θθθ(k))||2|F (k)]

= E
[∥∥∥∥1

n

∑n

i=1
gi(xi(k), θi(k), ξi(k)) −

1
n

∑n

i=1
∇x fi(xi(k), θi(k))

∥∥∥∥2
|F (k)

]
=

1
n2

∑n

i=1
E

[
||gi(xi(k), θi(k), ξi(k)) − ∇x fi(xi(k), θi(k))||2|F (k)

]
≤

1
n2

∑n

i=1

(
σ2

x + Mx||∇x fi(xi(k), θi(k))||2
)
≤
σ2

x

n
+

Mx
∑n

i=1 ||∇x fi(xi(k), θi(k))||2

n2 , (A.1)

where the second equality use the fact that ξi,∀i are independent random variables. By recalling assumption 2.2.1, we
achieve

||∇x fi(xi(k), θi(k))||2 = ||∇x fi(xi(k), θi(k)) − ∇x fi(x∗, θi(k))
+ ∇x fi(x∗, θi(k)) − ∇x fi(x∗, θ∗) + ∇x fi(x∗, θ∗)||2

≤ 3||∇x fi(xi(k), θi(k)) − ∇x fi(x∗, θi(k))||2 + 3||∇x fi(x∗, θi(k))
− ∇x fi(x∗, θ∗)||2 + 3||∇x fi(x∗, θ∗)||2

≤ 3L2
x||xi(k) − x∗||2 + 3L2

θ ||θi(k) − θ∗||2 + 3||∇x fi(x∗, θ∗)||2. (A.2)

Combining (A.2) and (A.1) yields the result (16). □
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Appendix B. Proof of Lemma 3.1.2

Proof By recalling the definition of x̄(k), θ̄(k) and ∇̄xF(xxx(k), θθθ(k)) in (13) and (15), using Assumption 2.2.1, we have

||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))||

=||
1
n

∑n

i=1
∇x fi(x̄(k), θ̄(k)) −

1
n

∑n

i=1
∇x fi(xi(k), θi(k))||

≤
1
n

∑n

i=1
||∇x fi(x̄(k), θ̄(k)) − ∇x fi(xi(k), θi(k))||

=
1
n

∑n

i=1
||∇x fi(x̄(k), θ̄(k)) − ∇x fi(xi(k), θ̄(k)) + ∇x fi(xi(k), θ̄(k)) − ∇x fi(xi(k), θi(k))||

≤
1
n

n∑
i=1

[
||∇x fi(x̄(k), θ̄(k)) − ∇x fi(xi(k), θ̄(k))|| + ||∇x fi(xi(k), θ̄(k)) − ∇x fi(xi(k), θi(k))||

]
≤

1
n

(
Lx

∑n

i=1
||x̄(k) − xi(k)|| + Lθ

∑n

i=1
||θ̄(k) − θi(k)||

)
≤

Lx
√

n
||xxx(k) − 111x̄(k)T || +

Lθ
√

n
||θθθ(k) − 111θ̄(k)T ||,

where the last relation follows from Cauchy-Schwarz inequality. □

Appendix C. Proof of Lemma 3.2.1

Proof According to the definitions of x̄(k) and ḡ(xxx(k), θθθ(k), ξξξ(k)) in (13) and (14), together with
∑n

i=1 wi j = 1 form
Assumption 2.2.3, we have

x̄(k + 1) =
1
n

∑n

i=1

(∑n

j=1
wi j

(
x j(k) − αkg j(x j(k), θ j(k), ξ j(k))

))
=

1
n

n∑
j=1

x j(k) − αk ·
1
n

n∑
j=1

g j(x j(k), θ j(k), ξ j(k)) = x̄(k) − αkḡ(xxx(k), θθθ(k), ξξξ(k)). (C.1)

Thus,
||x̄(k + 1) − x∗||2 = ||x̄(k) − αkḡ(xxx(k), θθθ(k), ξξξ(k)) − x∗||2

= ||x̄(k) − αk∇̄xF(xxx(k), θθθ(k)) − x∗ + αk∇̄xF(xxx(k), θθθ(k)) − αkḡ(xxx(k), θθθ(k), ξξξ(k))||2

= ||x̄(k) − αk∇̄xF(xxx(k), θθθ(k)) − x∗||2 + α2
k ||∇̄xF(xxx(k), θθθ(k)) − ḡ(xxx(k), θθθ(k), ξξξ(k))||2

+ 2αk(x̄(k) − αk∇̄xF(xxx(k), θθθ(k)) − x∗)T
(
∇̄xF(xxx(k), θθθ(k)) − ḡ (xxx(k), θθθ(k), ξξξ(k))

)
.

In light of Assumption 2.2.2 and Lemma 3.1.1, by taking conditional expectation on both sides of above equation, we
have

E[|x̄(k + 1) − x∗||2|F (k)]| ≤ ||x̄(k) − αk∇̄xF(xxx(k), θθθ(k)) − x∗||2

+ α2
k

3MxL2
x

n2 ||xxx(k) − 111xT
∗ ||

2 +
3MxL2

θ

n2 ||θθθ(k) − 111θT∗ ||
2 +

M̄
n

 . (C.2)

Next, we bound the first term on the right side of (C.2).
||x̄(k) − αk∇̄xF(xxx(k), θθθ(k)) − x∗||2

= ||x̄(k) − αk∇x f (x̄(k); θ̄(k)) − x∗ + αk∇x f (x̄(k), θ̄(k)) − αk∇̄xF(xxx(k), θθθ(k))||2

= ||x̄(k) − αk∇x f (x̄(k), θ̄(k)) − x∗||2 + α2
k ||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))||2

+ 2αk(x̄(k) − αk∇x f (x̄(k), θ̄(k)) − x∗)T (∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k)))
≤ ||x̄(k) − αk∇x f (x̄(k), θ̄(k)) − x∗||2︸                                    ︷︷                                    ︸

Term 1

+α2
k ||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))||2︸                                            ︷︷                                            ︸

Term 2
+ 2αk ||x̄(k) − αk∇x f (x̄(k), θ̄(k)) − x∗|| × ||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))||︸                                                                                           ︷︷                                                                                           ︸

Term 3

. (C.3)

As for Term 1, by leveraging the fact that αk ≤
1
L , Lemma 2.2.1 indicates

||x̄(k) − αk∇x f (x̄(k), θ̄(k)) − x∗||2 ≤ (1 − αkµx)2||x̄(k) − x∗||2. (C.4)
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By Lemma 3.1.2, Term 2 can be bounded as follow

α2
k ||∇x f (x̄(k), θ̄(k)) − ∇̄xF(xxx(k), θθθ(k))||2 ≤

(
αkLx||xxx(k) − 111x̄(k)T ||

√
n

+
αkLθ||θθθ(k) − 111θ̄(k)T ||

√
n

)2

≤
α2

k L2
x||xxx(k) − 111x̄(k)T ||2

n
+
α2

k L2
θ ||θθθ(k) − 111θ̄(k)T ||2

n
+

2LxLθα2
k

n
||xxx(k) − 111x̄(k)T || × ||θθθ(k) − 111θ̄(k)T ||. (C.5)

Finally, Term 3 can be bounded by invoking the same transformation approches used in Term 1 and Term 2:

Term 3 ≤ 2αk(1 − αkµx)||x̄(k) − x∗||
(

Lx
√

n
||xxx(k) − 111x̄(k)T ||

Lθ
√

n
||θθθ(k) − 111θ̄(k)T ||

)
≤

2αkLx(1 − αkµx)||x̄(k) − x∗||||xxx(k) − 111x̄(k)T ||
√

n
+

2αkLθ(1 − αkµx)||x̄(k) − x∗||||θθθ(k) − 111θ̄(k)T ||
√

n
. (C.6)

In light of relation (C.3)∼(C.6), taking full expectation on both side of relation (C.2) yields the result (AAA). Furthermore
by using mean value inequality 2ab ≤ a2 + b2, we rearrange (21) and obtain that

U1(k + 1) ≤ (1 − αkµx)2U1(k) +
α2

k L2
x

n
V1(k) +

α2
k L2
θ

n
V2(k) +

α2
k L2

x

n
V1(k) +

α2
k L2
θ

n
V2(k)

+ (1 − αkµx)2c1U1(k) +
α2

k L2
x

n
·

1
c1

V1(k) + (1 − αkµx)2c2U1(k) +
α2

k L2
θ

n
·

1
c2

V2(k)

+ α2
k

3MxL2
x

n2 E[||xxx(k) − 111xT
∗ ||] +

3MxL2
θ

n2 E[||θθθ(k) − 111θT∗ ||] +
M̄
n


≤ (1 + c1 + c2)(1 − αkµx)2U1(k) + (2 +

1
c1

)
α2

k L2
x

n
V1(k) + (2 +

1
c2

)
α2

k L2
θ

n
V2(k)

+ α2
k

3MxL2
x

n2 E[||xxx(k) − 111xT
∗ ||] +

3MxL2
θ

n2 E[||θθθ(k) − 111θT∗ ||] +
M̄
n

 , (C.7)

where c1, c2 > 0. Take c1 = c2 =
3

16αkµx, then c1 + c2 =
3
8αkµx. Noticing that αk ≤

1
3µx

, i.e. αkµx ≤
1
3 , we have

(1 + c1 + c2)(1 − αkµx)2 = 1 −
13
8
αkµx +

1
4
α2

kµ
2
x +

3
8
α3

kµ
3
x

≤ 1 −
13
8
αkµx +

1
12
αkµx +

3
8
×

1
9
αkµx = 1 −

3
2
αkµx,

(C.8)

and (2 + 1
cm

)αk ≤
6
µx
,m = 1, 2. Plug them into (C.7) yeilds the result BBB. □

Appendix D. Proof of Lemma 3.2.2

Proof Recalling the definition of g(xxx, θθθ, ξξξ) in (8) and relation x̄(k + 1) = x̄(k) − αkḡ(xxx(k), θθθ(k), ξξξ(k)) in eq. (C.1), and
using (10), we have

xxx(k + 1) − 111x̄(k + 1) = W (xxx(k) − αkg (xxx(k), θθθ(k), ξξξ(k))) − 111(x̄(k) − αkḡ (xxx(k), θθθ(k), ξξξ(k)))

= (W −
111111T

n
)
[
(xxx(k) − 111x̄(k)) − αk(g (xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k)))

]
. (D.1)

Thus by Lemma 2.2.2, we obtain

||xxx(k + 1) − 111x̄(k + 1)||2

≤ ρ2
w||(xxx(k) − 111x̄(k)) − αk(g (xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k)) ||2

= ρ2
w
[
||xxx(k) − 111x̄(k)||2 + α2

k ||g (xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k)) ||2︸                                                      ︷︷                                                      ︸
Term 4

−2αk(xxx(k) − 111x̄(k))T (g (xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k))︸                                                                           ︷︷                                                                           ︸
Term 5

]
(D.2)

In the following, we will separately consider Term 4 and Term 5. Note that
∥I − 11T /n∥ ≤ 1. (D.3)

24



The by using Assumptions 2.2.2 (a) and 2.2.2 (b), we derive
E

[
α2

k ||g(xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k)) ||2|F (k)
]

= α2
kE

[
||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k)) − ∇xF(xxx(k), θθθ(k))

+111∇̄xF(xxx(k), θθθ(k)) + g(xxx(k), θθθ(k)), ξξξ(k) − 111ḡ (xxx(k), θθθ(k), ξξξ(k)) ||2|F (k)
]

= α2
k ||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2 + α2

kE[||∇xF(xxx(k), θθθ(k))
− g((xxx(k), θθθ(k), ξξξ(k)) − 111(∇̄xF(xxx(k), θθθ(k)) − ḡ(xxx(k), θθθ(k)))||2|F (k)]

(D.3)
≤ α2

k

[
||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2

+E[||∇xF(xxx(k), θθθ(k)) − g(xxx(k), θθθ(k), ξξξ(k))||2|F (k)]
]

≤ α2
k ||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2 + α2

knσ2
x + α

2
k Mx||∇xF(xxx(k), θθθ(k))||2. (D.4)

Recalling Assumption 2.2.2 (a), we obtain that
E
[
− 2αk(xxx(k) − 111x̄(k))T (g(xxx(k), θθθ(k), ξξξ(k)) − 111ḡ (xxx(k), θθθ(k), ξξξ(k))) |F (k)

]
= −2αk(xxx(k) − 111x̄(k))T

(
∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))

)
, (D.5)

In light of (D.2),(D.4) and (D.5), we have
1
ρ2

w
E[||xxx(k + 1) − 111x̄(k + 1)||2|F (k)]

≤ ||xxx(k) − 111x̄(k)||2 + α2
k ||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2

+ α2
knσ2

x + α
2
k Mx||∇xF(xxx(k), θθθ(k))||2

− 2αk(xxx(k) − 111x̄(k))T (∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k)))
≤ ||xxx(k) − 111x̄(k)||2 + α2

k ||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2

+ α2
knσ2

x + α
2
k Mx||∇xF(xxx(k), θθθ(k))||2

+ c3||xxx(k) − 111x̄(k)||2 +
1
c3
α2

k ||∇xF(xxx(k), θθθ(k)) − 111∇̄xF(xxx(k), θθθ(k))||2

≤ (1 + c3)||xxx(k) − 111x̄(k)||2 + α2
knσ2

x + α
2
k

(
1 + Mx +

1
c3

)
||∇xF(xxx(k), θθθ(k))||2, (D.6)

where c3 > 0 is arbitrary, and the last inequality also uses the porperty in (D.3).
We then consider the upper bound of ||∇xF(xxx(k), θθθ(k))||2 as follow,

||∇xF(xxx(k), θθθ(k))||2 = ||∇xF(xxx(k), θθθ(k)) − ∇xF(111xT
∗ , θθθ(k))

+ ∇xF(111xT
∗ , θθθ(k)) − ∇xF(111xT

∗ ,111θ
T
∗ ) + ∇xF(111xT

∗ ,111θ
T
∗ )||2

≤ 3||∇xF(xxx(k), θθθ(k)) − ∇xF(111xT
∗ , θθθ(k))||2

+ 3||∇xF(111xT
∗ , θθθ(k)) − ∇xF(111xT

∗ ,111θ
T
∗ )||2 + 3||∇xF(111xT

∗ ,111θ
T
∗ )||2

≤ 3L2
x||xxx(k) − 111x̄(k)||2 + 3L2

θ ||θθθ(k) − 111θT∗ ||
2 + 3||∇xF(111xT

∗ ,111θ
T
∗ )||2. (D.7)

Let c3 =
1−ρ2

w
2 . Combining (D.6) and (D.7), we obtain that

1
ρ2

w
E[||xxx(k + 1) − 111x̄(k + 1)||2|F (k)]

≤
3 − ρ2

w

2
||xxx(k) − 111x̄(k)||2 + 3α2

k

(
3

1 − ρ2
w
+ Mx

) (
L2

x||xxx(k) − 111x̄(k)||2

+L2
θ ||θθθ(k) − 111θT∗ ||

2 + ||∇xF(111xT
∗ ,111θ

T
∗ )||2

)
+ α2

knσ2
x. (D.8)

Note that ρ2
w( 3−ρ2

w
2 ) ≤ 3+ρ2

w
4 by ρw ∈ (0, 1). Then by taking full expectation on both sides of (D.8) and multiplying ρ2

w
leads to the result (24). □

Appendix E. Proof of Lemma 3.3.1

Proof For any k ≥ 0, in order to bound E[||xxx(k)−111xT
∗ ||

2], we firstly consider bounding E[||xi(k)−αkgi(xi(k), θi(k), ξi(k))−
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x∗||2] for all i ∈ N . By using Assumption 2.2.1 (i) and Assumption 2.2.2 (c), we have

E[||xi(k) − αkgi(xi(k), θi(k), ξi(k)) − x∗||2|F (k)] = ||xi(k) − x∗ − αk∇x fi(xi(k), θi(k))||2

+ α2
kE

[
||∇x fi(xi(k), θi(k)) − gi(xi(k), θi(k), ξi(k))||2|F (k)

]
≤ ||xi(k) − x∗||2 − 2αk∇x fi(xi(k), θi(k))T (xi(k) − x∗)
+ α2

k ||∇x fi(xi(k), θi(k))||2 + α2
k(σ2

x + Mx||∇x fi(xi(k), θi(k))||2)
≤ ||xi(k) − x∗||2 − 2αkµx||xi(k) − x∗||2 + 2αk ||∇x fi(x∗, θi(k))||||xi(k) − x∗||
+ α2

k(1 + Mx)||∇x fi(xi(k), θi(k))||2 + α2
kσ

2
x, (E.1)

Consider the upper bound of the term ||∇x fi(xi(k), θi(k))||2 on the right side of above inequality. Using Assumption
2.2.1 (i) and (ii), we have

||∇x fi(xi(k), θi(k))||2 = ||∇x fi(xi(k), θi(k)) − ∇x fi(x∗, θi(k)) + ∇x fi(x∗, θi(k))
− ∇x fi(x∗, θ∗) + ∇x fi(x∗, θ∗)||

≤ 3L2
x||xi(k) − x∗||2 + 3L2

θ ||θi(k) − θ∗||2 + 3||∇x fi(x∗, θ∗)||2. (E.2)

We can similarly obtain ||∇x fi(x∗, θi(k))||2 ≤ 2L2
θ ||θi(k)−θ∗||2+2||∇x fi(x∗, θ∗)||2. Combining (E.2) and (E.1), it produces

E[||xi(k) − αkgi(xi(k), θi(k), ξi(k)) − x∗||2|F (k)] ≤ ||xi(k) − x∗||2 − 2αkµx||xi(k) − x∗||2

+ α2
kσ

2
x + 2αk

√
2L2
θ ||θi(k) − θ∗||2 + 2||∇x fi(x∗, θ∗)||2||xi(k) − x∗||

+ α2
k(1 + Mx)(3L2

x||xi(k) − x∗||2 + 3L2
θ ||θi(k) − θ∗||2 + 3||∇x fi(x∗, θ∗)||2)

≤ (1 − 2αkµx + 3α2
k(1 + Mx)L2

x)||xi(k) − x∗||2

+ 2αk

√
2L2
θ ||θi(k) − θ∗||2 + 2||∇x fi(x∗, θ∗)||2||xi(k) − x∗||

+ α2
k[3(1 + Mx)L2

θ ||θi(k) − θ∗||2 + 3(1 + Mx)||∇x fi(x∗, θ∗)||2 + σ2
x]. (E.3)

From the definition of K in (26), for all k ≥ 0, we have αk ≤
µx

3(1+Mx)L2
x
. Recall the fact that E[||θi(k) − θ∗||2] ≤ Θ̂i in

(27). By taking full expectation on both sides of (E.3) and using E[||xi(k) − x∗||] ≤
√
E[||xi(k) − x∗||2], we have

E[||xi(k)−αkgi(xi(k), θi(k), ξi(k)) − x∗||2] ≤ (1 − αkµx)E[||xi(k) − x∗||2]

+ 2αk

√
2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

√
E[||xi(k) − x∗||2]

+ αk

µxL2
θ

L2
x
Θ̂i +

µx

L2
x
||∇x fi(x∗, θ∗)||2 +

µxσ
2
x

3(1 + Mx)L2
x


≤ E[||xi(k) − x∗||2] − αk

[
µxE||xi(k) − x∗||2

− 2
√

2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

√
E[||xi(k) − x∗||2]

−

µxL2
θ

L2
x
Θ̂i +

µx

L2
x
||∇x fi(x∗, θ∗)||2 +

µxσ
2
x

3(1 + Mx)L2
x

 ]. (E.4)

Next, we consider the following set:

Xi ≜
{
q ≥ 0 :µxq − 2

√
2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

√
q

−
µx

3L2
x

(
3L2
θΘ̂i + 3||∇x fi(x∗, θ∗)||2 +

σ2
x

1 + Mx

)
≤ 0

}
. (E.5)

It can be seen that Xi is non-empty and compact. If E[||xi(k) − x∗||2] < Xi, in light of (E.4) we known that E[||xi(k) −
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αkgi(xi(k), θi(k), ξi(k)) − x∗||2] ≤ E[||xi(k) − x∗||2]. While for E[||xi(k) − x∗||2] ∈ Xi, by using αk ≤
µx

3(1+Mx)L2
x
, we derive

E[||xi(k) − αkgi(xi(k), θi(k), ξi(k)) − x∗||2]

≤ max
q∈Xi

{
q −

µx

3(1 + Mx)L2
x

[
µxq − 2

√
2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

√
q

−
µx

3L2
x

(
3L2
θΘ̂i + 3||∇x fi(x∗, θ∗)||2 +

σ2
x

1 + Mx

) ]}
≜ Ri. (E.6)

Based on previous arguments, we conclude that for all k > 0,

E[||xi(k) − αkgi(xi(k), θi(k), ξi(k)) − x∗||2] ≤ max
{
E[||xi(k) − x∗||2],Ri

}
. (E.7)

In light of W1 = 1, by noting from (10) that
∥xxx(k + 1) − 1xT

∗ ∥
2 ≤ ∥W∥2∥xxx(k) − αkg(xxx(k), θθθ(k), ξξξ(k)) − 1xT

∗ ∥
2

≤ ∥xxx(k) − αkg(xxx(k), θθθ(k), ξξξ(k)) − 1xT
∗ ∥

2. (E.8)
This together with (E.7) produces

E[||xxx(k) − 111xT
∗ ||

2] ≤ max
{
E[||xxx(0) − 111xT

∗ ||
2],

∑n

i=1
Ri

}
(E.9)

In the following, we will give an upper bound of Ri. From the definition of Xi in (E.5), we know that the right zero
of the upward opening parabola is

√
qi =

1
2µx

[
2
√

2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

+

√
4(2L2

θΘ̂i + 2||∇x fi(x∗, θ∗)||2) +
4µ2

x

3L2
x

(
3L2
θΘ̂i + 3||∇x fi(x∗, θ∗)||2 +

σ2
x

1 + Mx

)]
.

Then by using µx ≤ Lx, we achieve
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1

4µ2
x
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2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

)
+ 2

(
8L2
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θΘ̂i +4||∇x fi(x∗, θ∗)||2 +
4µ2

xσ
2
x

3L2
x(1 + Mx)

) ]
≤

10L2
θΘ̂i

µ2
x
+

10||∇x fi(x∗, θ∗)||2

µ2
x

+
2σ2

x

3(1 + Mx)L2
x
≜ q∗i .

Thus, Xi = [0, qi] ⊂ [0, q∗i ]. Hence from (E.6) it follows that

Ri ≤ q∗i −
µx

3(1 + Mx)L2
x

[
µxq − 2

√
2L2
θΘ̂i + 2||∇x fi(x∗, θ∗)||2

√
q

−
µx

3L2
x

(
3L2
θΘ̂i + 3||∇x fi(x∗, θ∗)||2 +

σ2
x

1 + Mx

) ]∣∣∣∣∣∣
q=

√
2L2
θ
Θ̂i+2||∇x fi (x∗ ,θ∗ )||2

µx

≤
10L2

θΘ̂i

µ2
x
+

10||∇x fi(x∗, θ∗)||2

µ2
x

+
2σ2

x

3(1 + Mx)L2
x

+
µx

3(1 + Mx)L2
x

[
µx

3L2
x

(
3L2
θΘ̂i + 3||∇x fi(x∗, θ∗)||2 +

σ2
x

1 + Mx

)
+

2L2
θΘ̂i + 2||∇x fi(x∗, θ∗||2)

µx


≤

11L2
θΘ̂i

µ2
x
+

11||∇x fi(x∗, θ∗)||2

µ2
x

+
7σ2

x

9(1 + Mx)L2
x
, (E.10)

where the last inequality has used µx ≤ Lx.
Combing (E.10) and (E.9), the lemma holds. □
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