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A MINKOWSKI TYPE INEQUALITY IN WARPED CYLINDERS

SHUJING PAN AND BO YANG

Abstract. We prove a Minkowski type inequality for weakly mean convex and star-shaped
hypersurfaces in warped cylinders which are asymptotically flat or hyperbolic. In particular, we
show that this sharp inequality holds for outward minimizing hypersurfaces in the Schwarzschild
manifold or the hyperbolic space using the weak solution of the inverse mean curvature flow.
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1. Introduction

The classical Minkowski inequality for a closed, convex hypersurface Σ in R
n+1 states as

∫

Σ
H dµ ≥ nω

1
n
n |Σ|

n−1
n , (1.1)

where H is the mean curvature of Σ, ωn is the area of n-dimensional Euclidean unit sphere,
and |Σ| is the area of Σ. The equality holds in (1.1) if and only if Σ is a round sphere. Guan
and Li [19] showed that the inequality (1.1) holds for weakly mean convex and star-shaped
hypersurfaces using the inverse mean curvature flow in Rn+1 introduced in [18, 41]. In this
paper, we say a hypersurface Σ is weakly mean convex if the mean curvature of Σ satisfies
H ≥ 0, and strictly mean convex if H > 0. The Minkowski inequality (1.1) has been generalized
to the h-convex hypersurfaces in the hyperbolic space H

n+1 by Ge-Wang-Wu [16] and convex
hypersurfaces in the sphere S

n+1 by Makowski-Scheuer [29]. Brendle, Guan and Li [8] proved
the following sharp inequality for strictly mean convex and star-shaped hypersurfaces in H

n+1

using the inverse mean curvature flow:
∫

Σ
H dµ− nVol(Ω) ≥ ψ(|Σ|), (1.2)

where ψ is the unique monotonically increasing function that gives equality on geodesic spheres,
and Ω is the domain bounded by Σ. The quantity on the left side of the inequality (1.2) is also
known as a quermassintegral of Ω.
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In this paper, we extend the Minkowski type inequality to the case of hypersurfaces in more
general rotationally symmetric spaces. We consider a warped cylinder Mn+1 = [a,+∞) × S

n

endowed with the metric

ḡ = dr2 + ϕ2(r)gSn , (1.3)

where a ≥ 0, ϕ ∈ C∞([a,+∞),R+) is the warped function and gSn is the standard metric of the
sphere S

n. In particular, if we assume that ϕ ∈ C∞([0,+∞)) satisfying

ϕ′(r) =
√

1−mϕ1−n + κϕ2, ϕ(0) = s0, and ϕ′(0) = 0, (1.4)

where m > 0 and κ ≥ 0 are two fixed real numbers, s0 is the unique positive solution of the
equation 1 − ms0

1−n + κs20 = 0. Then, M is known as the deSitter-Schwarzschild manifold.
If κ = 0, M is the ordinary Schwarzschild manifold, while κ = 1 corresponds to the anti-de
Sitter-Schwarzschild (AdS-Schwarzschild) manifold.

In [7], Brendle, Hung and Wang proved the following Minkowski type inequality for strictly
mean convex and star-shaped hypersurfaces in the AdS-Schwarzschild manifold:

Theorem A ([7]). Let Σ be a compact, strictly mean convex and star-shaped hypersurface
in the AdS-Schwarzschild manifold Mn+1, and Ω be the region bounded by Σ and the horizon
∂M = {0} × S

n. Then
∫

Σ
ϕ′H dµ− n(n+ 1)

∫

Ω
ϕ′ dv ≥ nω

1
n
n

(
|Σ|n−1

n − |∂M |n−1
n
)
. (1.5)

Moreover, equality holds in (1.5) if and only if Σ is a radial coordinate sphere.

For the purpose, they investigated the long time existence and asymptotic behavior of the
inverse mean curvature flow in the AdS-Schwarzschild manifold. They found that the quantity

Q(t) = |Σt|−
n−1
n

(∫

Σt

ϕ′H dµ− n(n+ 1)

∫

Ωt

ϕ′ dv + nω
1
n
n |∂M |n−1

n

)
(1.6)

is monotone decreasing along the inverse mean curvature flow and satisfies lim inft→∞Q(t) ≥
nω

1
n
n , then inequality (1.5) follows immediately. As limit cases, they also obtained the Minkowski

type inequality in the Schwarzschild manifold and the hyperbolic space. Inspired by their work,
inequality (1.5) has been established in many other warped products, such as the Kottler space
[17] and the Reissner-Nordström-anti-deSitter manifold [9, 42].

There are also Minkowski type inequalities different from (1.5). In [38], Scheuer investigated a
locally constrained inverse curvature flow in general warped products which satisfy mild assump-
tions and proved a new Minkowski type inequality for strictly convex surfaces, we summarize
his result in the following theorem.

Theorem B ([38]). Let M = (a, b)×S0 be a 3-dimensional warped product space equipped with
the metric ḡ = dr2 + ϑ2(r)σ, where (S0, σ) is a compact Riemannian manifold of dimension 2
and ϑ ∈ C∞([a, b]). Assume further that (M, ḡ) satisfies the following assumptions:

(i) ϑ′ > 0,
(ii) either one of the following conditions holds:

(a) ϑ′′ ≥ 0,
(b) ϑ′′ ≤ 0 and

∂r

(
ϑ′′

ϑ

)
≤ 0,

(iii) R̂ic ≥ (ϑ′2(r)− ϑ′′ϑ(r))σ for all r, where R̂ic is the Ricci curvature of the metric σ.
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Then, if Σ ⊂M is a strictly convex graph over S0 which encloses a domain Ω, there holds∫

Σ
H dµ +

∫

Ω
Ric(∂r, ∂r) dv ≥ χ(|Σ|), (1.7)

where Ric denotes the Ricci curvature of M , χ is the function that gives equality on radial
coordinate spheres. If equality holds, then Σ is totally umbilical. If the associated quadratic
forms in assumption (iii) satisfy the strict inequality on nonzero vectors, then inequality holds
in (1.7) precisely on radial coordinate spheres.

The functional ∫

Σ
H dµ+

∫

Ω
Ric(∂r, ∂r)dv

can be seen as a natural quermassintegral defined for smooth domains in general warped prod-
ucts, since it reduces to

∫
ΣH dµ + ncVol(Ω) in the space form Mn+1(c), which coincides with

the one given in integral geometry [35,40]. Since the long time existence and convergence result
is not available for the higher dimensional locally constrained curvature flow which Scheuer [38]
considered, he could only prove (1.7) for strictly convex surfaces in M3.

It remains an open question that whether inequality (1.7) holds for strictly (weakly) mean
convex and star-shaped hypersurfaces in general warped products in addition to R

n+1 and H
n+1.

Our paper gives a confirmation to this question in warped cylinders which are asymptotically
flat or hyperbolic in the sense of Assumption 1.1.

Assumption 1.1. Let n ≥ 2, Mn+1 = [a,∞)×S
n be a warped cylinder endowed with the metric

(1.3). Fixing κ ≥ 0, we suppose that ϕ satisfies the following conditions for all r ∈ (a,∞):

(i) ϕ′′(r) ≥ κϕ(r),

(ii) 0 < ϕ′(r) ≤
√

1 + κϕ2(r),

(iii) ∂r

(
ϕ′′

ϕ

)
≤ 0.

We will call {a} × S
n the horizon of M , and denote it as ∂M .

Remark 1.2. Besides the space form of constant non-positive curvature, the deSitter-Schwarzschild
manifold given in (1.4) with κ ≥ 0 also satisfies the conditions in Assumption 1.1.

Now we state our main theorem of the Minkowski type inequality for weakly mean convex and
star-shaped hypersurfaces in warped cylindersMn+1 which are asymptotically flat or hyperbolic
in the sense of Assumption 1.1. We say a hypersurface Σ ⊂ M is star-shaped if its support
function u := ḡ(ϕ∂r, ν) > 0, where ν is the unit outward normal of Σ.

Theorem 1.3. Let (Mn+1, ḡ) satisfies Assumption 1.1. Assume that Σ is a compact, weakly
mean convex and star-shaped hypersurface in M , and let Ω be the region bounded by Σ and the
horizon ∂M . Then ∫

Σ
H dµ+

∫

Ω
Ric(∂r, ∂r) dv ≥ ξ(|Σ|), (1.8)

where ξ is the unique monotonically increasing function that gives equality on radial coordinate
spheres. Moreover, the equality holds in (1.8) if and only if one of the following two cases holds:

a) Σ is a radial coordinate sphere in M ;
b) there exists a radial coordinate ball B(R)(may be empty) such that M \B(R) is isometric

to a space form of constant nonpositive curvature and Σ is a geodesic sphere in it.

Combining with Remark 1.2, we have the following Minkowski type inequality for weakly
mean convex and star-shaped hypersurfaces in the deSitter-Schwarzschild manifold which has
nonpositive radial Ricci curvature.
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Corollary 1.4. Let Σ be a closed, weakly mean convex and star-shaped hypersurface in the
deSitter-Schwarzschild manifold Mn+1 with κ ≥ 0 (see (1.4) for definition), and let Ω be the
region bounded by Σ and the horizon ∂M . Then

∫

Σ
H dµ+

∫

Ω
Ric(∂r, ∂r) dv ≥ ξ(|Σ|), (1.9)

where ξ is the unique monotonically increasing function that gives equality on radial coordinate
spheres, and the equality holds in (1.9) if and only if Σ is a radial coordinate sphere.

In the second part of our paper, we focus on the Schwarzschild manifoldMn+1 and the hyper-
bolic space H

n+1, and aim to prove the inequality (1.8) for outward minimizing hypersurfaces
using the weak solution of the inverse mean curvature flow.

Let Ω be a bounded domain with smooth boundary ∂Ω in the Schwarzschild manifold Mn+1,
then there are two cases: (i) Ω has only one boundary component Σ = ∂Ω, and we say Σ is null-
homologous; (ii) Ω has two boundary components ∂Ω = Σ ∪ ∂M , and we say Σ is homologous
to the horizon. In both cases, the boundary hypersurface Σ is said to be outward minimizing if
whenever Ω# is a domain containing Ω, then |∂Ω#| ≥ |∂Ω|. From the first variational formula
for area functional, an outward minimizing hypersurface must be weakly mean convex.

The theory of weak solution of the inverse mean curvature flow was developed by Huisken and
Ilmanen [24], and was applied to prove the Riemannian Penrose inequality for asymptotically
flat 3-manifold with nonnegative scalar curvature and other interesting problems. In particular,
Huisken removed the star-shaped assumption and verified that the Minkowski inequality (1.1)
holds for outward-minimizing hypersurfaces in R

n+1. Later, Wei [43] generalized Huisken’s result
to outward minimizing hypersurfaces in the Schwarzschild manifold, which we give a brief review
here.

Theorem C ([43]). Let Ω be a bounded domain with smooth and outward minimizing boundary
in the Schwarzschild manifold (Mn+1, ḡ). Assume either

(i) n < 7, or
(ii) n ≥ 7 and Σ = ∂Ω \ ∂M is homologous to the horizon.

Then

1

nωn

∫

Σ
fH dµ ≥

( |Σ|
ωn

)n−1
n

−m. (1.10)

Remark 1.5. Our definition of the metric (1.4) for the Schwarzschild manifold differs from the
one in [43] by changing the variable m to 2m, and hence the inequality (1.10) we expressed here
is slightly different from the one in the original paper [43].

Later, McCormick [30] proved inequality (1.10) in a class of static asymptotically flat man-
ifolds for 2 ≤ n < 7. Harvie and Wang [23] extended McCormick’s result to all dimension n
assuming the boundary is connected and characterized the equality case. Following the sim-
ilar idea as in [43], we would prove that inequality (1.8) also holds for outward minimizing
hypersurfaces Σ in the Schwarzschild manifold.

Theorem 1.6. Let Ω be a bounded domain with smooth and outward minimizing boundary in
the Schwarzschild manifold (Mn+1, ḡ). Assume either

(i) n < 7, Σ is null homologous and the volume of Ω is sufficiently large, or
(ii) Σ = ∂Ω \ ∂M is homologous to the horizon.

Then ∫

Σ
H dµ+

∫

Ω
Ric(∂r, ∂r) dv ≥ ξ(|Σ|), (1.11)
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where ξ is the unique monotonically increasing function that gives equality on radial coordinate
spheres, and the equality holds in (1.11) if and only if Σ is a radial coordinate sphere.

Remark 1.7. As we will show in §4 and §5, the isoperimetric inequality plays an important role in
our proof. According to Theorem D (see §3), the radial coordinate sphere is the unique solution
to the isoperimetric problem among hypersurfaces which are homologous to the horizon in the
Schwarzschild manifold, while the null homologous case is not discussed. In fact, there exist other
isoperimetric regions when the volume is small enough (see [6]). Following the same argument
as in [6], we prove in §5.2 that the isoperimetric region is unique if the volume is sufficiently
large. Therefore, the assumption that the volume of Ω is sufficiently large is necessary in the
null homologous case.

In the case of negative curvature, the weak solution of the inverse mean curvature flow with an
outward minimizing initial data still exists in an asymptotically hyperbolic manifold. However,
the blow-down argument fails at this time, which is very effective in the asymptotically flat
case. Recently, Harvie [22] investigated the regularity of the weak solution of the inverse mean
curvature flow in the hyperbolic space H

n+1 with 2 ≤ n < 7. He showed that each slice of the
flow is star-shaped after a long time, and then smooth. There are also other works concerning
the regularity of the weak solution of the inverse mean curvature flow, such as [25, 27, 32, 39].
Combining the regularity results in [22] with the existence theory established in [24], we can also
prove the Minkowski inequality for outward minimizing hypersurfaces in the hyperbolic space
H

n+1 with 2 ≤ n < 7.

Theorem 1.8. Let Ω be a bounded domain with smooth and outward minimizing boundary in
the (n+ 1)-dimensional hyperbolic space H

n+1 with 2 ≤ n < 7, then∫

Σ
H dµ− nVol(Ω) ≥ ξ(|Σ|), (1.12)

where ξ is the unique monotonically increasing function that gives equality on geodesic spheres,
and the equality holds in (1.12) if and only if Σ is a geodesic sphere.

The paper is organized as follows: In §2, we collect some preliminaries on the inverse mean
curvature flow (IMCF), including the long time existence result and asymptotic behavior of the
smooth solution to the IMCF, as well as the existence, uniqueness, compactness and regularity
properties of the weak formulation of the IMCF. In §3, we use the isoperimetric inequality
proved by Chodosh [10] to show an inequality between the weighted volume and the area for
a closed hypersurface in a warped cylinder which satisfies Assumption 1.1. In §4, we show
that the geometric quantity G(t) defined in (4.18) is monotone decreasing along the IMCF and
satisfies limt→∞ G(t) ≥ 0, and then complete the proof of Theorem 1.3 and Corollary 1.4. We
also discuss the generalization of Theorem 1.3 to Riemannian warped products, which need not
be rotationally symmetric. In §5, we complete the proof of Theorem 1.6 and Theorem 1.8 using
the weak solution of the IMCF.

Acknowledgments. The research was supported by National Key R and D Program of China
2021YFA1001800 and 2020YFA0713100, China Postdoctoral Science Foundation No.2022M723057,
and Shuimu Tsinghua Scholar Program (No. 2023SM102). The authors would like to thank Pro-
fessor Yong Wei for his helpful suggestions.

2. The solution of the inverse mean curvature flow

In this section, we always assume that Mn+1 = [a,∞) × S
n(a ≥ 0) be a warped cylinder

equipped with the metric
ḡ = dr2 + ϕ2(r)gSn , (2.1)
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where ϕ′ > 0, ϕ′′ ≥ 0 for all r ∈ (a,∞). Consider a family of embedding X : Σ × [0, T ) → M
satisfying

∂tX =
1

H
ν, (2.2)

where H is the mean curvature of Σt and ν is the unit outward normal. It has been shown
in [36, 37] that the smooth solution of the flow (2.2) starting from a strictly mean convex and
star-shaped hypersurface remains to be strictly mean convex and star-shaped, and exists for
all time t ∈ [0,+∞). In general, without some special assumption on the initial hypersurface,
the singularities of the flow (2.2) may occur. In [24], Huisken and Ilmanen used the level set
approach and developed the weak solution of IMCF to overcome this problem.

2.1. The smooth solution of IMCF. In this subsection, we suppose that the initial hyper-
surface Σ is strictly mean convex and star-shaped. In this setting, each flow hypersurface Σt

can be represented as a graph

Σt = {(r(θ, t), θ) : θ ∈ S
n},

where r(θ, t) is a smooth function on S
n × [0,+∞). We define a function φ on S

n by

φ(θ) = Φ(r(θ)), (2.3)

where Φ(r) is a positive function satisfying Φ′(r) = 1
ϕ(r) . Define

υ =
√

1 + |Dφ|2
Sn
,

where D denotes the Levi-Civita connection on S
n. Then the flow (2.2) is equivalent to the

following parabolic scalar equation for r(θ, t):

∂r

∂t
(θ, t) =

υ

H
. (2.4)

Scheuer [36] dealt with the IMCF in warped cylinders of nonpositive radial curvature and
generalized the results to Riemannian warped products in [37], which means the base manifold
may not be S

n. Compared the asymptotic behavior of the smooth solution to the IMCF in
[36,37], we find the latter one is more suitable for our use. In the following, we summarize the
main results of [37] in the setting of warped cylinders.

Theorem 2.1 ([37]). Let (Mn+1, ḡ) be a warped cylinder given in (2.1). Assume that the warped
function ϕ satisfies the following assumptions:

(i)

lim sup
r→∞

ϕ′′ϕ

(ϕ′)2
<∞ and lim sup

r→∞,ϕ′′>0

ϕ′′′ϕ

ϕ′ϕ′′
<∞. (2.5)

(ii) In case that supr>0 ϕ
′(r) = ∞, we assume

lim inf
r→∞

ϕ′′ϕ

(ϕ′)2
> 0. (2.6)

Let Σ be a strictly mean convex and star-shaped hypersurface. Then the IMCF (2.2) starting
from Σ has a unique smooth solution Σt for all time t ∈ [0,∞). Σt remains to be strictly mean
convex, star-shaped and becomes umbilical with the rate

∣∣∣∣hij −
ϕ′

ϕ
δij

∣∣∣∣ ≤
ct

ϕϕ′
, (2.7)

where the t-factor can be replaced by e−αt for some positive α if ϕ′ is bounded.
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2.2. The weak solution of IMCF. In this subsection, we recall the definition and some
properties of the weak solution of the inverse mean curvature flow, which was firstly developed by
Huisken and Ilmanen [24] in general complete Riemannian manifolds with only a mild assumption
at the infinity (e.g. asymptotically conic), and can be applied to the Schwarzschild manifold or
the hyperbolic space directly.

Assume that the flow (2.2) is given by the level sets of a function u :M → R via

Ωt := {x : u(x) < t}, Σt := ∂Ωt.

Whenever u is smooth with ∇u 6= 0, equation (2.2) is equivalent to

divM

( ∇u
|∇u|

)
= |∇u|, (2.8)

where the left hand side gives the mean curvature of {u = t} and the right hand side gives the
inverse speed.

Freezing the |∇u| term on the right hand side, consider equation (2.8) as the Euler-Lagrange
equation of the functional

Ju(v) = JK
u (v) :=

∫

K
|∇v|+ v|∇u| dx. (2.9)

Let Ω be an open set with a boundary that is at least C1. We say that u is a weak solution
of (2.8) with initial condition Ω if

(1) u ∈ C0,1
loc (M) and Ω = {u < 0};

(2) For every locally Lipschitz function v such that {v 6= u} ⊂⊂ Ω, there holds

JK
u (u) ≤ JK

u (v),

where the integration is performed over any compact set K containing {u 6= v}.
Next, we introduce the notion of minimizing hulls. Let A be an open set. We call E is a

minimizing hull (in A), if E minimizes area on the outside in A, that is, if

|∂∗E ∩K| ≤ |∂∗F ∩K|
for any F containing E such that F \E ⊂⊂ A, and any compact set K containing F \E. Here
∂∗F denotes the reduced boundary of a set F of locally finite perimeter. We say that E is a
strictly minimizing hull (in A) if equality holds implies that F ∩A = E∩A a.e.. The intersection
of a countable collection (strictly) minimizing hulls is a (strictly) minimizing hull. Now let E
be any measurable set. Define E′ = E′

A to be the intersection of (the Lebesgue points of) all
the strictly minimizing hulls that contain E. Working modulo sets of measure zero, this may be
realized by a countable intersection, so E′ itself is a strictly minimizing hull, and open. We call
E′ the strictly minimizing hull of E (in A). Note that E′′ = E′.

We summarize the existence, uniqueness, compactness and regularity properties of the weak
solution in the following theorem for later use.

Theorem 2.2. [24] Let Ω be a bounded domain with smooth boundary in the Schwarzschild
manifold Mn+1 or the hyperbolic space H

n+1 with n < 7. In the Schwarzschild case, we denote
Σ = ∂Ω \ ∂M and if Σ is null homologous, we fill-in the region W bounded by the horizon ∂M
as in [24, §6]. In the hyperbolic case, we denote Σ = ∂Ω. Then there exists a proper, locally
Lipschitz solution u of (2.8) with initial condition Ω such that:
(1) For t ≥ 0, Ω′

t = int{u ≤ t}. Moreover, Ωt = {u < t} is a minimizing hull in M for t > 0.
(2) If we define Σt := ∂Ωt and Σ′

t := ∂Ω′
t = ∂{u > t}, then Σt and Σ′

t both define increasing
families of C1,α hypersurfaces in M which possess locally uniform C1,α estimates depending only
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on the local Lipschitz bounds for u.
(3)For all t > 0, we have

Σs → Σt as sր t, Σs → Σ′
t as sց t

in the sense of local C1,β convergence, 0 < β < α. The second convergence also holds for t = 0.
(4) The weak mean curvature H satisfies H = |∇u| for a.e.t > 0 and a.e.x ∈ Σt.
(5) For all t > 0, we have |Σt| = et|Σ′|, and |Σt| = et|Σ| if Ω is a minimizing hull. In particular,
if Σ is outward minimizing, then the second equality holds.

When n ≥ 7, the regularity and the convergence results remain true away from a closed
singular set Z of dimension at most n− 7 and disjoint from Ω̄.

3. The isoperimetric inequality in warped cylinders

In this section, we mainly deal with the (weighted) isoperimetric inequality in warped cylin-
ders, we firstly introduce the notion of isoperimetric region.

Definition 3.1. Consider a warped cylinderM = [a,∞)×S
n with the metric ḡ = dr2+ϕ2(r)gSn .

Assume that Ω is a Borel set and contains the horizon. We say Ω is isoperimetric among sets
containing the horizon if

|∂∗Ω′| ≥ |∂∗Ω|
for all Borel sets Ω′ containing the horizon with Vol(Ω′) = Vol(Ω). Here ∂∗Ω denotes the reduced
boundary of Ω. Moreover, if equality holds only when Ω′ = Ω away from a set of measure zero,
we say that Ω is uniquely isoperimetric among sets containing the horizon.

Remark 3.2. It’s known that (see [28, Remark 15.1-Remark 15.3]) for a set of locally finite
perimeter E, up to modification on sets of measure zero, the reduced boundary ∂∗E and the
topological boundary ∂E satisfy ∂∗E = ∂E. In particular, if E is an open set with C1 boundary,
then ∂∗E = ∂E. For another set F of locally finite perimeter, if Vol(E△F ) = 0, then ∂∗E = ∂∗F .

Bray [3] developed an isoperimetric comparison theorem to prove that radial coordinate 2-balls
of the 3-dimensional Schwarzschild manifold are isoperimetric in their homology, and then Bray
and Morgan [4] used the method to solve the isoperimetric problem in more general spherically
symmetric manifolds. Later, Corvino, Gerek, Greenberg and Krummel [12] adapted Bray’s
techniques to show that radial coordinate balls in AdS-Schwarzschild are isoperimetric. In [10],
applying a similar manner, Chodosh proved the following theorem for warped cylinders:

Theorem D. [10, §3.2] Consider a warped cylinder M = [a,∞) × S
n with the metric dr2 +

ϕ2(r)gSn . Fixing κ ≥ 0, we suppose that

(i) ϕ′′(r) ≥ κϕ(r),

(ii) 0 ≤ ϕ′(r) ≤
√

1 + κϕ2(r).

Then for all r ≥ a, the radial coordinate balls B(r) = [a, r) × S
n are isoperimetric among sets

containing the horizon, uniquely if ϕ′(r) <
√

1 + κϕ2(r).

Remark 3.3. In his thesis [10], Chodosh solved the isoperimetric problem in more general warped
products. For the sake of simplicity, we reduce his results to warped cylinders in Theorem D.

In order to establish the Minkowski inequality in the warped cylinders which are asymptoti-
cally flat or hyperbolic, we need the following weighted isoperimetric inequality, which is a direct
consequence of the classical isoperimetric inequality.

Theorem 3.4. Assume that (Mn+1, ḡ) is a warped cylinder satisfying the same conditions as
in Theorem D. Let η(r) be a nonincreasing, positive function, and Σ ⊂ M be a closed, C1
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hypersurface which is homologous to the horizon ∂M , and Ω be the region bounded by Σ and
∂M , then

∫

Ω
η(r)dv ≤ ξη(|Σ|), (3.1)

where ξη is the unique monotonically increasing function that gives equality on radial coordinate
spheres.

In particular, if (Mn+1, ḡ) satisfies Assumption 1.1, we have

∫

Ω

ϕ′′

ϕ
(r)dv ≤ ξ1(|Σ|), (3.2)

where ξ1 is the unique associated function. Moreover, if either the second inequality in Assump-
tion 1.1 (ii) or the inequality in Assumption 1.1 (iii) is strict, then the equality holds in (3.2) if
and only if Σ is a radial coordinate sphere.

Proof. Since Σ is C1, then by Theorem D and Remark 3.2, we know that the sharp isoperimetric
inequality holds in M , that is

Vol(Ω) ≤ ξ0(|Σ|), (3.3)

where ξ0 is the unique associated function that gives equality on radial coordinate spheres. Next,
suppose that B(r) is the domain bounded by ∂M and the radial coordinate sphere {r} × S

n

such that Vol(B(r)) = Vol(Ω). Since η is nonincreasing with respect to r, we have
∫

Ω
ηdv =

∫

Ω∩B(r)
ηdv +

∫

Ω\B(r)
ηdv

≤
∫

Ω∩B(r)
ηdv +

∫

B(r)\Ω
ηdv (3.4)

=

∫

B(r)
ηdv,

where in the inequality we used the fact that Vol(Ω \B(r)) = Vol(B(r) \Ω). It follows that the
radial coordinate sphere {r}×S

n maximizes the weighted volume among hypersurfaces enclosing
fixed volume with the horizon ∂M , which means there exists an increasing, associated function

ξ̂η such that

∫

Ω
ηdv ≤ ξ̂η(Vol(Ω)), (3.5)

where the equality holds if Σ is a radial coordinate sphere. Combining (3.3) with (3.5) gives (3.1).

In particular, if (Mn+1, ḡ) satisfies Assumption 1.1, by the condition (iii), ϕ′′

ϕ is a nonincreasing

function with respect to r, then the inequality (3.2) follows from (3.1) immediately.
Now, we deal with the equality case. If the second inequality in Assumption 1.1 (ii) is strict,

then the uniqueness in the isoperimetric Theorem D implies that the equality holds in (3.2) if
and only if Ω is a radial coordinate ball away from a set of measure zero. Since Ω is C1, then by
Remark 3.2, Ω is precisely a radial coordinate ball and hence Σ is a radial coordinate sphere. On

the other hand, if the inequality in Assumption 1.1 (iii) is strict, then the function ϕ′′

ϕ is strictly

decreasing. Hence, the inequality (3.4) is strict when Ω 6= B(r), this gives the uniqueness of the
weighted isoperimetric inequality (3.2) and completes the proof. �
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4. Proof of Theorem 1.3 and Corollary 1.4

In this section, we will apply properties of the smooth solution of IMCF to prove the Minkowski
inequality in the warped cylinder Mn+1 which satisfies Assumption 1.1, and then discuss the
generalization of Theorem 1.3 to Riemannian warped products, which need not be rotationally
symmetric.

4.1. Asymptotic estimates and monotonicity along the IMCF. Firstly, we show that
if Mn+1 satisfies Assumption 1.1, then it satisfies the conditions in Theorem 2.1 and has the
following asymptotic behavior estimates.

Lemma 4.1. Let (Mn+1, ḡ) be a warped cylinder satisfying Assumption 1.1, then it satisfies the
conditions in Theorem 2.1. Moreover, if Σt are the solution hypersurfaces of the IMCF (2.2)
starting from a strictly mean convex and star-shaped hypersurface Σ, then we have the following
asymptotic behavior estimates:

(a) If κ > 0, then the mean curvature H of Σt satisfies

H = n
√
κ+O(te−

2
n
t). (4.1)

(b) If κ = 0, then there exist positive constants α, ϕ̄ and a positive function ε(t) such that
limt→∞ ε(t) = 0 with

|ϕH − nϕ′| = O(e−αt), (4.2)

dµt = ϕn
(
1 +O(e−2αt)

)
, (4.3)

ϕ̄e
t
n
−ε(t) ≤ ϕ ≤ ϕ̄e

t
n
+ε(t), (4.4)

where dµt is the area element of Σt.

Proof. (a) We first assume that κ > 0. By Assumption 1.1, ϕ′′ ≥ κϕ > 0 and hence ϕ is a
strictly increasing and convex function, which implies limr→∞ ϕ(r) = ∞. Define

Q1(r) =
(ϕ′)2

1 + κϕ2
.

Then by Assumption 1.1 (ii) and direct calculation, we see that Q1(r) ≤ 1 and Q′
1(r) ≥ 0. Hence

ϕ′(r) is a strictly increasing function in r with limr→∞ ϕ′(r) = ∞. By Assumption 1.1 (i) and

(iii), the function ϕ′′

ϕ has a positive limit when r tends to infinity. Then by L’Hospital’s rule, we

have

1 ≥ lim
r→∞

Q1(r) = lim
r→∞

ϕ′′

κϕ
≥ 1,

which yields

lim
r→∞

Q1(r) = lim
r→∞

ϕ′′

κϕ
= 1, (4.5)

from which we deduce

lim
r→∞

ϕ′′ϕ

(ϕ′)2
= lim

r→∞

[
ϕ′′

ϕ

1 + κϕ2

(ϕ′)2
ϕ2

1 + κϕ2

]
= 1. (4.6)

Moreover, by Assumption 1.1 (iii), we have

ϕ′′′ϕ− ϕ′′ϕ′ = ϕ2∂r

(
ϕ′′

ϕ

)
≤ 0, (4.7)

and hence

lim sup
r→∞,ϕ′′>0

ϕ′′′ϕ

ϕ′ϕ′′
≤ 1. (4.8)
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Indeed, by a simple argument using Lagrange mean value theorem, we could prove the superior
limit is precisely 1. Combining (4.6) with (4.8), we see that in case κ > 0, Mn+1 satisfies the
conditions in Theorem 2.1. Then, we turn to show the estimate (4.1). Note that

1−Q1(r) =
1 + κϕ2 − (ϕ′)2

1 + κϕ2
,

since Q2(r) := 1 + κϕ2 − (ϕ′)2 ≥ 0 and Q′
2(r) ≤ 0 by Assumption 1.1 (i) and (ii), we have

1−Q1(r) = O(ϕ−2). This means

ϕ′

√
1 + κϕ2

= 1 +O(ϕ−2). (4.9)

Therefore,

ϕ′

ϕ
=

ϕ′

√
1 + κϕ2

√
1 + κϕ2

ϕ
=

√
κ+O(ϕ−2) and ϕ′ = O(ϕ). (4.10)

It’s known that along the IMCF (2.2), ϕ = O(e
t
n ) (see [36, 37] for example). Combining this

fact with (4.10) and (2.7) gives the estimate (4.1).
(b) We next deal with the case κ = 0. By Assumption 1.1, there exists a constant 0 < ϕ̄′ ≤ 1,

such that limr→∞ ϕ′(r) = ϕ̄′. Define

Q3(r) = 1− (ϕ′)2 + ϕϕ′′, (4.11)

then Q3(r) ≥ 0 by Assumption 1.1 and Q′
3(r) ≤ 0 by (4.7). Denote Q0 := limr→∞Q2(r) ≥ 0,

then we have limr→∞ ϕϕ′′ = Q0 + (ϕ̄′)2 − 1 and hence

lim
r→∞

ϕ′′ϕ

(ϕ′)2
=
Q0 + (ϕ̄′)2 − 1

(ϕ̄′)2
. (4.12)

Combining (4.12) with (4.8) implies that in case κ = 0,Mn+1 satisfies the conditions in Theorem
2.1, the estimate (2.7) says that ∣∣∣∣hij −

ϕ′

ϕ
δij

∣∣∣∣ ≤
ce−αt

ϕϕ′
,

which implies
|ϕH − nϕ′| = O(e−αt). (4.13)

This is (4.2). Next, the argument in [37, Page 1140-1141] yields that

|Dφ| ≤ e−αt, (4.14)

where the function φ is defined in (2.3) and there exist a constant ϕ̃ and a positive function ε(t)
such that limt→∞ ε(t) = 0 with

ϕ̃− ε(t) ≤ logϕ− t

n
≤ ϕ̃+ ε(t). (4.15)

Recall that the metric induced on Σt has the expression

gij = ϕ2(σij + φiφj), (4.16)

where σij is the canonical metric of Sn. Then combining (4.16) with (4.14) gives (4.3), while
(4.15) implies (4.4) with ϕ̄ = eϕ̃. This completes the proof of Lemma 4.1. �

Let Σ be a strictly mean convex and star-shaped hypersurface in M , we evolve it by the
inverse mean curvature flow (2.2). Assume that Σt are the flow hypersurfaces and Ωt are the
domains bounded by Σt and ∂M . We define the quantities

W(Σt) =

∫

Σt

H dµ+

∫

Ωt

Ric(∂r, ∂r) dv, (4.17)
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and

G(t) = |Σt|−
n−1
n (W(Σt)− ξ(|Σt|)) , (4.18)

where ξ is the associated function defined in Theorem 1.3.
Firstly, we recall the following evolution equations under the IMCF, the proof is standard and

can be found in many references, see [7, 27] for example.

Proposition 4.2. Under the flow (2.2), the area element and the mean curvature of Σt evolve
by

∂tdµt =dµt, (4.19)

∂tH =−∆
1

H
− |A|2

H
− Ric(ν, ν)

H
, (4.20)

where ∆ is the Laplacian operator with respect to the induced metric on Σt.

Then, using the weighted isoperimetric inequality (3.2), we obtain

Proposition 4.3. Assume that (Mn+1, ḡ) is a warped cylinder satisfying Assumption 1.1. Then,
along the flow (2.2), we have

G′(t) ≤ 0.

Moreover, the equality holds if and only if either one of the following two cases holds:

a) Σt is a radial coordinate sphere in M ;
b) there exists a radial coordinate ball B(R)(may be empty) such that M \B(R) is isometric

to a space form of constant nonpositive curvature and Σt is a geodesic sphere in it.

Proof. By (4.19), (4.20) and the coarea formula, we derive that

d

dt
W(Σt) =

d

dt

(∫

Σt

H dµt +

∫

Ωt

Ric(∂r, ∂r) dv

)

=

∫

Σt

[
−∆

1

H
− |A|2

H
− Ric(ν, ν)

H
+H +

Ric(∂r, ∂r)

H

]
dµt

≤
∫

Σt

[
n− 1

n
H +

1

H
(Ric(∂r, ∂r)−Ric(ν, ν))

]
dµt, (4.21)

where we used the fact that |A|2 ≥ H2

n .
Recall that, by a direct calculation (see e.g [20]), we have the Ricci curvature in M :

Ric = −nϕ
′′

ϕ
dr2 − [(n − 1)((ϕ′)2 − 1) + ϕϕ′′]gSn . (4.22)

Hence,

Ric(∂r, ∂r)−Ric(ν, ν) =(n− 1)
(ϕ′)2 − ϕϕ′′ − 1

ϕ2
(1− u2

ϕ2
), (4.23)

where u = 〈ϕ∂r, ν〉 is the support function of Σt. Since the warped function ϕ of M satisfies
conditions (i) and (ii) in Assumption 1.1, we have

(ϕ′)2 − ϕϕ′′ − 1 ≤ 1 + κϕ2 − κϕ2 − 1 = 0. (4.24)

Substituting (4.24) into (4.23), we have

Ric(∂r, ∂r)−Ric(ν, ν) ≤ 0. (4.25)
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Combining this with (4.21), we get

d

dt
W(Σt) ≤

n− 1

n

∫

Σt

H dµt. (4.26)

Next, let S(r(t)) = {r(t)} × S
n be a family of radial coordinate spheres evolving under the

inverse mean curvature flow in M , B(r(t)) be the domain bounded by ∂M and S(r(t)). Then,
the above calculation implies that

d

dt
W(S(r(t))) =

n− 1

n

∫

S(r(t))
H dµt. (4.27)

By the definition of the function ξ(x) : R+ → R+, we know that

W(S(r(t))) =

∫

S(r(t))
H dµt +

∫

B(r(t))
Ric(∂r, ∂r) dv = ξ(|S(r(t))|), ∀t ∈ [0,+∞).

Taking the derivative on both sides of the above equation, and using (4.27) we get

ξ′(|S(r(t))|)|S(r(t))| =n− 1

n

∫

S(r(t))
H dµt

=
n− 1

n

(
ξ(|S(r(t))|) −

∫

B(r(t))
Ric(∂r, ∂r) dv

)
. (4.28)

Note that Ric(∂r, ∂r) = −nϕ′′

ϕ , by the weighted isoperimetric inequality (3.2) we built in Theo-

rem 3.4, there holds

−
∫

B(r(t))
Ric(∂r, ∂r) dv =n

∫

B(r(t))

ϕ′′

ϕ
dv = nξ1(|S(r(t))|). (4.29)

Combining (4.29) with (4.28), we claim that the function ξ(x) satisfies the following equation:

ξ′(x)x =
n− 1

n
(ξ(x) + nξ1(x)). (4.30)

Since the area of Σt satisfies
d
dt |Σt| = |Σt|, we now have

d

dt
ξ(|Σt|) =ξ′(|Σt|)|Σt|

=
n− 1

n
(ξ(|Σt|) + nξ1(|Σt|))

≥n− 1

n

(
ξ(|Σt|)−

∫

Ωt

Ric(∂r, ∂r) dv

)
, (4.31)

where in the second equality we used (4.30), and in the last inequality we used the weighted
isoperimetric inequality (3.2). Hence, combining (4.31) with (4.26) gives

d

dt
(W(Σt)− ξ(|Σt|)) ≤

n− 1

n
(W(Σt)− ξ(|Σt|)) .

Now, we conclude that G′(t) ≤ 0 by using d
dt |Σt| = |Σt| again.

Finally, we treat the equality case. G′(t) = 0 forces the equality to hold in (4.21), which
is equivalent to Σt being a totally umbilical hypersurface in M and satisfying Ric(∂r, ∂r) −
Ric(ν, ν) = 0. By the conditions in Assumption 1.1, it’s sufficient to consider the following two
cases for M :

Case 1. ϕ′ <
√

1 + κϕ2, ∀r ∈ [a,+∞). In this case, by the condition (i) in Assumption 1.1,
we have (ϕ′)2 − ϕϕ′′ − 1 < 0. Combining this with (4.23), Ric(∂r, ∂r) − Ric(ν, ν) = 0 implies
that Σt is a radial coordinate sphere.
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Case 2. ∃R > a such that ϕ′ <
√

1 + κϕ2 for r ∈ [a,R) and ϕ′ =
√

1 + κϕ2 for r ∈ [R,+∞),
which implies that M \B(R) is isometric to a space form of constant nonpositive curvature. In
this case, if minΣt r < R, by the similar argument as in Case 1, we have Σt ∩B(R) is a part of a
radial coordinate sphere. This implies Σt ⊂ B(R) is a radial coordinate sphere. If minΣt r ≥ R,
then Σt is a totally umbilical hypersurface in M \B(R), which means Σt is a geodesic sphere.

Reversely, if Σt is a radial coordinate sphere, then G′(t) = 0 obviously. If Σt ⊂ M \ B(R)
is a geodesic sphere in a space form of nonpositive constant curvature, and Ωt is the domain
bounded by Σt and ∂M , we turn to show that G′(t) = 0. Since Ric = −nκḡ in M \ B(R), by
(4.21) we have

d

dt
W(Σt) =

n− 1

n

∫

Σt

Hdµt. (4.32)

On the other hand, assume that Σ̂t is the coordinate sphere with |Σ̂t| = |Σt| and Ω̂t is the radial

ball bounded by ∂M and Σ̂t. Then∫

Ωt

Ric(∂r, ∂r) dv =

∫

B(R)
Ric(∂r, ∂r) dv − nκVol0(Ωt \B(R))

=

∫

B(R)
Ric(∂r, ∂r) dv − nκVol0(Ωt) + nκVol0(B(R))

=

∫

B(R)
Ric(∂r, ∂r) dv − nκVol0(Ω̂t \B(R)) =

∫

Ω̂t

Ric(∂r, ∂r) dv, (4.33)

where Vol0 is the volume in the space form. Hence, by (4.30) we have

d

dt
ξ(|Σt|) =

n− 1

n
(ξ(|Σt|) + nξ1(|Σt|))

=
n− 1

n
(ξ(|Σt|) + nξ1(|Σ̂t|))

=
n− 1

n

(
ξ(|Σt|)−

∫

Ω̂t

Ric(∂r, ∂r) dv

)

=
n− 1

n

(
ξ(|Σt|)−

∫

Ωt

Ric(∂r, ∂r) dv

)
, (4.34)

where we used the weighted isoperimetric inequality (3.2) and the identity (4.33). Now, com-
bining (4.32) with (4.34) gives G′(t) = 0. This completes the proof. �

4.2. Proof of the Minkowski inequality. In this subsection, we complete the proof of The-
orem 1.3 and Corollary 1.4. Firstly, we investigate the limit of G(t) as t→ ∞.

Proposition 4.4. Under the flow (2.2), we have

lim
t→∞

G(t) ≥ 0.

Proof. Let Σ̂t be a family of radial coordinate spheres evolving under the IMCF with |Σ̂0| = |Σ|,
and Ω̂t be the domain bounded by Σ̂t and ∂M . Since d

dt |Σt| = |Σt|, we have

|Σ̂t| = |Σt| = et|Σ|. (4.35)

First, we consider the case κ > 0. Recall the asymptotic estimate (4.1) of the mean curvature:

H = n
√
κ+O(te−

2
n
t). (4.36)
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Thus, by the weighted isoperimetric inequality (3.2), we obtain

W(Σt) =

∫

Σt

H dµt +

∫

Ωt

Ric(∂r, ∂r) dv

=n
√
κ|Σt| − n

∫

Ωt

ϕ′′

ϕ
dv +O(te−

2
n
t)|Σt|

≥n
√
κ|Σt| − nξ1(|Σt|) +O(te−

2
n
t)|Σt|

=n
√
κ|Σ̂t| − nξ1(|Σ̂t|) +O(te−

2
n
t)|Σ̂t|

=W(Σ̂t) +O(te−
2
n
t)|Σ̂t|. (4.37)

Now, by the definition of the function ξ and |Σ̂t| = |Σt|, we have

G(t) =|Σt|−
n−1
n (W(Σt)− ξ(|Σt|))

≥|Σ̂t|−
n−1
n

(
W(Σ̂t)− ξ(|Σ̂t|) +O(te−

2
n
t)|Σ̂t|

)

=O(te−
2
n
t)|Σ̂t|

1
n = O(te−

1
n
t)|Σ| 1n , (4.38)

where in the second inequality we used (4.37) and in the last equality we used (4.35), this
completes the proof of case κ > 0.

Next, we consider the case κ = 0. At this time, the asymptotic behavior of the IMCF is
different from the case κ > 0. By the definition and the weighted isoperimetric inequality (3.2),
we have

W(Σt)− ξ(|Σt|) =W(Σt)− ξ(|Σ̂t|)

=

∫

Σt

H dµt − n

∫

Ωt

ϕ′′

ϕ
dv −

∫

Σ̂t

H dµt + n

∫

Ω̂t

ϕ′′

ϕ
dv

=

∫

Σt

H dµt −
∫

Σ̂t

H dµt − n(

∫

Ωt

ϕ′′

ϕ
dv − ξ1(|Σ̂t|))

≥
∫

Σt

H dµt −
∫

Σ̂t

H dµt. (4.39)

Therefore, we see that

G(t) =|Σt|−
n−1
n (W(Σt)− ξ(|Σt|))

≥|Σt|−
n−1
n

∫

Σt

H dµt − |Σ̂t|−
n−1
n

∫

Σ̂t

H dµt. (4.40)

Now, we investigate the limit of the quantity |Σt|−
n−1
n

∫
Σt
H dµt. By the estimates (4.2) and

(4.3), we have

|Σt|
n−1
n =

(∫

Sn

ϕn dvolSn

)n−1
n (

1 +O(e−2αt)
)
, (4.41)

∫

Σt

H dµt = n

∫

Sn

ϕ′ϕn−1 dvolSn
(
1 +O(e−αt)

)
. (4.42)

Then we calculate as follows:

lim inf
t→∞

|Σt|−
n−1
n

∫

Σt

H dµt ≥ n lim inf
t→∞

∫
Sn
ϕ′ϕn−1dvolSn

(
∫
Sn
ϕndvolSn)

n−1
n
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≥ nω
1
n
n ϕ̄

′ lim inf
t→∞

e−2(n−1)ε(t)

= nω
1
n
n ϕ̄

′, (4.43)

where we have used (4.4) in the second inequality. On the other hand, since Σ̂t are radial

coordinate spheres, on Σ̂t we have

|Σ̂t| = ωnϕ
n(r̂(t)),

∫

Σ̂t

H dµt = nωnϕ
′(r̂(t))ϕn−1(r̂(t)),

where r̂(t) is the radius of Σ̂t, i.e. Σ̂t = {r̂(t)} × S
n. Therefore

lim
t→∞

|Σ̂t|−
n−1
n

∫

Σ̂t

H dµt = nω
1
n lim

t→∞
ϕ′(r̂(t)) = nω

1
n ϕ̄′. (4.44)

Combining (4.43) and (4.44) with (4.40), we conclude that limt→∞ G(t) ≥ 0 in this case. �

Applying Proposition 4.3 and Proposition 4.4, we can complete the proof of Theorem 1.3 now.
Since G(t) is monotone nonincreasing in time t, we have

G(0) ≥ lim
t→∞

G(t) ≥ 0,

Thus, for the strictly mean convex and star-shaped hypersurface Σ, we obtain
∫

Σ
Hdµ +

∫

Ω
Ric(∂r, ∂r) dv ≥ ξ(|Σ|). (4.45)

If the equality holds in the above inequality, then G(t) ≡ 0. Since G′(0) = 0, it follows from
Proposition 4.3 that either: (a) Σ is a radial coordinate sphere in M , or (b) there exists a
radial ball B(R)(may be empty) such that M \ B(R) is isometric to a space form of constant
nonpositive curvature and Σ is a geodesic sphere in it.

Next, we assume that Σ is a weakly mean convex and star-shaped hypersurface. By the
argument of Li and Wei [27, Lemma 3.11], we can approximate Σ by a family of strictly mean
convex and star-shaped hypersurfaces using the mean curvature flow. Then the inequality (4.45)
follows from the approximation. Now we adapt the idea of [19] to treat the equality case. Assume
that Σ is weakly mean convex with equality in (4.45) attained. Let

Σ+ = {p ∈ Σ|H(p) > 0},
since there exists at least one elliptic point on Σ (see [26, Lemma 2.1]), Σ+ is open and nonempty.
We claim that Σ+ is closed. This would implies Σ = Σ+, so Σ is strictly mean convex and we
conclude that it is either a radial coordinate sphere, or is isometric to a geodesic sphere in the
space form of nonpositive curvature.

We now prove that Σ+ is closed. Pick any ̟ ∈ C2
0 (Σ+) compactly supported in Σ+. Let Σs

be the hypersurface determined by Xs = expX (s̟ν), where ν is the unit outward normal of Σ
at X. Let Ωs be the domain enclosed by Σs and ∂M . It is easy to show Σs is weakly mean
convex and star-shaped when s is small enough. Define

L(Σs) =

∫

Σs

Hdµ+

∫

Ωs

Ric(∂r, ∂r) dv − ξ(|Σs|).

Therefore L(Σs) ≥ L(Σ) = 0 for s small, which implies

d

ds
L(Σs)|s=0 = 0.
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Simple calculation yields

d

ds
L(Σs)|s=0 =

∫

Σ

(
2σ2 +Ric(∂r, ∂r)−Ric(ν, ν)− ξ′(|Σ|)H

)
̟dµ = 0

for all ̟ ∈ C2
0 (Σ+). Thus,

2σ2(p) +Ric(∂r, ∂r)(p)−Ric(ν, ν)(p)− ξ′(|Σ|)H(p) = 0, ∀p ∈ Σ+.

Since Ric(∂r, ∂r)−Ric(ν, ν) ≤ 0, we obtain

2σ2(p) ≥ ξ′(|Σ|)H(p),∀p ∈ Σ+,

where ξ′(|Σ|) > 0 by (4.30). It follows from the Newton-Maclaurin’s inequality that

H(p) ≥ n

n− 1
ξ′(|Σ|) > 0,∀p ∈ Σ+.

Hence, Σ+ is closed. This completes the proof of Theorem 1.3, and then Corollary 1.4 follows
immediately.

4.3. Further discussions on Riemannian warped products. In this subsection, we briefly
discuss the generalization of our Theorem 1.3 to general Riemannian warped products, which
need not be warped cylinders.

Assume that (V, gV ) is a n-dimensional closed Riemannian manifold. Fixing r0 ≥ 0 and
let λ = λ(r) be a smooth positive function defined on the interval [r0,∞). Let (Nn+1, ḡ) =
[r0,∞)× V n endowed with the following warped product structure

ḡ = dr2 + λ2gV , r ∈ [r0,∞), (4.46)

which satisfies

RicV ≥(n− 1)KgV , (4.47)

0 ≤ (λ′)2 − λ′′λ ≤ K, (4.48)

where K > 0 is a positive constant. Guan, Li and Wang [21] proved that if Σ ⊂ Nn+1 is
star-shaped, then the flow hypersurfaces Σt of the mean curvature type flow

∂tX = (nλ′ − uH)ν (4.49)

starting from Σ remains to be star-shaped, exists for all time t ∈ [0,∞) and converges exponen-
tially to a radial coordinate sphere as t→ ∞.

Moreover, they showed that |Σt| is nonincreasing along the flow (4.49). By a direct calculation,

if ∂r

(
λ′′

λ

)
≤ 0, then the weighted volume

∫
Ωt

λ′′

λ dv is nondecreasing along the flow (4.49). Thus

we can also deduce the inequality (3.2). Then by adding adequate asymptotic conditions to
their assumptions (4.47) and (4.48), we can use [37, Theorem 1.3] to establish the Minkowski
inequality (1.8) in general Riemannian warped products. The proof is essentially the same as
the one we have shown in §4 above. Hence we present an version here without proof and expect
it can be improved by weaken the conditions.

Assumption 4.5. Let (V, gV ) be an n-dimensional closed Riemannian manifold and λ = λ(r) be
a smooth positive function defined on the interval [r0,∞). Assume that (Nn+1, ḡ) = [r0,∞)×λV

n

such that ḡ = dr2 + λ2gV . We suppose that the following conditions hold:

(i) V has nonnegative sectional curvature and λ′ > 0, λ′′ ≥ 0,
(ii) RicV ≥ (n− 1)KgV ,
(iii) λλ′′ ≤ (λ′)2 ≤ K + cλ2,

(iv) ∂r

(
λ′′

λ

)
≤ 0,
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where K > 0 is a positive constant and c = limr→∞
λ′′

λ ≥ 0.

Theorem 4.6. Let Nn+1 be a Riemannian warped product given in Assumption 4.5, then the
Minkowski inequality (1.8) holds for any weak mean convex and star-shaped hypersurface Σ in
Nn+1.

Remark 4.7. Compared Assumption 4.5 with Assumption 1.1, we see that in the case of warped
cylinders, the constraints in Assumption 4.5 is stronger than Assumption 1.1 by raising the
lower bound of (λ′)2 from 0 to λλ′′. This leads to some bad consequences. For example, let Σ
be a weakly mean convex and star-shaped hypersurface in the deSitter-Schwarzschild manifold,
Theorem 4.6 does not work if Σ is close to the horizon {0} × S

n, while Theorem 1.3 can deal
with this case.

5. Proof of Theorem 1.6 and Theorem 1.8

In this section, we adapt the idea of [22,43] to complete the proof of Theorem 1.6 and Theorem
1.8. We firstly deal with the Schwarzschild case. Under our definition of metric (1.4) with κ = 0,
the Schwarzschild manifold can be seen as

Mn+1 = {x ∈ R
n+1 : |x| ≥

(m
4

) 1
n−1 }, ḡij(x) =

(
1 +

m

4|x|n−1

) 4
n−1

δij(x). (5.1)

Here δij is the canonical Euclidean metric and |x| is the norm of x with respect to the metric
δij . Consider a map J : Rn+1 \ {0} → R

n+1 \ {0} given by

J (x) =
(m
4

) 2
n−1 · x

|x|2 , ∀x ∈ R
n+1 \ {0}.

It can been shown that the map J is a reflection map across the Euclidean sphere {x ∈ R
n+1 :

|x| =
(
m
4

) 1
n−1 } and hence gives an isometry of R

n+1 \ {0}. Then the double Schwarzschild

manifold (M̂n+1, ĝ) can be obtained by the combining the Schwarzschild manifold with its image
under the reflection map J , which is complete and boundaryless.

We agree on some notations under the model (5.1) of the Schwarzschild manifold for later use

in this section. We set r0 =
(
m
4

) 1
n−1 and denote the coordinate centered at the origin of Rn+1 as

S(r), hence the horizon ∂M = S(r0). B(r) is denoted as the closure of the domain bounded by
∂M and S(r) for any r ≥ r0, while D(r) represents the closed ball centered at the origin of Rn+1

with radius r for r ≥ 0. The volume of a domain Ω under the metric ḡ is denoted as Vol(Ω),
and the area of a hypersurface Σ under the the metric ḡ is denoted as |Σ| if no ambiguity.

Firstly, we have the following integral formula.

Lemma 5.1. Suppose that Ω is a smooth bounded domain in (Mn+1, ḡ) and Σ = ∂Ω \ ∂M .
Let u : Ωc → R+ be a smooth proper function with u|Σ = 0. Let t > 0, Ωt = {u < t} and
Φ : (0, t) → R+ be Lipschitz and compactly supported in (0, t). Then ζ = Φ ◦ u : Ωt → R+

satisfies:

−
∫

Ωt

∇ζ · νH dv =

∫

Ωt

ζ(H2 − |A|2 −Ric(ν, ν)) dv. (5.2)

Proof. The proof is similar as [43, Lemma 4.1], hence we omit it here. �

5.1. Schwarzschild case I: Σ is homologous to the horizon.

Lemma 5.2. Let Ω be a smooth bounded domain in the Schwarzschild manifold (Mn+1, ḡ).
Suppose that the boundary ∂Ω = Σ ∪ ∂M and Σ is outward minimizing. Let Ωt be the weak
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solution of IMCF in Ωc = M \ Ω with initial data Ω. Denote Σt = ∂Ωt \ ∂M , then for all
0 < t̄ < t, we have

W(Σt)− ξ(|Σt|) ≤ W(Σt̄)− ξ(|Σt̄|) +
n− 1

n

∫ t

t̄
[W(Σs)− ξ(|Σs|)] ds. (5.3)

Proof. Using Lemma 5.1 and following the same argument in [43, Lemma 4.2], we arrive at
∫

Σt

H dµt −
∫

Σt̄

H dµt̄ ≤
∫ t

t̄

∫

Σs

(
n− 1

n
H − Ric(ν, ν)

|∇u|

)
dµs ds, ∀ 0 < t̄ < t. (5.4)

On the other hand, if we define the Hn+1-measurable function h :Mn+1 \ Ω by

h(x) =

{
0 ∇u(x) = 0,

Ric(∂r, ∂r)|∇u|−1 ∇u(x) 6= 0.

Then applying the coarea formula and noticing that Ric(∂r, ∂r) < 0, there holds
∫

Ωt

Ric(∂r, ∂r) dv −
∫

Ωt̄

Ric(∂r, ∂r) dv ≤
∫

Ωt\Ωt̄

h|∇u| dv =

∫ t

t̄

∫

Σs

Ric(∂r, ∂r)

|∇u| dµs ds. (5.5)

Combining (5.4) with (5.5) and using the fact that Ric(∂r, ∂r) ≤ Ric(ν, ν), we have

W(Σt)−W(Σt̄) ≤
n− 1

n

∫ t

t̄

∫

Σs

H dµs ds. (5.6)

Since Σ is outward minimizing, then |Σt| = et|Σ| for all t ≥ 0 by property (5) in Theorem 2.2,
which follows that d

dt |Σt| = |Σt|. Hence

ξ(|Σt|)− ξ(|Σt̄|) =
∫ t

t̄

d

ds
ξ(|Σs|) ds

=

∫ t

t̄
ξ′(|Σs|)|Σs| ds

=
n− 1

n

∫ t

t̄
ξ(|Σs|) ds + (n− 1)

∫ t

t̄
ξ1(|Σs|) ds, (5.7)

where we have used (4.30) in the last equality. Combining (5.6) with (5.7) leads to

[W(Σt)− ξ(|Σt|)]− [W(Σt̄)− ξ(|Σt̄|)]

≤n− 1

n

∫ t

t̄
[W(Σt)− ξ(|Σt|)] ds+ (n− 1)

∫ t

t̄

[∫

Ωs

ϕ′′

ϕ
ds − ξ1(|Σs|)

]
ds

≤n− 1

n

∫ t

t̄
[W(Σt)− ξ(|Σt|)] ds, (5.8)

which gives (5.3). �

Proposition 5.3. Under the assumptions in Lemma 5.2, the quantity G(t) is nonincreasing for
all t. Moreover, if G(t) = G(t̄) for some pair 0 < t̄ < t, then Σs is a radial coordinate sphere
(possibly away from a set of measure zero if n ≥ 7) for every s ∈ (t̄, t].

Proof. By (5.3) and Gronwall’s lemma, we have

W(Σt)− ξ(|Σt|) ≤ [W(Σt̄)− ξ(|Σt̄|)] e
n−1
n

(t−t̄) (5.9)
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for all 0 < t̄ < t. Since |Σt| = et|Σ|, G(t) is nonincreasing for all t. If Q(t) = Q(t̄) for some pair
0 < t̄ < t, then from inequality (5.8), we see that

∫

Ωs

ϕ′′

ϕ
ds = ξ1(|Σs|)

holds for a.e. s ∈ [t̄, t], which implies that Σs is a radial coordinate sphere (possibly away from
a set of measure zero if n ≥ 7) for a.e. s ∈ [t̄, t] by the argument in Theorem 3.4 and Remark
3.2. Due to property (3) in Theorem 2.2, Σs is a radial coordinate sphere (possibly away from
a set of measure zero if n ≥ 7) for every s ∈ (t̄, t]. �

Proposition 5.4. We have limt→∞ G(t) ≥ 0.

Proof. Let Σ̂ be the radial coordinate sphere in the Schwarzschild manifold (Mn+1, ḡ) which

satisfies |Σ̂| = |Σ|, and Ω̂ be the domain enclosed by Σ̂ and ∂M . Let Ω̂t be the classical

solutions to the IMCF, by [24, Smooth flow Lemma 2.3], Ω̂t satisfies the weak formulation and
hence is also the weak solution. Then

|Σ̂t| = et|Σ̂| = et|Σ| = |Σt|,
and the same calculation as (4.39) gives

W(Σt)− ξ(|Σt|) ≥
∫

Σt

H dµt −
∫

Σ̂t

H dµt. (5.10)

Using the model (5.1) of the Schwarzschild manifold and we define the blow down object by

Σλ
t := λΣt = {λx : x ∈ Σt}, gλ(x) := λ2g(x/λ),

where λ > 0 is a fixed number. Define r(t) by |Σt| = ωnr(t)
n, then |Σ1/r(t)

t |g1/r(t) = ωn and

[24, Lemma 7.1] implies that

Σ
1/r(t)
t → S(1) in C1,α as t → ∞. (5.11)

According to [24, Equation (7.2)], there exists positive constants C and R0 depending only on
n, such that

|∇u(x)| ≤ C

|x| , for all |x| ≥ R0.

Then by property (4) in Theorem 2.2, we have

H = |∇u| ≤ C

|x| ≤
C ′

r(t)
, a.e. on Σt (5.12)

for a.e. sufficiently large t and C ′ = C + 1, where we have used the convergence result (5.11).

Then the mean curvature of Σ
1/r(t)
t with respect to the metric g1/r(t) satisfies

H1/r(t) = r(t)H(r(t)x) ≤ C ′, a.e. on Σ
1/r(t)
t (5.13)

for a.e. sufficiently large t. Then for any sequence ti → ∞ such that (5.13) holds, we write Σ
1/r(ti)
t

as graphs of C1,α functions over S(1) and have the weak convergence of the mean curvature
∫

Σ
1/r(ti)
ti

H
Σ

1/r(ti)
ti

ν
Σ

1/r(ti)
ti

·X →
∫

S(1)
HS(1)νS(1) ·X, X ∈ C0

c (TM). (5.14)

Then by (5.11), (5.13) and (5.14), we have

lim
ti→∞

|Σti |−
n−1
n

∫

Σti

H dµti = ω
−n−1

n
n lim

ti→∞
r(ti)

−(n−1)

∫

Σti

H dµti
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= ω
−n−1

n
n lim

ti→∞

∫

Σ
1/r(ti)
ti

H1/r(ti)(x) dµ
Σ

1/r(ti)
ti

= nω
1
n
n . (5.15)

Combining (5.15) with (4.44) and (5.10) completes the proof of Proposition 5.4, since we have
limr→∞ ϕ′ = 1 in the Schwarzschild case. �

Up to here, we have shown that inequality (1.11) holds if Σ is homologous to the horizon.
We now check the equality case. If the equality holds in (1.11), then Σt is a radial coordinate
sphere (possibly away from a set of measure zero if n ≥ 7) for every t > 0 by Proposition 5.3.
Property (3) in Theorem 2.2 says that Σt → Σ′ locally in C1,β as t → 0+ (possibly away from a
set of measure zero if n ≥ 7) and hence Σ′ is also a radial coordinate sphere (possibly away from
a set of measure zero if n ≥ 7). Then Σ′ has positive constant mean curvature (a.e. if n ≥ 7).
By [24, (1.15)], we have

HΣ′ = 0 on Σ′ \Σ,
HΣ′ = HΣ ≥ 0 Hn-a.e. on Σ′ ∩Σ,

which yields Σ = Σ′ (a.e. if n ≥ 7), and hence Σ is a radial coordinate sphere (possibly away
from a set of measure zero if n ≥ 7). Since Σ is smooth, we conclude that Σ is precisely a radial
coordinate sphere.

5.2. Schwarzschild case II: Σ is null homologous. In this subsection, we assume that Σ
is null homologous. We fill-in the region W bounded by the horizon ∂M as in [24, §6] to get a

new space M̃ , and run the weak IMCF in M̃ until it nearly touches ∂M , then we jump to the
strictly minimizing hull F of Ωt ∪W and restart the weak IMCF from F .

Assume that t1 is the jump time, we firstly deal with the time interval t ∈ [0, t1], where Ωt is
always null homologous. However, the argument as in §5.1 cannot directly apply, because the
last equality in (5.8) is not valid in general since Ωt is null homologous. We firstly recall a result
proved by Brendle and Eichmair [6]:

Theorem E ([6]). Let Ω be an isoperimetric region in the double Schwarzschild manifold. If
the volume of Ω is sufficiently large, then Ω contains the horizon ∂M and is bounded by two
radial coordinate spheres.

Since the double Schwarzschild manifold can be obtained by combining the Schwarzschild
manifold with its image under the reflection map J across the horizon S(r0), their proof of
Theorem E also suits the case of Schwarzschild manifold by a slightly modification. We need
the following useful proposition.

Proposition A ([13]). Given (τ, η) ∈ (1,∞) × (0, 1), there exists V0 > 0 so that the following
holds: Let Ω be a bounded set with finite perimeter in the Schwarzschild manifold (Mn+1, ḡ)
containing the horizon ∂M , and let r ≥ r0 be such that

Vol(Ω) = Vol(B(r)) ≥ V0.

If Ω is (τ, η)-off-center, i.e., if |∂∗Ω \B(τr)| ≥ η|S(r)|, then

|∂∗Ω| ≥ |S(r)|+ cηm

2

(
1− 1

τ

)2

r. (5.16)

Here, c > 0 is a constant that only depends on n.
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Theorem 5.5. There exists V1 > 0 with the following property: If Ω is an isoperimetric region
in the Schwarzschild manifold with Vol(Ω) ≥ V1, then ∂∗Ω is the union of the horizon and a
radial coordinate sphere.

Proof. Suppose that the conclusion is false. Then there exists a sequence of isoperimetric regions
Ωk with Vol(Ωk) → ∞ such that ∂∗Ωk is not the union of the horizon and a radial coordinate
sphere. Let rk ≥ r0 be such that Vol(Ωk) = Vol(B(rk)). Since Ωk is an isoperimetric region, it
follows that

|∂∗Ωk| ≤ |S(rk)|+ |∂M |. (5.17)

Then we consider two cases.
Case 1: Suppose that for every τ > 1, we have

lim inf
k→∞

r−n−1
k Vol(Ωk \B(τrk)) = 0.

As in the proof of Theorem 5.1 in [14], we see that after passing to a subsequence if necessary,
Ωk ⊂ B(2rk) and the rescaled regions r−1

k Ωk converge to the D(1) \ {0} in R
n+1. Then we have

B(rk/2) \B(rk/4) ⊂ Ωk ⊂ B(2rk) (5.18)

for some large integer k. By the regularity theorem (cf. [34, Proposition 2.4]), ∂∗Ωk\B(rk/2) is a
smooth, embedded hypersurface with constant mean curvature. Brendle proved that any closed,
embedded hypersurface with constant mean curvature in the deSitter-Schwarzschild manifold is
a radial coordinate sphere (see [5, Corollary 1.2]), so we denote ∂∗Ωk \ B(rk/2) as S(r̄k). Set
r̂k = inf{r ∈ (0, rk/2) : B(rk/2) \ B(r) ⊂ Ωk}. Then by the half space theorem, the radial
coordinate sphere S(r̂k) intersects ∂∗Ωk in the regular set of ∂∗Ωk, and then the maximum
principle implies that S(r̂k) ⊂ ∂∗Ωk, hence Ωk has a connected component which is enclosed
by S(r̄k) and S(r̂k). Note that if r̂k > r0, then the region enclosed by S(r̄k) and S(r̂k) cannot
be isoperimetric, so does Ωk. Then r̂k = r0, this means Ωk is the domain enclosed by ∂M and
S(r̄k), which contradicts the choice of Ωk.

Case 2: Assume that there exists a real number τ > 1 such that

lim inf
k→∞

r−n−1
k Vol(Ωk \B(τrk)) > 0.

By [14, Lemma 2.4], we have

lim inf
k→∞

r−n
k |∂∗Ωk \B(τrk)| > 0

for some τ > 1. Hence we can find a real number η ∈ (0, 1), such that the sets Ωk ∪ ∂M are
(τ, η)-off-center as in Proposition A when k is sufficiently large, then we have

|∂∗Ωk| ≥ |S(rk)|+
cηm

2

(
1− 1

τ

)2

rk − |∂M |,

which contradicts with (5.17) if k is sufficiently large. �

We now turn back to our proof. According to Theorem 5.5, if Vol(Ω) ≥ V1 and the domain
B(r̃) has the same volume of Ω, then we have

|Σ| ≥ |∂B(r̃)| = |S(r̃)|+ |∂M | = ξ−1
0 (Vol(B(r̃))) + |∂M | = ξ−1

0 (Vol(Ω)) + |∂M |,
where ξ0 is defined in the isoperimetric inequality (3.3). This means

Vol(Ω) ≤ ξ0(|Σ| − |∂M |). (5.19)

Combining this with (3.5) gives
∫

Ω

ϕ′′

ϕ
ds ≤ ξ1(|Σ| − |∂M |).
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Then the same argument as in the proof of Lemma 5.2 goes through except that (5.8) now
becomes

[W(Σt)− ξ(|Σt|)]− [W(Σt̄)− ξ(|Σt̄|)]

≤n− 1

n

∫ t

t̄
[W(Σt)− ξ(|Σt|)] ds+ (n− 1)

∫ t

t̄

[∫

Ωs

ϕ′′

ϕ
ds− ξ1(|Σs|)

]
ds

≤n− 1

n

∫ t

t̄
[W(Σt)− ξ(|Σt|)] ds+ (n− 1)

∫ t

t̄
[ξ1(|Σs| − |∂M |) − ξ1(|Σs|)] ds (5.20)

<
n− 1

n

∫ t

t̄
[W(Σt)− ξ(|Σt|)] ds, (5.21)

from which we deduce that G(t) is strictly decreasing for t ≤ t1.
If n < 7, when Ωt1 jumps to F , the strictly minimizing hull of Ωt1 ∪ W , then the same

argument as in [43, §4.2] yields

∂F ∈ C1,α, |∂F | ≥ |Σt1 |,
∫

∂F
H dµ ≤

∫

Σt1

H dµt1 . (5.22)

Meanwhile, since t1 is the jump time, we have Ωt1 ⊂ F \W and hence

∫

Ωt1

Ric(∂r, ∂r) dv ≥
∫

F\W
Ric(∂r, ∂r) dv. (5.23)

Moreover, F is the suitable condition to restart the flow. Then by the same argument in §5.1,
G(t) starting from initial value F is nonincreasing and satisfies limt→∞ G(t) ≥ 0, and in turn

W(∂F )− ξ(|∂F |) ≥ 0. (5.24)

Combining (5.22)-(5.24), we see that the quantity G(t) is nonincreasing during the jump and
hence Σ satisfies the strict inequality (5.24). We summarize the results of this subsection in the
following theorem.

Theorem 5.6. Let Ω be a bounded domain with smooth and outward minimizing boundary Σ in
the Schwarzschild manifold (Mn+1, ḡ). If n < 7 and the volume of Ω is sufficiently large, then
we have ∫

Σ
H dµ+

∫

Ω
Ric(∂r, ∂r) dv > ξ(|Σ|),

where ξ is the associated monotonically increasing function.

Combining the results in §5.1 and Theorem 5.6 completes the proof of Theorem 1.6.

5.3. Hyperbolic case. In this subsection, we complete the proof of Theorem 1.8. Note that we
also have Lemma 5.1, Lemma 5.2 and Proposition 5.3 in this case. Due to the lack of blow down
lemma, we cannot apply the method in Proposition 5.4 to obtain the limit of G(t) as t tends to
∞. However, [22, Theorem 1.1] says that the weak solution Σt to the IMCF becomes star-shaped
and smooth after a large time and hence we can directly apply the result of Proposition 4.4 to
deduce the limit. Then we see that inequality (1.12) holds for Σ which is outward minimizing
in H

n+1 with 2 ≤ n < 7, and the equality is characterized by the isoperimetric inequality, which
means that Σ is a geodesic sphere. This completes the proof of Theorem 1.8.
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