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Abstract: Laser Additive Manufacturing (LAM) presents unparalleled opportunities for fabricating 

complex, high-performance structures and components with unique material properties. Despite these 

advancements, achieving consistent part quality and process repeatability remains challenging. This 

paper provides a comprehensive review of various state-of-the-art in-situ process monitoring 

techniques, including optical-based monitoring, acoustic-based sensing, laser line scanning, and 

operando X-ray monitoring. These techniques are evaluated for their capabilities and limitations in 

detecting defects within Laser Powder Bed Fusion (LPBF) and Laser Directed Energy Deposition 

(LDED) processes. Furthermore, the review discusses emerging multisensor monitoring and machine 

learning (ML)-assisted defect detection methods, benchmarking ML models tailored for in-situ defect 

detection. The paper also discusses in-situ adaptive defect remediation strategies that advance LAM 

towards zero-defect autonomous operations, focusing on real-time closed-loop feedback control and 

defect correction methods. Research gaps such as the need for standardization, improved reliability 

and sensitivity, and decision-making strategies beyond early stopping are highlighted. Future 

directions are proposed, with an emphasis on multimodal sensor fusion for multiscale defect prediction 

and fault diagnosis, ultimately enabling self-adaptation in LAM processes. This paper aims to equip 

researchers and industry professionals with a holistic understanding of the current capabilities, 
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limitations, and future directions in in-situ process monitoring and adaptive quality enhancement in 

LAM. 
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Nomenclature 

Acoustic emission (AE) 

Artificial Intelligence (AI) 

Additive Manufacturing (AM) 

Artificial Neural Network (ANN) 

Back Propagating Neural Network (BPNN) 

Complementary Metal Oxide Semiconductor 

(CMOS) 

Charge-coupled device (CCD) 

Convolutional Neural Networks (CNN) 

Cyber-Physical Production Systems (CPPS) 

Cyber-Physical Systems (CPS) 

Design for Additive Manufacturing (DfAM) 

Direct metal printing (DMP) 

Decision Tree (DT) 

Dynamic X-ray Radiography (DXR) 

Fibre Bragg grating (FBG) 

Finite element method (FEM) 

Functionally Graded Materials (FGM) 

Field of View (FoV) 

Frame per second (fps) 

General Adversarial Network (GAN) 

Gaussian process regression (GPR) 

Internet of Things (IoT) 

Inline coherent imaging (ICI) 

K Nearest Neighbour (KNN) 

Laser additive manufacturing (LAM) 

Laser Directed Energy deposition (LDED) 

Lack of Fusion (LoF) 

Laser powder bed fusion (LPBF) 

Laser-Powder Directed Energy deposition (LP-

DED) 

Laser-Wire Directed Energy deposition (LW-

DED) 

Mel-frequency cepstrum coefficient (MFCC) 

Multiple-Input Multiple-Output (MIMO) 

Multi-scale Convolutional Neural Network 

(MsCNN) 

Medium Wavelength Infrared (MWIR) 
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Non-destructive testing (NDT) 

Optical Microscope (OM) 

Optical Coherence Tomography (OCT) 

Principal component analysis (PCA) 

Physics-informed machine learning (PIML) 

Random Forrest (RF) 

Reinforcement learning (RL) 

Root mean square error (RMSE) 

Robot Operating System (ROS) 

Spectral convolutional neural networks (SCNN) 

Standard deviation (SD) 

Scanning Electron Microscope (SEM) 

Single-Input Single-Output (SISO) 

Selective laser melting (SLM) 

Selective laser sintering (SLS) 

Self-organizing Maps (SOM) 

Short-time Fourier transform (STFT) 

Support vector machine (SVM) 

Short Wavelength Infrared (SWIR) 

Tool-Centre-Point (TCP) 

Time-frequency representations (TFR) 

Ultimate tensile strength (UTS) 

Variational Auto-Encoder (VAE) 

Variable polarity plasma arc welding (VPPA) 

Wire and arc additive manufacturing (WAAM) 

Wavelet transform (WT) 

X-ray Computed Tomography (X-CT) 

X-ray diffraction (XRD) 

Yield strength (YS) 
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1. Introduction 

As defined by the International Organization for Standardization (ISO)/American Society for 

Testing and Materials (ASTM) F2792-12a [1], Laser Additive Manufacturing (LAM) includes two 

primary processes, namely, Laser Powder Bed Fusion (LPBF) [2] and Laser Directed Energy 

Deposition (LDED) [3]. LAM has witnessed tremendous development over the past several decades, 

transforming from a tool used for rapid prototyping to a method for direct manufacturing of functional, 

high-performance components [4–6]. LAM has attracted considerable interests from aerospace, 

automotive, biomedical, marine, and offshore industries [7–16].  

The unprecedented advantages of LAM stem from its layer-by-layer material addition 

methodology, offering unparalleled design flexibility [17–19], enhanced mechanical properties [20–

22], improved energy efficiency [23–25], the capability to fabricate topologically optimized complex 

structures and lightweight components [26–31], and the integration of multiple functionalities within 

a single component for enhanced performance [32–35]. Furthermore, the fully digitized and automated 

process chain of LAM supports manufacturing-on-demand for highly customized, low-volume 

production, establishing new business models that reduce dependency on logistics, supply chains, and 

spare component storage while shortening production lifecycles [36–38]. 

However, despite these significant advancements, the inherent stochastic nature of the LAM 

process can lead to the formation of defects such as porosity, cracks, and distortions, which can 

substantially degrade the mechanical properties of as-fabricated parts. These defects occur due to 

complex thermal dynamics and intricate interactions between the laser beam, feedstock and base 

materials, which can be influenced by many factors such as unstable printing speed and dynamic heat 

accumulation. Defects could occur even with pre-optimized process parameters [39–42]. This 

challenge not only impedes further industrial adoption of LAM but also poses failure risks in critical 

applications where the reliability of the part is paramount. It emphasizes the importance of early defect 

detection and correction in ensuring as-built part quality while also improving the reliability and 

reproducibility of LAM processes. 

Recognizing this critical need, the field has seen a surge in research activities focused on in-situ 

monitoring and closed-loop quality enhancement. Data from the Scopus database indicates a 

substantial increase in LAM monitoring research publications over the past decade (Figure 1(a)), with 

US, China, and Germany at the forefront. The trend in various sensing approaches is also illuminating, 

with optical-based monitoring leading the way, and a growing interest in acoustic, and multisensor 

monitoring (Figure 1(b)). A considerable rise in the integration of artificial intelligence (AI) in LAM 
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monitoring signifies the fusion of traditional sensing approaches with advanced data analysis methods, 

indicating a multidisciplinary evolution of this field (Figure 1(c)).  

 

Figure 1. A decade of LAM monitoring research publications - a statistical overview from the Scopus database: 

(a) Publication statistics on LAM monitoring research, with a focus on leading countries. (b) Breakdown of 

publication statistics for different sensing approaches used in LAM monitoring research. (c) Trends in AI-

assisted LAM monitoring publications. 
 

Previous reviews in in-situ process monitoring and control in LAM have made significant 

contributions to the field [43–60]. However, many of these reviews exhibit limitations that our work 

aims to address, as summarized in Table 1. A common theme across previous reviews, such as those 

by Herzog et al. [52] and Grasso et al. [50], is a narrowed focus on specific aspects of LAM, such as 

ML for defect detection or sensor signals. Other reviews, such as Everton et al. [45] and Chua et al. 

[61], while providing valuable insights, do not fully incorporate the latest advancements in monitoring 

technologies or real-time process control, thereby leaving a gap in terms of comprehensive and up-to-

date coverage. Furthermore, several reviews including Xia et al. [49] and Tang et al. [48] focus 

exclusively on particular AM methods, such as WAAM and DED. This specialization results in a lack 

of a holistic view that encompasses the breadth of LAM techniques. Similarly, works like Segovia 
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Ramírez et al. [56] and Lu et al. [47] focus predominantly on non-destructive testing, offering less 

insight into the in-situ process monitoring and control aspects that are crucial for the advancement of 

LAM. 

In contrast, the proposed review provides a comprehensive and critical examination of various in-

situ sensing methodologies, including but not limited to optical, acoustic, and infrared thermography 

monitoring, alongside the integration of advanced ML-assisted defect detection methods. We address 

the existing research gaps identified in previous studies by emphasizing the need for standardization, 

improved reliability, and sensitivity, as well as enhanced data interpretation and decision-making 

strategies. Additionally, this review explores the state-of-the-art adaptive quality enhancement 

methods, positioning it as a pathway towards achieving zero-defect autonomous manufacturing. This 

approach not only bridges the gaps observed in earlier reviews but also sets a foundation for future 

research directions in the field. 

 

Table 1. Previous review on process monitoring and control in LAM. 

Review paper Key contributions Limitations Year 

Gunasegaram 

[62] 

• ML strategies for adaptive control in metal 

AM. 

• Proposes a framework for ML-assisted 

closed-loop control (CLC) focusing on 

defect avoidance, mitigation, and repair. 

• Limited focus on in-situ process 

monitoring, multisensor fusion and 

sensing technologies  

• Lacks implementation challenges of 

ML-assisted CLC 

2024 

Herzog et al. [52] 

• ML approaches and data structures in 

defect detection for LAM 

• Monitoring technology trends comparison 

• Limited focus on process control  

and adaptive quality enhancement 

methods 
2023 

Cai et al. [58] 

• Detailed survey of in-situ process sensing 

and control in metal AM 

• Review of various signal monitoring 

methods and closed-loop control strategies 

• Lacks coverage on the very latest 

developments of vision and 

acoustic-based monitoring 

• Lacks coverage on multisensor 

monitoring and data fusion. 

• Limited focus on in-process 

adaptive defect correction. 

2023 

Segovia Ramírez 

et al. [56] 

• Review of NDT methods in AM. • Focused on non-destructive testing, 

less on in-situ process monitoring 

• Limited focus on process control 

2023 

Qin et al. [54] 
• Systematic review of ML in AM • Broad focus on AM, not specific to 

Laser-based AM or in-situ 

monitoring. 

2022 
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• Cluster analysis in AM literature, including 

DfAM, material analysis, monitoring, and 

sustainability. 

• Limited focus on process control 

AbouelNour and 

Gupta [51] 

• In-situ monitoring for subsurface and 

internal defects in AM 

• Focus on imaging and acoustic methods 

review 

• Focus primarily on imaging and 

acoustic methods, lacks surface 

defect detection. 

• Limited review on process control 

and quality enhancement 

2022 

Grasso et al. [50] 

• Sensor signals, in-situ sensing and 

monitoring in metal PBF 

• Focus on PBF, lacks broader LAM 

coverage 

• Limited focus on in-process quality 

enhancement  

2021 

Xia et al. [49] 
• Monitoring and control in WAAM 

• Sensor-based feedback control 

• Specific to WAAM, not applicable 

to broader LAM 
2020 

Tang et al. [48] 

• In-situ monitoring in metal DED • Specific to DED, lacks coverage of 

other LAM techniques 

• Lacks review on process control 

2020 

Lu and Wong 

[47] 

• Review of NDT in AM 

• In-process inspection NDT methods 

• Focus on NDT, less on in-situ 

process monitoring and control 2018 

Chua et al. [61] 
• Quality control in metal AM 

• Real-time inspection methods 

• Lacks coverage of recent 

developments  
2017 

Everton et al. 

[45] 

• Quality assurance in AM 

• Developments in process control for AM  

• Lacks coverage of recent 

developments  2016 

Tapia and 

Elwany [43] 

• Overview of process monitoring and 

control in metal-based AM. 

• Lacks coverage of recent 

developments  2014 

 

The structure of this review is designed to provide a comprehensive understanding of in-situ process 

monitoring and adaptive quality enhancement in LAM. The graphical abstract shown in Figure 2 

visually outlines the scope and interconnectedness of the various sections. Section 2 lays the 

foundational knowledge of LPBF and LDED techniques, and the common defects encountered in 

LAM. Building upon this, Section 3 provides a critical examination of in-situ monitoring 

methodologies, highlighting its capability in early defect detection. This includes a focused discussion 

on ML-assisted defect identification. Section 4 advances the discussion by reviewing state-of-the-art 

closed-loop adaptive quality enhancement techniques, which ensures the quality consistency of the 

printed products. The review concludes with Section 5, which summarizes the key findings and 

identifies crucial research gaps and future perspectives. A road map towards fully autonomous, zero-
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defect LAM production is proposed. By integrating these distinct yet interconnected aspects, this 

review seeks to stimulate further research in this field, guiding the development of industrial-grade in-

situ process monitoring and control applications for LAM technologies. 

 

 
Figure 2. Graphical abstract: a review of in-situ process monitoring and adaptive quality enhancement in LAM. 

Image source from Refs. [63–74]. 
 

2. Laser Additive Manufacturing and Defects  

This section investigates the complexities of Laser Additive Manufacturing (LAM) and its 

associated defects. The discussion begins with the analysis of Laser Powder Bed Fusion (LPBF) in 

Section 2.1, highlighting its importance in creating complex geometries with precision. This is 

followed by a review of Laser Directed Energy Deposition (LDED) in Section 2.2, which is known 

for its abilities in material addition and component repair. The discussion continues with an in-depth 
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examination of common LAM defects in Section 2.3, establishing a connection to the specific 

characteristics of LPBF and LDED. Lastly, Section 2.4 conducts a comparative analysis between 

LPBF and LDED dynamics, and their implications for defect formation and in-situ monitoring. This 

systematic review is essential for understanding the challenges in achieving defect-free LAM 

processes and sets the context for the subsequent sections on in-situ monitoring and adaptive quality 

enhancement. 

2.1. Laser Powder Bed Fusion 

Originating in the late 1980s, Laser Powder Bed Fusion (LPBF) has evolved into a critical pillar 

of the AM industry, attracting widespread interest across various sectors due to its capability to produce 

complex geometries with high precision [10]. As depicted in Figure 3(a), the LPBF process works on 

the principle of selective point-by-point irradiation scanning to build three-dimensional parts. The 

process begins with a recoater blade spreading a thin layer of fine metal powder over the build platform, 

and a laser beam selectively scans and melts the powder according to the part’s cross-sectional 

geometry. As the laser beam relocates, the molten powders undergo a rapid solidification process. The 

build platform then descends by a height equivalent to the predetermined layer thickness, marking the 

commencement of another cycle of this layer-by-layer procedure until the part's complete fabrication. 

During scanning, a melt pool is formed, which solidifies upon cooling, forming a fusion bond with the 

preceding layer and adjacent tracks. The complex interplay between the laser beam and the metallic 

powder leads to the melting, solidification, and densification of the powder particles. The behaviour 

of these melt pool dynamics is significantly influenced by key process parameters, including laser 

power, scan speed, layer thickness, and hatch spacing. 

LPBF's primary advantage lies in its capacity to fabricate parts with complex geometries that 

traditional manufacturing methods find challenging or impossible to produce. The rapid cooling and 

solidification processes produce incredibly fine microstructures with grain sizes as small as hundreds 

of nanometres, enabling LPBF-fabricated parts with higher mechanical strength than cast and forged 

products. LPBF can handle a wide array of materials, ranging from various types of metals to alloys. 

Furthermore, due to the smaller laser beam size, LPBF can achieve enhanced dimensional accuracy 

(up to ±0.05 mm) and superior surface quality (Ra≤10 μm), surpassing other metal AM methods such 

as LDED and WAAM [10]. 

However, LPBF has the following limitations: (1) Achieving fully dense parts can be challenging 

due to the process's stochastic nature and the potential for defects such as porosity and cracks. (2) The 

process is highly sensitive to powder characteristics and process parameters, necessitating careful and 



Page 12 of 107 

 

time-consuming process parameter optimization for attaining the desired part quality. (3) It can only 

produce relatively small-sized parts due to the low build efficiency and the restricted build capacity 

within the enclosed chamber. (4) The high thermal gradients induced by the rapid heating and cooling 

cycles can lead to substantial residual stresses and distortions in the fabricated parts [75]. 

2.2. Laser Directed Energy Deposition 

Laser Directed Energy Deposition (LDED) is another key LAM process that emerged in the early 

1990s. It is widely used for repairing, coating, and fabricating complex structures directly from a CAD 

model. As illustrated in Figure 3(b), LDED utilizes a focused laser source to melt metallic materials as 

they are deposited onto a substrate. LDED can use either powder or wire (or both) as feedstock 

materials. The melt pool dynamics in LDED involve complex interactions between the laser beam, the 

powder/wire material, and the substrate. The key process parameters governing this interaction include 

laser power, scan speed, hatch space, laser spot size, and the powder/wire feed rate. 

One of the key advantages of LDED is its ability to add material to existing parts, making it an 

excellent choice for repair and coating applications [76]. Moreover, LDED has unique advantages in 

manufacturing multi-material components [77,78] and functionally graded materials (FGMs) [79,80]. 

It also utilizes higher laser power and larger laser spot size to achieve faster build rate than LPBF 

process, making it suitable for the fabrication of larger parts such as propellers and rocket engine 

nozzles [81]. LDED also outperforms other DED methods like WAAM and EBAM in mechanical 

performance (e.g., strength, fatigue life, etc.) and surface roughness. Lastly, LDED can handle a 

diverse range of materials, including metals, ceramics, and composites. 

However, LDED also has several limitations. The process can result in a relatively coarse 

microstructure due to the high thermal input and large melt pool, which weaken the mechanical 

strength of the fabricated parts. Like LPBF, the process is sensitive to various processing parameters, 

requiring careful fine-tuning and optimization. Furthermore, creating highly complex geometries with 

high precision using LDED is challenging. Increased build rates, while boosting productivity, 

compromise surface roughness and dimensional accuracy. Addressing issues like geometric distortions, 

defect occurrences, and microstructure inhomogeneity often proves difficult due to localized heat 

accumulation and residual stress.  
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Figure 3. Summary of key parameters, features, and applications of laser powder bed fusion (LPBF) and laser 

directed energy deposition (LDED) [41,82]. 

 

2.3. Defects in LAM 

Achieving high quality consistency and process repeatability in LAM remains a challenging task. 

LAM is sensitive to various process parameters, including laser power, scanning speed, layer thickness, 

hatch spacing, as well as to powder particles composition [83]. Optimizing these parameters through 

various methods like trial-and-error [84], mechanistic modelling [85–87], or machine learning [88–90] 

are often both time-consuming and expensive. Yet, even with these optimized parameters, variations 

in part quality persist. Defects such as pores and cracks can stochastically emerge due to dynamic heat 

accumulation and residual stress.  

The thermal dynamics during the LAM fabrication of metallic parts is a critical aspect in the defect 

formation mechanisms. As the substrate temperature rises, a cascade of complications can occur due 

to heat build-up, such as nonuniform tracks, expanded heat-affected zones, excessive dilutions, 

geometric distortions, and cracking [91]. The dynamic and stochastic nature of the melt pool 

metallurgical process in LAM contributes to the uncertainty of defects [92]. It is particularly 

challenging to determine the transitions from a conduction region (non-defective) to abnormal states 

like keyhole porosity region or lack-of-fusion (LoF) region [93–95]. 

Previous literature [96–98] reveals a range of defects, spanning from micro/meso scales (µm level) 

to macro scales (mm level), as summarized in Table 2 and depicted in Figure 4. Micro/meso scale 

defects include porosity, cracks, discontinuity, and microstructure inhomogeneity. Porosity is a 

prevalent micro/meso scale defect in LAM, substantially undermining mechanical performance such 

as strength, ductility, and fatigue life [98]. LoF pores form when the volumetric energy density is 
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insufficient, resulting from incomplete melting, poor bonding of the melt pool with neighbouring 

layers, and crack propagations [99,100]. Balling, a subtype of LoF, frequently emerges in LPBF due 

to poor melt pool flowability, leading to unstable, discontinuous melting tracks [101]. Conversely, 

excessive volumetric energy can yield keyhole pores [102–105]. These large, spherical keyhole pores 

are often the result of material evaporation due to high energy density and unstable melt pool dynamics. 

The interaction of the fusion zone with pre-existing pores can exacerbate the situation, leading to crack 

propagation and formation of larger pores, thereby further reducing mechanical properties such as 

strength, fatigue life, and corrosion resistance. Gas-induced pore formation mechanisms differ between 

LPBF and LDED. In LPBF, gas entrapment from surface fluctuations can cause pores [95], while in 

LDED, high-velocity powder feedstock with protective gas can break through and inject into the melt 

pool, leading to gas-induced pores [94]. 

Cracking and delamination, often instigated by residual stress or partially melted powder, also 

pose significant challenges, with rapid re-heating and cooling cycles and high temperature gradients 

resulting in high thermal stress within as-printed parts [106–108]. These cracks can culminate in 

premature failures and reduced mechanical performance. Moreover, the build-up of residual stress and 

localized heat accumulation can lead to microstructure inhomogeneity and anisotropic mechanical 

properties (Figure 4 (h)) [63]. 

On the macro scale, localized heat accumulation can result in high surface roughness and 

geometric distortions [109]. Uneven layers and significant geometric distortions, as depicted in Figure 

4(e) and (g), may be induced by residual stress. These macroscopic defects are intrinsically linked to 

the stand-off distance and dilution in the LDED process. A low dilution could result in insufficient 

layer bonding, while a high dilution indicates extensive heat-affected zones and a higher likelihood of 

thermal expansion failures [110,111]. By addressing these macro-scale defects, such as surface 

roughness and geometric distortions, the overall quality and performance of LAM-produced parts can 

be significantly enhanced. Furthermore, residual stress, the primary cause of many macroscopic and 

microscopic defects, could be alleviated through post-printing heat treatments or adjustments to the 

scanning strategies during the printing process. 

However, the inherent complexity and stochastic nature of the LAM process means that defects 

can still occur even with optimized process parameters. Therefore, there is a growing recognition of 

the necessity for in-situ monitoring systems and real-time defect detection methodologies. These 

techniques enable the detection of defects during the manufacturing process itself, effectively reducing 

the reliance on post-production inspections. This shift signifies an evolutionary leap in the LAM 

process - from a reactive, post-production inspection approach towards a proactive, real-time quality 
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assurance strategy. Through immediate detection and in-process remediation, the upper limits of 

repeatability, reliability, and consistency in LAM-produced parts are continually being expanded. This 

perspective sets the stage for the subsequent section, providing a comprehensive review of the most 

recent advancements in in-situ quality monitoring in LAM. 

 
Figure 4. Illustrations of common defects in parts fabricated using LAM (including LPBF and LDED): (a) 

Balling [112] (commonly observed in LPBF); (b) Lack of Fusion (LoF) pores [66]; (c) keyhole pores [66]; (d) 

Cracks [74]; (e) Layer unevenness [113]; (f) Discontinuity [114]; (g) Distortions induced by thermal residual 

stress [115]; (h) Microstructure inhomogeneity [116]. 
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Table 2. Common defects in parts fabricated by LAM: characteristics, potential causes, and consequences 

[96–98]. 

Defects Characteristics Potential causes Consequences Ref 

Balling 

(common in 

LPBF parts) 

• micro-meter-scaled 

balls or highly 

coarsened balls. 

• Low volumetric energy density due 
to high scanning speed or low laser 
power leading to higher melt pool 
surface tension. 

• Poor melt pool flowability leading 
to limited substrate contact. 

• Unstable, discontinuous melting 
tracks due to poor wetting. 

• Reduced mechanical 

properties, especially 

fatigue life 

• Facilitated crack 

propagation, anisotropy,  

corrosion resistance 

degradation 

[117] 

LoF pores 

• Poorly bonded or 
incompletely 
melted metal 
particles. 

• Irregular, elongated 
shapes, potentially 
larger than 500 μm. 

• Insufficient energy input leading to 
incomplete melting and poor 
bonding with adjacent layers. 

• Degradation of mechanical 

properties 
[118] 

Keyhole pores 

• High depth-to-
width ratio of the 
fusion zone. 

• Large spheroidal 
shapes. 

• Material evaporation due to high 
volumetric energy input. 

• Unstable melt pool dynamics and 
gas entrapment due to localized heat 
accumulation. 

• Degradation of mechanical 

properties 

• Formation of larger pores 

due to interaction with pre-

existing pores, leading to 

void/crack propagation 

[102–

104] 

Gas induced 

pores 

• Small and spherical 
shapes. 

• Residual gas from feedstock powder 

(for LDED) 

• Gas entrapment from powder bed 

surface fluctuations (for LPBF) 

• Gas release from the liquid melt 

during solidification 

• Degradation of mechanical 
properties 

• Facilitated propagation of 
large pores across multiple 
layers 

[3] 

Cracks 

• Intergranular 

cracks. 

• Cracks along grain 

boundaries. 

• Hot cracking due to tensile stresses 
on solidifying metal.  

• Liquid cracking due to presence of 
undesirable phases, such as partially 
melted zone, and stress 
concentration during solidification. 

• Ductility dip cracking in FCC alloys 
at elevated temperatures 

• Reduced mechanical 

properties, especially low 

fatigue limit and low 

ductility 

• Compromised structural 

integrity, and potential 

failure of the additively 

manufactured component 

[108,119] 

Distortions 

and 

delamination 

• Macro-scale 

defects (mm). 

• Uneven surface and 

high surface 

roughness. 

• High cooling rates and thermal 

stresses 

• Rapid heating and cooling cycles 

• Residual stress 

• Loss of geometric accuracy 

• Degradation in fatigue 

behaviour 

[120–

122] 

Microstructure 

inhomogeneity 

• Variations in 

microstructure 

characteristics 

within the part. 

• Localized heat accumulation 

• Rapid heating and cooling cycles 

• Variation in mechanical 

strength and ductility 

• Anisotropic mechanical 

properties 

[73,123] 
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2.4. Comparative Analysis of LPBF and LDED Dynamics: Implications for Defect 

Formation and In-Situ Monitoring 

LPBF and LDED exhibit different process dynamics, as highlighted in Figure 3. LPBF typically 

operates at a lower power scale (generally not exceeding 1 kW), which is suitable for high-precision, 

smaller-scale parts. In contrast, LDED, which may utilize laser power of up to 15 kW, allowing for 

larger-scale structures and higher deposition rates. Such difference in laser power significantly affect 

the melt pool characteristics, thermal gradients, and solidification rates, leading to different 

microstructural features and defect profiles. 

The solidification dynamics involved in LPBF and LDED have a significant influence on the types 

of defects that typically occur during the process. LPBF, with its distinctive rapid cooling rates (105 – 

107 K/s), is prone to the formation of microcracks caused by the stresses of rapid solidification. In 

contrast, the significantly slower cooling rates in LDED (102 – 105 K/s) can result in gas porosity or 

delamination problems due to localized heat accumulation. Residual stresses also differ between the 

two processes. The steep thermal gradients of LPBF (106  – 107 K/m) frequently result in larger amounts 

of residual stress within the manufactured parts [82]. Although it may be detrimental to mechanical 

properties, it can also lead to formation of finer microstructures. The smaller temperature gradient (105  

– 106 K/m) of LDED reduces residual stress levels. However, the prolonged thermal exposure may 

result in coarser microstructures [82]. 

The feedstock material also presents a notable difference: LPBF's exclusive use of powder allows 

for a finer resolution in part features and surface finish. In comparison, LDED's flexibility in using 

either powder or wire feedstock allows for a wider range of part geometries and surface roughness 

levels. This is reflected in the minimum achievable feature sizes: LPBF can produce detailed features 

down to 50-100 µm scales, while LDED is better suited to produce larger features with 0.5 – 1mm 

range. 

These fundamental differences in process dynamics necessitates specialized in-situ monitoring 

strategies. For LPBF, high temporal resolution is required to capture rapid solidification processes, 

necessitating monitoring devices with high data acquisition rates, such as high-frequency coaxial 

cameras (up to 10 kHz) [39]. In contrast, the higher build rate and coarser feature resolution in LDED 

demand monitoring solutions that can accommodate larger field-of-views and potentially slower 

temporal resolutions (30 Hz – 1000 Hz) [70]. In addition, LDED's typically noisier environment and 

larger laser spot size present a different challenge for acoustic monitoring, necessitating robust noise-

cancellation techniques and sensors that can distinguish process noise from actual defects [68]. The 
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use of robotic arms in LDED also impacts sensor placement, offering flexibility while also requiring 

careful calibration to ensure accurate data capture. 

ML models for each process must be developed with these factors into account. The large amounts 

of data produced by LPBF's high sampling rates must be efficiently processed and analysed, which 

poses significant challenge in handling the high data flow. On the other hand, LDED's comparatively 

scarcer data may result in less generalizability of the model [124]. Ultimately, the development of in-

situ monitoring solutions must be tailored to each process's specific characteristics, ensuring that 

sensor placement, data handling, and ML models are all aligned with the distinct needs of LPBF and 

LDED. The following sections of this paper will investigate specific in-situ sensing technologies and 

their applications in each process, providing a comprehensive understanding of how these techniques 

can handle the challenges highlighted herein. 

 

3. In-Situ Process Monitoring And Defect Detection In LAM 

In this section, a critical review of the latest advancements in in-situ monitoring in LAM is 

presented, emphasizing its pivotal role in early defect detection to prevent quality deterioration and 

potential build failure. This review connects directly to previous discussion on LAM defects, 

underscoring in-situ monitoring as a key solution. It offers a holistic exploration of diverse in-situ 

sensing methodologies: optical-based monitoring (Section 3.1), acoustic-based monitoring (Section 

3.2), laser line scanning (Section 3.3), other emerging methods including operando X-ray (Section 

3.4), and multisensor monitoring and data fusion (Section 3.5). These methods contribute significantly 

to understanding critical process signatures like melt pool dynamics, thermal histories, and acoustic 

features from laser-material interactions. In addition, the increasing integration of ML in enhancing 

defect detection capabilities is critically evaluated, with a focus on ML models specifically tailored for 

in-situ defect detection. This multi-faceted evaluation provides a comprehensive picture of the current 

state-of-the-art and points to the potential future directions of in-situ monitoring and defect detection 

in LAM.  

3.1. Optical-Based Monitoring  

This subsection investigates optical-based monitoring in LAM, a crucial technique for defecting 

process anomaly and defects. It begins with an examination of melt pool dynamics in Section 3.1.1, 

in which optical sensing plays a key role in capturing and interpreting melt pool visual and thermal 

features. The extracted melt pool visual features are critical for determining process quality. The 

discussions then shifts to how these features aid in detecting defects in Section 3.1.2, leveraging 
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advanced ML techniques. Subsequently, this subsection expands to cover anomaly detection and fault 

diagnosis, illustrating the broader applications of optical monitoring in Section 3.1.3. Special attention 

is given to infrared thermal imaging in Section 3.1.4, which a distinct approach for localized quality 

assessments in LAM. Finally, this subsection discusses the challenges and limitations of optical 

monitoring, offering a holistic overview and future prospects for its applications in LAM. 

3.1.1. Melt Pool Dynamics And Visual Feature Extractions 

The melt pool dynamics can be captured through optical-based monitoring [108]. Off-axis and 

coaxial camera setups are widely used in melt pool monitoring, with each offering specific advantages 

and disadvantages. Figure 5 presents a comparison of these setups in both LDED and LPBF. Off-axis 

camera configurations, as depicted in Figure 5(a) and (c), have been extensively used in various studies. 

Although this setup can be simple to install into the AM machine, they also pose unique challenges, 

particularly the difficulties in measuring melt pool dimensions due to oblique viewing angles. To get 

correct melt pool features in this setting, image transformation and calibration procedures are required, 

which can be time-consuming [125–128]. On the other hand, coaxial camera monitoring setups, 

illustrated in Figure 5(b) and (d), have been increasingly favoured due to their direct, overhead viewing 

capabilities. This coaxial approach essentially eliminates the need for the tedious image transformation 

and calibration, enhancing operational efficiency. A notable study by Tang et al. [129] highlighted the 

significant advantage of coaxial setups, revealing that the visual characteristics of the coaxial melt pool 

directly correspond to underlying metallurgical phenomena, including the states of melting, cooling, 

and heat transfer. 
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Figure 5. Comparison and visualization of off-axis and coaxial camera setups: (a) Off-axis camera mounting in 

LDED [130]. (b) Coaxial camera setup in LDED [131]. (c) Off-axis camera configuration in LPBF [132]. (d) 

Coaxial camera setup in LPBF [133]. 
 

Numerous studies have been dedicated to extracting physics-informed features from melt pool 

images as quality indicators [125,126,134–148]. The melt pool features can be used for defect 

detection, process-structure-property (PSP) causal analytics, and design rule constructions in LAM 

processes [149–151]. Table 3 provides a summary of these features, such as melt pool width, size, 

moment of aera, peak temperature, etc. For example, Bi et al. [152–156] discovered that the melt pool 

size and temperature signals are both positively influenced by the input energy density. Ocylok et al. 

[157] showed that coaxial CMOS camera melt pool geometry strongly correlates with process stability. 

Increased input energy density yields a broader, deeper, and more asymmetrical melt pool [158]. 

Furthermore, Chen et al. [159] investigated melt pool evolution in the LDED process when printing 

on an inclined substrate with a non-vertically irradiated laser beam. The melt pool area can be linked 

to process stability and solidification state when depositing materials over sloped surfaces. Image 

processing techniques such as binary thresholding and edge extraction are commonly used to extract 

these melt pool morphological features. 
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 Figure 6 presents examples of melt pool visual characteristics and image processing techniques. 

A fixed threshold value can isolate the melt pool area from raw coaxial CMOS/CCD camera images, 

as shown in Figure 6(a) [70,160]. A series of image processing techniques, including binarization, 

elliptical fitting, and convex hull area extraction, can be used to distil melt pool geometric features that 

reflects the underlying physics, such as solidification, cooling, and heat conduction. Figure 6(b) reveals 

the coaxial visual characteristics in the head region and middle region, capturing vital details such as 

solid-liquid interface slags, boundary textures, and crucial morphological attributes like width, length, 

and grayscale distributions. Figure 6(c) shows thin-wall melt pool boundaries and coaxial melt pool 

isotherm images at different layers. OM images of the top and bottom layers show a direct association 

between columnar grain size and cooling and solidification rates. The melt pool at the bottom layer, 

subjected to higher cooling rates, increases columnar grain size, whereas the top layer, exposed to re-

melting, shows lower cooling rates [161]. This correlation implies that strategic control of the melt 

pool size could potentially guide grain sizes and, subsequently, the material properties. Figure 6(d) 

further illustrates this point by showing a rising trend in melt pool size attributable to heat accumulation 

when the laser power remains constant [161]. 

Traditional image binarization approaches for detecting melt pool edges may be inaccurate, as 

melt pool boundaries frequently appear at different thresholds. To address this issue, novel image 

enhancing techniques have been proposed to measure melt pool width more accurately than existing 

emissivity-based edge detection algorithms [162]. Advanced computer vision algorithms can also be 

used to speed up and optimize the melt pool signature extraction process [138]. For instance, Liu et al. 

[134] proposed an image-enhancement generative adversarial network to improve the contrast ratio of 

thermal images for melt pool segmentation. Gravitational super-pixels algorithm [137] was used to 

reduce the dimensionality of infrared images and perform real-time melt pool segmentation with less 

uncertainty.  
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Table 3. List of physics-informed melt pool geometric and temperature features. 

Feature name Description Ref 

Melt pool contour area (𝑚00) 
Represents the area of the melt pool, calculated using pixel 

intensities. 
[70] 

Melt pool centroid position (𝑥, 𝑦) 
Indicates the centre of gravity of the melt pool, with deviations 

signifying process instabilities. 
[70] 

Central Moments (𝜇𝑗𝑖) 
Describes the melt pool's probability distribution about its centre 

of gravity. 
[70] 

Convex hull area (𝐶) 
Measures the smallest convex polygon encompassing the melt 

pool, indicative of its geometry. 
[70] 

Bounding rectangle width 𝑊 and 

length 𝐿 

Dimensions derived from rotated bounding boxes, offering 

another perspective on the melt pool extent. 
[70] 

Melt pool width (𝑎) and length (𝑏) 
Dimensions of the best-fit ellipse to the melt pool, representing 

its shape. 
[163,164] 

Spatter area (𝐴𝑠𝑝) 
Total surface area of spatter particles, linked to material ejection 

and energy input. 
[164] 

Mean Spatter Temperature (𝑇𝑠𝑝
̅̅ ̅̅ ) 

Average temperature of spatter particles, informative of the 

energy in the ejected material. 
[164] 

Distribution (variance) of melt pool 

temperature (𝑉𝑎𝑟(𝑇)) 

Highlights heat flow and cooling rates, with higher variance 

indicating significant temperature gradients. 
[165] 

Melt pool temperature skewness 

(𝑆𝑘𝑒𝑤(𝑇)) 

Assesses asymmetry in temperature distribution, an indicator of 

melt pool stability. 
[165] 

Melt pool temperature kurtosis 

(𝐾𝑢𝑟𝑡(𝑇)) 

Measures the "tailedness" of the temperature distribution, with 

higher values indicating more variance due to extreme 

deviations. 

[165] 

Peak temperature (𝑇𝑝𝑒𝑎𝑘) 
Maximal temperature in the melt pool, crucial for understanding 

thermal history and its effects on material properties. 
[165,166] 

Time over threshold of 

solidification temperature (𝑡𝑠𝑜𝑙𝑖𝑑) 

Captures cooling behaviour above the solidification temperature, 

important for process analysis. 
[166] 
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Figure 6. Coaxial Melt Pool Visualization in LDED Process. (a) Coaxial image processing and feature 

extraction, including binarization, ellipse fitting, and area calculations [70,160]. (b) Melt pool head and middle 

region visual characteristics, highlighting solid-liquid interface, boundary textures, and key metrics like width 

and grayscale distribution [129]. (c) Real-time coaxial melt pool isotherm images across layers in a thin-wall 

sample, correlating grain size variations with cooling rates [161]. (d) Melt pool size expansion in thin-wall (left) 

and block samples (right) under constant laser power [161]. 
 

Infrared (IR) thermal cameras offer additional advantages in capturing melt pool dynamics by 

providing temperature-related features, often more informative than those from monochrome CCD 

cameras in the visible spectrum. Figure 7 shows several examples of these IR thermal images of the 
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melt pool in the LAM. Figure 7(a) displays the melt pool's brightness temperature distribution under 

two contrasting conditions, captured using a coaxial IR camera [167]. Variations in laser power and 

gas flow rate are seen to influence the temperature distribution significantly. Figure 7(b) depicts the 

thermal image of a melt pool during the LDED process with titanium alloy. The separation of solidus 

and liquidus regions is clearly visible, offering real-time insight into the material's phase change during 

processing. These examples demonstrate the benefits of infrared thermal imaging in capturing melt 

pool dynamics and heat transfer, paving the path for more precise control and optimization of LAM 

processes. 

 

Figure 7. Infrared (IR) thermal images of melt pool in LAM: (a) Coaxial IR camera captures contrasting 

brightness temperature distributions under two distinct conditions (Left: P=500 W, f=6 l/min; Right: P=750 W, 

f=9 l/min) [167]. (b) Thermal image of a melt pool during LDED of titanium alloy material. A smooth boundary 

(purple line) separates the solidus and liquidus region of 1938 K. Un-melted particles are observed along the 

trailing edge. 
 

3.1.2. In-Situ Defect Detection With Melt Pool Features 

Apart from extracting melt pool geometric features as quality indicators, melt pool images can be 

used for defect prediction through state-of-the-art ML and deep learning (DL) algorithms [168–174]. 

Several benchmarking papers, summarized in Table A1, focus on AI-assisted vision-based in-situ 

defect detection in LAM. Preliminary studies aimed to establish mappings between melt pool images 

and process conditions. For instance, Kwon et al. [175] used a high-speed camera to collect melt pool 

images during the SLM process, which were fed into a deep neural network (DNN) model to predict 

laser power levels. Spatters and temperature from the melt pool can also be correlated to process 

parameters such as scanning speed and laser power using deep convolutional neural network (DCNN) 

[176,177]. Since laser power and scanning speed are two of the most influential parameters, the 

suggested method demonstrates the feasibility of using AI techniques for quality prediction.  

In recent years, AI-assisted vision-based porosity detection has been the main focus of ongoing 

research and development. Porosity can be induced by lack of fusion, gas entrapment, and particle 
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movement within the melt pool; hence, high-level features retrieved from infrared or high-speed digital 

images of the melt pool can reveal the complex pore formation mechanism. Extensive research 

findings have been reported on vision-based porosity predictions [133,178–185]. Figure 8 compares 

vision-based in-situ defect detection methods using traditional supervised ML, unsupervised learning, 

and deep learning methods. For example, Khanzadel et al. [180] used melt pool images to distinguish 

pores from normal printing states using traditional supervised ML learning methods such as Support 

Vector Machine (SVM), Decision Tree (DT), K-nearest neighbour (KNN), and Quadratic discriminant 

analysis (QDA). Melt pool morphological features such as circumference and coordinates were 

extracted. Functional principal component analysis (FPCA) was utilized to select essential features 

which were then used to train the ML models. Scime and Beuth [186] employed SVM to classify melt 

pool images to locate LoF pores, as shown in Figure 8(a). In contrast to Khanzadel et al. [180], they 

extracted melt pool signatures using an unsupervised learning technique, namely the Scale Invariant 

Feature Transform (SIFT) and histogram of oriented gradients (HOG). Other unsupervised learning 

methods, such as self-organizing maps (SOMs), can also be used to predict porosity locations in melt 

pool thermal images [181], as shown in Figure 8(b). 

However, traditional supervised ML techniques have significant drawbacks: (1) the feature 

definition and extraction must be conducted manually, which cannot accurately and adequately depict 

the complex pore formation mechanism; (2) the feature selection procedure is subject to human 

judgment, potentially limiting model accuracy or leading to overfitting; (3) traditional ML techniques 

are ineffective for training large datasets. In contrast, DL techniques such as CNN do not require time-

consuming and labour-intensive manual feature engineering but to automatically learn and extract 

features with greater efficiency and accuracy. For example, Zhang et al. [131] utilized a co-axial high-

speed camera to classify porosity occurrences during the DED process using CNN, achieving 91.2% 

accuracy. Micropores below 100 µm can be predicted for samples fabricated by sponge Titanium 

powders. Similarly, Chen et al. [187,70] used CNN (VGG-16) for in-situ defect identification using coaxial 

melt pool image, as shown in Figure 8(c). 
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Figure 8. ML-assisted in-situ defect detection methods using coaxial melt pool images: (a) Flowchart outlining 

the application of a traditional supervised ML method for melt pool image classification [186,188]. (b) 

Flowchart depicting the use of an unsupervised Self-Organizing Map (SOM) method to distinguish porosities 

using melt pool images [181]. (c) The application of a deep learning model (e.g., CNN) for in-situ defect 

identification using coaxial melt pool image [187,70]. 

 

Optical-based monitoring approaches can also identify other types of defects. CNN models can 

classify melt pool images to predict humping, spatter, or normal fabrication states [189]. Gonzalez-

Val et al. [111] proposed a CNN model to extract quality indicators from raw images, which were then 

used to quantify dilution and predict defective spots. The authors used a high-speed Medium 

Wavelength Infrared (MWIR) camera to monitor the melt pool during the DED process, demonstrating 

better performance than traditional CMOS cameras [190]. Although only a single track was deposited, 

the idea of online quality prediction was successfully demonstrated using state-of-the-art DL 

techniques. 
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However, the studies mentioned above do not fully achieve in-situ and real-time capabilities. Most 

studies employed offline ML model training (batch learning), while online model deployment and 

inference latency were not adequately addressed. Recently, several studies have attempted to bridge 

this gap. Knaak et al. [190–192] developed a real-time defect detection system with low latency 

(1.1ms) on low-power embedded computing boards for the laser welding process. The authors 

proposed an ensemble DL architecture that can extract spatio-temporal features from time-series melt 

pool infrared images. Various welding defects, such as sagging, lack of fusion, irregular width, and 

lack of penetration, can be identified on-the-fly. However, due to the complex layer-by-LAM process, 

real-time online defect detection capability is still underdeveloped. 

3.1.3. Anomaly Detection And Fault Diagnosis 

Optical-based sensing approaches can be used for various purposes beyond melt pool monitoring, 

including process anomaly detection [193–201], LDED powder flow monitoring and fault diagnosis 

[65,202,203], powder bed anomaly detection and classification [204–208], and identification of 

surface roughness and geometric distortions of additive manufactured components [209–211]. Figure 

9 demonstrate a recent example of anomaly detection in LPBF. Nguyen et al. [64] proposed a semi-

supervised learning method to identify anomalies including LoF, overheated, and unfused powder with 

more than 95% accuracy. Similarly, Wang et al. [212] proposed a CenterNet-based anomaly detection 

method, where the exact locations of different anomalies can be identified and classified within a 

bounding box. Scime and Beuth [206] proposed a Multiscale CNN (MsCNN) that simultaneously 

detect and classify various  powder bed anomaly as shown in Figure 10. An off-axis camera captures 

the powder bed image and MsCNN identifies anomalous area including recoater hopping, streaking, 

debris, super-elevation, part damage, and incomplete spreading. The identified anomalies for each 

layer can be stacked together and create a 3D quality visualization, which closely match the actual part 

quality. Moreover, Abdelrahman et al. [213] developed a layer-wise fault identification system for 

LPBF using high-resolution optical imaging. Optical data was employed to identify powder bed flaws 

by comparing images taken under different illumination conditions and at various layers. Another 

layer-wise imaging methods using DL for in-situ flaw detection in LPBF have also been demonstrated 

in [214]. Locations of powder bed anomalies can be detected and used to study critical defect formation 

[215]. Fischer et al. [216] developed a higher resolution imaging system that achieved a classification 

accuracy of 99.15% using a recoater-based line sensor to capture images of a powder bed. The author 

trained CNN to classify the following eight types of defects: balling, incomplete spreading, groove, 

ridge, spatters, protruding part, scattered powder, and homogenous. Lu et al. [217] linked powder bed 

in-situ images to the mechanical properties of as-built SLM component, suggesting that visual 
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monitoring can predict component strength and density in addition to identifying defects. Additionally, 

image-based feature extraction can be employed for real-time measurement of deposition height 

[218,219], and combined with raw melt pool images and temperature profiles to predict microstructure 

characteristics such α lath thickness and β grain size, as well as bead geometry in LW-DED [220,221]. 

 

Figure 9. Vision-based anomaly (lack-of-fusion, overheated, unfused powder) detection in LPBF using semi-

supervised ML on cubes printed with varying printing parameter settings [64]. 
 

 

Figure 10. Powder bed anomaly detection and classification using multi-scale CNN (MsCNN) [206]: (a) 

Example of powder bed image during the process with manually annotated anomalies. (b) Powder bed 

anomalies detected and classified by the MsCNN.  
 

 

3.1.4. Infrared Thermal Imaging For Localized Quality Predictions 

This section discusses recent advancements in localized quality prediction using in-situ infrared 

thermal imaging. Unlike vision-based melt pool monitoring, the IR camera is positioned off-axis to 

monitor the part surface temperature rather than the melt pool region. Thermal history is defined as 

time-series temperature data inside a specified ROI. Examples of localized quality prediction using IR 
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thermal history is shown in Figure 11. Lough et al. [182] used SWIR temperature history data to 

conduct localized quality prediction in LPBF. By registering SWIR data with μCT data, thermal 

feature-based porosity probability maps can be constructed (as shown in Figure 11(a)), which 

effectively estimate the likelihood of porosity occurrences within each voxels of the part (as shown in 

Figure 11(b)). Similarly, Estalaki et al. [222] demonstrated the capability of using IR thermal history 

to predict voxelized micropore defects in LPBF with ML. The researchers identified two fundamental 

thermal history features: time above the apparent melting threshold (𝜏) and the maximum IR radiance 

(𝑇𝑚𝑎𝑥). The F1 scores of the ML models trained on these features achieved above 0.96, with feature 

importance analysis highlighting 𝑇𝑚𝑎𝑥 as the most significant feature for predicting the state of a voxel. 

Furthermore, Xie et al. [223] proposed a mechanistic data-driven framework, which integrated wavelet 

transforms and CNN using the IR thermal history data to predict localized quality, as shown in Figure 

11(c). They focused on predicting spatial variations of as-built mechanical properties (e.g., ultimate 

tensile strength UTS), which is caused by localized heating and cooling during the LAM. The 

framework allowed for multi-resolution analysis and importance analysis, revealing crucial 

mechanistic features extracted by wavelet transform underpinning the LDED process. This 

methodology showcased strong predictive capabilities even with a small amount of noisy experimental 

data, laying a robust foundation for predicting the spatial and temporal evolution of mechanical 

properties in LAM. 

These examples highlight the potential of in-situ infrared thermal imaging coupled with advanced 

data analysis techniques for predicting location-dependent part quality in LAM. However, the existing 

IR thermal monitoring methods still lacks a sufficient industrial readiness. One of the key limitations 

is the use of most existing thermal imaging is restricted to thin-walled parts, while the temperature 

profile for more complex geometries is difficult to be captured. This is particularly true for complex 

geometries where the thermal camera’s field of view is blocked by the built proportion. One possible 

solution is to use multiple thermal cameras placed at different positions to capture the temperature 

distribution of the part from different viewpoints. 
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Figure 11. Thermal feature extractions for location-depended quality predictions: (a)-(b) Voxelization and 

registration of thermal features with micro-CT scanned data to predict locations of porosities in LPBF [182,222]. 

(c)-(d) Thermal history extraction and wavelet transform to predict location-specific UTS in LDED [223]. 

 

 

3.1.5. Challenges, Limitations, And Future Development 

This sub-section discusses the challenges and limitations of optical (vision)-based monitoring in 

LAM. Despite the significant advancements in vision-based monitoring techniques, there are still 

several significant challenges that need to be addressed to fully exploit their potential. 

i. Real-Time Image Processing: Real-time image processing remains one of the most significant 

challenges in vision-based monitoring in LAM. The high-speed nature of LAM results in an 

immense volume of data generated by the monitoring cameras. This data demands not only 

robust computational resources but also highly efficient algorithms for real-time processing. 
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Approaches such as pruning neural networks, which streamline the predictive process by 

eliminating less significant neural connections, could be leveraged to enhance the speed of 

image processing. 

ii. Sensing Capabilities and Cost: The sensing abilities of different visual sensors—encompassing 

dynamic temperature sensitivity range, acquisition frequency, field of view, focal distances, and 

more—differ significantly. Balancing the accuracy of sensing, the cost of sensors, and the 

complexity of integration is often a major concern for industry end-users. Altenburg et al. [224] 

conducted a comprehensive evaluation of MWIR, SWIR, and high-speed NIR cameras for in-

situ monitoring of the LDED process. While a high-speed camera in the visible (VIS) spectrum 

with a NIR bandpass filter offered the highest temporal and spatial resolution, its limited 

dynamic temperature range could fall short for process monitoring. Hence, identifying the 

optimal sensor that balances defect detection accuracy and cost remains a major challenge.  

iii. Temperature Measurement and Emissivity Calibration: SWIR and MWIR cameras provide a 

wide dynamic temperature range, which can be further expanded through proper selection of 

attenuation filters and integration times. However, to ensure accurate temperature readings, 

these IR thermal cameras necessitate emissivity calibrations [225,226]. This is particularly 

challenging due to variations in metal emissivity with temperature, wavelength, material phase, 

surface roughness and other factors [227]. As a result, precise temperature profiles around the 

melt pool remain elusive [141]. If calibration is not performed correctly, uncertainties and errors 

can arise, leading to inaccuracies in the monitored data [228]. 

iv. Sensor Integration Difficulties: The integration of vision sensors into LAM systems poses its 

own set of challenges. The installation of coaxial vision sensors necessitates custom laser head 

design, and off-axis melt pool monitoring may require image transformation, potentially 

resulting in less reliable and accurate outcomes. Further, the problem of occlusion, where certain 

parts of the process are hidden from the camera's view, is a significant issue, especially in off-

axis camera setups. 

Despite these challenges, vision-based monitoring in LAM has made significant advancements in 

recent years and continues to be the most popular in-situ monitoring approach. Alternative monitoring 

techniques, such as laser profilometry scanning and acoustic-based monitoring, could mitigate some 

of the drawbacks of vision sensors, which will be discussed in the subsequent sections. 
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3.2. Acoustic-Based Monitoring 

Acoustic monitoring in LAM provides flexible sensor setups, fast dynamic responses, and reduced 

hardware costs, making it an attractive alternative to other sensing techniques. This method leverages 

the acoustic signals produced during laser-material interactions, which encode valuable insights into 

physical phenomena such as melting, solidification, crack propagation, and pore formation [229]. 

Acoustic sensors are particularly adept at detecting structure-borne sounds, such as those generated by 

crack propagation within the workpiece, outperforming vision and temperature sensors in this regard 

[230]. The ease of integration with existing LDED and LPBF equipment further adds to its appeal 

within the AM community. This section elaborates on the advancements in acoustic-based monitoring 

for LAM, highlighting promising outcomes and innovative methodologies in the recent years. 

3.2.1. Origins Of Acoustic Emissions And Acoustic Feature Extraction 

Despite the comparatively limited research on acoustic monitoring in LAM, it has long been 

employed to assess weld quality. The technique is inspired by experienced welders, who often use arc 

sound as an informal gauge of weld penetration quality. The basic premise lies in the fact that any 

mechanical interaction, such as the contact of a laser or arc with a substrate in welding and AM, 

generates acoustic waves. These waves can be captured and processed to yield valuable process 

insights. Accordingly, extensive efforts have been made to correlate acoustic signatures with weld 

quality [231–239]. For instance, Song et al. [231] and Lv et al. [232] studied arc welding sound in 

relation to distinct penetration states, employing statistical features to train ML models for penetration 

state recognition. As illustrated in Figure 12, arc sound varies significantly for different weld 

penetration state, demonstrating the feasibility of acoustic monitoring for penetration state recognition 

in practice. Hauser et al. [67] used Mel spectrum of AE signal to identify track deviation anomalies 

during WAAM, establishing that process anomalies and acoustic emissions were interrelated, primarily 

due to the size of the arc. It was also discovered that stable processes exhibit a consistent mean intensity 

in acoustic emissions, whereas anomalies show significant variations in acoustic intensities. For LAM, 

acoustic emissions predominantly arise from laser-material interactions, with the expansion of melted 

powder particles generating air pressure. However, it is challenging to distinguish the LAM sounds 

due to the ambient noises including the protective gas flow, machine sound, and powder stream noise. 

Acoustic feature extraction, a pivotal step in acoustic monitoring, involves capturing, digitizing, 

and processing the raw acoustic signal to retrieve relevant information. These features span across the 

time-domain, frequency-domain, and time-frequency representations. The mathematical definitions 

and descriptions of these features are provided in Table 4. Time-frequency representations [240] are 
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particularly effective, as they enable the calculation of relative energy densities across frequency bands, 

representing acoustic signatures in both frequency and time domains. Methods such as short-time 

Fourier transform (STFT) [241], wavelet transforms (WT) [242], and the Mel-frequency cepstrum 

coefficient (MFCC) [243] have been used with promising results. For instance, Lv et al. [232] extracted 

the cepstrum coefficient of arc sound and input it into a Back Propagating Neural Network (BPNN) 

model, achieving an accuracy of 80%-90% in predicting welding penetration. Shevchik et al. [235] 

demonstrated that spectral features extracted using WT can achieve exceptional performance for online 

welding quality monitoring. These promising results lay the foundation for further research into 

acoustic sensing technologies in LAM. 

 

Figure 12. Acoustic Signal Characteristics in Arc Welding: Acoustic signatures corresponding to three distinct 

penetration states in plasma arc welding: no-keyhole mode, keyhole mode, and cutting mode [231]. 
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Table 4. Summary of common acoustic features in time-domain, frequency-domain, and time-

frequency representations. 

Feature type Feature name Description Ref 

Time-domain 

Amplitude Envelope (AE) Outlines signal amplitude changes over time. [68] 

Root-Mean-Square Energy 

(RMS) 
Indicates signal power, reflecting loudness. [68] 

Zero Crossing Rate (ZCR) Identifies signal sign changes, distinguishing sound types. [68] 

Clearance Factor (CLF) 
Measures peakiness relative to RMS, useful in fault 

diagnosis. 
[102] 

Crest Factor (CF)  
Indicates signal peakiness, useful in transient event 

identification. 
[102] 

Impulse Factor (IF) 
Measures signal impulsiveness, important for impulsive 

event detection. 
[102] 

Frequency-

domain 

Spectral Centroid (C) 
Indicates the spectral mass centre, essential for frequency 

band analysis. 
[244] 

Spectral Roll-off (SR) 
Frequency below which a certain percentage of total energy 

lies, differentiating harmonic and non-harmonic parts. 
[245] 

Spectral Bandwidth (SBW) Average of frequency band distances from the centroid. [244] 

Spectral Flatness (SF) 
Geometric to arithmetic mean ratio of spectrum, assessing 

noise-like versus tone-like quality 
[246] 

Band Energy Ratio (BER) Ratio of low to high-frequency band power. 
[247,102

] 

Spectral Contrast (SC) Difference between spectral peaks and valleys. [68,247] 

Spectral Variance (µ2) Standard deviation around the spectral centroid. [68,248] 

Spectral Skewness (µ3) Measures energy distribution symmetry around the centroid. [68,248] 

Spectral Kurtosis (µ4) 
Indicates the "tailedness" of the spectrum, useful for outlier 

detection. 
[68,248] 

Spectral Crest (Crest) Ratio of spectrum's maximum to its mean. [68,248] 

Spectral Entropy (H) Measures spectrum peakiness. [68,249] 

Spectral Flux (Flux) 
Assesses spectrum variability over time, useful in audio 

segmentation. 
[250] 

Time-frequency 

representations 

Mel Frequency Cepstral 

Coefficients (MFCCs) 
Represents sound phonemes in audio. [68] 

short-time Fourier 

transform (STFT)  
Time-frequency representation of signal frequencies. [241] 

Continuous Wavelet 

transforms (CWT) 
Provides a flexible time-frequency signal analysis. [66,251] 

Chroma Feature 
Projects spectrum onto 12 semitone bins of a musical 

octave. 
[252] 
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3.2.2. In-Situ Acoustic Monitoring In LPBF 

The application of in-situ acoustic monitoring in LPBF processes has gained significant attention 

due to its potential for defect detection in recent years. This section offers a holistic review of the 

acoustic sensor setups, acoustic signal processing techniques, and the correlation between acoustic 

signal features and defect occurrences in LPBF. 

As depicted in Figure 13, the literature reports a variety of acoustic sensor setups for LPBF. Figure 

13(a) and (b) display an airborne acoustic sensor (PAC AM4I microphone) connected to a Data 

Acquisition (DAQ) device, which is used to capture the acoustic waves emanating from laser-material 

interactions during LPBF [66,112]. The data acquisition was automatically triggered with a photodiode, 

and a post-process low-pass Butterworth filter with a cut-off frequency of 100 kHz is utilized to reject 

noise in the raw signal. The key advantage of the microphone sensor is the flexible sensor 

configurations and low cost. However, the positioning angle, distance to process zone, and types of 

microphone (e.g., polarization, frequency response range) are the critical factors influencing the 

quality and reliability of collected acoustic data. 

Another prevalent approach involves the use of an acoustic emission (AE) sensor affixed to the 

substrate during LPBF, as demonstrated in Figure 13(c) and (d). The AE sensor picks up the elastic 

wave signal generated by laser interaction with the powder bed and substrate. This signal is then 

amplified by the preamplifier and stored by the data acquisition system [253]. The AE sensors excel 

in detecting structure-borne sounds, like those emitted during crack propagation within the workpiece 

[254], a merit unattainable by vision and thermal-based sensing methods. However, AE sensor-

collected signals are highly susceptible to environmental noise, such as machine movement and gas 

flow, and the setup lacks the flexibility offered by the microphone sensor. 
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Figure 13. Various acoustic monitoring setups in LPBF. (a) Airborne acoustic sensor (PAC AM4I microphone) 

connected with a DAQ device for LPBF process monitoring [112]. (b) Image of LPBF process with installed 

PAC AM41 acoustic sensor [66]. (c) AE sensor placed near the substrate for SLM process monitoring [253]. (d) 

AE sensor setup implemented for LPBF process monitoring [254]. 

 

Figure 14 provides a thorough examination of key factors that influence the acoustic signals 

captured by a microphone sensor during the LPBF process. It shows the sensitivity of the raw acoustic 

signal to multiple factors including the microphone installation angle, ambient noise, and the dynamics 

of laser-material interactions.  

A crucial aspect is the frequency response and inclination angles of the microphone sensor, which 

influence the acoustic signal energy density during laser-material processing. Figure 14(a) elucidates 

the energy variances of the acoustic signal and static pressure under different microphone inclination 

angles. It highlights how the energy of static pressure fluctuations is highly susceptible to slight 

alterations in the microphone installation angle, resulting in significant changes in signal energy. The 

acoustic signal induced by laser-material processing, on the other hand, is unaffected by microphone 

inclination angles.  
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The raw signal, based on its frequency range, can be separated into two categories: the acoustic 

signal generated by laser-material processing and the signal reflecting static pressure fluctuations. As 

illustrated in Figure 14(b), the acoustic signal and static pressure variations can be discerned during 

part construction stages. Notably, static pressure fluctuations, typically occurred in a very low 

frequency band (<22.4 Hz) [255], can have significantly higher amplitude than the acoustic pressure 

variations. 

 

Figure 14. Acoustic signals in the LPBF process [255]: (a) Energy of acoustic signal and static pressure 

variations under different microphone inclination angles. (b) Acoustic signal and static pressure variations 

during part construction, with raw signal indicated in green. 

 

The task of correlating acoustic signal characteristics with various defects in LPBF is critical in 

constructing ML models for defect identification. Figure 15 illustrates this complex interaction. Figure 

15(a) depicts the t-SNE representation of low-dimension feature space for three different regimes (LoF, 

conduction, keyhole pores) during LPBF processing of stainless steel, bronze, and Inconel [66]. The 

distinct clusters formed by different process regimes, regardless of alloy type, demonstrate the efficacy 

of using time-domain, frequency-domain, and time-frequency representations to distinguish between 

different defect regimes. Ito et al. [256] developed a wireless AE signals measurement method to detect 

microdefects (cracks and pores) at different locations in LPBF, as shown in Figure 15(b). The study 

successfully detected burst-type AE events during the process and confirmed the sources of these 

events as pores and microcracks within the specimen. Interestingly, a slight latency (0.4 to 0.8ms) was 

detected between the AE event and the occurrence of the defect, implying a delay in defect detection 

after the laser spot had moved away from the defect.  

In Figure 15(c), the acoustic envelope and spectra of signals affiliated with keyhole pores and 

those not affiliated with keyhole pores in the LPBF process are compared [102]. The findings suggest 
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that the acoustic signals generated from keyhole pores possess significantly higher energy than those 

from non-defective regions. Figure 15(d) presents a 3D wavelet representation of the AE signal for LoF, 

conduction, and keyhole pores in stainless steel, indicating absolute intensities in temporal frequency 

distribution [66]. This time-frequency representation clearly demonstrates the distinguishability of 

various defects and alloy materials, confirming the correlation of extracted acoustic signal features 

with defects in LPBF. 

 

Figure 15. Acoustic signal signatures and their correlation to various defects in LPBF. (a) t-SNE representation 
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of low-dimension feature space for three different regimes (LoF, conduction, keyhole pores) in LPBF processing 

of stainless steel, bronze, and Inconel [66]. (b) Wireless AE signals associated with microdefects (cracks and 

pores) at different locations in LPBF [256]. (c) Acoustic envelope and spectra of pore-affiliated and non-pore 

affiliated signal in the LPBF process [102]. (d) 3D wavelet representation of the AE signal for three regimes 

(LoF, conduction, keyhole pores) in stainless steel, illustrating absolute intensities in temporal frequency 

distribution [66]. 

 

The acoustic signal processing and feature analysis described above demonstrate the feasibility of 

utilizing acoustic sensors to detect defects in the LPBF process. The features can be employed to 

effectively describe acoustic events, allowing appropriate ML models to be deployed for in-situ defect 

detection and classification tasks. Key researchers such as Wasmer and Shevchik et al. have made 

significant contributions to this field [257–259]. Using a highly sensitive optoacoustic sensor (fibre 

Bragg grating (FBG) sensor), they collected AE signals corresponding to various types and 

concentrations of pores in LPBF [259]. Different porosity levels and process regimes (LoF, tubular, 

large pores) were created by adjusting the input energy density. Wavelet transform (WT) was applied 

to extract relative energy in narrow frequency bands, with the wavelet spectrum characteristics serving 

as input features for a deep CNN model. The model achieved an accuracy of 89% in classifying the 

sounds of different porosities [257]. A similar approach using spectral clustering to obtain acoustic 

features was also explored [259]. A further study looked into reinforcement learning (RL) techniques 

for porosity differentiation [260]. 

Other notable studies include research by Ye et al. [261], who demonstrated that instead of 

extracting various acoustic features, raw acoustic data could be directly fed into a deep belief network 

(DBN) for classification tasks. The raw acoustic signal underwent band-pass filtering (500-90,000 Hz), 

and the DBN achieved a 93% accuracy in differentiating sounds associated with balling and 

overheating defects. A study by Tempelman et al. [102] revealed that keyhole pores could be predicted 

with 97% accuracy using a support vector machine (SVM) classifier. The pore locations were spatially 

and temporally registered with the recorded time-series of laser position and acoustic pressure to 

identify specific partitions of the acoustic signals which correspond to pore formation. There are 

several similar studies on AI-assisted acoustic-based defect detection in LPBF [262–264], proving the 

substantial potential and effectiveness of using acoustic sensing with ML for in-situ defect detection 

in the LPBF process. 

Recent advancements in acoustic monitoring have expanded its applications in LPBF, as 

demonstrated in [66,112,251]. These innovative approaches include semi-supervised process 

monitoring [112], and transfer learning of AM mechanisms across different materials [251]. Drissi-

Dauodi et al. [66] reduced the window size for extracting WT features from 160 ms to 5 ms, enabling 
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faster and more precise defect identification. However, developing a CNN model for defect detection 

in a specific material can be expensive and time-consuming, requiring balanced datasets for each 

investigated regime and sufficient data to ensure high accuracy. To address this challenge, the authors 

proposed a semi-supervised learning approach [112] that differentiates defect-free regimes from 

defective ones by training ML algorithms only on the distribution of acoustic signatures corresponding 

to defect-free regimes. They developed a generative CNN model (GANomoly) with a generator and 

discriminator, achieving 97% accuracy. Furthermore, the authors demonstrated that CNN models can 

learn transferable features from one material to another with minimal training [251]. After acquiring 

acoustic knowledge from one material, the network can predict defects in another material by re-

training only the final two fully connected layers. This significantly reduces the time and expense of 

DL model development for new materials. These novel applications highlight the potential of acoustic 

monitoring in addressing various challenges in LPBF. 

In summary, in-situ acoustic monitoring has great promise for detecting anomalies and defects 

during LPBF processes. Acoustic signal processing combined with ML allows for the correlation of 

acoustic signals to defects, facilitating early detection and mitigation. The success of these techniques 

is dependent on the careful selection and positioning of sensors, the extraction and selection of acoustic 

signal features, and the deployment of appropriate ML models for defect prediction. Following that, 

the next sub-section will go through in-situ acoustic monitoring in LDED, which has different 

challenges than the LPBF process. 

 

3.2.3. In-Situ Acoustic Monitoring In LDED 

The LPBF process experiences significant noise influence on acoustic signals from protective gas 

flow, recoating, and powder delivery systems. However, as laser-powder interactions occur on a small 

scale and systems such as recoating and powder delivery remain stationary during laser scanning, the 

primary noise source is the protective gas flow. This noise, mainly affecting static air pressure, is 

concentrated in the low frequency band and can be readily filtered out [255]. In contrast, LDED 

experiences a more complex noise composition due to protective gas flow and powder stream 

impacting the substrate, complicating the analysis of laser-material interaction sounds. Consequently, 

acoustic-based monitoring in LDED is particularly challenging. 

Initial studies into in-situ acoustic monitoring for LDED by Hossain and Taheri et al. [265–267] 

developed a custom transducer-based sensing device attached to a part's substrate to collect AE signals. 

Using a K-Mean clustering algorithm, the authors demonstrated that different LDED build conditions 

generate distinct sounds [265]. They then evaluated the AE signal relationships with changing machine 
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status and deposition parameters, affirming the AE signal's connection to LDED part quality through 

statistical methods [267]. However, the sensor setup lacked flexibility, and the investigation did not 

delve into in-situ defect detection. 

Subsequent advancements have incorporated a low-cost microphone sensor for in-situ LDED 

monitoring [68,268,269]. Figure 16 displays microphone sensors attached to the laser head across 

different LDED machines, demonstrating the sensor's flexibility compared to the transducer-based AE 

sensor. The microphone angle and distance to the heat source are consistently maintained across both 

cases.  

To tackle the critical challenge of noise in LDED sound, Chen et al. [268] presented an end-to-end 

acoustic denoising method using deep learning. This approach, which included audio equalization, 

bandpass filtering, and Harmonic-Percussive Source Separation (HPSS), effectively minimized 

ambient noise and isolated the sound of laser-material interactions. It can also be generalized across 

various LDED machines and alloy materials. Bevans et al. [269,270] employed a novel wavelet-

integrated graph theory approach, using wavelet transform filters  [271] for acoustic signal denoising, 

which detected flaw onsets such as porosity, spatters, and line width variations in wire-based DED 

process (Figure 16(b)). A similar approach was also presented in [272]. 
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Figure 16. Various acoustic monitoring setups in LDED. (a) Microphone setup in a robotic LDED system [68].  

(b) Image and schematic of an experimental setup featuring a Shure SM57 microphone attached to the welding 

torch in a wire-based DED process [269]. The microphone angle and distance to the heat source are consistently 

maintained across both cases. 
 

Understanding acoustic signal characteristics and their correlation with various defects in LDED 

is crucial for defect detection. As shown in Figure 17, recent studies have analysed the acoustic signal 

signatures with different defect formation mechanisms. Hauser et al. [67] demonstrated a correlation 

between acoustic emissions, powder mass flow, and laser power for LDED processes deviating from 

optimal conditions. Higher laser power and mass flow rate resulted in increased AE intensity, 

indicating the transfer of laser energy to powder particles and stimulation of acoustic waves. The 

acoustic waves could be originated from the melting and volume contraction during solidification, 

which agitates the surrounding air (Figure 17(a)). Metal powder particles rapidly expand due to phase 

change from solid to liquid state, with volume expansion further intensified when the molten material 

is heated. The laser energy incites this expansion, stimulating surrounding air molecules. Consequently, 

the AE mean intensity rises with greater laser power and powder mass. Unstable processes often cause 

remelting of the deposited part, leading to geometrical fluctuations. These fluctuations alter the 

distance between the nozzle and the melt pool, and consequently, the interaction time between powder 



Page 43 of 107 

 

particles and the laser beam. Extended interaction time could result in fewer particles incorporating 

into the melt pool and a higher AE average intensity. Additional factors contributing to increased AE 

include heat accumulation, which causes increased spatters. These spatters are larger than powder 

particles, which could further increase AE when interacting with the laser beam.  

Chen et al. [68] compared the acoustic signal signatures from defect-free, cracked, and keyhole 

pore areas using Fast Fourier Transforms (FFT) and MFCCs spectrums (Figure 17(b) and Figure 17(c)). 

They found that the magnitude of keyhole pore sound is considerably larger in the low frequency bands 

(0–5000 Hz), followed by crack sound and defect-free sound. The MFCCs value in low-frequency 

bands is lower in the defect-free deposition process. Cracks and keyhole pores, as indicated by a 

brighter colour in Figure 17(c), show a higher concentration of energy in the low-frequency bands.  

This is due to cracking being an energy-releasing process, allowing sound waves to readily distinguish 

such phenomena through unique patterns reflecting the abrupt increase in acoustic energy induced by 

crack propagation. 
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Figure 17. Acoustic signal analysis in LDED: origins, effects, and correlations to defects. (a) Source and 

influence of AE signal in stable and unstable LDED processes, highlighting increased spatters [67]. (b) FFT 

analysis of LDED sounds for different process conditions (i.e., defect-free, cracks, and keyhole pores) [68]. (c) 

MFCCs feature visualization across process regimes [68]. 

 

Existing studies have provided valuable insights into the acoustic signal signatures and their 

correlations to different process parameters and defects in the LDED process. Moreover, the research 

community has made substantial achievements in ML-assisted defect detection using these acoustic 

features. A survey on benchmarking ML models on acoustic-based defect detection are listed in Table 

A2. For instance, Gaja et al. [273] utilized unsupervised K-Means clustering to distinguish unique 

sound patterns in LDED. They found that, pores produce AE events characterized by higher energy, 

shorter decay time, and lower amplitude compared to cracks. Among various features, acoustic signal 
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energy emerged as the most crucial in defect differentiation. Chen et al. [68] introduced a CNN model 

that leverages MFCCs acoustic features to classify LDED sounds for in-situ detection of cracks and 

keyhole pores, achieving an accuracy of 89%. As shown in Figure 18, the authors compared the 

performance of the MFCC-CNN model with traditional machine learning models (e.g., SVM, KNN, 

RF, GB, etc.) trained on both raw and denoised acoustic data. Their findings confirmed that denoising 

the acoustic signal can significantly enhance sound classification accuracy. The MFCC-CNN model 

excelled in overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score 

(98%), outperforming the other models. 

 

 

Figure 18. In-situ crack and keyhole pores detection framework through acoustic signal processing and deep 

learning [68].  
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3.2.4. Challenges, limitations, and future development  

Acoustic-based monitoring has shown significant promise in LAM for defect detection and 

process characterization. However, several challenges and limitations need to be addressed to make 

this technique more robust and adaptable for different LAM technologies. We provide an overview of 

the primary hurdles faced in the field, offering a basis for future research and development initiatives: 

i. Noise Content Removal: One of the most critical challenges in acoustic-based monitoring is 

the presence of extraneous noise. These noises can come from various sources such as the 

protective gas flow, machine movement, or even environmental factors. While several filtering 

techniques, including low-pass filters and advanced DL methods, have been used to mitigate 

this issue, there is still a need for more effective and reliable noise removal strategies that can 

enhance the accuracy of defect detection. 

ii. Acoustic Monitoring for Multi-layer Multi-track Bulk Structures: Acoustic monitoring has 

been primarily used for single layer or single track analysis in LAM. However, the complexity 

increases significantly when it comes to multi-layer and multi-track structures due to the heat 

accumulation and thermal stress. The interaction between subsequent layers and tracks may 

result in unique acoustic signatures that are difficult to interpret. Further research is needed to 

understand these signals and develop effective strategies for monitoring multi-layer multi-

track structures. 

iii. Higher Temporal and Frequency Resolution: The temporal resolution of current acoustic 

monitoring systems may not be sufficient to capture all relevant events during the LAM 

process. The laser-powder interaction happens across the frequencies, and the acoustic signal 

can change rapidly within microseconds. Therefore, higher temporal and frequency resolution 

of the ML model is needed to capture the full detail of these events, which could improve the 

sensitivity and accuracy of defect detection. 

iv. Standardization and Reproducibility: There is a lack of standardization in the setup of 

acoustic sensors in LAM, which can lead to inconsistencies and variations in the collected 

data. The positioning angle, distance to process zone, and types of microphone are critical 

factors influencing the quality and reliability of acoustic data. Therefore, more work is needed 

to establish standardized sensor setup guidelines and protocols to ensure the reproducibility 

and comparability of results across different studies and LAM systems. 

v. Acoustic Monitoring for Fault Diagnosis: Another promising but challenging area is the use 

of acoustic monitoring for fault diagnosis in the LAM process. Potential faults could include 
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depletion of protective argon gas, powder depletion, nozzle clogging, oxidation in LDED, or 

anomalies in the powder bed in LPBF. These process disruptions could significantly affect the 

quality of the fabricated part and may even lead to system damage. Whiting et al. [274] 

presented a device for powder mass flow rate monitoring using acoustic emission signal in 

LDED. However, each fault may produce a unique acoustic signature, which can be drowned 

out by process noise or overlapped with the acoustic emissions from normal process. 

Therefore, the development of effective strategies for fault detection and diagnosis using 

acoustic monitoring remains a challenging task and requires further research. 

vi. Integration with Other Sensing Techniques: Although acoustic-based monitoring provides 

valuable information about the LAM process, it is often insufficient on its own for 

comprehensive defect detection. The integration of acoustic monitoring with other sensing 

techniques, such as optical or thermal sensors, could provide a more complete picture of the 

process and improve the robustness of defect detection. However, this multi-modal sensing 

approach presents challenges in data fusion and interpretation, which will be discussed in 

subsequent sections. 

 

3.3. Laser Line Scanning  

On-machine laser line scanning is a critical step for in-process surface defect identification and 

defects correction [275]. This can be achieved by a laser profilometer (also known as a laser 

displacement sensor), as shown in Figure 19. Laser line scanning is one of the most widely used 

approach for surface morphology monitoring [69,276–283]. In comparison to traditional vision-based 

techniques, laser displacement sensors provide higher accuracy and can produce precise height data 

without the need for a computationally costly 3D reconstruction process [283,284]. Laser line scanning 

relies fundamentally on the principle of laser triangulation [285–287], as illustrated in Figure 19(a). A 

laser line scanner projects a laser line onto an object's surface. An optical sensor, positioned at a known 

distance and angle, captures the laser light reflected from the surface. As the distance between the 

sensor and the object's surface changes due to surface irregularities, the position of the reflected laser 

line shifts accordingly. By calculating this shift, the system can generate a detailed topographical map 

of the surface, identifying potential defects. 

The laser displacement sensor can be installed next to the laser head, as illustrated in Figure 19(a). 

Hand-eye calibration [288,289] is necessary to compute the coordinate transformation from workpiece 

coordination to the sensor's frame in order to determine the precise posture of the sensor relative to the 
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robot. With the computed transformation matrix, the laser displacement sensor could obtain surface 

topography of the manufactured component represented by the 3D point cloud in the sensor coordinate 

system. The relationship between the local coordinates of the laser displacement sensor and the 

workpiece coordinate frame is shown in Figure 19(b). 

Various point cloud data generated by on-machine laser line scanning is shown in Figure 20. Raw 

point cloud data obtained from the laser line scanning is typically noisy, containing outlier points and 

unwanted surfaces such as substrates. The shadow effect causes the sensor to be sensitive to the abrupt 

change of height, which causes inaccuracies at the edges and corners of the parts. These noise can 

affect the performance of the surface defect detection. The literature describes a variety of noise 

filtering and surface segmentation approach, with statistical outlier removal being a common technique 

[290]. This method calculates the distance of each point to its nearest neighbours, comparing it to the 

average of all such distances. Points that deviate significantly from the average are considered outliers 

and removed. K-Mean clustering [291] and Random sample consensus (RANSAC) algorithm [292] 

was used in [293] to clean the raw data and extract the point cloud of target surface. Moreover, the 3D 

point cloud data can be converted into a 2D depth images for further processing, which can speed up 

the computation and subsequent defect identification process. For example, Lyu and Manoochehri 

[194] used 2D depth images obtained from laser line scanning and applied a CNN to classify different 

surface defects, including over extrusion and under extrusion. Bulge and dent regions can be identified 

in a pixel-wise manner. Liu et al. [210] presented a window-based image processing approach to pair 

the depth information of a pixel and its corresponding local patch in 3D point cloud. Over- and under-

built regions can be automatically extracted from the data. 

Laser line scanning has shown substantial promise for in-process surface defect detection in 

LDED. However, it face several limitations and research gaps. The primary challenge lies in the 

resolution and reliability of surface defect detection. Although laser line scanning can detect surface 

defects, it may struggle to accurately identify minuscule or subtle defects, particularly those that do 

not significantly disrupt the projected laser line. Furthermore, scanning speeds may not keep up with 

the production rates in real-time manufacturing, leading to bottlenecks in the process. Ambient 

conditions such as dust, smoke, and varying light conditions can also affect the accuracy of the laser 

scanner, resulting in potential false readings or missed defects. From a research perspective, the 

development of more robust and advanced algorithms for data processing and defect identification 

from the point cloud data is a critical need. These algorithms need to be able to cope with highly noisy 

data and the variability inherent in LAM processes to provide reliable surface defect identification. 

Moreover, the integration of laser line scanning systems into existing LAM setups can be a challenging 
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task due to alignment issues and space constraints. Current research and applications predominantly 

focus on the incorporation of laser line scanning into robotic LDED systems. The nature of these 

robotic systems allows for the easier implementation of the laser profilometer, given the additional 

degrees of freedom in the robotic arm to manipulate the sensor. However, similar integration is much 

more challenging for other types of systems, notably CNC-based LDED systems and LPBF systems. 

These types of systems usually don't provide readily available real-time coordinate data or TCP motion 

data, posing substantial hurdles for the implementation of in-process laser line scanning. The spatial 

limits of CNC-based LDED and LPBF systems complicate situations even more. The nature of LPBF 

systems, in particular, which manufacture components layer-by-layer using a high-energy laser beam 

to fuse metal powders, makes it difficult to identify the surface flaws by using laser line scanning. The 

powder bed environment could significantly disrupt the laser line, thereby affecting the measuring 

accuracy.  

While laser line scanning has shown potential for surface defect identification in LDED, further 

research and technology development are required to address these challenges and fully exploit its 

capabilities. Future work should aim at developing more adaptable laser line scanning solutions and 

algorithms that can work in a broader range of LAM systems. This might involve improving the 

flexibility and miniaturization of the scanning systems to make them more compatible with CNC 

machine’s spatial constraints. Research should also explore innovative methods for acquiring or 

estimating real-time coordinates and TCP motion data from these types of machines, potentially 

through the use of additional sensors or by capitalizing on advancements in machine learning methods. 

Another critical area of future research could be developing strategies to reduce the disruption caused 

by background noise, as well as more robust algorithms for surface defect identification. 

 
Figure 19. Sensor configurations for on-machine laser line scanning for surface morphology inspection: (a) on-

machine laser line scanning for surface defect identification, adapted from [69], (b) laser displacement sensor 
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mounted alongside the DED laser head, adapted from [277]. 

 

 
Figure 20. Point cloud data processing and surface defect identification: (a) 3D point cloud data of LDED parts 

with different geometries [69]. (b) Surface defect identification results using point cloud data and deep learning 

[278]. (Red: convex surface, blue: concave surface, green: normal surface). (c) As-printed LDED sample and 

point cloud data after noise filtering and substrate removal [278]. (d) Point cloud processing and defect detection 

results: the raw point cloud after substrate removal is used to identify bulge and dent area, as depicted in the 

pseudo-colour topography [276]. 

 

 

3.4. Other Emerging Monitoring Methods 

In addition to the aforementioned commonly adopted monitoring methods, some advanced 

emerging monitoring methods that utilized for in-situ defect detection in LAM are given in this section. 

Specifically, the focus will be on in-situ process monitoring using operando synchrotron X-ray 

imaging and inline coherent imaging (ICI). 

Operando synchrotron X-ray imaging is a powerful non-destructive quality inspection tool that 

permits the real-time monitoring of materials during operation, thus providing insights into their 

structure, dynamics, and function [92]. The principles of operando X-ray techniques are rooted in the 

fundamentals of dynamic X-ray radiography (DXR) [294]. They involve the interaction of X-rays with 

a material, inducing scattering, absorption, or fluorescence phenomena, thereby revealing detailed 
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information about the material's structure, composition, and changes during operation. The application 

of operando X-ray techniques in the field of LAM is a recent development, focused on real-time, in-

situ defect detection, particularly the keyhole pore formation [295–299]. This kind of defect typically 

arises from the keyhole mode of laser melting, where high-intensity laser energy creates a deep, 

unstable vapor cavity (also known as keyhole) that can cause pore defects upon solidification. 

Operando X-ray provides accurate, high-resolution, and rapid detection of keyhole pores, which can 

be used to provide ground truth labels for annotating in-situ monitoring data [300]. For example, Ren 

et al. [301] utilized infrared thermal camera guided by high-speed synchrotron X-ray imaging to detect 

keyhole pore generation in LPBF of Ti-6Al-4V, as shown in Figure 21(a). The dynamics of the 

subsurface structure were revealed using high-energy X-rays passing through the single layer powder 

bed. Different forms of keyhole oscillations were discovered by combining the imaging technique with 

Multiphysics simulations, as shown in Figure 21(b). Operando X-ray imaging results were used to 

annotate these real-time captured data as "Pore" and "Non-pore", which served as ground truth labels 

to train supervised deep learning models with melt pool thermal images to detect keyhole pore 

generation events with sub-millisecond temporal resolution. Similar deep learning-assisted monitoring 

approach guided by operando X-ray were also demonstrated by Pandiyan et al. [302], where 

heterogenous sensors were used for defect identification and operando X-ray was used to provide 

observation on different process regimes: keyhole pores, conduction mode, LoF pores. 

Operando X-ray imaging is similarly employed by Wolff et al. [303] in their piezo-driven LDED 

system, as shown in Figure 21(c). The authors captured the interaction of a laser beam and powder-

blown deposition using in-situ high-speed X-ray imaging, unveiling how laser-matter interaction 

influences powder flow and porosity formation. The X-ray imaging setup allowed for the monitoring 

of individual powder particles flowing into a scanning melt pool. Similar to the LPBF process, it is 

evident that operando X-ray imaging can provide crucial insights for in-situ defect detection, 

particularly for tracking the powder flow and porosity formation. 

Recently, Inline Coherent Imaging (ICI), an advanced sensing technique, has been proven 

effective for in-situ defect detection in LDED. Fleming et al. [304] demonstrated the applicability of 

ICI for in-situ monitoring of surface topology and cracks, as illustrated in Figure 21(d). For the first 

time, ICI was aligned off-axis (24° relative to laser), allowing for its integration into a LDED machine 

without alterations to the laser delivery optics. It showcased the ability to detect cracking events, 

including a sub-surface signal. A high correlation (>0.93) was reported between ICI surface topology 

and corresponding X-ray radiographs. Such in-situ correlative observation between ICI and 

synchrotron X-ray imaging has been instrumental in understanding the crack formation mechanism in 
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LDED. The process monitored thin-wall builds of nickel super-alloy and revealed humping-induced 

cracking in surface valleys. Similar in-situ monitoring and process control method using optical 

coherent imaging (OCT) were also demonstrated in [305]. 

Operando X-ray imaging is a remarkable tool for in-situ defect detection in LAM. However, it 

faces a few key challenges. First, the availability and accessibility of X-ray imaging equipment can be 

a significant hurdle. The X-ray sources used for operando imaging, such as synchrotron sources, are 

not readily available in many facilities. This makes regular use or industrial scaling of this approach a 

formidable challenge. Furthermore, X-ray radiation poses safety risks, necessitating stringent 

precautions, protective gear, and specialized modifications to the environment where it is deployed. 

This can compound the complexity and expense of the process. Another substantial challenge comes 

in the form of data processing and interpretation. High-speed X-ray imaging yields large volumes of 

data that are computationally intensive and time-consuming to analyse and interpret. Most previous 

research is limited to single-track or thin-wall investigations, and it is difficult to extend operando X-

ray to LAM of multi-layer multi-track complex structures. 

Inline Coherent Imaging (ICI), on the other hand, also comes with various limitations. Integrating 

ICI systems into existing LAM setups can be difficult due to the systems' relative complexity. This is 

especially the case when off-axis alignment is needed. Despite ICI's impressive spatial and temporal 

resolution, it can still struggle to detect small defects or those situated deep within a material. 

Additionally, being an optical method, ICI is vulnerable to environmental conditions such as dust, 

smoke, or temperature fluctuations. The harsh operational conditions of LAM could negatively impact 

the system's accuracy and efficiency. 
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Figure 21. Other sensing techniques for in-situ defect detection in LAM. (a) Simultaneous synchrotron X-ray 

and thermal imaging for real-time keyhole pore detection in LPBF [301]. (b) Thermal images of intrinsic 

keyhole oscillation and high-speed X-ray images with corresponding Multiphysics simulation of intrinsic 

keyhole oscillation [301]. (c) In-situ high-speed X-ray imaging setup for a piezo-driven LDED system [303]. 

(d) Simultaneous operando X-ray and inline coherent imaging (ICI) for crack identification during the LDED 

process [304]. 

 

 

3.5. Multisensor Monitoring And Data Fusion 

Multisensor monitoring is preferable to traditional single-sensor monitoring because it leverages 

the unique strengths of different sensors to provide a more comprehensive and accurate understanding 

of the complex, multi-dimensional LAM process and defect formation mechanisms. Single sensors 

often excel in detecting specific types of defects (e.g., porosity, cracking, distortions, etc.) but struggle 

with others, making them less ideal for capturing the full picture of the process dynamics. By contrast, 

multisensor monitoring aggregates diverse sensor information, thereby counterbalancing individual 

sensor limitations, optimizing the signal-to-noise ratio, and enabling data fusion for enhanced 

predictability of process outcomes [306]. This section provides in-depth discussions on the advantages, 

techniques, and challenges of multisensor monitoring and data fusion in LAM. 
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3.5.1. Multisensor Monitoring Setups In LAM 

The latest advancements in sensor-based in-situ monitoring have led to the development of diverse 

multisensor monitoring setups aimed at detecting in-situ defects at multiple scales. As illustrated in 

Figure 22, these setups often incorporate multiple sensors that track different facets of the LAM process, 

thereby enhancing the reliability and accuracy in defect detection. A noteworthy example is the 

multisensor system employed in the robotic LDED shown in Figure 22(a) [70]. This system 

incorporates a coaxial visible spectrum melt pool camera, an off-axis infrared thermal camera, and a 

microphone sensor. Each of these sensors captures unique process signature, substantiating the 

superior performance of multisensor fusion-based defect detection over single sensor systems. In fact, 

coaxial melt pool cameras are often paired with off-axis infrared sensors to monitor both the melt pool 

dynamics and part thermal histories in many LDED systems [184,307]. Similarly, LPBF in-situ defect 

detection have been augmented with a multi-camera monitoring systems that includes a near-infrared 

thermal camera, a powder bed imaging camera, and a high-speed melt pool spatter dynamics imaging 

camera, as depicted in Figure 22(b) [308]. This heterogenous sensor data fusion enables detection of 

flaws in LPBF ranging from porosity at the micro-scale (< 100 µm), to layer-related inconsistencies at 

the meso-scale (100 µm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). There are 

also configurations that include four or more sensor types. For instance, Figure 22(c) [309] depicts a 

LPBF system that includes a microphone sensor, a multi-spectral emission sensor, a high-speed camera, 

and a laser scan trajectory recorder. The authors revealed that, while optical imaging provides 

substantial information for defect detection, adding additional sensing modalities significantly 

improves defect detection performance. Figure 22(d) depicts another LPBF setup that are equipped 

with back reflection (BR), visible, infra-red (IR), and structure borne AE sensor [302]. Interestingly, 

the study found that BR and AE sensors provide more important information to guide the decision-

making process than IR and visible sensors.  

Depending on the complexity of the LAM process being monitored and the type of defects 

encountered, each of these configurations offers distinct advantages. More comprehensive LAM 

process monitoring and multi-scale defect detection is feasible by using heterogenous sensor data, 

which enables in more effective defect identification and quality control. 
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Figure 22. Various multisensor monitoring setups for in-situ defect detection in LAM process. (a) Multisensor 

setup in robotic LDED, featuring a coaxial melt pool camera, an off-axis infrared thermal camera, and a 

microphone sensor [70]. (b) Multi-camera monitoring system in LPBF, featuring three types of sensors installed 

on an optical table on top of the machine near the laser source: a near-infrared thermal imaging camera, a powder 

bed imaging camera and a high-speed melt pool spatter dynamics imaging camera [308]. (c) Multisensor 

monitoring system in LPBF, consisting of a microphone sensor, a multi-spectral emission sensor, a high speed 

camera, and laser scan trajectory recorder [309]. (d) Mini-LPBF setup equipped with four sensors, namely back 

reflection (BR), visible, IR, and structure borne AE sensor [302].  

 

 

3.5.2. Multisensor feature visualization and correlation analysis  

In this section, we present the visualization and correlation analysis of multisensor features. 

Understanding these correlations and visual representations is paramount for making accurate 

predictions about potential defects and optimizing sensor utilization for maximum information capture. 

Gaikwad et al. [310] analysed the relationships between melt pool temperature features and geometric 

features retrieved from a thermal camera and a high-speed video camera. Based on both sensor features, 

three separate laser focus heights representing different process conditions could be recognized. This 
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demonstrates that the coaxial temperature and geometric features are correlated. Furthermore, Liu et 

al. [311] developed an novel data-driven pipeline that correlates acoustic and thermal signals to infer 

and track dynamic melt pool visual characteristics, enhancing defect detection and quality control in 

LPBF processes.  

Figure 23 provides a detailed visualization and comparison of the multisensor features, 

highlighting unique characteristics from different sensing modalities. Figure 23(a) presents a spatial 

visualization of multisensor features, including coaxial melt pool visual geometric features, acoustic 

features, and temperature field features [70]. These features are juxtaposed against the physical quality 

of the LDED part as revealed through optical microscopy (OM). Anomalies in the LDED process, such 

as cracks and keyhole pores, can be linked to sudden shifts in multisensor feature values. Furthermore, 

features from different sensing modalities exhibit comparable trends, increasing or decreasing over 

time and layer height, in line with localized heat accumulation and quality deterioration. Figure 23(b) 

and (c) delineate the median saliency distribution per sensor for window lengths of 3.3 ms and 2.5 ms, 

respectively. This distribution highlights the relative importance of each sensor, where a rightward 

shift in the derivative distribution indicates higher sensor importance [302]. It was found that the BR 

and AE sensors carried the most informative content. Notably, with shorter window lengths, AE's 

importance over BR grows, indicating AE's ability to capture more time-resolved events that contribute 

to the decision-making process. However, the BR sensor, which requires a longer integration period, 

tends to provide more reliable results once granted a larger time window. This leads to higher accuracy, 

highlighting the correlation between BR and the stability of the LAM process.  

In summary, multisensor feature visualization, correlation analysis, and selection improve sensor 

data utilization, ultimately leading to improved process monitoring and control. The information 

acquired through the correlation of these multisensor features lays the foundation for developing a 

digital twin of the process, which will be discussed further in the following section. 
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Figure 23. Visualization and correlation analysis of multisensor features. (a) Spatial multisensor feature 

visualization compared to the physical quality in an OM photo [70]. (b)-(c) Median saliency distribution per 

sensor for 3.3 ms and 2.5 ms window length, indicating sensor importance. The BR and AE sensors provide the 

most information [302].  

 

3.5.3. Spatiotemporal data registration  

The synchronization and time-alignment of multisensor data is required for effective 

spatiotemporal multimodal data registration, which is a critical step in the development of an integrated 

dataset. This procedure establishes the foundation for detecting location-specific defects. However, 

this is particularly difficult due to two obstacles: (1) Since many commercial AM machines do not 

provide real-time TCP location information, spatial defect prediction is challenging; (2) different 

sensors may have different acquisition speeds, and any misalignment in multisensor data may 

jeopardize the reliability and robustness of multisensor-based defect detection and process control 

mechanisms. Despite its importance, much existing research falls short of effectively addressing these 

issues. 

Figure 24 elucidates two examples of spatiotemporal registration of multimodal data. Vandone et 

al. [312] proposed a data fusion strategy that combines multiple types of data collected both during 

and post-deposition process (Figure 24(a)). This dataset includes both online monitoring data, such as 

image features, statistics from visible light cameras, thermal measurements, and machine tracing data 
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(e.g., laser power and laser spot positions), as well as offline inspection data, including 3D surface and 

volume reconstruction. Through the computation of the cross-correlation between the image-retrieved 

beam-on signal and the laser power signal, this comprehensive approach enables the time-alignment 

of melt pool images. The registered data, whether time- or space-referenced, is compiled in both 

temporal and spatial domains to form an integrated dataset. Similarly, Feng et al. [313] presented a 

method to register image-based in-situ monitoring data and ex-situ XCT 3D scan model. One notable 

limitation of this method is that spatial information is acquired offline, which makes real-time, 

location-dependent defect prediction challenging. 

To address this limitation, Chen et al. [70] proposed a method for extracting features from 

multisensor inputs and registering them spatiotemporally with real-time robot TCP positions to 

facilitate location-specific quality mapping (Figure 24(b)). This system allows for the simultaneous 

synchronization and registration of multisensor features, ML prediction outputs, and robot TCP data, 

enabling localized quality prediction. The author used the ROS message filter module's Approximate 

Time Synchronizer algorithm [314] to align messages from different sensing modalities depending on 

their timestamps. This synchronization and registration process can estimate defective region 

boundaries despite minor variations due to computer program execution times. Furthermore, Kim et 

al [315] proposed a deep learning-based method that directly estimates melt pool coordinates in the 

machine coordinate system from melt-pool images. This methodology allows melt pool data 

registration using only machine-supplied process settings and melt pool images, with no need for 

system-to-system synchronization, providing a valuable alternative on the spatial registration of in-

situ monitoring data, particularly in the context of an AM platform with limited access to real-time 

TCP position information. 
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Figure 24. Multimodal data spatiotemporal registration. (a) Online and offline multimodal data registration: 

The machine log file records laser power and tool position at each timestamp, enabling the time-alignment of 

the melt pool images and the spatial registration of the tool trace to the 3D deposited geometry [312]. (b) 

Synchronization and registration of multisensor features, machine learning predictions, and real-time robot TCP 

positions: This process ensures that all features from different sensing modalities are extracted and collected at 

the same timestamp, enabling localized quality prediction [70]. 
 

  

3.5.4. Multimodal sensor fusion and quality prediction 

The multimodal sensor fusion for defect detection in LAM is a challenging task. Although there 

has been little research into this in the LAM field, it has been widely utilized in many other industrial 

applications, such as machine fault diagnosis [316] and autonomous vehicles [317]. Generally, 

multimodal sensor fusion can be classified into three levels:  

i. Data-Level Fusion: This fusion level directly combines raw data from multiple sensors, such 

as raw melt pool images and acoustic signal, into matrices or other representations. It offers 
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high precision with minimal information loss. However, it lacks the ability to reject noise and 

disturbances and struggles with asynchronous and signal mismatching issues caused by different 

sensors, potentially leading to performance issues. It can also be computationally intensive due 

to the large volume of data. 

ii. Feature-Level Fusion: This level of fusion reduces the dimensionality of massive amounts of 

data, making it more suitable for real-time defect identification. This could involve, for example, 

combining the melt pool geometries with the acoustic signal spectrum features. Feature-level 

fusion can provide a more compact and meaningful representation of the data than data-level 

fusion. It is often used in conjunction with ML models to capture more abstract characteristics 

and achieve better defect detection outcomes. However, due to the varied units and dimensions 

of different types of sensors, it necessitates sophisticated data processing techniques.   

iii. Decision-Level Fusion: This is the highest level of fusion, where the outputs or "decisions" of 

multiple sensors or algorithms are combined to produce a final decision. For example, if one 

sensor determines that state is “defective” and another sensor determines that it is “defect-free”, 

decision-level fusion might involve a voting scheme to resolve the discrepancy. Decision-level 

fusion can be less computationally intensive and provide precise fusion results, offering a strong 

robustness.  

Several recent studies have demonstrated the benefits of multimodal sensor fusion in LAM defect 

detection, as summarized in Table  A3. For example, Li et al. [318] developed the feature-level fusion 

technique, in which in-situ signal characteristics from a photodiode and a microphone were fused using 

a CNN-based model to estimate layer-wise LPBF quality. In addition, the author compared feature-

level fusion with data-level and decision-level fusion [319]. The data-level fusion model is created 

through channel fusion. The feature-level fusion model is created by extracting and fusing signal 

features, and the decision-level fusion model is created by fusing the classification results from 

individual models. The results showed that the feature-level data fusion model outperformed the other 

two fusion models in terms of classification accuracy. Figure 25 depicts an example of multimodal 

sensor fusion based on deep learning for in-situ quality monitoring in LAM. A hybrid CNN method 

was proposed which incorporates visual and audio feature extraction streams to achieve feature-level 

fusion for localized quality prediction [187]. A virtual quality map reflecting the physical quality values 

observed in the OM image can be constructed by registering the quality prediction outputs with the 

location information [70]. Recently, Perani et al. [320] proposed an online track geometry prediction 

utilizing a visual CNN model (VGG-based) with real-time power, velocity, and one-hot-encoded states 

(accelerating, stable, decelerating) data [320]. This methodology allowed the prediction of track 
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geometry during transient conditions, which has the ability to reduce the dimension deviations of the 

deposited parts. 

 

Figure 25. Examples of deep learning-based multimodal data fusion for in-situ quality monitoring in LAM.  

Hybrid CNN model concatenates the coaxial visual feature extraction stream and acoustic feature extraction 

stream to achieve feature-level fusion for localized quality prediction [187,70,160]. 

 

 

 

4. Adaptive Quality Enhancement  

This section investigates the crucial aspect of adaptive quality enhancement in LAM, specifically 

focusing on addressing the limitations posed by open-loop process settings (i.e., using fixed process 

parameters) commonly found in most LAM systems. These settings often lead to defects due to factors 

like dynamic heat accumulation and variability in printing feature sizes. For instance, changes in the 

length of the raster line, a typical toolpath scanning strategy, can result in inconsistent heat distribution 

and over-melting in smaller features [321]. In addition, inaccuracies in robotic and laser positions, 

along with fluctuations in acceleration and deceleration, can deviate from set printing speeds [39,322]. 

Such variabilities are key contributors to quality issues such as keyhole pores, geometric deviations, 

and microstructure inhomogeneity. To tackle these challenges, the section is divided into two key 

areas: (1) closed-loop feedback control (Section 4.1), focusing on pre-empting defect generation for 

enhanced geometric accuracy and microstructure uniformity, and (2) Iin-process defect correction 

(Section 4.2) detailing methods to rectify defects using additive or subtractive approaches, thereby 

enhancing the overall quality of LAM products. 
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4.1. Closed-Loop Feedback Control  

The complexities of the LAM process necessitate a real-time closed-loop control system that can 

adjust process parameters to compensate for any deviations or errors occurring during the process. 

This system leverages raw sensor signals (e.g., melt pool temperature) or features derived from in-situ 

monitoring data (e.g., melt pool width) to adjust process parameters such as laser power, scanning 

speed, and powder feeding rate. As a result, the closed-loop control system can significantly enhance 

the quality of the manufactured part, improving its geometric accuracy, surface finish, and 

microstructure homogeneity.  

Table 5 presents a literature survey of the closed-loop control systems in LAM, including 

controlled variables, feedback signals, and algorithms employed in the control systems. It also provides 

insights into their strengths and weaknesses. Figure 26 illustrates some examples of closed-loop control 

in LAM. In Figure 26(a), a classic closed-loop control structure is demonstrated, wherein the melt pool 

peak temperature serves as a feedback signal, and the laser power as the controlled variable. The aim 

of the controller is to maintain a consistent melt pool temperature, thereby reducing heat accumulation 

and suppressing the occurrence of porosity defects. 

However, many of the controllers present in the literature require experimental system 

identifications to obtain plant models or layer-dependent adaptive control rules, a process which is 

both laborious and time-consuming. To address this, Chen et al. [163] introduced an adaptive PID 

controller with automatic parameter tuning unit, as depicted in Figure 26(b). This advanced controller 

seamlessly adapts to LDED processes involving varying part shapes, materials, toolpaths, and process 

parameters, thereby eliminating the need for manual parameter adjustment. The superior geometric 

accuracy achieved through this controller is demonstrated in Figure 26(c). Further examples on 

geometric accuracy enhancement by closed-loop control are shown in Figure 26(d)-(e). For instance, 

unstable ripple dynamics can be effectively removed through layer-by-layer height control [323]. 

Similarly, the geometric precision of spiral part can be enhanced with a feedforward PI controller 

[324]. Moreover, geometric stability can be significantly improved for variable-height parts with large 

overhanging angle [71]. These case studies highlight the potential for significant advancements in 

LAM quality through the application of closed-loop control systems. 

Despite significant advancements in the field, several challenges remain in closed-loop control of 

LAM: (1) Existing methods are primarily validated within the confines of single-track or thin-wall 

studies, limiting their efficacy in practical LAM production where parts like rocket engine nozzles or 

propellers have complex and bulky geometries. (2) Most control methods employ approximations of 
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a linear transfer function of the plant model, ignoring the inherently non-linear nature of the LAM 

process. (3) The existing literature predominantly explores the impact of closed-loop control on 

accuracy for specific materials and geometries, while neglecting the intricacies of part geometry and a 

comprehensive analysis of microstructural characteristics and mechanical properties. 

Several recent advancements in closed-loop control are attempting to address these challenges 

[325]. For instance, Wang et al. [321] proposed a real-time laser power control in LPBF, utilizing a 

customized self-control L-PBF platform to tackle challenges such as long signal processing time, high 

device communication lag, and lack of signal-to-quality correlations. Meanwhile, Liao et al., [326]  

proposed a simulation-guided process design method for melt pool depth control in LDED. This 

technique enables the offline determination of the time-series laser power profile to achieve a desired 

melt pool depth, leading to improved surface finish and geometric accuracy. However, this method is 

not immune to inevitable systematic errors originating from the simulation. Another noteworthy 

contribution is from Ogoke and Farimani [327], who proposed a method using deep reinforcement 

learning for thermal control. This novel approach can process a vast amount of data and provide 

valuable physical insights. However, this method simplifies the heat source to consider only the effects 

of heat conduction on the resultant temperature field, neglecting the effects of convection and radiation 

heat transfer.  
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Figure 26. Examples of closed-loop control in LAM for improving geometric accuracy and microstructure 

homogeneity. (a) Closed-loop control of melt pool temperature in LDED to mitigate porosity defects and 

promote uniform microstructure [63]. (b) Data-driven adaptive closed-loop control strategy to adjust laser 

voltage signal based on melt pool size feedback [163]. (c) Adaptive closed-loop controlled samples shows 

improvement on geometric accuracy [163]. (d) Repetitive control of LDED process to track the reference height 

and remove the unstable ripple dynamic that naturally occurred in the open-loop deposition [323]. (e) Real-time 

control of melt pool geometry to using a feedforward PI controller in LDED [324]. (f) Precise control of 

variable-height DED parts to improve geometrical stability [71].  
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Table 5. A survey on closed-loop control in LAM, extended from [63]. 

Ref 
LAM 

process 
Sensor 
types 

Feedback 
signal 

Controlled 
variable 

Control 
algorithm 

Outcomes Limitations Year 

Wang et 
al., [321]  

LPBF 

A high-
speed 
thermal 
sensor 

Melt pool 
thermal 
emissions 

Laser 
power 

Custom 
PID 

Prevents over-
melt, balling, 
surface 
roughness 

Extensive PID 
tuning needed 

2023 

Freeman et 
al., [328] 

LDED 
Coaxial 
camera 

Melt pool 
width 

Laser 
power 

Rule-based 

Stable melt 
pool size, 
better 
mechanical 
uniformity 

Low frame 
rate/response 
speed 

2023 

Su et al., 
[329] 

LDED 
Coaxial IR 
camera 

Melt pool 
width 

Laser 
power 

PID 

Enhances 
tensile 
strength by 
~59% 

Specific to Fe-
Ni-Cr alloy 

2022 

Smoqi et 
al., [63] 

LDED 

Coaxial two-
wavelength 
imaging 
pyrometer 

Peak melt 
pool 
temperature 

Laser 
power  

Rule-based 

Reduced 
porosity, 
uniform 
microstructure 

Thin-wall 
study 

2022 

Chen et 
al., [163] 

LDED 
Coaxial melt 
pool camera 

Melt pool 
width 

Laser 
power 

Adaptive 
PID 

Improved 
geometric 
accuracy 

Microstructure 
not 
investigated 

2020 

Gibson et 
al., [330] 

LDED 
Coaxial IR 
melt pool 
camera 

Melt pool 
size 

Laser 
power, 
speed, 
deposition 
rate 

Rule-based 
multi-
modality 
control 

Consistent 
track 
geometry 

Single track 
study 

2020 

Liu et al., 
[331] 

LDED 
Coaxial NIR 
monochrome 
camera 

Melt pool 
size 

Laser 
power  

Model 
predictive 
control 

Consistent 
height 

Thin-wall 
study 

2019 

Akbari and 
Kovacevic, 
[73] 

LDED 
Coaxial melt 
pool camera 

Melt pool 
width 

Laser 
power 

Adaptive PI 
Uniform and 
finer 
microstructure 

Thin-wall 
study 

2019 

Yeung et 
al., [332] 

LPBF 
Coaxial 
high-speed 
camera 

Melt pool 
intensity 

Laser 
power 

Rule-based 
Improved 
surface 
roughness 

Internal 
quality not 
addressed 

2019 

Shi et al., 
[333] 

LDED 
Off-axis 
CCD camera 

Deposition 
height 

Laser 
power, 
scanning 
speed 

PI 

Consistent 
height, 
uniform 
microstructure 

Thin-wall 
study 

2018 
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Hofman et 
al., [334] 

LDED 
Coaxial 
CMOS 
camera 

Melt pool 
width 

Laser 
power 

PI 

Constant 
dilution, 
hardness in 
clad layer 

Single track 
study 

2012 

Song et al., 
[335,336] 

LDED 
Off-axis 
pyrometer 

Melt pool 
temperature 

Laser 
power 

Generalized 
predictive 
controller 

Improved 
geometric 
accuracy 

Single point 
temperature 
measurement 

2012 

Tang and 
Landers, 
[337,91] 

LDED 

Coaxial 
single-
wavelength 
pyrometer 

Melt pool 
temperature 

Laser 
power 

Rule-based 
Stable track 
morphology 

Multi-layer, 
single track 
study 

2010 

 

Closed-loop control has a significant impact on the microstructure of LAM-fabricated parts. 

Figure 27 presents comparisons of the microstructures of samples fabricated with and without closed-

loop laser power control. In Figure 27(a), the microstructure of an SS 316L sample produced with 

closed-loop control exhibits more homogenous microstructure than the one fabricated without control 

in the LDED process [73]. Notably, the microstructure of the sample with open-loop processing starts 

with a fine cellular structure and transitions gradually to a combination of columnar and cellular 

structures in the middle. The uppermost layers are dominated by coarse columnar grains and even 

dendrites with secondary arm spacing despite the randomness of the dendritic grain growth in certain 

areas, a directional solidification pattern is evident in particular regions. In contrast, the sample 

produced with closed-loop controlled laser power has a consistent cellular grain structure throughout 

all layers, with varying cell sizes at various cross-section positions. This is due to the controller's ability 

to supress heat accumulation, which produces a relatively finer, more homogeneous, and uniform 

microstructure. Therefore, the closed-loop controlled sample would have experienced less variation in 

temperature gradient and solidification rate during solidification. Meanwhile, closed-loop control can 

also affect the grain morphology and grain size. Figure 27(b) provides OM and SEM observations of 

the cross-section profile and microstructure of molten pools with and without closed-loop control [329]. 

In the open-loop processing, the middle grains form dendrites aligned with the heat dissipation 

direction due to rapid heat accumulation. With the closed-loop controller implemented, the cooling 

and solidification rates of the melt pool are accelerated by reducing laser power input, resulting in a 

microstructure dominated by uniform fine equiaxed grains.  
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Figure 27. Microstructure Comparison in SS 316L Samples: Uncontrolled vs. Closed-Loop Control. (a) The 

uncontrolled sample shows a mix of cellular and columnar structures in middle layers, transitioning to coarser 

grains at the top. The closed-loop control sample maintains a consistent cellular grain structure [73]. (b) OM 

and SEM analyses reveal dendritic formations aligned with heat flow in the uncontrolled sample, contrasting 

with the uniform, small equiaxed crystals in the closed-loop controlled sample [329]. 
 

4.2. In-Process Defect Correction  

While closed-loop feedback control strategies effectively pre-empt defect generation and promote 

microstructure homogeneity, the complex nature of the LAM process still leaves room for defects to 

arise. Two key challenges inherent to these strategies include: (1) the dimensional inaccuracies and 

sub-surface defects that result from the interaction of multiple error sources or instabilities, which 
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reduce the effectiveness of most single-input and single-output (SISO) closed-loop controllers for 

fabricating complex geometrical parts, and (2) the robustness of sensing signals, which is critical for a 

successful closed-loop control system. Defects can still arise if the in-situ monitoring signal is 

insufficient for providing adequate information on the process dynamics, or if the closed-loop control 

algorithms fall short in identifying optimal process parameter adjustments. 

Given these challenges, in-process defect correction is a necessary complement to real-time 

closed-loop feedback control. This strategy, which is primarily accomplished by additive or subtractive 

methods, rectifies defects during the LAM process itself, improving dimensional accuracy and 

eradicating sub-surface defects before they potentially cause catastrophic failure. As a result, in-

process defect repair acts as a backup mechanism in LAM to ensure the quality of as-fabricated parts.  

Research in-process defect correction mainly addresses surface defects, such as dimensional 

deviations, and sub-surface defects, including pores and cracks. The use of cyclical additive 

manufacturing and subtractive machining stages in hybrid additive-subtractive manufacturing is a 

promising method.  Figure 28 provides a comprehensive depiction of this method, focusing particularly 

on surface defect correction. As shown in Figure 28(a), the process begins with surface monitoring 

using on-machine laser line scanning combined with in-situ point cloud processing [293,69]. Upon 

completing a deposition cycle, the LDED process halts, and the laser line scanning technique measures 

the intermediate layer to produce a high-resolution 3D point cloud of the as-built part, thereby 

capturing any geometric deviations or surface anomalies. Subsequently, as Figure 28(b) illustrates, the 

point cloud data feeds into a ML model to identify regions that deviate from the intended design [69]. 

The model accurately recognizes bulge (over-built) or dent (under-built) areas. Following this, as 

depicted in Figure 28(c), a corrective toolpath is generated based on the extracted defect boundaries 

[160,72,338,339]. A decision on whether using AM to repair the surface or using SM to remove the 

defective regions is made. LDED process deposits material in both concave and convex deviations 

until the highest point is reached, thus smoothing the surface texture. On the other hand, subtractive 

machining removes excessive material from bulging areas. This method can also be extended to 

eliminate subsurface flaws such as pores and cracks using robotic machining [70,160]. Similarly, 

Bernauer et al. [283] recently developed a layer height compensation technique for wire-based LDED 

to improve dimensional accuracy. The authors utilized a laser line scanner to map out the height profile 

and adjusted the wire feed rate accordingly with a segment-specific controller. Their method 

demonstrated that height variances could be effectively compensated within a few layers. 

Integrating defect detection and correction can significantly enhances LAM quality. However, 

several challenges persist, such as unifying these processes within a single software platform, 
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accurately detecting and correcting subtle defects at multiple scales, and improving adaptive toolpath 

generation for more precise corrections.  Addressing these issues through further research will pave 

the way for in-process defect elimination to become a standard practice in LAM quality assurance. 

 
Figure 28. In-process adaptive dimension correction strategy in hybrid additive-subtractive manufacturing: (a) 

Surface monitoring using on-machine laser line scanning with in-situ point cloud processing [293,69]. (b) 

Machine learning-assisted surface defect identification and deviation boundary extraction [69]. (c) In-process 

dimension correction and repairing toolpath generation by LDED or robotic milling [160,72,338,339]. 
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5. Summary And Future Perspectives 

This section provides a summary and future outlook for in-situ process monitoring and control in 

LAM. In Section 5.1, key findings and developments from the preceding sections are concisely 

reviewed. The subsequent Section 5.2 identifies and discusses major challenges, setting a direction for 

future advancements in the field. 

5.1. Summary  

This work presents a comprehensive review of various aspects of in-situ process monitoring and 

adaptive quality enhancement in LAM. A range of mainstream monitoring methodologies are explored, 

including vision-based monitoring, acoustic-based monitoring, laser line scanning, and multisensor 

fusion. The incorporation of adaptive quality enhancement methods such as closed-loop feedback 

control and in-process defect correction further discussed this review. 

In Table 6, a comparative analysis of different sensors for in-situ monitoring and closed-loop 

control in LAM is provided, evaluating them based on factors such as cost, sensitivity to process 

dynamics, noise rejection capability, sensor installation flexibility, and common functionalities. 

Vision-based monitoring, encompassing melt pool monitoring, thermal history tracking, powder bed 

anomaly detection, and powder stream fault diagnostics, offers a visually rich insight into the LAM 

processes. SWIR, MWIR, and visible spectrum cameras and pyrometers can capture visual data 

coaxially or off-axis. The use of deep learning algorithms, such as CNNs,  enhances the precision of 

real-time quality predictions based on image data captured from LAM processes.  

On the other hand, acoustic-based monitoring leverages time-domain, frequency-domain, and 

time-frequency representations of LAM sounds, providing valuable insights into potential defects 

associated with specific acoustic patterns. Although acoustic monitoring offers increased flexibility in 

sensor installations and a quicker response at a lower hardware cost compared to vision-based 

monitoring, its noise rejection capabilities require further enhancements. 

Furthermore, the paper delves into laser line scanning techniques which generate point cloud data 

to represent part surface morphology and enable in-situ point cloud processing and machine learning-

assisted surface defect identification. Other sensing approaches, such as operando X-ray and inline 

coherent imaging (ICI), have shown promising results with high accuracy in defect identification, 

despite substantial obstacles for industrial adoption due to high costs and safety concerns. The paper 

then discusses multi-sensor fusion, a technique that fuses heterogenous data from various sensors to 

predict defects with superior accuracy than traditional single-sensor-based monitoring approaches. 
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In general, in-situ defect detection in LAM can be categorized into three hierarchical levels: 

(i) Region-based defect identification: This involves identifying the process regimes (e.g., 

conduction mode, lack of fusion mode, keyhole mode, etc.) that the current process falls under. 

A region can be defined as a segment of the signal, encompassing several layers or even whole 

parts. Region-based defect identification is relatively straightforward and typically yields 

higher detection accuracy. However, its limited spatial and temporal resolution makes it less 

suitable in a real production context. 

(ii) Layer-wise defect identification: This level detects defect occurrences within each layer 

using historical sensor data gathered from the entire layer. It can effectively identify various 

defects such as dimensional deviations, overheating, or powder bed anomalies. Layer-wise 

identification can also be achieved through layer-wise imaging or on-machine laser scanning. 

However, it may result in lower efficiency as the system must pause during the inspection 

process. 

(iii) Real-time defect detection: This level entails the immediate identification of defect onset, 

such as keyhole pores and cracks. Real-time detection provides the highest spatial and 

temporal resolution, enabling rapid defect detection as soon as it occurs. This level presents 

the most challenges due to the necessity for swift system response, high computational 

efficiency, and fast sensor acquisition frequency. 

While real-time defect detection may have the highest temporal resolution and fastest system 

response, it may not be suitable for all cases due to the higher software and hardware costs. Depending 

on the specific application, a hierarchical multisensor monitoring system spanning all three levels 

enabling multi-scale defect detection might be more desirable. The concept of this multi-scale defect 

detection system will be elaborated further in the following section.  

As the review progresses towards adaptive quality enhancement, it highlights the advantages of 

closed-loop feedback control. With its capability to reduce porosity, improve geometric accuracy, and 

enhance microstructure homogeneity, this approach plays a critical role for improving consistency and 

overall product quality in LAM. Furthermore, the novel field of in-process defect correction, which 

employs subtractive machining methods or additive methods to eliminate detected defects, further 

ensures the high quality of the final product. 

Implementing in-situ process monitoring and adaptive quality enhancement in LAM offers 

multiple benefits: (i) It facilitates non-destructive early defect identification and correction, thereby 

assures as-built product quality and process repeatability. (ii) It allows real-time control and adaptation 
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of the LAM process, thus enhancing the overall product quality. (iii) It enables superior control over 

the microstructure, resulting in materials with improved mechanical properties. (iv) Lastly, these 

advanced technologies help to minimize waste, increase efficiency, and ultimately, offer an economical 

advantage in the field of LAM.
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Table 6. Comparisons of various sensors for in-situ process monitoring and closed-loop control in LAM. 

Sensor Cost Sampling frequency 
Sensitivity to LAM 
process dynamics 

Noise/disturbance 
rejection capability 

Sensor installation 
flexibility 

Functionality 

Coaxial melt pool 
camera (visible 
spectrum) with 
NIR filter 

Low 
Low  

(30 – 50 Hz) 

Limited sensitivity, might 
not detect subtle changes 
in process drift 

Low 

Medium 

(require customized 
mounting and 
installation) 

Coaxial melt pool geometry 
monitoring 

Off-axis high 
speed camera with 
NIR filter 

High 
Very high 

 (1000 – 2000 Hz) 

High sensitivity, but 
limited FoV  

High High  
Off-axis melt pool and 
monitoring and spatters 
detection 

SWIR camera 
(Off-axis) 

High 

Medium to High 

(60 – 1000 Hz, 
depending on FoV) 

High sensitivity to changes 
in temperature and 
material properties, but 
limited FoV 

High 

Medium  

(require specific 
setup) 

Melt pool temperature or 
part surface temperature 
monitoring 

SWIR camera 
(Coaxial) 

High 
Medium to High (60 – 
1000 Hz, depending 

on FoV) 

High sensitivity to changes 
in temperature and 
material properties 

High 
Low (require 

customized and 
complex setup) 

Coaxial melt pool 
temperature monitoring 

MWIR camera 
(Off-axis) 

High 

Medium to High  

(60 – 1000 Hz, 
depends on FoV) 

Very high sensitivity to 
changes in temperature 
and material properties 

High 

Medium  

(require specific 
setup) 

Melt pool and part surface 
temperature monitoring 

Dual-colour 
pyrometer 
(Coaxial) 

Medium 
to High  

Medium  

(100 - 200 Hz) 

High sensitivity to 
temperature changes in the 
melt pool 

Low to Medium Low to Medium 
Melt pool temperature 
monitoring 

Airborne acoustic 
microphone sensor 

Low High (20 k – 100 kHz) 
High sensitivity, but 
susceptible due to noisy 
environment 

Low High 

Monitoring of acoustic 
emissions from the process, 
can indicate anomalies such 
as spatter events 
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Photodiode Low 

High (up to 10 kHz 
depending on the 

specific photodiode 
and its setup) 

Medium, mainly used for 
light intensity 
measurements 

Low to medium (depends 
on the type and setup) 

High  

(small and 
relatively easy to 

mount) 

Provides high temporal 
bandwidth relative 
brightness stemming from 
the melt pool region 

Laser profilometry Low 
Medium (100 - 200 

Hz) 
High (20 – 100 μm 
resolution) 

Medium (Sensitive to 
lighting and surface 

conditions) 
High 

Surface morphology 
monitoring; stand-off 
distance monitoring 

Operando X-ray 
diffraction  

Very 
high 

Low (typically in the 
range of seconds to 

minutes depending on 
the X-ray source and 

detector) 

High (capable of providing 
in-depth insight into the 
crystalline structure of the 
part being manufactured) 

High (X-ray diffraction 
signals are typically 

distinct and not prone to 
noise) 

Low  

(require complex 
setup and safety 
considerations) 

Provides information on the 
phase and crystalline 
structure of the material in 
real-time during 
manufacturing. 
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5.2. Research Gaps And Future Perspectives  

The integration of sensor-based in-situ monitoring and adaptive control technologies is crucial for 

LAM's reliability and efficiency, yet their full deployment remains incomplete. We've pinpointed six 

major research gaps hindering the widespread use of these technologies in LAM. This section also 

discusses future R&D directions for in-situ monitoring and adaptive quality enhancement, which is 

visually represented in Figure 29. 

5.2.1. Standardization And Reproducibility 

Standardization and reproducibility are critical for the adoption of in-situ monitoring and quality 

enhancement in LAM, yet they often receive inadequate attention, leading to inconsistent research 

outcomes and impeding effective industrial translation.  

One major issue is sensor setup standardization, where variations in sensor positioning and type 

affect data quality. This is true for both acoustic and vision-based sensors, affecting data consistency. 

Standardizing sensor setup protocols is essential for reproducible results across studies and LAM 

systems. 

Another concern is the lack of a standardized methodology for validating ML model accuracy in 

defect detection. Variations in validation practices, like using single-track parts or complex structures, 

and inconsistent process parameters and materials for ML model training, result in models with limited 

general applicability. Therefore, it is necessary to develop a standardized validation approach that can 

accurately assess the robustness and adaptability of these models across a range of conditions and 

materials. Recently, Snow et al. [340] introduced a new standard for evaluating ML model accuracy 

in defect detection, emphasizing probability-of-detection (POD) and probability-of-false-alarm (PFA) 

curves aligned with NDE standards. This method systematically compares detected subsurface flaws 

with post-build XCT data, introducing the a90/95 metric, which represents the flaw size detectable with 

90% confidence at the lower 95% interval of the POD curve. This approach directly evaluates 

detectability as a function of flaw size, offering a more relevant assessment compared to traditional 

ML metrics. 

The design of test components for evaluating closed-loop control algorithms also requires 

standardization. Different studies use varying structures such as thin-wall parts or spiral structures. 

However, it is crucial to validate closed-loop control performance on complex geometries to fully 

assess their effectiveness, including geometric accuracy, microstructure integrity, and mechanical 

performance. 
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Finally, the establishment of standardized reporting practices in the research community can 

significantly enhance the reproducibility of studies in LAM. This includes standardized methods of 

presenting sensor data, ML model training, and validation protocols, and details of the LAM process 

parameters. Addressing these standardization and reproducibility aspects will drive cohesive 

advancement in LAM towards robust and industrially viable in-situ monitoring and adaptive quality 

enhancement solutions.  

5.2.2. Location-Specific Quality Prediction 

LAM processes inherently exhibit spatial dependency. Nevertheless, methodologies for 

addressing location-specific quality prediction remain noticeably absent. The primary root of this 

research gap is the challenge involved in constructing models that can accurately correlate in-situ 

process monitoring data with localized quality characteristics. The majority of existing research tilts 

towards general quality prediction, frequently overlooking the vital aspect of spatial information. This 

oversight is particularly true in CNC-based LDED and LPBF processes. In these cases, the real-time 

position data is often not readily accessible. The complexity of understanding heat distribution, melt 

pool dynamics, and spatially-dependent residual stresses, presents significant challenges. As a result, 

existing ML models may offer less reliable predictions in a spatial context. Although recent studies 

have suggested that robot-based LDED systems may be better positioned by leveraging Tool Centre 

Point (TCP) position data to obtain real-time location information, more research is still needed. 

Addressing this gap necessitates the advancement of analytical methods and the development of ML 

algorithms capable of synthesizing both spatial and temporal data. This would enable more accurate, 

location-specific quality predictions, thereby enhancing the overall efficiency and reliability of LAM 

processes. 

5.2.3. Reliable Defect Detection Models For Real Production 

Currently, supervised ML models intended for in-situ defect detection primarily utilize data 

generated from components intentionally produced with less than ideal process settings. These settings 

induce defects such as LoF pores, keyhole pores, and cracking. The prevalent approach for dataset 

creation in this field of research has focused on the fabrication of single-track or thin-wall components. 

While such an approach may be pragmatic for the initial development of models, it fails to reflect 

adequately the complexities inherent to real-world production scenarios.  

In real production, LAM processes often use predefined parameters like laser power and scanning 

speed for complex geometries. Defects can arise unpredictably in different locations, posing prediction 

challenges. ML models, when trained on thin-wall structures, might underperform for multi-layer, 
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multi-track components due to different defect mechanisms. Thin walls are more defect-prone from 

rapid temperature changes, while complex structures have sparser, unpredictable defects, complicating 

in-situ monitoring. 

Further complexity arises when considering multi-material LAM. Different materials have distinct 

thermal properties and behaviours under LAM processing conditions, leading to different defect 

formation mechanisms. An ML model trained for one material may fail to accurately predict defects 

in another material, emphasizing the need for more versatile and adaptable models. Transfer learning 

of defect formation mechanism can be applied to enhance the ML model in multi-material LAM [251]. 

Therefore, the next wave of research should concentrate on developing and validating ML models 

using data from real production scenarios. Such data should encapsulate the stochastic nature of defect 

occurrence, the different modes of defect generation, and multi-material manufacturing. These aspects 

are paramount to significantly enhancing the robustness and reliability of defect prediction models in 

real-world LAM production scenarios. 

5.2.4. Multisensor Data Fusion 

While multisensor monitoring and data fusion present promising benefits for enhancing the 

accuracy and robustness of in-situ defect detection in LAM, several complexities hinder their industrial 

adoptions. The key research gap is the determination of optimal sensor combinations and the 

development of effective data fusion strategies. An effective implementation of multisensor 

monitoring systems is collectively challenged by data heterogeneity, sensor noise characteristics, and 

the variable relevance of different sensor data to different quality attributes. Moreover, current studies 

often overlook the investigation of noise characteristics in multisensor data, which significantly affects 

the sensitivity, reliability, and resultant robustness of the developed models. 

It is essential to understand sensor noise characteristics for optimizing signal processing 

techniques and designing robust multisensor monitoring systems. It is also fundamental to 

quantitatively assess the uncertainty induced by sensor data noise, crucial for determining the 

reliability of in-situ monitoring and control systems for industrial deployment. 

The issue of sensor redundancy and cost is another consideration that needs further attention. 

Determining the minimum set of sensors that can effectively monitor the LAM process can not only 

reduce the cost of monitoring but also reduce potential noise and disturbances. This necessitates further 

investigation into the interplay between different sensors and their respective contributions to the 

accuracy, reliability, and robustness of defect detection. 

Therefore, future research should concentrate on detailed noise analysis and the development of 
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noise-resistant signal processing and model development techniques. Additionally, the focus should be 

on the creation of tailored sensor integration and data fusion techniques that account for these 

complexities, thus enabling more efficient, reliable, and cost-effective process monitoring. 

5.2.5. Decision-Making Strategies Beyond Early Stopping 

Most existing process control strategies in LAM are primarily focused on the early detection of 

anomalies and subsequent process termination to prevent further deterioration of part quality. However, 

the question of how to mitigate defects effectively remains a challenge. This limitation is mainly due 

to the lack of a comprehensive understanding of the physics behind defect formation and propagation. 

In addition, current decision-making procedures requires optimization in striking a balance between 

maximizing productivity (i.e., reducing process interruptions for in-process inspections) and 

minimizing material waste (i.e., early identification of potential anomalies) [341]. Therefore, the 

challenge lies in developing strategies that can promptly detect defects, while also dynamically adjust 

process parameters to mitigate and rectify these defects in real-time.  

Future research should investigate physics-informed and data-driven methodologies [342–344], 

or employ rule-based approaches [39] for real-time decision-making. These strategies should aim to 

enhance not just early defect detection, but also facilitate dynamic process adjustments to alleviate and 

rectify defects. Such an approach could substantially improve overall part quality, production 

efficiency, and consequently, the cost-effectiveness of LAM operations. 

A further noteworthy area of exploration is the shift from reactive measures to a more proactive 

defect prediction and elimination strategy. Unlike conventional methods that focus on detecting and 

correcting defects after their occurrence, future methodologies should proactively anticipate defects 

before they occur. This would entail predicting potential defects and making preventive adjustments 

to process parameters to prevent the emergence of these defects. Such a proactive approach offers 

significant advantages, such as reduced waste from the removal of defective material, increased 

productivity due to less time spent on defect correction, and overall enhanced efficiency of the LAM 

process. The technology enabling this proactive approach is still in its infancy, and substantial research 

is needed to fully understand and exploit its potential for improving LAM operations. 

5.2.6. Hierarchical Multi-Scale Defect Identification And Prediction 

The necessity for hierarchical multi-scale defect identification and prediction underscores a critical 

research gap. Although the concept of a multi-level defect identification has been mentioned in past 

research [206,308,345], there is a clear need to explore this further. A comprehensive system that 

integrates in-situ monitoring across all levels including region-based, layer-wise, and real-time quality 
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monitoring is still largely unexplored and thus presents a significant research opportunity. 

At the region-based level, cyclic in-process laser line scanning could be utilized for geometric 

distortion and surface defect detection. This technique would involve scanning the part surface after 

every few layers of deposition to maintain a continuous check on quality. Layer-wise defect detection 

and quality control could benefit from the use of historical data, such as past layer melt pool image 

data or acoustic signals, to predict potential flaws. Lastly, real-time quality monitoring is needed for 

the immediate identification and correction of defects like keyhole pores, LoF pores, or cracks. This 

type of detection is challenging due to the dynamic nature of the LAM process and the smaller scales 

of the defects. 

The majority of existing research has tended to focus on only one of these levels, while what is 

lacking is a comprehensive, integrated monitoring and control system that concurrently operates on all 

levels. This would involve a multisensor approach where each sensor, or a combination of sensors, 

would specialize in identifying different types of defects at varying scales, contributing to defect 

detection at their respective operational levels. The adoption of such a system would not only create a 

holistic picture of the entire LAM process but also greatly enhance the robustness, reliability, and 

overall quality control in LAM. The challenge lies in the fusion of multisensor, multimodal data in a 

way that minimizes redundancy and optimizes cost-effectiveness, while ensuring the reliability and 

robustness of the defect detection system. It is an ambitious objective that pushes the boundaries of 

current LAM research. 

These research gaps collectively delineate a roadmap for future investigations in LAM. 

Addressing these areas could lead to significant enhancements in process predictability, quality, 

efficiency, and reliability, driving the broader application of LAM in various industries. In the next 

sub-section, we propose a research roadmap towards fully autonomous, self-adaptation LAM system. 
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Figure 29. The perspectives in future R&D of in-situ process monitoring and adaptive quality enhancement in 

LAM.  

 

5.3. Roadmap Towards Fully Autonomous And Self-Adaptation LAM Processes 

The future of LAM necessitates a paradigm shift: moving from defect detection to proactive defect 

prediction. This evolution relies on harnessing the richness of multimodal sensor data and 

understanding the underlying spatiotemporal dependencies. Such an ambitious undertaking outlines a 

trajectory towards a fully automated, defect-free, and self-adaptation LAM system that can operate 

continuously without human supervision. In line with this, we propose a research roadmap that 

delineates the steps towards achieving a fully autonomous and self-adaptative LAM process. 
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i. Multisensor Monitoring and Data Fusion Framework: Harnessing the collective 

intelligence of multiple sensors through multimodal data fusion is a pivotal step. This union 

of the complementary strengths of various sensors not only improves the accuracy and 

reliability of the predictive models but also furnishes a more comprehensive understanding 

of the LAM process. Future research should prioritize the development of noise-resistant 

signal processing techniques. Additional emphasis should be placed on creating tailored 

sensor integration and data fusion techniques that utilize a minimal set of sensors to 

effectively monitor the LAM process, reducing sensor redundancies. This not only cuts down 

on monitoring costs but also reduce potential noise and disturbances, thus enabling more 

efficient, reliable, and cost-effective process monitoring. 

ii. Proactive Defect Prediction and Mitigation Models: The path forward involves the 

creation of robust machine learning and deep learning models that can accurately anticipate 

potential defects using multisensor data before their occurrences. Rather than simply 

detecting the defects, these advanced models would analyse patterns and trends in the 

historical and real-time sensor data to predict future process anomalies. The models' 

actionable insights, synthesizing physics-informed, spatio-temporal knowledge like thermal 

histories, would trigger automatic modifications to process parameters, such as laser power 

and speed, thereby pre-empting defect occurrence. This self-regulating system, informed by 

spatio-temporal physics knowledge, can significantly enhance the LAM process's quality 

consistency and reliability. Such a proactive approach offers significant advantages, such as 

waste reduction from the elimination of defective material, improved productivity due to less 

time spent on defect correction, and overall efficiency enhancement of the LAM process. 

iii. Multi-scale Hierarchical Defect Identification and Rectification Models: Despite 

proactive defect mitigation measures, when a defect does occur, the system should engage an 

automated solution rather than merely halting. For instance, integrating robotic machining 

into the process chain could remove detected defects, facilitating seamless production. Defect 

identification should be approached from a multi-scale perspective, spanning from micro-

scale defects (e.g., porosities, cracks, microstructure flaws) to macro scales (e.g., surface 

unevenness, distortions). This approach would require the multisensor monitoring system to 

conduct defect detection hierarchically: from real-time detection to layer-wise detection, and 

finally to region-based detection. Each sensor or a combination thereof would specialize in 

identifying different types of defects at various scales, contributing to defect detection at their 

respective operational levels. The adoption of such a system would not only provide a 
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comprehensive view of the entire LAM process but also significantly enhance robustness, 

reliability, and overall quality control in LAM. 

This roadmap envisions an era of autonomous and self-adaptation LAM systems, with each step 

contributing to a holistic approach for ensure product quality and process efficiency. The 

implementation of a multisensor monitoring and data fusion framework forms the foundation, allowing 

for comprehensive process understanding and more accurate and reliable predictive models. Coupled 

with this, proactive defect prediction and mitigation models based on machine learning and deep 

learning techniques promise preventive measures and process adjustments. Lastly, the multi-scale 

hierarchical defect identification and rectification models pave the way for continuous, unsupervised 

operation, ensuring product quality despite potential anomalies. 

The fusion of AI, sensor technology, and robotics has the potential to revolutionize LAM, 

particularly when applied in a concerted manner as outlined in this roadmap. While the path forward 

may present challenges, the endeavour is both necessary and promising for the sustainable and broad-

scale adoption of LAM technologies across various industries. This roadmap thus offers a structured 

approach towards this future, laying the groundwork for research and innovation to bring about the 

next generation of LAM systems. 
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Appendix A. Surveys on Machine Learning-Assisted Defect Detection in Laser Additive Manufacturing 

 

Table A1. A survey on ML-assisted vision-based defect and fault detection in LAM. 

Ref Sensor types Process Model Input Objective Algorithms 
Performance 

metrics 
Limitations Year 

Zhang et al. 
[346]  

High-speed 
camera (coaxial) 

LPBF Melt pool videos 
Quality  level 
prediction (thinness, 
regularity, etc.) 

Super frame feature 
pyramid transformer  

Accuracy: 0.97 
• - Not location-specific 

- Single track study 
2023 

Yin et al. [347]  
Coaxial CCD 
camera 

LDED Melt pool images 
Local defects 
(porosity) detection 

Multibranch Fusion 
CNN 

Accuracy: 
90.18% 

- Limited temporal 
and spatial resolution 

- Thin-wall study 

2023 

Kim et al. [348]  
IR thermal 
camera (coaxial) 

LDED 
Melt pool 
temperature, 
geometry 

Layer height, surface 
unevenness estimation 

ANN 
RMSE: 25.44 µm, 
R^2: 12.62% 

- Single track study 2023 

Nguyen et al 
[64]  

Off-axis 
monitoring 
camera 

LPBF Powder bed image 
Surface appearance 
classification 

Semi-supervised 
CNN 

Accuracy > 95% 

- Layer-wise 
inspection 

- Limited materials 

2023 

Oster et al. [166] 
SWIR 
thermography 

LPBF Thermal history 
Keyhole porosity 
prediction 

CNN 
Accuracy: 0.96  

F1-Score: 0.86  

- Lacks spatial 
information 

2023 

Estalaki et al. 
[222]  

SWIR camera 
(off-axis) 

LPBF 
Thermal features 
extracted from 
SWIR imaging 

Localized (voxelized) 
porosity prediction 

Classic ML models  F1: 0.966 

- Layer-wise 
inspection 

- Limited spatial and 
temporal resolution 

2022 

Lough et al. 
[182]  

SWIR camera 
(off-axis) 

LPBF Thermal features  
Localized (voxelized) 
porosity prediction 

Statistical method 
TPR – 0.9 

FPR – 0.15 

- Simple geometries 

- Dependence on 
specific thermal 
features 

2022 

Smoqi et al. 
[164] 

Dual-
wavelength 
pyrometer (off-
axis) 

LPBF 
Physics-informed 
melt pool 
signatures 

Porosity type and 
severity classification 

KNN,CNN 

F1 score (KNN): 
95% 

F1 score (CNN): 
89–97% 

- Limited material 
types and test 
geometries 

2022 

Larsen and 
Hooper [193] 

High-speed 
imaging sensor 
(coaxial) 

LPBF Melt pool images 
Anomaly detection 
(quality degradation, 
porosity) 

Variational RNN ROC AUC: 0.944 
- Limited process 
conditions 

2022 
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- Lacks 
generalizability  

Xie et al. [223]  
IR thermal 
camera (off -
axis) 

LDED 
Thermal history 
data features  

Location-dependent 
Mechanical properties 
prediction 

CNN (ResNet) R^2 score: 0.7 

- Thin wall study 

- Limited sensor 
flexibility 

2021 

Cai et al. [349] 
High-speed 
camera (off -
axis) 

Laser 
welding 

Melt pool images 
Keyhole penetration 
state monitoring 

CNN 

Accuracy: 
98.37% 

Latency: 2.9 ms 

- Limited to single 
track  

2021 

Snow et al. 
[214] 

High resolution 
digital camera 

LPBF Layer-wise images Anomaly classification CNN 
F1: 86.6% 

Accuracy: 87.3% 

- Layer-wise 
inspection 

- Limited 
generalizability 

2021 

Knaak et al. 
[191] 

MWIR camera 
(coaxial) 

LDED Melt pool images 

Online defect 
prediction (e.g., 
sagging, LoF, sound 
weld, etc.) 

Ensemble CNN-GRU 

Latency: 1.1 ms 

Accuracy: 95.1% 

F1 score: 95.2% 

- Single track study 

- Lacks 
generalizability  

2021 

Kwon et al. 
[175]  

High speed 
camera (coaxial) 

LPBF Melt pool images 
Laser power level 
prediction 

DNN 
Failure rate < 
1.1% 

• - Not location-specific 

• - Lacks 
generalizability 

 

2020 

Gonzalez-Val et 
al. [111]  

MWIR camera 
(coaxial) 

LDED Melt pool images 
Dilution estimation; 
LoF pore identification 

CNN (ResNet) 
F1 Score: 0.974 

Accuracy: 0.967 

- Single track study 

- Not location-
specific 

2020 

Zhang et al. 
[350] 

High speed 
camera (off-
axis) 

LPBF Melt pool features 
Classification of 
melting states 

CNN Accuracy: 0.997 - Single track study 2020 

Zhang et al. 
[131]  

High-speed 
digital camera 
(coaxial) 

LDED Melt pool images Porosity detection CNN 
Accuracy: 91.2% 

RMSE: 1.32% 

- Single track study 

- Not location-
specific 

- Large pore size 

2019 

Scime and Beuth 
[186]  

High-speed 
camera (off-
axis) 

LPBF 
Melt pool 
morphologies 

Keyhole pores, balling 
instability detection 

SVM Accuracy: 85.1% 

- Limited accuracy 

- Single track study 

- Lacks spatial 
information 

2019 
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Zhang et al. 
[132] 

CMOS camera LPBF 
Melt pool, plume, 
spatter features 

Quality level 
prediction 

SVM, CNN 
Accuracy: 92.7% 

Precision : 92.8% 

- Not location 
specific 

- Single track study 

2018 

Scime and Beuth 
[206] 

Digital Camera 
(off-axis) 

LPBF 
Layer-wise 
grayscale images  

Powder bed anomaly 
classification 

Multi-scale CNN 
Overall accuracy: 
97% 

- Layer-wise 
inspection 

2018 

Khanzadeh et al. 
[180] 

Infrared camera 
(off -axis) 

LDED 
Melt pool thermal 
images 

Porosity prediction 
KNN, SVM, DT, 
SOM, etc 

Recall: 98.44% 

Accuracy: 96% 

- Thin wall study 

- Non-location-
specific 

2018 
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Table A2. A survey on ML-assisted acoustic-based defect detection in LAM. 

Ref Sensor types Process Model input Objectives Algorithms Performance metrics Limitations Year 

Chen et al. 
[68] 

Microphone LDED MFCCs 
Process regime 
classification (keyhole 
pores, cracks, defect-free) 

CNN 
Accuracy: 89%, 
Keyhole pore accuracy: 
93%, AUC-ROC: 98% 

- Limited temporal 
and spatial 
resolutions 

- Thin-wall study 

2023 

Kononenko et 
al. [254] 

AE sensor LPBF 
Spectra principal 
components 

In-situ crack detection 
Classic ML 
(SVM, GPR, 
LR, etc.) 

Accuracy: 99% 

- Lacks sensor 
installation 
flexibility 

- Lacks location-
specific information 

2023 

Drissi-Daoudi 
et al. [351] 

Microphone LPBF Spectrograms 
Processing regime 
classification, processing 
maps 

CNN Accuracy > 96% 
- Not location-
specific  

2023 

Bevans et al. 
[269] 

Microphone 
LW-
DED 

Graph Laplacian 
Fiedler number  

Flaw onset detection 
(porosity, line width, 
spatter) 

Wavelet 
integrated graph 
theory 

False alarm rate < 2% 

- Limited to specific 
settings 

- Lacks 
material/process 
generalizability 

2023 

Pandiyan et 
al. [251] 

Microphone 
(PAC AM4I) 

LPBF 
Wavelet 
spectrogram 

Balling, LoF, conduction, 
keyhole pore detection 

ResNet18 and 
VGG16 

Accuracy ≈ 96% 
- Lacks spatial 
information 

2022 

Drissi-Daoudi 
et al. [66] 

Microphone  
(PAC AM4I) 

LPBF Raw signal 
Material/process regime 
differentiation 

CNN (VGG-16) Accuracy: 93% 

- Not location-
specific 

- Limited focus on 
inference time 

2022 

Tempelman et 
al. [102] 

Microphone LPBF Acoustic signals Keyhole pore detection SVM Accuracy: 97% 

- Single track study 

- Limited spatial and 
temporal resolution 

2022 
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Pandiyan et 
al. [112] 

Microphone 
(PAC AM4I) 

LPBF 
Raw acoustic 
signal 

Anomaly detection 
(balling, LoF, keyhole 
pores, etc.) 

VAE and GAN Accuracy: 96% - 97% 

- Limited focus on 
model inference time 

- Not location-
specific 

2021 

Hossain and 
Taheri [267] 

Transducers LDED 
Acoustic 
emission signal 

Build condition 
classification 

CNN Accuracy: 95% 

- Process condition 
classification  

- Not defect-
correlated 

2021 

Shevchik et 
al. [259] 

Fibre Bragg 
grating sensor 

LPBF 
Wavelet 
spectrograms 

Quality classification CNN Accuracy: 78% - 91% 

- General quality 
classification 

- Limited 
types/locations of 
defects 

2019 

Shevchik et 
al. [257] 

Fibre Bragg 
grating sensor 

LPBF Spectrogram 
Pore concentration level 
prediction 

CNN Accuracy: 83% - 89% 

- General quality 
classification 

- Not location-
specific 

- Limited temporal 
resolution 

2018 

Ye et al. [261] Microphone LPBF 
Raw acoustic 
signal 

Melting state 
classification 

DBN Accuracy: 93% 

- Single track study 

- General 
classification 

- Not location-
specific 

2018 
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Table A3. A survey on ML-assisted multisensor fusion-based defect detection in LAM. 

Ref Sensors Process Model Input Objectives Algorithms 
Performance 

metrics 
Limitations Year 

Bevans et 
al. [308] 

Infrared camera, spatter 
imaging camera, optical 
powder bed imaging 
camera 

LPBF 
Spectral graph-
based process 
signatures 

Flaw detection 
across micro, meso, 
and macroscales 

Classic ML F-score: 93% 
Limited to specific flaws 
and materials 

2023 

Chen et al. 
[70] 

Microphone, SWIR 
camera (off-axis), 
coaxial CCD camera 

LDED 
Acoustic, coaxial 
melt pool, SWIR 
image features 

Crack and keyhole 
pore detection 

Classic ML  

- Accuracy: 96% 

- ROC-AUC: 99% 

- False alarm rate: 
4.4% 

- Limited spatial and 
temporal resolution 

- Thin-wall study 

2023 

Gaikwad et 
al. [310] 

Two coaxial high-speed 
video cameras, 
temperature field 
imaging system 

LPBF 

Melt pool 
temperature, shape, 
size, spatter 
intensity 

Laser defocusing 
detection due to 
thermal lensing 

SVM 

- False positive 
rate: 0.1-0.001 

- True positive 
rate: 90% 

- Not location specific 

- Limited to certain 
materials/settings 

2022 

Pandiyan et 
al. [302] 

Back reflection (BR), 
Visible, Infra-Red (IR) 
sensor, Acoustic 
Emission (AE) 

LPBF 
Acoustic, IR, BR 
signals 

Keyhole, 
conduction, LoF 
regime detection 

CNN+LSTM 
Accuracy: 98.2%-
99.9% (0.5-4.0 ms 
timescales) 

- Not location specific 

- High sensor 
installation complexity 

2022 

Li et al. 
[318] 

AE sensor, photodiode LPBF 
AE, photodiode 
signals 

Quality 
classification (poor, 
medium, high) 

CNN 
Overall accuracy: 
99.08% 

-  General quality focus 

- Not location/type-
specific 

2022 

Jamnikar et 
al. 
[220,221] 

Pyrometer, off-axis 
melt pool camera 

LW-
DED 

Melt pool images, 
temperature 
features 

Microstructure and 
bead geometry 
prediction 

CNN 
NRMSE: 10%-
20% 

- Thin wall study 

- Limited to certain 
materials/geometries 

2022 
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Petrich et 
al. [309] 

High-speed camera, 
High-resolution off-axis 
camera, acoustic sensor 
(microphone) 

LPBF 

Pre/post laser scan 
imagery, acoustic, 
multi-spectral 
emissions 

Localized flaw 
detection 

NN Accuracy: 98.5% - Layer-wise inspections 2021 

Guo et al. 
[183–185] 

Coaxial pyrometer, off-
axis infrared camera 

LDED 
Pyrometer, infrared 
thermal images 

In-situ porosity and 
pore size prediction 

Physics-
informed 
CNN 

Accuracy: 100% 

MAPE: 6.91% 

- Lacks spatial 
information  

- General anomaly 
detection (not type-
specific) 

2020 
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