
Reproducible data science over data lakes: replayable data
pipelines with Bauplan and Nessie.

Jacopo Tagliabue∗
jacopo.tagliabue@bauplanlabs.com

Bauplan, NYU Tandon
New York, USA

Ciro Greco
ciro.greco@bauplanlabs.com

Bauplan
New York, USA

ABSTRACT
As the Lakehouse architecture becomes more widespread, ensuring
the reproducibility of data workloads over data lakes emerges as a
crucial concern for data engineers. However, achieving reproducibil-
ity remains challenging. The size of data pipelines contributes to
slow testing and iterations, while the intertwining of business logic
and data management complicates debugging and increases error
susceptibility. In this paper, we highlight recent advancementsmade
at Bauplan in addressing this challenge. We introduce a system de-
signed to decouple compute from data management, by leveraging
a cloud runtime alongside Nessie, an open-source catalog with Git
semantics. Demonstrating the system’s capabilities, we showcase
its ability to offer time-travel and branching semantics on top of
object storage, and offer full pipeline reproducibility with a few CLI
commands.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Infor-
mation systems → Database management system engines;
Data cleaning.

KEYWORDS
data pipelines, data cleaning, serverless computing

ACM Reference Format:
Jacopo Tagliabue and Ciro Greco. 2018. Reproducible data science over data
lakes: replayable data pipelines withBauplan andNessie.. In Proceedings
of Pre-print (DEEM@Sigmod 2024). ACM, New York, NY, USA, 5 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
“No man ever steps in the same river twice, for it’s not
the same river and he’s not the sameman” –Heraclitus

Reproducibility is alwaysmentioned as amajor obstacle in debug-
ging data science projects and in moving them from development
to production [1, 5].

∗This is a pre-print, non-final version of the paper accepted at DEEM SIGMOD 2024.
For the final archival version, please check the official proceedings after the conference.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEEM@Sigmod 2024, June 09–14, 2024, Santiago, Chile
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Table 1: Reproducibility checklist

Component Tools Example

input data S3, Iceberg 100M row dataframe

code Git 10+ SQL / Python functions

runtime pip, Docker scikit==1.3.0

hardware local machine, cloud EC2

The conventional engineering approach, which is based on repli-
cating computer behavior by repeatedly inputting the same data
into the same code, reveal critical limitations when confronted
with modern data workloads. As shown in Table 1, reproducing a
data pipeline needs versioning and portability of extensive inputs,
modular code, runtime compatibility with various packages, and
hardware flexibility. While existing tools may function adequately
in isolation, enabling time-travel capabilities across all these compo-
nents to reproduce data pipelines demands substantial engineering
proficiency, setup and context-switching.

In this short paper we describe the recent progress we made at
Bauplan in attaining reproducibility through a unified framework
for data pipelines over data lakes. In particular, we demonstrate
how a system based on declarative pipelines can decouple the busi-
ness logic from runtime and data management, and address the
challenges illustrated in Table 1. We summarize our contributions
as follows:

(1) we outline abstractions that allow data pipelines to be imple-
mented in multiple languages and artifacts to be represented
transparently across the hierarchy of persistence (in-memory
tables, parquet files, data lake tables and data branches);

(2) we explain the architecture and the ergonomics of our CLI,
which allows practitioners to write pipelines in their local
IDE and run them in directly the cloud through Bauplan’s
FaaS runtime;

(3) we describe the open-source Nessie data catalog and show
how Git-like semantics can be applied to datasets over data
lake.

2 DATA PIPELINES AS FUNCTIONAL DAGS
Data pipelines are the bread and butter of any data processing,
serving ETL, analytics, reports and model building. Let’s discuss a
typical use case, for illustrative purposes:

Example use case #1: Richard is a data scientist at ACME Inc.,
a financial company interested in detecting fraudulent transactions

ar
X

iv
:2

40
4.

13
68

2v
1

 [
cs

.D
B

]
 2

1
A

pr
 2

02
4

https://orcid.org/0000-0001-8634-6122
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

DEEM@Sigmod 2024, June 09–14, 2024, Santiago, Chile Tagliabue, Greco

on its platform. Richard is tasked with developing pipeline P (Fig. 1)
to transform the raw transaction logs into a clean tabular structure
suitable for further analysis and ML workloads.

Fig. 1 showcases two important concepts:
(1) The separation between storage and compute, as encouraged

by data lake architectures (e.g. the implementation of P
would look different in a traditional database like PostgreSQL,
or a cloud warehouse like Snowflake). This architecture is
the focus of the current system, and it is prevalent in most
mid-to-large enterprises (its benefits that been discussed at
length before [2, 9]).

(2) The functional nature of P : transformation functions (e.g. g in
Fig. 1) are not required to know anything about how artifacts
are created or persisted by previous transformation steps. As
long as the process computing g receives the “right input”,
g and f can be run in completely different environments,
with different languages.

These two points imply that moving data from compute to stor-
age and vice-versa can be decoupled entirely from the transfor-
mation logic. Ideally, Richard can focus on writing g and f, while
the underlying infrastructure automatically handles compression,
serialization, movement and persistence. If we think of the “tab-
ular structures” as dataframes[4], P can be modelled as DAGs in
which nodes are dataframes, and edges are transformation func-
tions (from dataframes to dataframes): running P successfully is
semantically equivalent to the composition of 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 =

𝑔(𝑓 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑎𝑏𝑙𝑒))); in turn, running f or g successfully depends
only on their input dataframes having the right semantics, as en-
coded in the compatibility of their respective schema. Richard can
reason about P entirely at the schema level, moving between lan-
guages as he sees fit and leaving the data representation hierarchy
as an implementation detail (Fig. 2).

The listings below provide a multi-language P implementation
with Bauplan syntax: the simplicity of the chosen abstractions
removes the burden of translating from SQL tables to Pandas, se-
rializing / deserializing dataframes, reading / writing from / to S3
efficiently:

• final_table (the intermediate dataframe in P) is pro-
duced through a SQL file with the same name1, querying
FROM the raw data in the source table, thereby implicitly
declaring its parent;

• training_data (the final dataframe) is produced through
a Python function with the same name, accepting as input
the intermediate table, thereby implicitly declaring its par-
ent.

Listing 1: final_table.sql
SELECT c1, c2, c3
FROM source_table -- reference to its parent DAG node
WHERE transactionDate >= DATEADD(day,-7, GETDATE())

Listing 2: training_data.py
@bauplan.model()
@bauplan.python('3.11', pip={'scikit-learn': '1.3.0'})

1Note here the adoption of the popular dbt naming convention: https://github.com/dbt-
labs/dbt-core.

def training_data(
reference to its parent DAG node
data=bauplan.Model('final_table')

):
transformation logic DAG here
my_final_df = data.do_something()
return my_final_df

In this perspective, assuming we can count on a cloud runtime
that supports the right dependencies (e.g. the function requires
scikit-learn), we can deterministically reproduce any past
instance of 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 simply with the code above and an im-
mutable reference to the source data in S3. In other words, to pro-
vide a comprehensive treatment of the reproducibility checklist in
Table 1, we would need a platform that provides i) data and code
versioning, and ii) a cloud runtime.

In the ensuing sections, we outline our solution for the two
missing pieces of the puzzle: first, how to go from dataframes to
files and vice versa, because while Richard thinks in terms of the
former, data versioning on S3 happens in terms of the latter (Section
3); second, how to run Richard’s code directly in the cloud, to avoid
runtime and hardware discrepancies when reproducing pipeline
runs (Section 4).

3 FROM DATAFRAMES TO A DATA CATALOG
As the architecture fully embraces the separation of storage and
compute, the only way to persist states is through object storage –
according to our abstractions, the relevant states are the dataframes
produced by transformation functions, and storage is provided
by S3 (or equivalent service). Fig. 2 illustrates the write path that
starts from the the transformation in training_data.py – a Python
dataframe that only lives inside the runtime memory –, and ends
with a table in S3 – an Iceberg table that can be now queried by
downstream pipelines, or by any compatible query engine (duckdb,
Snowflake, Dremio, etc.):

(1) from Arrow to Parquet: standard open source libraries2
perform the conversion from the in-memory representation
(Arrow) to the compressed one (Parquet);

(2) from Parquet to Iceberg: when a dataframe is converted
to multiple files in S3, metadata are required to preserve a
dataframe semantics for downstream systems. We turned to
the popular open format Iceberg3, which defines metadata to
contain the schema (common to all files) and pointers to row
groups as physically stored in S3. This level of indirection
enables transaction-like behavior over the data lake: users
can reason with high-level abstractions such as schema evo-
lution and table snapshots, instead of tracking file changes.
Inserts and updates produce a unique commit, which can be
referenced as an immutable state of the table;

(3) from Iceberg toNessie: multiple Iceberg tables aremanaged
by a further abstraction, a data catalog – we picked Nessie4
as our open source catalog, for its support for multi-table
transactions (crucial for data pipelines) and data branching.
Branching and merging for dataframes are analogous to Git
operations, and allow Richard to launch runs from the same

2https://arrow.apache.org/docs/python/index.html
3https://iceberg.apache.org/
4https://projectnessie.org/

https://github.com/dbt-labs/dbt-core
https://github.com/dbt-labs/dbt-core
https://arrow.apache.org/docs/python/index.html
https://iceberg.apache.org/
https://projectnessie.org/

Reproducible data science over data lakes: replayable data pipelines with Bauplan and Nessie. DEEM@Sigmod 2024, June 09–14, 2024, Santiago, Chile

Figure 1: Interleaving of compute (EC2) and storage (S3) in a data pipeline, modelled as a Directed Acyclic Graph (DAG): the
responsibility of the data scientist is to write functions that transform the original data artifact (the source data) in intermediate
and then final dataframes for downstream consumption (e.g. run a ML model).

Figure 2: Hierarchy of data representation: while data sci-
entists interact only with in-process dataframes, the system
persists the information preserving the overall semantics
through different (reversible) layers of abstraction – physical
files, collection of files into tables, collection of tables.

data source_table has, but sandboxing his transforma-
tions to avoid pushing to downstream services bad data while
he’s developing. While branching is not necessary for repro-
ducibility, it’s an essential component (with reproducibility)
for safe debugging (Section 5).

On the read path the system performs the same conversion in
reverse order: given a branch selected by Richard (Section 5), it
identifies the relevant table commits, retrieves the files and convert
Parquet to Arrow to set the input for the next function.

4 BAUPLAN ARCHITECTURE
If the code in Section 2 captures the first person perspective of
writing pipelines, we now have to show the first person perspective
of running them. From the point of view of Richard, Bauplan is a pip-
installable package, which gives access to lakehouse capabilities[3,
9] through simple CLI-based interactions: after writing the code
for P, Richard can execute it in the cloud with a simple terminal
command: bauplan run.

Fig.3 describes the system perspective of a run: the code gets sent
to the API, which parses it and outputs a plan for the execution in
Richard’s cloud5; the runtime communicates with Nessie to retrieve
the appropriate data from object storage, and then executes the
5In a lakehouse, data can be processed directly in the target cloud, with no additional
costs or privacy concerns.

Figure 3: Data flow for a pipeline run: 1) user issues a query
to the middleware, which 2) sends a plan to the runtime; 3)
the runtime asks Nessie for the parquet files backing the
plan and 4) retrieves them from S3. Finally, the pipeline is
run and 5) results are sent back to the client.

plan by converting files to dataframes for the pipeline nodes.6 Two
observations are worth mentioning:

• pipeline abstractions are naturally converted to “Func-
tion as a Service” (FaaS) execution: if pipelines are DAGs
of transformations, FaaS semantics makes for a great devel-
oper interface; furthermore, FaaS emphasizes a clear sepa-
ration of concerns between users (Richard writing f and g)
and the system (converting dataframes from / to memory,
scheduling function execution efficiently etc.);

• runs are immutable: everybauplan run returns arun-
id, which uniquely identifies the combination of the code
and the input data (the data commit mentioned above).

Crucially, since Bauplan sits at the intersection of code, runtime
and data access, it can provide through a single abstraction the time-
travel capabilities of what typically happens in separate systems
(Table 1). We will now show how these building blocks can solve
efficiently a typical debugging use case.

5 REPRODUCING PIPELINES
Let’s consider this common debugging use case:

6Details on the custom FaaS runtime powering Bauplan are beyond the scope of this
paper, but the interested reader may check [7, 8].

DEEM@Sigmod 2024, June 09–14, 2024, Santiago, Chile Tagliabue, Greco

Figure 4: Debugging on Bauplan: when Richard reproduces
Monday’s run, the system 1) travels back in time at Monday’s
source data and pipeline code, 2) creates a debug branch for
his experiments, and 3)materializes the target artifacts inside
the branch.

Example use case #2: P now runs in production every night7 –
when it ran last night, it unexpectedly produced an empty train-
ing_data table. Richard is tasked to identify and fix the bug.

The use case brings two connected but distinct challenges ((Fig. 4).
First, there is reproducibility: to reproduce the faulty run, Richard
needs to run the same code over the same source data as last night;
then, there is materialization: when debugging past runs, Richard
should have a temporary version of training_data, so that his
debugging attempts won’t interact with production artifacts that
the rest of the company is using. Since Bauplan provides immutable
reference to code and input data for every run, the solution to both
our challenges is a few CLI commands away:

Listing 3: Reproducing a pipeline (CLI)
bauplan checkout richard.debug_branch
bauplan run --id=1441804
bauplan query "SELECT COUNT(*) FROM training_data"

Even if the reader never encountered the commands before, its
semantics should be obvious: given the id of last night production
run (1441804), Richard can: 1) create a target branch separate from
production to host dataframes while debugging; 2) re-run last night
pipeline starting from the same input and re-using the same code
(ensuring reproducibility); 3) query a dataframe in his branch, to
reproduce the bug first and then verify how the final table changes
as he fixes the code8. Some points are worth highlighting:

(1) CLI is all you need: Richard does not need to know / setup /
provision a data catalog service, nor learn its API, download
a client etc. a simple Git-like command is enough for him
to operate the system proficiently and achieve the intended
goal;

(2) built-in namespacing: we follow a user.branch con-
vention, so that users can only write in their branches, but
everybody can read any branch;

7Scheduling details are not important for the example: you can imagine executing a
Bauplan run from a cron job or through more complex orchestration.
8In other words, COUNT should be zero at first when the exact production run gets
replayed, and then it changes as Richard starts fixing the underlying cause during
iterative debugging.

(3) interoperability with query engines: artifacts can be
queried within the platform itself through SQL with no addi-
tional setup, or they can be read by any Iceberg-compatible
engine;

(4) efficient data re-use: when branching occurs (Fig. 4), the
original source table at the start of the DAG is not copied:
Nessie builds the debug branch through copy-on-write se-
mantics over the lake, avoiding slow and costly copies;

(5) extensibility to CI/CD: the same building blocks can be
used to enforce a Write-Audit-Publish pattern during normal
development, or even during scheduled execution: a com-
mon pattern among Bauplan users is to run Python tests
over dataframes for data quality9; branching, testing and
merging through a command line API allow a CI/CD similar
to software builds.

Taken all together, BauplanAPIs provide a unified,multi-language
abstraction over the four reproducibility components in Table 1:
code and input data are versioned at each bauplan run, leverag-
ing Nessie and Bauplan own APIs; runtime’s concerns are expressed
directly in code (as required Python packages), hardware is stable
across runs, as local execution is avoided altogether thanks to the
FaaS cloud engine.

6 RELATEDWORK
DAG-based modelling of data pipelines is common in orchestra-
tors (e.g. Airflow10): unlike Bauplan however, orchestrators do not
provide built-in runtimes nor direct access to dataframe semantics,
leaving users to roll their own reproducibility recipe by stitching
together several tools.

Dvc is a popular “Data Version Control” system, which primarily
operates with file semantics: as a consequence, the system is mostly
used for local files and single-file datasets,11 as opposed to the
thousands of files composing Iceberg tables on a lake. The lack of
dataframe semantics is reflected in basic usage of S3 and lack of
interoperability with query engines.

Metaflow provides S3-based immutable runs [6], and it is (to the
best of our knowledge) the only other system versioning code and
data artifacts; its abstractions are however more generic, and data
management is entirely left to the users: since any variable is a blob,
dataframes are not interoperable with SQL engines nor they are
addressable directly with table semantics.

7 CONCLUSION AND FUTUREWORK
Reproducing pipelines over a data lake is a common concern for
modern enterprises: the absence of table semantics and the complex-
ity of inter-operating code, runtime and storage, poses a formidable
challenge for practitioners. We presented Bauplan and Nessie as an
alternative to fragmented tooling: by combining in a simple API a
multi-language cloud runtime and data branching, we obtained full
reproducibility with just a few CLI commands.

9These are typically called expectations, and they are functions from dataframes to
booleans.
10https://airflow.apache.org/
11https://dvc.org/doc/user-guide/data-management/importing-external-data

https://airflow.apache.org/
https://dvc.org/doc/user-guide/data-management/importing-external-data

Reproducible data science over data lakes: replayable data pipelines with Bauplan and Nessie. DEEM@Sigmod 2024, June 09–14, 2024, Santiago, Chile

REFERENCES
[1] Iñigo Martinez, Elisabeth Viles, and Igor García Olaizola. 2021. A survey study

of success factors in data science projects. 2021 IEEE International Conference on
Big Data (Big Data) (2021), 2313–2318. https://api.semanticscholar.org/CorpusID:
245937604

[2] Dipankar Mazumdar, Jason Hughes, and JB Onofre. 2023. The Data Lakehouse:
Data Warehousing and More. arXiv:2310.08697 [cs.DB]

[3] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McK-
inney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The Compos-
able Data Management System Manifesto. Proc. VLDB Endow. 16, 10 (jun 2023),
2679–2685. https://doi.org/10.14778/3603581.3603604

[4] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. 2020. Towards Scalable Dataframe Systems. Proc. VLDB Endow.
13, 12 (jul 2020), 2033–2046. https://doi.org/10.14778/3407790.3407807

[5] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G.
Parameswaran. 2022. Operationalizing Machine Learning: An Interview Study.
https://doi.org/10.48550/ARXIV.2209.09125

[6] Jacopo Tagliabue, Hugo Bowne-Anderson, Ville Tuulos, Savin Goyal, Romain
Cledat, and David Berg. 2023. Reasonable Scale Machine Learning with Open-
Source Metaflow. ArXiv abs/2303.11761 (2023).

[7] Jacopo Tagliabue, Ciro Greco, and Luca Bigon. 2023. Building a Serverless
Data Lakehouse from Spare Parts. ArXiv abs/2308.05368 (2023). https://api.
semanticscholar.org/CorpusID:260775634

[8] Jacopo Tagliabue, Ciro Greco, Luca Bigon, Nathan LeClaire, Vladimir Adam, and
Mattia Pavoni. 2023. Data Pipelines as Cloud FaaS with Bauplan. forthcoming
(2023).

[9] Matei A. Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. In Conference on Innovative Data Systems Research.

https://api.semanticscholar.org/CorpusID:245937604
https://api.semanticscholar.org/CorpusID:245937604
https://arxiv.org/abs/2310.08697
https://doi.org/10.14778/3603581.3603604
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.48550/ARXIV.2209.09125
https://api.semanticscholar.org/CorpusID:260775634
https://api.semanticscholar.org/CorpusID:260775634

	Abstract
	1 Introduction
	2 Data pipelines as functional DAGS
	3 FROM DATAFRAMES TO A DATA CATALOG
	4 BAUPLAN ARCHITECTURE
	5 REPRODUCING PIPELINES
	6 Related work
	7 CONCLUSION AND FUTURE WORK
	References

