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Abstract

In this paper, we analyze an abstract thermoelastic system, where the heat conduction follows

the Cattaneo law. Zero becomes a spectrum point of the system operator when the coupling and

thermal damping parameters of system satisfy specific conditions. We obtain the decay rates of

solutions to the system with or without the inertial term. Furthermore, the decay rate of the system

without inertial terms is shown to be optimal.
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1 Introduction

In this paper, we study an abstract thermoelastic system in which the heat conduction follows the

Cattaneo law. The Cattaneo law ([4, 17]) describes finite heat propagation speed in a medium, which

resolves the paradox of infinite speed of heat transfer in Fourier law and characterizes the wave-like

motion of heat, known as the second sound in physics. The abstract thermoelastic system reads as

follows: 

utt +mAγutt + σAu−Aαθ = 0,

θt −A
β
2 q +Aαut = 0,

τqt + q +A
β
2 θ = 0,

u(0) = u0, ut(0) = u1, θ(0) = θ0, q(0) = q0,

(1.1)

where A is a self-adjoint, positive definite operator with compact resolvent on a Hilbert space H

equipped with inner product (·, ·) and the induced norm ∥ · ∥. Parameters α, β, γ represent coupling,

thermal damping, and inertial characteristics, respectively. Here we assume (α, β, γ) ∈ Q, where

Q :=
{
(α, β, γ) ∈ [0, 1]× [0, 1]× (0, 1]

∣∣∣ α >
β + 1

2

}
.
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We further assume m is non-negative. In fact, m > 0 and m = 0 indicate the system includes and

excludes inertial term, respectively. Note that we omit the case γ = 0 since it can be encompassed

within the case m = 0. Let σ > 0 denote wave speed, τ ≥ 0 denote the the relaxation parameter of

heat conduction. Particularly, the heat conduction follows Cattaneo law when τ > 0, and Fourier law

when τ = 0.

There are several studies investigating the long time behavior or regularity of thermoelastic system

(1.1) under the Fourier heat conduction mechanism, i.e., when τ = 0 in (1.1). We refer the readers to

[1, 9, 10, 11, 12, 13] for the case m = 0 and [2, 5, 14, 16] for the case m ̸= 0. As for the system (1.1)

with Cattaneo’s type heat conduction, Fernández Sare, Liu, and Racke [7] investigated the exponential

stability region of the system (1.1) when parameters α, β, γ satisfy certain assumptions. Recently,

[6, 8] investigated the exponential stability and optimal polynomial stability of (1.1) with and without

inertial term when (α, β, γ) ∈ Qc := [0, 1] × [0, 1] × (0, 1] \ Q. More precisely, the region Qc

was divided into several subregions. Within each subregion, comprehensive spectrum analysis and

resolvent estimation were conducted under varying conditions, such as when the inertial parameter m

is greater than zero or equal to zero, and when the wave speed is the same (στ = 1) or not (στ ̸= 1).

For the case where (α, β, γ) ∈ Q, it is easy to know that zero is a spectrum point (see Section

2). We shall use the results in [3] to obtain the polynomial stability of the system by proving the

estimation of the resolvent of the corresponding semigroup generator both at infinity and near zero.

Our analysis includes the polynomial decay rate for the corresponding semigroup when the system is

with and without inertial term (m > 0 and = 0), respectively.

The paper is organized as follows. In Section 2, the preliminaries and the main results of this

paper are given. We prove our main results for cases including and excluding the inertial term in

Section 3 and 4, respectively. Section 5 is dedicated to presenting applications to our results.

2 Preliminaries and main resuls

Define a Hilbert space

H := D(A
1
2 )×D(A

γ
2 )×H ×H (2.1)

with the inner product

⟨U1, U2⟩H = σ(A
1
2u1, A

1
2u2) +m(A

γ
2 v1, A

γ
2 v2) + (v1, v2) + (θ1, θ2) + τ(q1, q2),

where Ui = (ui, vi, θi, qi) ∈ H, i = 1, 2. Define an operator A : D(A) ⊆ H → H as

A


u

v

θ

q

 =


v

−(I +mAγ)−1(σAu−Aαθ)

−Aαv +A
β
2 q

1

τ
(−q −A

β
2 θ)

 , (2.2)

with domain

D(A) =
{
(u, v, θ, q) ∈ H

∣∣∣ v ∈ D(A
1
2 ), σAu−Aαθ ∈ D(A− γ

2 ), −Aαv +A
β
2 q ∈ H, q +A

β
2 θ ∈ H

}
.
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Figure 1: The region of Q (blue triangular prism).

Then system (1.1) can be written as an abstract first-order evolution equation:
d

dt
U(t) = AU(t), t > 0,

U(0) = U0∈ H.

(2.3)

The closedness of A is not obvious, we thereby have the following Lemma.

Lemma 2.1. Let m ≥ 0 and (α, β, γ) ∈ Q, H and A be defined by (2.1) and (2.2), respectively. Then

A is closed.

Proof. Assume that there exists Un = (un, vn, θn, qn)
⊤ ∈ D(A) such that Un → U0 := (u0, v0, θ0, q0)

⊤

in H, AUn → W := (w1, w2, w3, w4)
⊤ in H, i.e.,

vn

−(I +mAγ)−1(σAun −Aαθn)

−Aαvn +A
β
2 qn

1

τ
(−qn −A

β
2 θn)

 →


w1

w2

w3

w4

 , in D(A
1
2 )×D(A

γ
2 )×H ×H.

It suffices to show U0 ∈ D(A) and AU0 = W .

By the assumption we have vn → w1 in D(A1/2), vn → v0 in D(Aγ/2), then v0 = w1.

Since Un ∈ D(A), which implies −qn − Aβ/2θn ∈ H, then Bn := −A−β/2qn − θn ∈ D(Aβ/2).

Recalling that A is a self-adjoint, positive definite operator on H, qn → q0 in H, therefore, A−β/2qn →
A−β/2q0 in H, which together with θn → θ0 in H implies

Bn → −A−β/2q0 − θ0 in H.

Moreover, by the assumption we have Aβ/2Bn → τw4 in H. Note that Aβ/2 is closed, we get −q0 −
A

β
2 θ0 = τw4.

By a similar argument as above, we can prove that −Aαv0+A
β
2 q0 = w3 and −(I+mAγ)−1(σAu0−
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Aαθ0) = w2. In conclusion,
v0

−(I +mAγ)−1(σAu0 −Aαθ0)

−Aαv0 +A
β
2 q0

1

τ
(−q0 −A

β
2 θ0)

 =


w1

w2

w3

w4

 ∈ H,

which further implies that U0 ∈ D(A). The proof is complete.

The well-posedness of the system (2.3) is stated as follows.

Theorem 2.2. Let m > 0 and (α, β, γ) ∈ Q, H and A be defined by (2.1) and (2.2), respectively.

Then A generates a C0-semigroup (T (t))t≥0 of contractions on H.

Proof. We have shown in Lemma 2.1 that A is a closed operator. Note that D(A) ⊇ D0 := D(A1− γ
2 )×

D(Aα)×D(Aα− γ
2 )×D(A

β
2 ), and D0 = H, thus A is densely defined on H. Furthermore, for any vector

U = (u, v, θ, q)⊤ ∈ D(A), we have

Re⟨AU,U⟩H = −∥q∥2, (2.4)

indicating that A is dissipative. By direct calculation, one gets A∗ : D(A∗) → H is dissipative as well.

By [15, Corollary I.4.4], A is the generator of a C0-semigroup (T (t))t≥0 of contraction on H.

We now show that 0 is the unique spectral point of A on the imaginary axis when α > β+1
2 .

Theorem 2.3. Let m > 0 and (α, β, γ) ∈ Q, H and A be defined by (2.1) and (2.2), respectively.

Then σ(A) ∩ iR = {0}.

Proof. We first claim thatA is not surjective, then 0 ∈ σ(A). Otherwise, for anyG := (g1, g2, g3, g4)
⊤ ∈

H, there exists U = (u, v, θ, q)⊤ ∈ D(A) such that AU = G. Solving the equation gives

v = g1, θ = −A−β
2 (τg4 +A−β

2 (g3 +Aαg1)), q = A−β
2 (g3 +Aαg1),

and

u = σ−1A−1(Aαθ − (I +mAγ)g2).

However, from the equation of q, one has Aα−β
2 g1 ∈ H, which is in contradiction with the arbitrariness

of g1 ∈ D(A
1
2 ). Therefore, A is not surjective.

We proceed to prove iR\{0} ⊆ ρ(A). Suppose that there exists a λ ∈ R\{0} such that iλ ∈ σ(A).

Then there exists a sequence Un = (un, vn, θn, qn)
⊤ ⊆ D(A) with

∥Un∥H = 1, ∀ n ∈ N, (2.5)

such that

∥(iλI −A)Un∥H = o(1), n → ∞,

4



i.e.,

iλA
1
2un −A

1
2 vn = o(1) in H, (2.6)

A− γ
2 (iλvn + iλmAγvn + σAun −Aαθn) = o(1) in H, (2.7)

iλθn +Aαvn −A
β
2 qn = o(1) in H, (2.8)

iλτqn + qn +A
β
2 θn = o(1) in H. (2.9)

By a direct calculation we get

∥qn∥2 = −Re⟨AUn, Un⟩H = Re⟨(iλI −A)Un, Un⟩H = o(1). (2.10)

Combining (2.9) and (2.10), one has

∥A
β
2 θn∥ = o(1), ∥θn∥ = o(1). (2.11)

Note that α > β+1
2 , we obtain the following identity from (2.8):

iλA
γ
2
−αθn +A

γ
2 vn −A

β+γ
2

−αqn = o(1). (2.12)

We deduce from (2.10)-(2.12) that

∥A
γ
2 vn∥ = o(1), ∥vn∥ = o(1). (2.13)

Taking the inner product of (2.8) with θn yields

iλ∥θn∥2 + (Aαvn, θn)− (A
β
2 qn, θn) = o(1).

It is easy to see from (2.10) and (2.11) and the above that

(Aαθn, vn) = o(1). (2.14)

Taking the inner product of (2.7) with A
γ
2 vn on H, combining with (2.6), we get

iλ∥vn∥2 + iλm∥A
γ
2 vn∥2 − iλσ∥A

1
2un∥2 − (Aαθn, vn) = o(1),

which together with (2.13) and (2.14), yields

∥A
1
2un∥ = o(1). (2.15)

Therefore, we arrive at the contradiction that ∥Un∥H = o(1) according to (2.10),(2.11), (2.13), and

(2.15). The proof is complete.

By the same argument as above, we can prove the well-posedness of system (1.1) without inertial

term, i.e., when m = 0.

Theorem 2.4. Let H and A be defined by (2.1) and (2.2) with m = 0 and (α, β) ∈ Q∗, where the

region Q∗ is defined by (see Figure 2)

Q∗ :=
{
(α, β) ∈ [0, 1]× [0, 1]

∣∣∣α >
β + 1

2

}
.

Then A generates a C0-semigroup (T (t))t≥0 of contractions on H. Furthermore, σ(A) ∩ iR = {0}.

5



Figure 2: The region of Q∗.

In this paper, we explore the long-time behavior of the solution T (·)U0 of system (2.3) for initial

values U0 belonging to D(A) ∩ R(A). Note that since A generates a C0-semigroup (T (t))t≥0 of

contractions on H, −A is a sectorial operator and thereby R(As(I −A)−(s+t)) = R(As) ∩ D(At) for

s, t ≥ 0 by [3, Proposition 3.10]. The main results are stated as follows.

Theorem 2.5. Let m > 0 and (α, β, γ) ∈ Q, H and A be defined by (2.1) and (2.2), respectively.

Suppose that (T (t))t≥0 is the C0-semigroup of contractions generated by A. Then as t → ∞,

∥∥T (t)A(I −A)
−
(
1+

2(2α−β−γ)
2α−γ

)∥∥ = O(t−1), (2.16)

and ∥∥T (t)A(I −A)−2
∥∥ = O(t−

1
a ), a = max

{
1,

2(2α− β − γ)

2α− γ

}
. (2.17)

Moreover, the decay rate of (2.17) is sharp if α ≥ β + γ
2 .

Remark 2.6. It is obvious that (2.17) is a consequence of (2.16) if α < β + γ
2 , the optimal decay rate

of (2.17) in this case is unclear.

The following theorem gives the stability of the abstract coupled thermoelastic system (1.1) without

inertial term.

Theorem 2.7. Let m = 0 and (α, β) ∈ Q∗, H and A be defined by (2.1) and (2.2), respectively.

Suppose that (T (t))t≥0 is the C0-semigroup of contractions generated by A. Then∥∥T (t)A(I −A)−2
∥∥ = O(t

− α
2α−β ), t → ∞. (2.18)

Moreover, the decay rate of (2.18) is sharp.

We shall prove Theorems 2.5 and 2.7 by estimating the norm of the corresponding resolvent

operator along the imaginary axis, especially at zero and infinity on the imaginary axis. Our proof is

based on the following result on frequency characteristics for polynomial-stable semigroup.
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Lemma 2.8. ([3, Theorem 8.4]) Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert space H with

generator A. Assume that σ(A) ∩ iR = {0} and that there exist l ≥ 1, k > 0 such that

∥∥(isI −A)−1
∥∥ =

O(|s|−l), s → 0,

O(|s|k), |s| → ∞.
(2.19)

Then ∥∥T (t)Al(I −A)−(l+k)
∥∥ = O(t−1), t → ∞,

and ∥∥T (t)A(I −A)−2
∥∥ = O(t−

1
a ), t → ∞, (2.20)

where a = max{l, k}.
Conversely, if (2.20) holds for some a > 0, then (2.19) holds for l = max{a, 1} and k = a.

At the end of this section, we present the following interpolation lemma, which will be utilized in

subsequent sections.

Lemma 2.9. Let A : D(A) ⊆ H be self-adjoint and positive definite, r, p , q ∈ R. Then

∥Apx∥ ≤ ∥Aqx∥
p−r
q−r ∥Arx∥

q−p
q−r , ∀ r ≤ p ≤ q, x ∈ D(Aq). (2.21)

3 Stability of system with inertial term (Proof of Theorem 2.5)

In this section, we focus on analyzing the polynomial stability of the system (1.1), considering m > 0,

specifically aiming to prove Theorem 2.5. According to Lemma 2.8, it is sufficient to show that for

k = 2(2α−β−γ)
2α−γ , l = 1, the following holds:

∥s(isI −A)−1∥ = O(1), s → 0,

∥λ−k(iλI −A)−1∥ = O(1), λ → ∞.
(3.1)

If (3.1) fails, there exists a sequence (ηn, λn, U1,n, U2,n)n≥1, where ηn := s−1
n , λn ∈ R, Uj,n :=

(uj,n, vj,n, θj,n, qj,n)
⊤ ∈ D(A), j = 1, 2 satisfying

∥Uj,n∥H =
∥∥(uj,n, vj,n, θj,n, qj,n)⊤∥∥H = 1, j = 1, 2, (3.2)

such that as n → ∞, ηn, λn → ∞, and

(iI − ηnA)U1,n = o(1), λk
n

(
i λnI −A

)
U2,n = o(1) in H. (3.3)

Equivalently, we have

iA
1
2u1,n − ηnA

1
2 v1,n = o(1) in H, (3.4)

A− γ
2 (iv1,n + imAγv1,n + σηnAu1,n − ηnA

αθ1,n) = o(1) in H, (3.5)

iθ1,n − ηnA
β
2 q1,n + ηnA

αv1,n = o(1) in H, (3.6)

iτq1,n + ηnq1,n + ηnA
β
2 θ1,n = o(1) in H. (3.7)
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and

λk
n(iλnA

1
2u2,n −A

1
2 v2,n) = o(1) in H, (3.8)

λk
nA

− γ
2 (iλnv2,n + iλnmAγv2,n + σAu2,n −Aαθ2,n) = o(1) in H, (3.9)

λk
n(iλnθ2,n −A

β
2 q2,n +Aαv2,n) = o(1) in H, (3.10)

λk
n(iλnτq2,n + q2,n +A

β
2 θ2,n) = o(1) in H. (3.11)

We shall prove ∥Uj,n∥ = o(1), j = 1, 2, which contradicts to the assumption (3.2). The proof is

structured into two steps.

Step 1. We claim that ∥U1,n∥ = o(1).

By (2.4) and the first identity of (3.3), it is easy to see

∥q1,n∥ = η
− 1

2
n o(1). (3.12)

According to (3.7) and (3.12), we get

∥A
β
2 θ1,n∥ = η

− 1
2

n o(1). (3.13)

Therefore,

∥θ1,n∥ = o(1). (3.14)

Combining α > 1
2 and (3.2), one has ∥A−α+γv1,n∥ is bounded. Thus, taking the inner product of

(3.6) with η−1
n A−α+γv1,n, we have

iη−1
n (θ1,n, A

−α+γv1,n)− (A
β
2 q1,n, A

−α+γv1,n) + ∥A
γ
2 v1,n∥2 = o(1). (3.15)

The first term of (3.15) tends to 0 because of (3.14) and the boundedness of ∥A−α+γv1,n∥. The second
term of (3.15) tends to 0 because of (3.12) and −α+ β

2 + γ < γ
2 . Therefore,

∥A
γ
2 v1,n∥ = o(1), and then ∥v1,n∥ = o(1). (3.16)

From (3.6), we see iη
− 1

2
n A−β

2 θ1,n− η
1
2
n q1,n+ η

1
2
nA

α−β
2 v1,n = o(1). Thus, by (3.12) and (3.14), we get

∥η
1
2
nA

α−β
2 v1,n∥ = o(1). (3.17)

Taking the inner product of (3.5) with A
γ
2 v1,n on H yields

i∥v1,n∥2 + im∥A
γ
2 v1,n∥2 + (σA

1
2u1,n, ηnA

1
2 v1,n)− (ηnA

αθ1,n, v1,n) = o(1). (3.18)

By (3.4) and (3.18), we get

i∥v1,n∥2 + im∥A
γ
2 v1,n∥2 − iσ∥A

1
2u1,n∥2 − (ηnA

αθ1,n, v1,n) = o(1). (3.19)

Recalling (3.13) and (3.17), one has

(ηnA
αθ1,n, v1,n) ≤ ∥η

1
2
nA

β
2 θ1,n∥∥η

1
2
nA

α−β
2 v1,n∥ = o(1).

8



Combining this, (3.16) and (3.19), we obtain

∥A
1
2u1,n∥ = o(1). (3.20)

In summary, by (3.12), (3.14), (3.16) and (3.20), we conclude ∥U1,n∥H = ∥(u1,n, v1,n, θ1,n, q1,n)∥H =

o(1).

Step 2. We claim that ∥U2,n∥H = o(1).

By (2.4) and the second identity of (3.3), it is easy to see

∥q2,n∥ = λ
− k

2
n o(1). (3.21)

According to (3.11) and (3.21), we get

∥A
β
2 θ2,n∥ = λ

1− k
2

n o(1). (3.22)

Since α > β+1
2 , (3.10) implies

iλnA
−α+ γ

2 θ2,n −A−α+ γ
2
+β

2 q2,n +A
γ
2 v2,n = λ−k

n o(1).

Recalling (3.2) and (3.21), we obtain from the above that

∥λnA
−α+ γ

2 θ2,n∥ = O(1). (3.23)

By interpolation we deduce from (3.22) and (3.23) that

∥θ2,n∥ ≤ ∥A
β
2 θ2,n∥

2α−γ
2α+β−γ ∥A−α+ γ

2 θ2,n∥
β

2α+β−γ = o(1). (3.24)

Taking the inner product of (3.9) with λ−k
n A−α+ γ

2 θ2,n, (3.10) with λ−k
n A−α(I+mAγ)v2,n and then

adding them, we get

Re(σθ2,n, A
1−αu2,n)−Re(q2,n, A

β
2
−α(I +mAγ)v2,n)− ∥θ2,n∥2 + ∥v2,n∥2 +m∥A

γ
2 v2,n∥2 = λ−k

n o(1).

(3.25)

The first two terms in (3.25) tend to 0 because of (3.21), (3.24) and the boundedness of ∥A
1
2u2,n∥ and

∥A
γ
2 v2,n∥. These, along with (3.24) and (3.25), imply

∥v2,n∥, ∥A
γ
2 v2,n∥ = o(1). (3.26)

One can deduce from (3.9) that

iA− 1
2 v2,n + imAγ− 1

2 v2,n + σλ−1
n A

1
2u2,n − λ−1

n Aα− 1
2 θ2,n = λ−k−1

n o(1),

which along with (3.26) and the boundedness of ∥A
1
2u2,n∥, yields

∥λ−1
n Aα− 1

2 θ2,n∥ = o(1). (3.27)

Now, taking the inner product of (3.9) with λ−k
n A

γ
2 u2,n on H, along with (3.8), one has

−∥v2,n∥2 −m∥A
γ
2 v2,n∥2 + σ∥A

1
2u2,n∥2 − (Aαθ2,n, u2,n) = o(1). (3.28)

9



Note that by (3.8) and (3.27), we have

(Aαθ2,n, u2,n) = i(λ−1
n Aαθ2,n, v2,n) + o(1)

= i(A
β
2 θ2,n, λ

−1
n Aα−β

2 v2,n) + o(1).
(3.29)

Furthermore, by (3.10), we see

λ−1
n Aα−β

2 v2,n = −iA−β
2 θ2,n + λ−1

n q2,n + λ−k−1
n o(1). (3.30)

Substituting (3.30) into (3.29) yields

(Aαθ2,n, u2,n) = −∥θ2,n∥2 + i(λ−1
n A

β
2 θ2,n, q2,n) = o(1),

where we use (3.21), (3.22) and (3.24). Combining this, (3.26) and (3.28), we obtain

∥A
1
2u2,n∥ = o(1). (3.31)

Recalling (3.21), (3.24), (3.26) and (3.31), we get ∥U2,n∥H = o(1), which contradicts (3.2). Therefore,

by the above two steps, we have proved that the assumption (3.1) holds with k = 2(2α−β−γ)
2α−γ , l = 1.

As a result, thanks to Lemma 2.8, the semigroup T (t) satisfies (2.16)-(2.17) when t → ∞.

At the end of this section, we show that the decay order is sharp if α ≥ β + γ
2 , i.e., k ≥ 1 by

analyzing the eigenvalues. Noticing that A is a self-adjoint, positive definite operator with compact

resolvent. Thus, there exists a sequence of eigenvalues {µn}n≥1 of A such that

0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · , lim
n→∞

µn = ∞.

Using the same method in [6], we know that the eigenvalues λn of operator A satisfy the following

quartic equation:

(µγ
n + 1)λ4

n + (µγ
n + 1)λ3

n + (µ2α
n + µβ+γ

n + 2µn + µβ
n)λ

2
n + (µ2α

n + 2µn)λn + 2µ1+β
n = 0, (3.32)

where µn, n = 1, 2, · · · are the eigenvalues of the operator A. By [6, Section 5.1], we get that the

solutions to (3.32) when (α, β, γ) ∈ Q are as follows:

λ1,n = −1

2
µ−2α+β+γ
n (1 + o(1)) + iµ

α− γ
2

n (1 + o(1)),

λ2,n = −1

2
µ−2α+β+γ
n (1 + o(1))− iµ

α− γ
2

n (1 + o(1)),

λ3,n = −2µ−2α+β+1
n (1 + o(1)),

λ4,n = −1(1 + o(1)).

It is easy to see from λ1,n and λ2,n that

|Reλi,n| =
1

2
|Imλi,n|−k, when (α, β, γ) ∈ Q, i = 1, 2. (3.33)

The following proposition gives the sharpness of the decay rate.

Proposition 3.1. Let the conditions in Theorem 2.5 hold. Suppose α ≥ β + γ
2 . Then the decay rate

in (2.17) is sharp.
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Proof. By the proof of Theorem 2.5, estimation (2.19) in Lemma 2.8 holds with k = 2(2α−β−γ)
2α−γ , l = 1.

If α ≥ β + γ
2 , then k ≥ 1. Consequently, we have

∥T (t)A(I −A)−2∥ = O(t−
1
k ), t → ∞.

We only prove the case when k > 1, the case when k = 1 is similar. If the decay rate can be improved,

in other words, there exists ε > 0 small enough such that k−ε > 1 and ∥T (t)A(I−A)−2∥ = O(t−
1

k−ε ),

then by Lemma 2.8, one has

∥(iλI −A)−1∥ =

O(|λ|−k+ε), λ → 0,

O(|λ|k−ε), |λ| → ∞.

In particular, there exists a constant C > 1 such that

∥(iλI −A)−1∥ ≤ C|λ|k−ε, |λ| → ∞. (3.34)

Let Sλ :=
{
r + iλ

∣∣ |r| ≤ 1
2C|λ|k−ε , r, λ ∈ R\{0}

}
, then for any s ∈ Sλ,

∥(sI −A)−1∥ = ∥(iλI −A)−1(I + r(iλI −A)−1)−1∥

≤ ∥(iλI −A)−1∥ 1

1− ∥r(iλI −A)−1∥
≤ 2∥(iλI −A)−1∥

≤ 2C|λ|k−ε, |λ| → ∞,

which implies that Sλ ⊆ ρ(A) for |λ| big enough.

On the other hand, recalling that there exists a sequence (λn)n≥1 ⊆ σ(A), |λn| → ∞ such that

(3.33) holds. For the constant C in (3.34) and an arbitrary positive constant ε, we choose λn such

that |Imλn|−ε ≤ 1
C , then

|Reλn| =
1

2
|Imλn|−k ≤ 1

2C|Imλn|k−ε
.

Thus, λn ∈ Sλn which contradicts λn ∈ σ(A).

4 Stability of system without inertial term (Proof of Theorem 2.7)

In this section, we shall analyze the polynomial stability of system (1.1) without inertial term, i.e.,

prove Theorem 2.7. By Lemma 2.8, it is sufficient to show that (2.19) holds with k = 2α−β
α , l = 1.

Similar to the argument in Section 3, we still prove this theorem by contradiction. Suppose (2.19)

fails, then there at least exists a sequence {ηn, λn, U1,n, U2,n}∞n=1 ⊆ R2 × D(A)2 such that (3.2)-(3.3)

hold with m = 0. In other words, we have

iA
1
2u1,n − ηnA

1
2 v1,n = o(1) in H, (4.1)

iv1,n + σηnAu1,n − ηnA
αθ1,n = o(1) in H, (4.2)

iθ1,n − ηnA
β
2 q1,n + ηnA

αv1,n = o(1) in H, (4.3)

iτq1,n + ηnq1,n + ηnA
β
2 θ1,n = o(1) in H. (4.4)
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and

λk
n(iλnA

1
2u2,n −A

1
2 v2,n) = o(1) in H, (4.5)

λk
n (iλnv2,n + σAu2,n −Aαθ2,n) = o(1) in H, (4.6)

λk
n(iλnθ2,n −A

β
2 q2,n +Aαv2,n) = o(1) in H, (4.7)

λk
n(iλnτq2,n + q2,n +A

β
2 θ2,n) = o(1) in H. (4.8)

We are devoted to showing that ∥Uj,n∥H = o(1), j = 1, 2, which contradicts the assumption (3.2).

We first prove ∥U1,n∥H = o(1). Recalling that A is dissipative, (3.3) and (4.4), we see

∥q1,n∥ = η
− 1

2
n o(1), ∥A

β
2 θ1,n∥ = η

− 1
2

n o(1). (4.9)

Therefore,

∥θ1,n∥ = o(1). (4.10)

Taking the inner product of (4.3) with η−1
n A−αv1,n, we have

iη−1
n (θ1,n, A

−αv1,n)− (A
β
2 q1,n, A

−αv1,n) + ∥v1,n∥2 = o(1). (4.11)

By Cauchy-Schwarz inequality and (4.9)-(4.11), we get

∥v1,n∥ = o(1). (4.12)

Repeating the proof of (3.17), we can deduce from (4.3) and (4.9) that

∥Aα−β
2 v1,n∥ = η

− 1
2

n o(1). (4.13)

Taking the inner product of (4.2) with v1,n on H, along with (4.1), one has

i∥v1,n∥2 − iσ∥A
1
2u1,n∥2 − (ηnA

αθ1,n, v1,n) = o(1). (4.14)

By (4.9) and (4.13), the last term of (4.14) goes to 0 as n → ∞. This together with (4.12) implies

∥A
1
2u1,n∥ = o(1). (4.15)

In summary, by (4.9), (4.10), (4.12) and (4.15), we obtain ∥U1,n∥H = ∥(u1,n, v1,n, θ1,n, q1,n)∥H = o(1).

We proceed to prove ∥U2,n∥H = o(1). We obtain from (2.4) and (4.8) that

∥q2,n∥ = λ
− k

2
n o(1), ∥A

β
2 θ2,n∥ = λ

1− k
2

n o(1) (4.16)

as in Section 3. Note that −α+ β
2 < 0, then by (3.2) and (4.7), we get

∥A−αθ2,n∥ = λ−1
n O(1).

Combining this and (4.16) yields

∥θ2,n∥ ≤
∥∥A−αθ2,n

∥∥ β
2α+β ∥A

β
2 θ2,n∥

2α
2α+β = o(1). (4.17)
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It follows from (4.6) that

iλnA
−αv2,n + σA1−αu2,n − θ2,n = λ−k

n o(1).

Since α > 1
2 , combining the above, (3.2) and (4.17), one has

∥λnA
−αv2,n∥ = O(1). (4.18)

Taking the inner product of (4.7) with λ−k
n A−αv2,n yields

(iλnθ2,n, A
−αv2,n)− (A

β
2
−αq2,n, v2,n) + ∥v2,n∥2 = o(1). (4.19)

We see the first term of (4.19) tends to 0 because of (4.17) and (4.18), the second term tends to 0

because of (4.16). Thus,

∥v2,n∥ = o(1). (4.20)

Moreover, by taking the inner product of (4.6) with λ−k−1
n v2,n, together with (4.5), we get

i∥v2,n∥2 − iσ∥A
1
2u2,n∥2 − (θ2,n, λ

−1
n Aαv2,n) = o(1).

By (4.7), we have λ−1
n Aαv2,n = −iθn + λ−1

n A
β
2 q2,n + λ−1−k

n o(1). Substituting this into the above

equation yields

i∥v2,n∥2 − iσ∥A
1
2u2,n∥2 − i∥θ2,n∥2 − (λ−1

n A
β
2 θ2,n, q2,n) = o(1). (4.21)

Therefore, we conclude from (4.16), (4.17), (4.20) and (4.21) that

∥A
1
2u2,n∥ = o(1). (4.22)

Recalling (4.16), (4.17), (4.20) and (4.22), we get ∥U2,n∥H = o(1), which contradicts to (3.2). There-

fore, the assumption (2.19) holds with k = 2α−β
α , l = 1.

Finally, we shall prove the decay order is sharp by a similar argument as in Section 3. Note that

k = 2α−β
α ≥ 1 always holds. Suppose µn, λn, n = 1, 2, · · · are the eigenvalues of operators A and A,

respectively. Then we have the following quartic equation using the same method in [6, Section 5],

λ4
n + λ3

n + (µ2α
n + 2µn + µβ

n)λ
2
n + (µ2α

n + 2µn)λn + 2µ1+β
n = 0. (4.23)

The solutions to (4.23) when (α, β) ∈ Q∗ are the following:

λ1,n = −1

2
µβ−2α
n (1 + o(1)) + iµα

n(1 + o(1)),

λ2,n = −1

2
µβ−2α
n (1 + o(1))− iµα

n(1 + o(1)),

λ3,n = −2µ−2α+β+1
n (1 + o(1)),

λ4,n = −1(1 + o(1)).

It is clear that

|Reλi,n| =
1

2
|Imλi,n|−k, when (α, β) ∈ Q∗, i = 1, 2. (4.24)

Therefore, by the same argument as Proposition 3.1, one can obtain that the decay rate in (2.18) is

sharp.
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5 Examples

Assume that Ω is a bounded open subset of Rn with smooth boundary Γ. Let A = ∆2 be the bi-Laplace

operator on Ω with domain D(A) = {u ∈ H4(Ω) |u|Γ = ∆u|Γ = 0}, H = L2(Ω), α = 1, β = 0, γ = 1
2 .

Then the abstract system (1.1) can be written as follows:

utt −m∆utt + σ∆2u−∆2θ = 0, x ∈ Ω, t > 0,

θt − q +∆2ut = 0, x ∈ Ω, t > 0,

τqt + q + θ = 0, x ∈ Ω, t > 0,

u = ∆u = θ = q = 0, x ∈ Γ, t > 0,

u(0) = u0, ut(0) = u1, θ(0) = θ0, q(0) = q0, x ∈ Ω.

(5.1)

By Theorems 2.3, 2.4, 2.5 and 2.7, we obtain that zero belongs to the spectrum of the generator of

semigroup associated with (5.1) and the semigroup decays polynomially with optimal order t−
1
2 for

m ≥ 0.
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[13] J. E. Muñoz Rivera and R. Racke. Large solutions and smoothing properties for nonlinear ther-

moelastic systems. journal of differential equations, 127(2):454–483, 1996.
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