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Abstract

Corrosion, a naturally occurring process leading to the deterioration of
metallic materials, demands diligent detection for quality control and the
preservation of metal-based objects, especially within industrial contexts.
Traditional techniques for corrosion identification, including ultrasonic test-
ing, radio-graphic testing, and magnetic flux leakage, necessitate the deploy-
ment of expensive and bulky equipment on-site for effective data acquisition.
An unexplored alternative involves employing lightweight, conventional cam-
era systems, and state-of-the-art computer vision methods for its identifica-
tion.

In this work, we propose a complete system for semi-automated corro-
sion identification and mapping in industrial environments. We leverage re-
cent advances in LiDAR-based methods for localization and mapping, with
vision-based semantic segmentation deep learning techniques, in order to
build semantic-geometric maps of industrial environments. Unlike previous
corrosion identification systems available in the literature, our designed multi-
modal system is low-cost, portable, semi-autonomous and allows collecting
large datasets by untrained personnel.

A set of experiments in an indoor laboratory environment, demonstrate
quantitatively the high accuracy of the employed LiDAR based 3D mapping
and localization system, with less then 0.05m and 0.02m average absolute
and relative pose errors. Also, our data-driven semantic segmentation model,
achieves around 70% precision when trained with our pixel-wise manually
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annotated dataset.
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1. Introduction

Corrosion is a major problem that degrades metallic surfaces, which are
ubiquitous in man-made constructions. Its identification and mitigation have
significant socio-economic impacts across various industries, contributing to
the maintenance and longevity of infrastructures, such as bridges, pipelines,
and buildings, to name a few, reducing the frequency of reconstruction
projects and associated costs [1].

Early and accurate identification of corrosion allows for timely interven-
tion and maintenance, preventing costly repairs and replacements, reduced
downtime in industries such as oil and gas, aerospace, and manufacturing
leading to increased productivity and financial savings [2].

Corrosion in metal-made infrastructures can lead to leaks and spills, caus-
ing environmental pollution. Timely identification helps prevent such inci-
dents, preserving ecosystems and minimizing the environmental impact [3].
Also, corrosion-related failures can compromise the safety of structures and
equipment. Identifying and addressing corrosion hazards enhances workplace
safety and reduces the risk of accidents and injuries, and may lead to lower
insurance costs, as the risk of failures and subsequent claims is reduced. In-
surers may offer lower premiums for well-maintained and corrosion-free assets
[1].

Among the leading-edge technologies for identifying it, magnetic flux leak-
age, ultrasonic testing, and remote visual inspection stand out. Although
magnetic flux leakage provides highly accurate solutions, its deployment is
expensive, challenging, and necessitates skilled and trained human operators
for successful operation. However, the current process of inspecting offshore
assets using visual inspection technologies and evaluating where to conduct
maintenance and repairs is a highly manual and laborious task. First, inspec-
tors are required to traverse the asset and record and track a large number of
images of corroded elements, which are manually labeled in a coarse manner.
Also, industrial assets can be multi-story, multi-platform metal structures,
naturally resulting in the collection of large datasets, which may be unfea-
sible to transmit via satellite connections, for instance, in remote offshore

2



locations. Additionally, the nature of industrial assets, as well as various
safety and security concerns surrounding them, add challenges to performing
the inspection task.

After the data collection procedure, the collected datasets undergo man-
ual review by experts, evaluating the severity of the corrosion, and thus
which structures require maintenance, and for which maintenance can be
postponed. Some structures are more critical than others to maintain, for
the sake of asset operation and safety. As part of this review, most of the
time is spent resolving where a given image was recorded, and identifying
the specific location of the corroded structure. This process involves the de-
velopment of maintenance work packages. Within these packages, structures
identified as critically corroded are designated for maintenance, repair, or
replacement. These tasks may extend over several months, whether carried
out on-site or, in the case of mobile offshore platforms, at a dry dock.

To alleviate some of the challenges posed by the manual nature of the cur-
rent process, we envision a data collection device with the following general
properties:

• Portability: Inspectors should be able to easily carry and operate the
data collection device in industrial assets during long periods.

• Accuracy: High precision imaging sensors for accurate 3D semantic
mapping of corroded assets.

• Autonomy: Intelligent software that should be able to perform map-
ping, localization and semantic localization and categorization of indus-
trial assets, from sensory data. However, the software may not strictly
run online, on the data collection device, but instead offline in a more
powerful computational device.

Taking into account the previous properties, we leverage current ad-
vances in vision-based semantic segmentation and simultaneous localization
and mapping (SLAM) approaches, and the availability of low-cost consumer
grade LiDAR and visual camera systems, to propose a complete geometric-
semantic mapping and localization system. We combine highly accurate 3D
point cloud data provided by LiDAR, with monocular color vision for robust
and precise localization of corrosion spots in 3D.

The rest of this article is organized as follows. First, in Section 2, we
review the state-of-the-art technologies for positioning and corrosion iden-
tification, with a focus on vision-based 3D localization and mapping and
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semantic segmentation techniques. Second, in Section 3 we describe in detail
the proposed system, including design and sensor choices, as well as algo-
rithmic choices. Then, in Section 4 we validate our system and demonstrate
its applicability by reporting the results from a set of experiments performed
both in an indoor laboratory scenario and in an outdoor offshore environ-
ment. Finally, we draw our main conclusions and propose extensions for
future work in Section 5.

2. Related work

In this section we overview the state-of-the-art methods utilized in our
approach, including existing technologies for positioning, corrosion detection,
vision-based sensor calibration, localization and mapping, and semantic seg-
mentation techniques.

2.1. Positioning Systems

Multiple positioning technologies exist and have been reported in the lit-
erature for multiple purposes. With a focus on offshore positioning cases,
industrial positioning, emergency systems, and positioning systems for au-
tonomous systems, the following was concluded.

Technologies such as Ultra-Wide Band (UWB) [4], Ultra-sound [5], Wi-
Fi [6], and Bluetooth Low-Energy (BLE) [7] can work in indoor settings
and are simple to deploy as end user devices are typically based on tags or
small battery-power devices. However, these technologies present also some
drawbacks. They normally require a dedicated and complex infrastructure
deployment with anchors/routers, wires, and centralized control computers;
as well as an accurate calibration process. While in typical industrial set-
tings such as factory halls these type of deployments might be feasible, the
situation in offshore is more complicated (e.g., in oil/gas platforms). In gen-
eral, these technologies require clear line-of-sight between infrastructure and
localization devices to guarantee a correct operation (i.e., at least three visi-
ble routers/anchors at all times to be able to perform triangulation), which
is difficult in both industrial and offshore scenarios. Moreover, localization
based on these technologies does typically not provide heading/orientation
information and does not perform well when the localization devices are close
to large metal surfaces. The accuracy of these systems in industrial settings
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typically range from approximately 20 cm for UWB (with some sporadic de-
viations to more than 1 m in certain conditions), to approximately 1.5 m for
Wi-Fi and BLE.

Technologies based on satellite systems such as Global Navigation Satel-
lite System (GNSS)/Real Time Kinematic (RTK) [8], and Differential Global
Positioning Systems (DGPS) [9] can offer up to cm-level accuracy in indus-
trial and offshore environments. However, their applicability is limited to
areas with a full or partial view of the sky, hence inapplicable in indoor
settings [10]. In general, these technologies rely on no infrastructure (e.g.,
GNSS, where only an end user device is required) or simple infrastructure
(e.g., RTK, DGPS), where a single unit or just a few independent units are
typically needed for automatic systems calibration/correction.

As an alternative, it is possible to use novel technologies or combinations
of technologies that do not rely on external infrastructure [11]. Here, recent
advances in Computer Vision (CV) [12] methods for Simultaneous Localiza-
tion and Mapping (SLAM) [13], and Visual-Inertial Odometry (VIO) [14]
are at hand, allowing for simultaneous high-precision, real-time and low-cost
state-estimation (i.e. tracking), provisioning of 6 degrees of freedom (6 DoF)
position and orientation information and mapping. Of course, all these ben-
efits have some associated limitations/drawbacks that need to be overcome
such as the unavailability of unified commercial solutions, and more com-
plicated integration setups. Other challenges may include occasional poor
performance in featureless areas, and the potential need for high computa-
tional resources and stability requirements for mobile setups [15]. Sensor
fusion strategies (e.g., integration with Inertial Measurement Units (IMU))
might be of utility to overcome some of the said challenges.

Therefore, to make our proposed solution as universal as possible, relying
on external infrastructure or specific conditions is avoided, making it com-
patible with most of the potential industrial and offshore scenarios. Hence,
the last group of novel technologies, and its combination, will be explored.

2.2. Technologies for corrosion identification

Identifying corrosion relies on diverse technologies [16] capable of detect-
ing, quantifying, and characterizing corrosion processes in various materials
and environments. Commonly employed methods include Ultrasonic Testing
(UT) [17], which utilizes high-frequency sound waves for internal and surface
defect detection in industries like oil and gas, aerospace, and manufacturing.
Eddy Current Testing (ECT) [18] is a method that utilizes electromagnetic
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induction, being particularly useful for inspecting non-ferrous metals and
detecting corrosion under protective coatings. Radiographic Testing (RT)
[19] involves X-rays or gamma rays to inspect internal structures, commonly
applied in aerospace, construction, and automotive industries.

Electrochemical Techniques (ET) [20], encompassing methods like impedance
spectroscopy and potentiodynamic polarization, study the electrochemical
behavior of metals in corrosive environments, providing vital information on
corrosion rates and protection effectiveness. Infrared Thermography (IRT)
[21], a non-contact method using infrared cameras, is beneficial for inspecting
large areas in industries such as building inspection, aerospace, and electrical
utilities. Visual Inspection [22], a basic method involving the visual exam-
ination of surfaces, is often used alongside other testing methods to assess
corrosion severity. Additional technologies like magnetic particle testing [23],
acoustic emission testing [24], and scanning electron microscopy [25] also con-
tribute significantly to corrosion identification.

These technologies play a crucial role in preventing material degradation,
structural failure, and costly repairs. Our proposed pipeline employs a vision-
based deep-learning method, leveraging low-cost camera sensors for accurate
and easily deployable results in corrosion assessment.

2.3. Camera and LiDAR calibration

Camera, LiDAR and inertial (i.e. IMU) calibration is a crucial step in
sensor fusion for robotics, autonomous vehicles, and augmented reality ap-
plications [26]. This process ensures accurate alignment and synchronization
between these sensors. Calibration enables the transformation of measure-
ments from different sensors into a common reference frame, allowing seam-
less integration of data for robust perception and navigation.

Camera calibration involves determining the intrinsic and extrinsic pa-
rameters of a camera, which include focal length, principal point, distortion
coefficients, and the transformation (rotation and translation) between the
camera and the world coordinate system. The calibration is often performed
using a calibration target with known geometric features (typically a checker-
board pattern with known dimensions), and the parameters are estimated by
minimizing the re-projection error [27].

A set of algorithms for the calibration of various camera sensors, com-
monly used in robotics applications (e.g. for precise sensor fusion and local-
ization), and can be found in a popular open-source toolbox named Kalibr
[28]. These algorithms are not limited to single camera systems and may
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be used to calibrate multiple cameras (stereo), of various types, and IMUs
(Inertial Measurement Units).

LiDAR-camera calibration involves aligning LiDAR data, with camera
to ensure accurate fusion of LiDAR point clouds with camera. The calibra-
tion process determines the transformation matrices between the LiDAR and
camera coordinate systems [29]. Calibration, in this case, is typically per-
formed by capturing synchronized data from both sensors while the system
undergoes controlled motion.

In all cases, optimization techniques, such as nonlinear least squares, are
used to estimate the transformation matrices holding the sensors’ intrinsic
and extrinsic parameters.

2.4. LiDAR-based localization and mapping

LiDAR-based SLAM is an advanced technology that combines data from
LiDAR sensors and optionally inertial measurement units (IMUs) to achieve
real-time localization and mapping in dynamic environments. LiDAR sen-
sors employ laser beams to measure distances and create detailed three-
dimensional (3D) maps of the surroundings, while IMUs, equipped with
accelerometers and gyroscopes, capture information about the platform’s
acceleration and angular rate. The integration of LiDAR and IMU data
enhances the accuracy and robustness of the system, especially in scenarios
where Global Navigation Satellite Systems (GNSS) may be unreliable, such
as indoor or urban environments.

Approaches for LiDAR based SLAM, involve estimating the precise po-
sition and orientation of the sensor apparatus in relation to its surround-
ings, while building a map representation of the environment (typically a
point cloud), without prior knowledge of the surroundings. This is achieved
through continuous fusion and optimization of LiDAR and, if available, IMU
measurements, enabling the system to maintain an accurate and up-to-date
understanding of its pose. The integration of these sensors facilitates over-
coming challenges like dynamic movements, changes in orientation, and vari-
ations in the environment. Loop closure detection is crucial technique em-
ployed in SLAM for correcting accumulated errors in both localization and
mapping, and typically occurs when the sensing agent revisits a previously
seem location [30].

When a map of the environment is known a priori, SLAM simplifies to a
localization problem, in which the goal is to estimate the sensor apparatus
pose with respect to the map coordinate system. LiDAR based SLAM and
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localization systems are crucial for various applications, including robotics,
autonomous vehicles, and augmented reality, where high-precision spatial
awareness and real-time localization are paramount. Researchers and engi-
neers continue to refine and develop LiDAR SLAM algorithms to enhance
performance, robustness, and adaptability across diverse and challenging sce-
narios. We overview the most relevant state-of-the-art approaches below.

2.4.1. LiDAR-based SLAM approaches

A similar work to ours is the one of [31] that proposes a portable Li-
DAR system for long-term and wide-area people behavior tracking. The au-
thors utilize an optimization-based Simultaneous Localization and Mapping
(Graph-SLAM) [32] approach for mapping the environment, while estimating
the system’s pose and concurrently tracking target individuals. The system
operates in two distinct phases: 1) offline environmental mapping and 2)
online sensor localization and people detection/tracking. During the offline
mapping phase, a comprehensive 3D environmental map covering the entire
measurement area is generated. The mapping process employs a Graph-
SLAM approach. To address accumulated rotational errors in scan match-
ing, ground plane and GPS position constraints are introduced for indoor
and outdoor environments, respectively. The proposed system thus employs
a sophisticated mapping strategy to create accurate and comprehensive en-
vironmental 3D point cloud representations.

A recent approach entitled Fast-LIO [33], proposed a LiDAR-Inertial
Odometry (LIO) framework featuring a Tightly-Coupled Iterated Kalman
Filter for robust and efficient motion estimation. The pipeline integraties
LiDAR and inertial sensor measurements through a Kalman filter frame-
work. Fast-LIO is designed for real-time applications, such as robotics and
autonomous navigation, offering fast and accurate odometry estimation. The
key contributions of the approach lie in the technical advancements of the
Tightly-Coupled Iterated Kalman Filter, enhancing the reliability and speed
of LiDAR-Inertial Odometry for precise motion tracking. In a second iter-
ation [34], the authors propose two new techniques to further improve the
performance of the previous algorithms. The first involves direct registration
of raw points to the map, eliminating the need for feature extraction. This
approach enhances accuracy by exploiting subtle environmental features and
is adaptable to various LiDARs. The second novelty lies in maintaining a
map using the ikd-Tree, a new incremental k-d tree data structure. This
structure facilitates incremental updates, point insertion/deletion, and dy-
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namic re-balancing, demonstrating superior overall performance compared
to existing dynamic data structures while supporting down-sampling on the
tree.

2.4.2. LiDAR-based localization approaches

In the work of [35], the authors propose a 3D Monte Carlo approach for lo-
calization in dynamic environments in the context of automated driving, uti-
lizing efficient distance field representations. Their approach enhances accu-
racy in estimating the vehicle’s position, especially in scenarios with dynamic
elements. The study employs Monte Carlo methods for three-dimensional
localization while optimizing the representation of the surrounding environ-
ment through efficient distance fields. The research has implications for
improving the precision of autonomous vehicles navigating through dynamic
settings.

In the work of [36], the authors propose a multi-sensor three-dimensional
Monte Carlo localization method designed for long-term aerial robot naviga-
tion. The approach integrates information from multiple sensors to enhance
the precision and reliability of localization. Utilizing Monte Carlo meth-
ods, the system estimates the aerial robot’s three-dimensional position over
time. The multi-sensor setup aims to address the challenges associated with
long-term navigation, offering improved adaptability and robustness. The ar-
ticle discusses the technical details of the proposed method, emphasizing its
applicability for sustained and accurate aerial robot navigation in dynamic
environments.

In the work of [37], the authors advocate that for the utilization of a sim-
plified and refined Point-to-Point Iterative Closest Point (ICP) registration
method, referred to as KISS-ICP. The authors assert that when implemented
correctly, this approach offers simplicity, accuracy, and robustness in the con-
text of point cloud registration. The article emphasizes the importance of
proper execution to achieve optimal results. KISS-ICP is presented as an effi-
cient and effective solution for point-to-point registration tasks, contributing
to improved performance in various applications such as 3D mapping, com-
puter vision, and robotics.

In [38], the authors propose an effective approach for 3D LiDAR-based
Monte Carlo based localization. The method involves the fusion of measure-
ment models optimized through importance sampling, aiming to enhance
the efficiency and accuracy of the localization process. The article presents
a detailed analysis of the proposed solution, highlighting its advantages in
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terms of computational efficiency and robustness in handling complex 3D
environments. The fusion of optimized measurement models contributes to
improved localization performance, making the approach a valuable contri-
bution to the field of autonomous navigation and robotics using 3D LiDAR
sensor data.

2.5. Image-based semantic segmentation

The comprehension of scenes through vision-based analysis holds paramount
significance across diverse domains, including robotics, manufacturing [39],
medical imaging [40], inspection [41, 42, 43, 44], and surveillance [45]. Scene
understanding encompasses varied tasks, including image classification, ob-
ject detection, and semantic segmentation. Vision-based semantic segmen-
tation, addresses the intricate challenge of assigning object class labels to
individual pixels within images.

This section undertakes a comprehensive revision and explanation of pri-
mary techniques aimed at addressing the aforementioned semantic segmen-
tation challenge. While image classification and object detection respec-
tively deal with classifying images and localizing regions of interest (bounding
boxes), semantic segmentation tackles the more intricate task of assigning a
class label to each pixel in an image. Approaches documented in the literature
can be classified into two distinct paradigms: model-based and data-driven.

Classical computer vision methodologies are based on theoretically prin-
cipled methods striving to analytically resolve geometric and physical as-
pects of image formation. In contrast, data-driven methodologies seek to
learn statistical properties directly from visual data using machine learning
techniques. The ascendancy of deep learning, coupled with the availability
of extensive publicly annotated datasets, e.g., Ms COCO [46], CityScapes
[47], AED20K [48], to name a few, has resulted in data-driven approaches
consistently outperforming their model-based counterparts, particularly in
addressing increasingly complex tasks.

One of the initial efficacious forays into deep learning-based semantic
segmentation was Mask R-CNN [49]. The architecture exhibits conceptual
simplicity, comprising a Convolutional Neural Network (CNN) backbone for
robust feature extraction, succeeded by a meticulously optimized Region Pro-
posal Network (RPN) tasked with generating candidate regions of interest.
Subsequently, three parallel branches undertake the tasks of classification,
bounding box regression, and pixel-level mask predictions. Mask R-CNN,
along with subsequent architectures sharing analogous design principles, has
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demonstrated state-of-the-art performance across diverse semantic segmenta-
tion datasets, notably showcasing excellence on the Microsoft COCO dataset
[50].

U-net, a fully convolutional neural network introduced in [51], represents
a step forward from previous deep learning based semantic segmentation ap-
proaches. This architecture hinges on the novel concept of substituting fully
connected layers with up-sampling layers, thereby enabling precise pixel-
level predictions. More specifically, U-net adopts an encoder-decoder ar-
chitecture devoid of fully connected layers. The CNN encoder, operational
along the contracting path, strategically downscale the input image to a low-
dimensional feature space. Simultaneously, the expansive path of the de-
coder utilizes de-convolutional layers to up-sample the feature space. U-net
has achieved notable success, particularly in the realm of biomedical imag-
ing applications, where it has proven effective in the segmentation of tumor
cells. Due to its top performance and popularity, and based on our previous
experimental work [39], we utilize U-net model as our corrosion semantic
segmentation approach.

3. Methodologies

In this section we describe in the detail the design choices behind the
proposed portable hand-held LiDAR-inertial camera and data collection sys-
tem, and our approaches for 3D mapping and localization of corrosion in
industrial environments.

3.1. Problem formulation

Offshore assets are not the only locations where corrosion must be man-
aged, but provides an extreme case, where even gaining access to the site is
prohibitive. The person conducting the inspection is also unlikely to be the
same person evaluating the severity of corrosion. As such, the latter cannot
to the same degree rely on prior knowledge of the site when reviewing the
dataset.

Considering the presented issues with offshore corrosion management, the
overall properties of the envisioned system, while simultaneously acknowl-
edging that such a system may prove beneficial in onshore settings as well,
we present a portable LiDAR-inertial camera system that can automatically
localize and identify corroded structures, in industrial sites.

In particular, we address several key challenges:
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• Perception and data collection system design: To support cor-
rosion inspections at various environments, without the need for any
external permanent fixtures, a portable platform for hosting sensors and
computational resources is required. The platform should be lightweight,
portable, and allow recording RGB and point cloud data streams in
outdoor environments for prolonged periods of time. We envision a
handheld sensor apparatus containing a camera and LiDAR, and a
backpack computer and power-system.

• Sensor calibration: With the purpose of projecting image-based data
accurately to the LiDAR point cloud, we need to find the pose of the
camera system, relative to the LiDAR, i.e., the extrinsic camera matrix
parameters, encoding a transformation between the camera and the
LiDAR. This way, one can accurately map RGB and semantic infor-
mation to LiDAR point clouds, in order to build detailed colored point
clouds, representing the surrounding environment.

• 3D localization and mapping: Offshore assets can be geometrically
complex and multiple stories tall, and images are also likely to be cap-
tured from varied poses. As such, the localization system must be able
to operate in 3D, i.e., a detailed map of the environment is required
for localization, and must be generated using a LiDAR and a camera
system.

• Corrosion detection: images may contain numerous small spots of
corrosion that can be missed, and some images may feature corrosion
runoff or other visual blemishes that are not relevant on their own.
Corrosion is also quite varied, depending on the environment and type
of metal. A well-defined semantic segmentation system is needed for
this task.

In the rest of this section we describe in detail our proposed solution that
addresses the former challenges, through the use of state-of-the-art SLAM
and image-based semantic segmentation techniques, for geometric-semantic
mapping of corrosion in industrial environments (see Figure 2).

3.2. The Design of a Portable Corrosion Identification System

The design of a portable corrosion identification system leveraging LiDAR-
inertial camera sensors represents a novel approach in corrosion assessment
technology.
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Battery
power system
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computer

OptiTrack
computer

External
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LiDAR
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Realsense D435i
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Lab & Motion Capture setup
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(a) Diagram of envisioned system.

(b) Sensor-holder CAD model.

1

2
3

(c) Left: Assembled sensor-holder apparatus. Top right: Full portable system, with op-
tional portable monitor and wireless keyboard. Bottom right: Internals of the backpack,
showing computer (1), LiDAR connector box (2) and battery power system (3).

Figure 1: Detailed design view of our portable data capture system for 3D semantic-
geometric mapping.
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Figure 2: Proposed modular pipeline for semantic-geometric mapping of corrosion in
metallic surfaces.

Our proposed system integrates a LiDAR and inertial measurement units
(IMUs) for capturing motion and orientation data, for precise 3D localization
and mapping, and camera sensors for visual inspection of corrosion spots on
metallic surfaces. The fusion of these technologies enables a comprehensive
and accurate evaluation of corrosion in diverse environments, in particular,
industrial environments. The LiDAR-inertial camera sensors provide the
system with the capability to create high-resolution 3D models of the envi-
ronment, and detailed corrosion mapping.

The portability aspect ensures the system’s adaptability for field appli-
cations, facilitating on-site inspections in real-world conditions. The design
prioritizes the development of a lightweight and user-friendly system that
combines the strengths of LiDAR, inertial, and camera sensors to deliver re-
liable corrosion identification in a portable and efficient manner, catering to
the evolving needs of corrosion inspection in various industries.

3.3. LiDAR-Camera Geometry

In order to be able to map 2D camera image pixels (u, v) ∈ N2 to LiDAR
3D coordinates (xl, yl, zl) ∈ R3 and vice-versa, one needs to know the intrin-
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sic parameters and the relative transformation between both sensors. This
mapping can be expressed in linear homogeneous coordinates, according to

uv
1

 = KTl→c


xl

yl
zl
1


where K denotes the intrinsic camera parameters matrix, encoding the trans-
formation from the camera coordinate system C to the pixel coordinate sys-
tem I, and Tl→c the transformation from the LiDAR coordinate system L
to the camera coordinate system C. Transformations and 2D and 3D coor-
dinates are, through the rest of the article, expressed in homogeneous form.

3.3.1. Intrinsic camera parameters

To know exactly how points in the scene map to the image plane for a
given camera, it is necessary to find the intrinsic camera matrix K,

K =

αx γ u0 0
0 αy v0 0
0 0 1 0

 (1)

where αx = fmx and αy = fmy, represent the focal distance in pixels, with
f denoting the focal distance in camera (metric) coordinates, and mx and
my the inverses of the width and height of a pixel in the image plane.

In order to model image distortion due to lens characteristics, we use the
Zhang model [27], a widely used lens distortion model in camera calibration.
The model introduces rectification coefficients to correct for the non-ideal
behavior of lenses, especially radial distortions, incorporating both radial
and tangential distortion effects in a camera lens. The model expresses the
distorted image coordinates (u′, v′) in terms of the undistorted coordinates
(u, v) using the following polynomial forms,

u′ = u
(
1 + k1r

2 + k2r
4k3r

6
)
+ 2p1uv + p2(r

2 + 2u2)

v′ = v
(
1 + k1r

2 + k2r
4k3r

6
)
+ p1(r

2 + 2v2) + 2p2uv

where k1, k2, k3 denote the radial distortion coefficients, p1, p2, the tangential
distortion coefficients, and r the radial distance from the principal point.
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Figure 3: Main coordinate systems and intrinsic parameters considered by our LiDAR
camera system, including the camera coordinate system C, the LiDAR coordinate system
L and the map coordinate system M

.

3.3.2. Extrinsic camera parameters:

With the purpose of projecting image-based data accurately to the LiDAR
point cloud, we need to find the pose of the camera relative to the LiDAR, i.e.,
the extrinsic camera matrix parameters, which encode a 6D transformation
Tl→c between the camera and the LiDAR, in homogeneous matrix form:

Tl→c =
[
R T

]
=


rxx rxy rxz tx
ryx ryy ryz ty
rzx rzy rzz tz
0 0 0 1

 (2)

3.4. Camera and LiDAR calibration

In order to estimate the intrinsic camera parameters and the LiDAR to
camera rotation and translation (i.e. extrinsic parameters), we utilize two
widely adopted algorithms, described below.
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3.4.1. Camera intrinsic calibration

In this work we rely on the camera calibration procedure of [52], which is
a versatile and accurate method for calibrating multiple cameras, and (op-
tionally) multiple IMU sensor suites. The method calibrates both intrinsics
and extrinsics and provides a robust parameter identification (i.e. calibra-
tion) even in the presence of dynamic motion, in a unified manner. In case of
the presence of IMU(s) the procedure incorporates, as well, the IMU biases.
The full measurement model includes both camera and IMU measurements,
but for the sake of simplicity, we consider only a single camera.

The calibration parameters (intrinsics and extrinsics) are estimated by
capturing multiple images of a calibration checkerboard, with known dimen-
sions, from different viewpoints, i.e., by locating and extracting the image
coordinates of the checkerboard corners in each image, using a corner de-
tection algorithm. The 3D points coordinates in world coordinates can be
mapped by minimizing the re-projection error E, i.e., the discrepancy be-
tween the observed image points (u, v) and their corresponding projections
(u′, v′) based on the calibrated camera model, according to

E =
∑
i

E2
i with Ei =

√
(u′ − u)2 + (v′ − v)2 (3)

The parameters are obtained using a nonlinear optimization algorithm
(e.g., Levenberg-Marquardt [53]) to minimize the re-projection error. The
optimization involves iteratively adjusting both intrinsic parameters and dis-
tortion coefficients.

3.4.2. LiDAR-camera extrinsic calibration

To find the relative transformation Tl→c between the LiDAR and cam-
era when sensors are not configured in a predetermined rigid structure, the
method described by Beltran et al. [54] is utilised. It is a two-stage solution
for calibrating between pairs of monocular cameras, stereo cameras, and Li-
DARs, using a custom calibration pattern featuring four circular holes and
four ArUco markers [55], which can be seen in figure 4b.

In short, the method is based on localizing the centroids of the holes in
the target across the two sensors being calibrated, then aligning the two sets
of 3D reference points. The following is an overview of the process described
by Beltran et al. [54]. Note that details on calibrating with stereoscopic
cameras are briefly covered solely for the sake of completeness.
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(a) A3-sized AprilGrid camera calibra-
tion target, with 8 rows, 12 columns,
22mm tags, and 6.6mm spacing.
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(b) Fabricated extrinsic calibration tar-
get based on [54], using the default rec-
ommended dimensions. All values are in
millimeters.

Figure 4: Calibration targets used for intrinsic and extrinsic calibration.

Reference point estimation. In the first stage, the goal is to localize the cali-
bration target, and estimate the center points of the holes within, relative to
the individual sensors. This is done frame-by-frame, per sensor. Here, there
are two pathways: one for 3D input, and one for monocular input.

Stereo-camera feeds are pre-processed into a 3D point cloud, then later
used similarly to the LiDAR feed. In both cases, user-adjustable pass-through
filters are applied to limit the search space. This requires user intervention,
specific to the current physical calibration setup.

Edge points are then identified. For LiDARs, depth discontinuities in the
point cloud are used to detect edges [56]. This assumes that points resulting
from LiDAR rays passing through the calibration target holes exist, so care
must be taken to not leave excessive open space behind the target, nor filter
these points out in the preceding step. A visualization of this can be seen in
figure 5. For stereo cameras, a Sobel filter [57] is applied to one of the two
stereo images, and points are mapped to the resulting pixel values. Points
with sufficiently low values are discarded.

It is at this point the two modalities are treated the same. A RANdom
Sample Consensus (RANSAC) algorithm [58] is applied to the filtered point
cloud data, in order to fit a plane model, representing the target plane surface.
The edge-points from the previous step are filtered using the obtained plane
model, such that the resulting point cloud only contains points belonging to
the target.
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Next, the remaining points are projected on the planar model, resulting
in a 2D point cloud. The circular holes are then extracted using a 2D cir-
cle segmentation. This is performed iteratively, removing inliers, until the
remaining points are insufficient to describe further circles. At least four
circles must be found to proceed, otherwise the current frame is discarded.
Monocular cameras rely on using the four ArUco markers as an ArUco board
to estimate the relative position of the target. An example of this can be
seen in figure 5.

Once circle centers have been found, the processing of sensor data across
modalities are the same. To rule out incorrect detections, a geometric con-
sistency check is performed. The circle center points are grouped in sets of
four, and the dimensions of the rectangle they form together are compared
against what is theoretically expected. The assumption is that there should
only be one valid, geometrically consistent set. If more than one, or zero,
valid sets are found, the frame is discarded. Otherwise, the center-points
are converted back into 3D space, and the resulting cloud of four points is
considered to be valid reference points.

Having a single set of reference points per sensor is technically sufficient,
but to reduce potential errors, such as from sensor noise, multiple (i.e. 30)
sets are accumulated per sensor, and verified using Euclidean clustering [59].
In case of detecting more than the expected four clusters, the data is con-
sidered unreliable, else cluster centroids are used as reference points for the
second stage. Furthermore, Beltrán et al [54] allow for (and recommend)
accumulating reference points over M target poses, as to generate 4 × M
reference points, adding further constraints in order to improve the final
results.

Registration procedure. In the second stage, the goal is to find the rigid trans-
formation that best aligns the reference point sets with each other. This is
handled as a multi-objective optimization, involving 4 × M objective func-
tions.

First, the reference points must be paired, so that each reference point
from one sensor is associated with the corresponding reference point from
the other sensor. There is no guarantee that reference points in each set are
in the same order, so to ensure correct association, the four reference points
per target are converted to polar coordinates, and the top-most point (i.e.
lowest inclination) is identified. From hereon, the remaining points can then
be identified by comparing distances to them, and thus paired correctly.
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Figure 5: Reference point estimation using ArUco markers for monocular cameras (left)
and edge detection for LiDARs (right).

3.5. Image-based corrosion identification

In this work we rely on the popular Deep Neural Network architecture, U-
net [51], for image-based semantic segmentation. U-net derives from the fully
convolutional network introduced in [60], with modifications tailored to fa-
cilitate training with small image samples while surpassing its predecessor in
accuracy. The architecture of U-net comprises a conventional convolutional
network, coupled with two pathways. The contracting path initiates with
two 3x3 unpadded convolutions, succeeded by rectified linear units (ReLU)
and downsampling through 2x2 max pooling operations.

In the expansive path, the feature map undergoes up-sampling through
2x2 convolutions, followed by cropping to address the loss of border pixels
during convolutions. Subsequently, the cropped feature map from the con-
tracting path is concatenated, and 3 × 3 convolutions are applied, followed
by rectified linear units (ReLU) as illustrated in Figure 6.

U-net’s use of convolutional layers with small receptive fields promotes
the extraction of intricate hierarchical features, contributing to its robust
representation learning capabilities. The architecture’s adaptability to lim-
ited training data sets it apart, making it suitable for applications where
obtaining extensive labeled samples poses challenges.

The symmetric structure of U-net, with its balanced encoding and decod-
ing paths, plays a pivotal role in maintaining spatial relationships, enhancing
feature retention, and boosting its overall performance. A clever combination
of skip connections, convolutional layers, adaptability to varied data sizes,
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Figure 6: U-Net architecture for a 1024 pixel input (i.e. 32x32) at the lowest resolution.
Blue boxes represent multi-channel feature maps, with the number of channels indicated
at the top, and the arrows indicate various operations in the network (figure adapted from
[51]).

allows achieving high accuracy with limited training data.

3.6. LiDAR-based localization and mapping

Our pipeline for mapping and localization combines two methods. The
first, offline, employs a graph-based SLAM approach to build a point cloud
map of the environment. The second, given a map, employs a unscented
Kalman filter (UKF) [61] based approach to estimate in real-time the location
of the sensor apparatus in the map.

3.6.1. Graph-based LiDAR SLAM

LiDAR-based Graph-SLAM is a sensor fusion technique that utilizes a
graph structure to represent the relationships between different poses (po-
sitions and orientations) of a LiDAR system over time, along with the as-
sociated LiDAR measurements. The optimization process seeks to simulta-
neously estimate the robot’s trajectory and create a consistent map of the
environment.
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A graph G = (V,E) is built over time, where V is the set of vertices
representing sensor poses, and E is the set of edges representing constraints
between these poses. The optimal node configuration in the graph, is found
using non-linear optimization techniques to minimize the error introduced by
the constraints. Let pt be the sensors poses at t, and rt,t+1 be the relative
sensor poses between t and t + 1 estimated via scan matching [62]. We add
them to the pose graph as nodes [p0, ...,pN ] and edges [r0,1, ..., rN−1,N ]. The
graph is optimized using the g2o [63] framework, to build a globally consistent
3D map of the environment. To compensate for accumulated pose errors
during mapping, the approach allows incorporating ground plane constraints
in the graph pose optimization.

The final output of the algorithm is a map M of size M , comprising a
finite set of points in R3. Let us denote by mi ∈ M, i ∈ {1, ...,M}, each
point belonging to M.

3.6.2. Real-time LiDAR-based localization

During the online localization phase, the localization system [31] esti-
mates its own pose on the previously created 3D point cloud map, by combin-
ing a scan-matching algorithm with an angular velocity-based pose predictor.
An UKF [61] is used for sequential Bayesian estimation of the pose of the
LiDAR-camera sensor apparatus. The scan matching utilizes a Normal Dis-
tributions Transform (NDT) [62] for estimating the LiDAR motion between
consecutive frames, which outperforms other scan matching approaches, such
as the iterative closest point (ICP) [64].

3.7. Semantic-geometric mapping

In order to fuse semantic information with the 3D map of the environ-
ment, we utilize the known camera intrinsics, extrinsics between the lidar
and the camera, and the pose between the LiDAR and the map, given by
the localization system.

Given an image I provided by the system’s semantic segmentation algo-
rithm, the semantic color information is projected into the map by combining
the transformation between the map and the LiDAR, computed by the local-
ization system Tm→l, the transformation between the LiDAR and the camera
optical center Tl→c. More specifically, for each point belonging to the map,
we compute the corresponding image pixel, using homogeneous coordinates
according to,
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and if the point falls within the image plane, its corresponding color is up-
dated, by averaging its current RGB values with the corresponding image
pixel one.

4. Experiments

In this section we describe in detail the selected sensor apparatus as well as
indoor and outdoor experiments to assess the performance and applicability
of our methods in a real use-case scenario.

4.1. Hardware design and sensor selection

The design of the portable sensor-holder was a critical aspect behind
our efficient data collection in various applications, such as environmental
monitoring or industrial inspections. The sensor-holder is versatile, providing
a stable platform for mounting sensors of different sizes and types. In our
experiments we utilized an Ouster Rev 06 LiDAR, and a RealSense d435i
camera during our experiments. The design was selected to offer ease of
mobility to capture diverse environments and facilitate data capture. We
selected 3D printed material, to ensure easy adaptations during prototyping
(e.g. change of sensors), ensure durability in challenging conditions while
being lightweight for comfortable use. An ergonomic design that prioritizes
user comfort and ease of handling is crucial for prolonged data collection
tasks. Additionally, the sensor-holder incorporates features such as screw
holes to facilitate the deployment and interchange of sensors.

Complementing the sensor-holder, the design of a backpack for data col-
lection plays a pivotal role in ensuring seamless mobility and accessibility of
necessary equipment. The backpack was engineered to be lightweight, and
easy to carry for long-periods of time, distributing the weight evenly, reduc-
ing strain on the user during extended periods of data collection. Compart-
ments within the backpack should be strategically arranged to accommodate
the sensor-holder, ensuring secure storage and easy access. Integration of
a power supply system for sensors, along with cable management solutions,
is vital to sustain prolonged data collection sessions. The backpack design
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Table 1: Hardware used in the experiments.

Hardware Used in
Ouster OS1-32 Rev 06 LiDAR with uniform beam spacing All experiments
Intel Realsense D435i depth camera All experiments
Intel NUC 12 Pro computer with Intel Core i7-1260P processor All experiments
Portable backpack power system with 4 lithium batteries All experiments
OptiTrack motion capture system with dedicated computer Indoor experiments
High definition webcam with dedicated computer Indoor experiments
Gigabit ethernet switch Indoor experiments

should prioritize user comfort with padded shoulder straps and a ventilated
back panel to mitigate discomfort caused by extended wear. Furthermore,
the incorporation of smart features such as ground truth markers in a con-
trolled laboratory environments allows assessing the overall capabilities of
the data collection process, making the backpack an integral component of
a well-rounded field data collection system. Please see Table 1 for details on
the selected hardware.

4.2. Indoor experimental setup

In order to test the proposed system, and compare our solutions for
LiDAR-based localization, experimental data recording sessions in an indoor
laboratory setting were conducted. The purpose for these recordings were to
create datasets for assessing the performance of the localization algorithms,
using a motion capture system. Furthermore, uncorroded and corroded metal
parts were placed in the environment, to allow testing the performance of the
corrosion detection algorithms.

The setup was as follows: LiDAR and depth camera sensors were affixed
to the custom 3D print with handles, as shown in Figure 1c. The NUC 12
computer, along with LiDAR connector box, were installed into and powered
by the backpack. Prior to recording, the motion capture system was cali-
brated, and the tracked area was marked with tape. A rigid-body tracking
marker was attached to the top of the LiDAR.
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Figure 7: Hardware setup. The Lab & Motion Capture setup is exclusively used in indoor
experiments.

(a) General view of the indoor experimental
area.

(b) Motion capture system installed on the
lab ceiling.

Figure 8: Pictures from indoor experimental setup.

4.2.1. Localization and mapping performance

In order to assess the performance of the indoor localization and map-
ping algorithms, we integrated a high precision optitrack motion capture
system, with 0.1mm precision, for ground truth acquisition [65], installed in
the ceiling of the lab (see Figure 8). A set of markers were placed on top of
the LiDAR-camera system in order to build a trackable reference frame. To
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quantitatively evaluate the performance of the algorithms, we compared the
trajectory given by the ground truth system with the computed trajectory
UKF localization algorithms. More specifically, trajectories were temporally
and spatially aligned using the Umeyama alignment algorithm [66], and the
absolute and relative pose errors were used for quantitative evaluation, i.e.,
to numerically assess the consistency of the trajectory.

While the absolute pose error (APE) focuses on the accuracy of the overall
position and orientation of the LiDAR-camera system in the ground truth
frame, i.e., global trajectory consistency, the relative pose error (RPE) is
concerned with the accuracy of the changes in pose between consecutive
measurements in a local coordinate frame, hence suitable for measuring drift
in odometry systems.

Figure 9 (a) depicts the map point cloud obtained with the SLAM algo-
rithm, and the map and LiDAR reference frames during online localization.
Figure 9 (b), (c) and (d) show the 3D trajectories of the ground truth and
UKF localization algorithm, and the absolute and relative pose errors, respec-
tively. The results demonstrate the high-accuracy of the used LiDAR-based
localization system with less then 0.05m and 0.02m average absolute and
relative position errors, respectively. One setback, though, of the employed
method resides on the fact that it needs a good pose initialization. However,
this limitation can be easily surpassed with the use of Monte Carlo Localiza-
tion (MCL) based methods (e.g. [67]), at the cost of increased computation
effort.
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Figure 9: LiDAR-based localization performance in indoor experimental scenario.

4.3. Semantic segmentation
In this section, we conduct a comparative analysis of advanced seman-

tic segmentation networks outlined in the preceding section, specifically fo-
cusing on their effectiveness in segmenting corrosion in metallic structures.
Throughout our experiments, we employed a 12th Gen Intel® Core™ i9-
12900KF processor (24 cores) and a GeForce RTX 3090ti graphics card for
both training and testing.

The dataset utilized for training and testing comprises a total of 14,265
labeled images. These images were captured in a high-definition offshore
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Table 2: U-net performance results on corrosion segmentation in offshore environments.

IoU score Precision Recall F-score Avg. inference time (s)
model
UNET-resnet34 0.4519 0.7112 0.5508 0.5574 0.0445

Table 3: Dataset used for training and validating the semantic segmentation networks.

total images in dataset
train 8559 (60%)
val 2853 (20%)
test 2853 (20%)

environment using a DSLR camera and were manually annotated using an
online labeling tool [68].

In our experimental approach, we trained a U-net semantic segmentation
model, using random crops of size 1024 × 1024 extracted from the original
input images. The training batch size was set to 8. The dataset was parti-
tioned into training (60%), validation (20%), and testing (20%) sample sizes.
The model underwent pre-training on the ImageNet [69] dataset. We use
a ResNet-34 as our U-net backbone [70], that consists of 34 layers, being
popular in image recognition tasks, due to its clever balance between depth
and computational efficiency.

Figure 10 shows qualitatively, the performance of U-net on different scenes.
U-net is capable of identifying most ground truth spots, while correctly iden-
tifying corrosion spots missed by the labeler. Given the difficulty of accu-
rately labeling corrosion, especially when small spots are easily overlooked
by human annotators, precision may not be the most suitable metric for eval-
uating task effectiveness in this context. As quantitatively shown in Table
2, the method exhibits fast average inference times (0.0445s), being suitable
for real time application. Although our model achieves high precision when
compared with similar corrosion identification approaches, e.g. [71], being
able to recognize most ground truth corrosion pixels, without many false
positives, recall is relatively low, due to a high rate of false negatives, i.e.,
missed corrosion spots in the ground truth. We hypothesize that this is due
to a relatively high number of missed corrosion spots by the labeler.
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Figure 10: Semantic segmentation masks generated for different example scenes utilizing
the U-net architecture featuring a ResNet34 backbone.

5. Conclusions and future work

In this work, we proposed a complete system for corrosion identifica-
tion and 3D mapping of industrial environments. The proposed designed
system comprises a portable sensor-holder for a 3D LiDAR and an RGB
camera. The system leverages the accuracy of LiDAR data for 3D localiza-
tion and mapping, with RGB camera information for semantic segmentation
of corroded metal structures. Our proposed framework allows building a 3D
geometric-semantic map, by fusing semantic data with a prior known 3D
map, via known camera and lidar calibration parameters, and a real-time
UKF LiDAR-based localization system.

A set of indoor experiments, assessed the accuracy of the individual parts
of the mapping and localization system in a laboratory environment.
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For future work we intend to replace the current UKF-based localization
system with a monte-carlo one, to avoid the need of knowing in advance,
the approximate initial location of the system. Also, we intend to improve
our semantic map representation, with one that allows fusing semantic and
geometric data over time in a probabilistic fashion (e.g. using a probabilis-
tic semantic occupancy grid). Ultimately, we plan to enhance our existing
semantic segmentation algorithm by training with large amounts of synthet-
ically generated data.
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