2404.13696v3 [cs.RO] 29 Apr 2024

arxXiv

Clio: Real-time Task-Driven Open-Set 3D Scene Graphs

Dominic Maggio*!, Yun Chang*!, Nathan Hughes*', Matthew Trang?,
Dan Griffith?, Carlyn Dougherty?, Eric Cristofalo?, Lukas Schmid', Luca Carlone!

Abstract—Modern tools for class-agnostic image segmenta-
tion (e.g., SegmentAnything) and open-set semantic understand-
ing (e.g., CLIP) provide unprecedented opportunities for robot
perception and mapping. While traditional closed-set metric-
semantic maps were restricted to tens or hundreds of semantic
classes, we can now build maps with a plethora of objects and
countless semantic variations. This leaves us with a fundamental
question: what is the right granularity for the objects (and, more
generally, for the semantic concepts) the robot has to include in
its map representation? While related work implicitly chooses
a level of granularity by tuning thresholds for object detection
and association, we argue that such a choice is intrinsically
task-dependent. The first contribution of this paper is to
propose a task-driven 3D scene understanding problem, where
the robot is given a list of tasks, specified in natural language,
and has to select the granularity and the subset of objects
and scene structure to retain in its map that is sufficient to
complete the tasks. We show that this problem can be naturally
formulated using the Information Bottleneck (IB), an established
information-theoretic framework to discuss task-relevance. The
second contribution is an algorithm for task-driven 3D scene
understanding based on an Agglomerative IB approach, that
is able to cluster 3D primitives in the environment into task-
relevant objects and regions, and executes incrementally. The
third contribution is to integrate our task-driven clustering
algorithm into a real-time pipeline, named Clio, that constructs
a hierarchical 3D scene graph of the environment online and
using only onboard compute, as the robot explores it. Our final
contribution is an extensive experimental campaign showing
that Clio not only allows real-time construction of compact
open-set 3D scene graphs, but also improves the accuracy of task
execution by limiting the map to relevant semantic concepts.

I. INTRODUCTION

A fundamental problem in robotics is to create a useful
map representation of the scene observed by the robot, where
usefulness is measured by the ability of the robot to use
the map to complete tasks of interest [1, [2]. Recent works,
including [3H7]], build metric-semantic 3D maps by detecting
objects and regions corresponding to a closed set of semantic

ILaboratory for Information & Decision Systems, Massachusetts Insti-
tute of Technology Cambridge, MA, USA. Email: {drmaggio, yunchang,
na26933, Ischmid, Icarlone} @mit.edu.

2MIT Lincoln Laboratory, Lexington, MA, USA. Email: {matthew.trang,
dan.griffith, eric.cristofalo, carlyn.dougherty } @11.mit.edu.

*equal contribution.

This work was partially funded by the NSF Graduate Research Fellowship
Program under Grant 2141064, the Swiss National Science Foundation
(SNSF) grant No. 214489, MIT Lincoln Laboratory’s Autonomy al Fresco
program, the ARL DCIST program, and the ONR RAPID program.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited. This material is based upon work supported by the Under Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-15-
D-0001. Any opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the Under
Secretary of Defense for Research and Engineering. © 2024 Massachusetts Institute of
Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

Task List

Place Primitive:

Regions

Coriorencs Kitchenette

Room

Hallway

Fig. 1. We propose Clio, a novel approach for building task-driven 3D
scene graphs in real-time with embedded open-set semantics. We draw
inspiration from the classical Information Bottleneck principle to form task-
relevant clusters of object primitives given a set of natural language tasks
—such as "Read brown textbook”— and by clustering the scene into task-
relevant semantic regions such as “Kitchenette” or “Workspace”.

labels. However, closed-set detection is inherently limited
in terms of the set of concepts that can be represented
and does not cope well with the intrinsic ambiguity and
variability of natural language. In order to overcome these
limitations, a new set of approaches [8, 9] has begun to
leverage vision-language foundation models for open-set se-
mantic understanding. These approaches use a class-agnostic
segmentation network [10] (SegmentAnything or SAM) to
generate fine-grained segments of the image and then apply a
foundation model [L1]] to get an embedding vector describing
the open-set semantics of each segment. Objects are then con-
structed by associating segments whenever their embedding
vectors are within a predefined similarity threshold. These
approaches, however, leave to the user the difficult task of
tuning suitable thresholds to control the number of segments
that are extracted from the scene as well as the threshold used
to decide whether two segments have to be clustered together.
More importantly, these methods do not capture intuition that
the choice of semantic concepts in the map is not just driven
by semantic similarity, but it is intrinsically task-dependent.

For example, consider a robot tasked with moving a
piano across a room. The robot gains almost no value by
distinguishing the location of all the keys and strings, but
can instead complete the task by considering the piano as one
large object. On the other hand, a robot tasked with playing
the piano must consider the piano as many objects (i.e., the
keys). A robot tasked with tuning the piano must view the
piano as even more objects — considering the strings, tuning
pins, and so forth. Likewise, questions such as if a pile of
clothes should be represented as a single pile or as individual
clothes, or if a forest should be represented as single area
of landscape or as branches, leaves, trunks, etc., remains
ill-posed until we specify the tasks that the representation

Y

Fig. 2. Clio generates a 3D scene graph in real-time using a laptop carried
by Spot. We show that Spot is able to execute grasping commands, expressed
in natural language, using Clio’s task-driven 3D scene graph.

has to support. Humans not only take into account the task
when (consciously or unconsciously) deciding which objects
to represent and how, but are also able to consequently ignore
parts of a scene that are irrelevant to the task [12].

Contributions. Our first contribution (Section [II) is to
state the task-driven 3D scene understanding problem, where
the robot is given a list of tasks, specified in natural language,
and is required to build a minimal map representation that
is sufficient to complete the given tasks. More specifically,
we assume the robot is capable of perceiving task-agnostic
primitives in the environment, in the form of a large set of
3D object segments and 3D obstacle-free places, and has
to cluster them into a task-relevant compressed representa-
tion which only contains relevant objects and regions (e.g.,
rooms). This problem can be naturally formulated using the
classical Information Bottleneck (IB) [13] theory, which also
provides algorithmic approaches for task-driven clustering.

Our second contribution (Section is to apply the
Agglomerative IB algorithm from [14] to the problem of task-
driven 3D scene understanding. In particular, we show how
to obtain the probability densities required by the algorithm
in [14] using CLIP embeddings, and show that the resulting
algorithm can be executed incrementally as the robot explores
the environment, with a computational complexity that does
not increase with the environment size.

Our third contribution (Section [V) is to include the
proposed task-driven clustering algorithm into a real-time
system, named Clio (Fig. [I). Clio takes a list of tasks
specified in natural language at the beginning of operation:
for instance, these can be the tasks the robot is envisioned to
perform during its lifetime or during its current deployment.
Then, as the robot operates, Clio creates a hierarchical map,
namely a 3D scene graph, of the environment in real-time,
where the representation only retains task-relevant objects
and regions. Contrary to current approaches for open-set
3D scene graph construction (e.g., [9]) which are restricted
to off-line operation when querying large vision-language
models (VLMs) and Large Language Models (LLMs)
such as [[16], Clio runs in real-time and onboard and only
relies on lightweight foundation models, such as CLIP [11].

We demonstrate Clio on the Replica dataset and in
four real environments (Section [V_T[) — an apartment, an of-
fice, a cubicle, and a large-scale building scene. We also show
real-time onboard mapping with Clio on a Boston Dynamics
Spot quadruped with a robotic arm (Fig. [2). Clio not only
allows real-time open-set 3D scene graph construction, but
also improves the accuracy of task execution by limiting the
map to relevant objects and regions.

We release Clio open-source at https:/github.com/
MIT-SPARK/Clio along with our custom datasets.

II. RELATED WORK

Foundation Models in Robotics and Vision. The recent
emergence of vision-language models [T, T3] (18] and large
language models [16] has led to numerous works exploring
their potential for 3D scene understanding [19] and robot
planning [21H23]]. Multiple works have surveyed the state of
the art in foundation models along with their limitations [24-

[28]). Class-agnostic segmentation networks [[10, have been

coupled with foundation models to enable open-set image
segmentation [30H35]]. Recent works have also explored di-
rect class-agnostic 3D segmentation [36]. Saliency detection
has been used to identify parts of an image that a human
would likely notice first [37]. Here, instead of visual saliency,
we desire to create task-driven maps of a scene.
Foundation Models for 3D Mapping. Recent work has
coupled foundation models with neural radiance fields [38]
and Gaussian Splatting [39]. Kerr et al. [40] propose LERF,
which constructs a radiance field that can render dense
CLIP vectors of the scene. LERF can be queried via text
and estimate which parts of the scene are most similar
to the query using an augmented cosine similarity score.
Qin et al. develop LangSplat which builds upon LERF
by using Gaussian Splatting to create a 3D scene language
map with a substantial speedup. Blomqvist et al. [42]] develop
an approach to incrementally construct a neural semantic map
for SLAM. Kim et al. [43] construct a hierarchical neural
map that renders at different levels of granularity, clustering
and dividing objects into parts. Taioli et al. [44] use CLIP to
construct an implicit grid map that can be queried via text.
Several works incorporate open-set detection into 3D
maps of a scene [45H50]. Chang et al. [51] perform open-
vocabulary mapping combined with a graph neural network
trained on a closed set to map objects and their relationships.
Takmaz et al. develop a method for open-set instance
segmentation. Jatavallabhula et al. [[8]] generate a semantic 3D
point cloud where CLIP vectors are assigned to each point.
Most similar to ours is ConceptGraphs [9], which constructs
a 3D graph of objects with edges connecting objects via their
relationships as assigned with an LLM [16]. ConceptGraphs
uses CLIP and SAM to cluster a scene into objects defined
by their semantic and geometric similarity to each other.
Optionally, ConceptGraphs queries a large vision-language
model using multiple views of each object to compute a
succinct description of the object. Objects can be then queried
either with cosine similarity via CLIP or with the LLM.
Task-Driven Representations. The classical Information
Bottleneck (IB) aims to compress a given signal while
preserving the mutual information between the compressed
representation and another signal of interest. The initial
work has been extended into a bottom-up clustering
method known as the Agglomerative IB [[14]. We build on IB
theory with the goal of compressing a scene representation
into clusters of relevant objects and regions for a given set of
tasks. Gordon et al. [53] extend the Information Bottleneck
to compress a set of individual images into clusters such
that each cluster preserves information about the context
of the images contained in the cluster. Wang er al. [54]
use the IB principle for attribution between image and text
inputs of VLMs with experiments performed with CLIP.
Larsson et al. 55 [56] leverage the Agglomerative IB to

https://github.com/MIT-SPARK/Clio
https://github.com/MIT-SPARK/Clio

obtain an optimal map compression for agents with limited
resources.

Soatto and Chiuso [1f] derive expressions for minimally
sufficient scene representations that preserve relevant infor-
mation about some task of interest, and [S7] develops theory
around constructing foundation models of physical scenes.
Eftekhar et al. [58]] compress visual observations in a task-
relevant manner. Their work uses a learned codebook module
that takes in a current agent’s action along with the task and
sensor data, and outputs an action to step towards the goal for
navigation. Another line of work detects regions of interest
in images based on affordances [S9] and creates 3D maps of
affordances of objects in a scene [60].

III. PROBLEM FORMULATION:
TASK-AWARE 3D SCENE UNDERSTANDING

While many researchers would agree that a map represen-
tation has to be task-dependent, to date there is no general
framework to establish what is the right granularity for the
semantic concepts included in the robots’ metric-semantic 3D
map. This gap has been partially motivated by the difficulty of
providing rich task descriptions, with the result that existing
task-driven representation frameworks in vision and robotics
are either too narrow or too computationally expensive [61].

In this paper, we leverage two key insights. First of all,
progress in vision-language models has brought together
visual information and text descriptions in a way that was
not possible before. This greatly simplifies the problem of
task description: we can just state the task as a list of
language instructions the robot is expected to execute during
its lifetime or during its current deployment (e.g., “wash the
dishes”, “fold the clothes”, “pick up toys and place them
on the shelves”) and use VLMs to relate these instructions
to visual data. Below, we denote the list of tasks with the
symbol Y. Second, modern foundation models for task-
agnostic segmentation provide a way to over-segment an
image into a potentially large number of segments, which we
can reproject to 3D. Similarly, using geometric segmentation
techniques, we can easily segment environments into a large
number of obstacle-free places [6]]. In the following, we refer
to the task-agnostic 3D segments and places as task-agnostic
primitives and denote them with X; intuitively, these provide
a superset of the concepts we want to retain in our map.

Using these insights we formulate task-aware 3D scene un-
derstanding as the problem of compressing the task-agnostic
primitives X into a cluster of task-relevant concepts X,
which are maximally informative about the tasks Y. This
naturally leads to the Information Bottleneck principle.

Task-Aware 3D Scene Understanding as an Information
Bottleneck. Similar to the setup of the well-known Infor-
mation Bottleneck (IB) [13l], we have an original signal X
(i.e., the set of task-agnostic primitives), which provides some
information about the signal Y (i.e., the list of tasks). Our
goal is to find a more compact signal X —representing the
task-relevant concepts— that compresses X while retaining
task-relevant information. Mathematically, we are going to
define the task-relevant clusters X using the probability
distribution p(Z|z), which represents the probability that a
task-agnostic primitive in z belongs to cluster in Z. IB
formulates the computation of the task-relevant clusters X

(or, equivalently, the probability p(Z|x)) as the solution of
the following optimization:

where I(-;-) denotes the mutual information between two
random variables. Intuitively, problem (1) compresses X
by minimizing the mutual information between the original
signal X and compressed signal X, while rewarding the
task-relevance of the compressed representation through the
mutual information between the compressed signal X and
the task Y. The parameter S controls the desired balance
between the two terms (i.e., the amount of compression).

The result of (I) is a set of clusters: intuitively, these
clusters group 3D segments into objects and 3D places into
regions (e.g., rooms) at the right granularity, as required by
the task. Problem (1) can be solved by an iterative algorithm
with proven convergence [[13]. Below, we discuss other algo-
rithms that can better take advantage of the structure of our
problem and shed light on how to compute the distributions
and mutual information terms arising in (I)) in practice.

IV. TASK-DRIVEN CLUSTERING

In our problem, the task-agnostic primitives have geomet-
ric attributes, which provide a strong inductive bias for our
clustering (i.e., we might want to merge together nearby
segments, and avoid merging segments that are far away). To
enforce this inductive bias, we consider and extend the Ag-
glomerative IB approach of [14], which forms task-relevant
clustering by iteratively merging neighboring primitives.

Agglomerative Information Bottleneck. The Agglomer-
ative IB method is a bottom-up merging approach to solving
the IB problem [14]. The method initializes the task-relevant
clusters X to the task-agnostic primitives X; then, at each
iteration, it merges adjacent clusters using a task-driven
metric. In particular, it computes a weight d;; for each
possible merge between adjacent clusters ; and Z; as:

dij = (p(Z5) + p(Z;)) - Dislp(y|Ti), p(y|Z5)], (@)

where Djg is the Jensen-Shannon divergence. Intuitively, the
weight d;; is a measure of the dissimilarity of the probability
distributions of the two clusters. In particular, the algorithm
iteratively merges the clusters corresponding to the smallest
weight, thus solving IB in a greedy manner. The process can
be understood as iteratively merging nearby nodes in a graph,
where the graph edges represent allowable merges.

As suggested in [[14], at each iteration k, we also compute

I(Xp;Y) = I(Xp_1;Y)
I(X;Y)

as a measure of the fractional loss of information corre-
sponding to a merge operation, and terminate the algorithm
when (k) exceeds a threshold 6. & regulates the amount of
compression where a value of 0 would return the original set
of primitives and a value of 1 returns fully merged primitives,
hence playing a similar role as the parameter 3 in eq. (I).
The pseudocode of the algorithm in given in Appendix
Incremental Agglomerative IB. In our problem, we ex-
pect the map to grow over time, hence it is paramount to
bound the computational complexity of the Agglomerative
IB. Towards this goal, we propose an incremental version

(k) = 3)

of the algorithm that can be executed online as the robot
explores the environment. Our key observation is that if the
graph of primitives in input to the algorithm has multiple
connected components (e.g., 3D object segments in different
rooms), then the clustering can we performed independently
on each connected component (intuitively, there are no edges,
hence no potential merges, between different components).
Moreover, it is easy to show that the variable §(k) in (3) (used
in the stopping condition of the algorithm) can be computed
independently for each connected component, and does not
need to be recomputed for connected components that are
not affected by new measurements. This allows the robot to
cluster incrementally while supporting a real-time stream of
new primitives as it maps the environment. We report the
pseudocode of our incremental algorithm in Appendix [B}
while next we discuss how to set the required distributions.

Task-Relevant Conditional Distributions. The Agglom-
erative IB algorithm requires defining the conditional proba-
bility p(y|z), which can be understood as the task-relevance
of each primitive. We use CLIP [11] to produce an embed-
ding f;, for each primitive ; € X and an embedding f,
for each task ¢; € Y. For each primitive x;, we compute
its cosine similarity score ¢(fy,, f¢;) to all task embeddings.
We further add a null task ¢y and assign it a score «, which
is chosen as a lower-bound on the cosine similarity under
which a primitive is not relevant for any of the given tasks.

We perform a pre-pruning step on primitives that have the
highest similarity with the null task, for which we set p(y|x;)
to be a one-hot vector with a probability of 1 on the null task.
Furthermore, to emphasize the ranking of task similarities, we
set all task similarities that are not in the top k£ most similar
tasks to 0 and multiply the top [task by k& — [+ 1. Formally,
given m tasks, we first define 0(z;) € R™+1:

o if7=0
O(zi)j =19 o “)
()J ¢(fzb7ftj)7 lszla"'vm
and then write p(y|z) in terms of 6 as,
10...0]T, if max;, iy Jti)<Q
) =10 O o e fu)se)
Ny g n(0(x;)), otherwise

where 7 is a normalization constant and +; preserves only
the top [values while setting all others to 0. This choice
of p(y|x) effectively assigns large values in p(y|z) to the k
tasks that have the highest cosine similarity in terms of CLIP
embeddings, while also assigning irrelevant primitives to the
null task. Given this choice of conditional probability, the
Agglomerative IB computes the clusters X.

V. CLIO: REAL-TIME TASK-DRIVEN
OPEN-SET 3D SCENE GRAPHS

This section describes Clio, our real-time system for task-
driven open-set 3D scene graph construction. A high-level
architecture is shown in Fig. 3| Clio consists of two main
components: the frontend, where the task-agnostic object and
place primitives are constructed, and the backend, where the
task-driven object and region clustering is performed.

Frontend
Object Primitives
Reconstruction

[Incremental AIB)
1 Object Detection
|
|
|
1

{ Places Sub-Graph 1
1 Construction

RGB-D
Images

Metric-Semantic
3D Mesh
+. _ Reconstruction
-

- S

3D Scene Graph
Frontend

Incremental AIB !

[
1
1
1
1
1 Region Detection

3D Scene Graph
Backend

Fig. 3. Clio’s frontend takes in RGB-D sensor data and constructs the graph
of object primitives, the graph of places, and the metric-semantic 3D mesh
of the background. Clio’s backend performs Incremental Agglomerative IB
to cluster objects and regions based on a user-specified list of tasks.

A. Clio Frontend

3D Object Primitives. We follow the approach of
Khronos [62]] for 3D mesh reconstruction and object primitive
extraction. Given a live stream of RGB-D images and poses,
we run FastSAM [29] and CLIP to get semantic segments
for each image. We then temporally associate segments to
existing tracks within a temporal window 7. To enforce
consistency, candidate tracks are required to have a cosine
similarity above a threshold 9trao and minimum 3D IoU
of ~ with the segment. Each new segment is then greedily
associated to the candidate track with the highest IoU. If no
association is made, a new track is created. Finally, if a track
has not been associated for 7 seconds, it is terminated. Tracks
with a large volume > 6,, and with only few observations
< Bops are discarded as they are likely background or noise.
Each track is then reconstructed into a 3D object primitive
based on all frames in the track and a final CLIP feature
is computed via averaging. Simultaneously, a coarser recon-
struction of the background is performed for every incoming
frame. This approach allows for a dense 3D model to be
incrementally constructed with limited computation, while
maintaining a high level of detail for the object primitives.

3D Place Primitives. We follow the approach of Hydra [[7]]
to construct the places sub-graph. We incrementally compute
a Generalized Voronoi Diagram of the scene and sparsify it
into a graph of places. To obtain semantic features for the
places, we compute a CLIP embedding vector for each input
image provided to Clio. Each place node is then assigned
a feature that is the average of the input CLIP embeddings
from all input images that the node centroid is visible from.
We validate these design choices in Section

B. Clio Backend

After the frontend populates the background mesh, object
primitives, and places, the backend performs clustering to
extract and retain task-relevant objects and regions.

Task-Driven Object Detection. Clio runs our Agglomer-
ative IB method on the over-segmented 3D object primitives
from the frontend. As input to IB, we construct a graph where
the nodes are the object primitives and add edges between
nodes if the corresponding primitives have 3D bounding
boxes with non-zero overlap. We compute p(y|x) as de-
scribed in eq. (B). In this case, the null task can be thought of
as background task-irrelevant objects. We set o = 0.23. We
provide two versions of Clio. The first, Clio-batch assumes

'Note that this threshold is only used to re-identify and track segments
over time, while we use our task-driven clustering to group primitives.

(b) Clio clustering results shown for the following tasks: (1) get condi-

ments packets, (2) get'textbooks, (3) get notebooks, (4) clean backpacks.

e 4 N4 ¥ —m

(c) Clio clustering results shown for the following tasks: (1a) get hot sauce
packets, (1b) get grey poupon packets, (2a) read Cracking the Coding
Interview book, (2b) read brown textbook, (3a) pack blue notebooks, (3b)
pack red notebook, (4a) get teal backpack, (4b) clean black backpack.

Fig. 4. Examples of portions of the Cubicle dataset that require a task
to provide rectification of how an object should be defined. The figure
showcases Clio’s clustering results for two sets of tasks, listed under (b)
and (c); 14 additional tasks identical for both tests are included in the task
list during clustering but not shown for clarity.
all primitives for the entire scene have first been generated
and then clusters all objects segments using eq. (). The
second, Clio-online takes in a real-time stream of images
and constructs a map using our incremental IB algorithm,
where clustering is only performed again for the connected
components affected by the most recent measurements.
Task-Driven Clustering of Places. Clio finally performs
Agglomerative IB at every backend update to cluster the
place nodes into regions. The task-driven clustering is applied
to the graph of places produced by Hydra [7]], where each
place node in the graph is a primitive for IB and each edge
in the place graph is considered as a putative merge for
clustering. We compute p(y|x) between the tasks and place
nodes in the same manner as the objects. Each resulting
cluster of place nodes is used to create a new region. Two
regions share an edge if any places in the two regions also
share an edge.

VI. EXPERIMENTS

Our experiments show that Clio (i) constructs more parsi-
monious and useful map representations (Section [VI-A), (ii)
performs on par with the state of the art in closed-set settings
where the task is implicitly specified by a closed dictionary
(Section [VI=B), (iii) is able to cluster the environment into
meaningful semantic regions (Section m, and (iv) can
support task execution on real robots (SectionVI-D).

A. Open-Set Object Clustering Evaluation

Experimental Setup. To test Clio in realistic and diverse
scenes, we collect four datasets, in an office, an apartment, a
cubicle, and a large-scale university building, which covers
five floors including a machine shop, classroom, lounge,
meeting rooms, to cluttered workspaces, and an aircraft
hangar. For the Office, Apartment, and Cubicle datasets
we manually annotate ground truth 3D bounding boxes for
objects associated to the given set of tasks. For evaluation
purposes, tasks are chosen such that there is an unambiguous
set of objects best suited for the tasks, to reduce subjective
reasoning over what constitutes a ground truth set of objects.
A complete list of tasks is provided in Appendices

Metrics. For this evaluation, after constructing the 3D
scene graph, we query the n best objects for every task
— where n is the number of ground truth labels of objects
relevant for the task. We then compare the IOU of the 3D
bounding boxes of the detected objects to the ground truth
objects. We additionally report two measures of accuracy:
strict accuracy (SAcc), which is the fraction of times the
bounding box of an estimated object contains the centroid of
the ground truth bounding box, and the bounding box of the
ground truth object contains the centroid of the estimated
bounding box, and relaxed accuracy (RAcc), which is the
fraction of cases where at least one of the two prior conditions
is met. We also measure strict and relaxed precision as the
total number of strict and relaxed true detections divided by
the total number of detections that have at least 90% cosine
similarity score to a task as the most similar object. The
F1 score is computed as the harmonic mean of the relaxed
accuracy and relaxed precision. We also include the average
runtime per frame (tpf) to build the scene graph and total
number of objects in the final scene graph.

Compared Techniques. As our queries do not include
negation or multi-step affordances, we run ConceptGraphs
with only CLIP in place of LLava+GPT, as CLIP was shown
to have similar performance for these types of queries in [9].
In addition to running ConceptGraphs and Clio, we also
test: Khronos, which performs clustering as described in [62]
with parameters Oy,x = 0.7, v = 0.4, 6, = 8.0, and
Bobs = 3, and Clio-Prim, which only computes the set of input
3D object primitives to Clio with parameters Oy,x = 0.9,
v = 0.6, Oy = 8.0, and O,,s = 2; essentially, Clio-Prim
is the output of the Clio frontend, hence this comparison
allows assessing the effectiveness of the IB clustering in Clio.
To show the importance of being task-driven, we further
include task-aware versions of the baselines: Khronos-task
and ConceptGraphs-task take the results of Khronos and
ConceptGraphs and remove mapped objects that do not have
a high enough (o = 0.23) cosine similarity to at least one
task in the provided task list. We include results for both
Clio-batch, which takes in all primitives of a scene and is
executed only once at the end of the mapping session, and
Clio-online, which incrementally receives primitives for real-
time mapping. We use CLIP model ViT-L/14 and generate
results with an RTX 3090 GPU and Intel i9-1290K CPU.
Results are shown in Table [} Results for OpenCLIP model
ViT-H-14 are included in Appendix

Results. First of all, we observe that task-informed ap-
proaches (shaded blue rows in Table [I) generally lead to

Scene Method I0UT SAcct RAcct Sprect Rprect F11 Objs| TPFE(s)| Method mAcc F-mIOU
CG [9] 0.06 044 061 017 028 039 181 20 MaskCLIP 453 0.94
Khronos [62] 0.17 078 083 012 011 020 628 031 Mask3former + Global CLIP feat 10.42 13.11
o Clio-Prim 0.18 0.72 0.72 0.09 0.10 0.17 1070 0.28 ConceptFusion 24.16 31.31
S CG-task 0.06 044 061 038 050 055 26 2.0 ConceptFusion + SAM 31.53 38.70
S Khronos-task 0.17 0.78 0.83 0.14 0.14 024 133 0.31 ConceptGraphs 40.63 35.95
© Clio-batch 0.17 0.83 1.0 033 040 057 48 0.31* ConceptGraphs-Detector 38.72 35.82
Clio-online 022 0.89 089 048 048 063 92 030 Clio-batch 3705 36.98
CG [9] 007 026 052 009 016 025 751 8.1] i)
Khronos [62] 0.17 070 070 030 030 042 1202 031 TABLE II. Closed-set semantic segmentation experiments on 8 scenes
Clio-Prim 019 074 078 020 020 032 1880 0.27 from the Replica [17] dataset. Baseline results reported from [9].
8 CG-task 0.05 0.19 041 036 064 050 35 8.1 . .
£ Khonostask 013 056 056 034 034 042 140 031 B. Closed-Set Object Evaluation
Clio-batch 0.13 067 082 0.64 079 080 84 030"
Clio-online 0.I1 056 059 0.63 0.67 0.63 131 029 While Clio is designed for open-set detection, we include
CG @] 007 038 062 017 025 035 339 22 results on the closed-set Replica [17] dataset using the
Khronos [62] 0.11 045 076 008 0.2 021 1093 026 evaluation method performed by [8} [9] to show that our task-
£ ClioPrim 012 035 0359 007 009 0.6 1694 0.0 aware mapping fi lation d ¢ d d f
2 CG-task 0.03 021 035 030 045 039 21 22 pping formulation does not degrade pertormance
% Khronos-task 0.11 041 072 0.5 021 032 162 026 on closed-set mapping tasks. Here, our list of tasks is the set
£ Clio-batch 011 052 072 034 045 055 90 023" £ obi label . h Rebli h h
Clioonline 007 035 052 031 042 046 99 026 of object labels present in each Replica scene where eac
label is changed to be “an image of {class}” following [9].
TABLE I. Results of locating objects of interest via open-set task query

for three datasets. We include results for CLIP ViT-L/14. The Office,
Apartment, and Cubicle datasets have 27, 28, and 18 objects of interest
respectively. Results generated with 3090 GPU and Intel i9-12900K. Shaded
methods are informed by the list of tasks. First and second-best results are
bolded and underlined, respectively. *Total time for Clio-batch normalized
by number of images; clustering step for batch run once on entire graph
takes approximately 30 seconds and thus not suitable for online use.
better performance metrics while retaining a much smaller
amount of objects (“Objs” column); this validates our claim
that metric-semantic mapping needs to be task-driven. In
particular, in some cases Clio retains an order of magnitude
less objects compared to task-agnostic baselines (cf. with the
number of objects in Clio-Prim, which is essentially Clio
without the Information Bottleneck task-driven clustering).
Second, we observe that Clio largely outperforms baselines
across datasets, with Clio-batch and Clio-online ranking first
or second in all but 2 cases, namely, the IOU and SAcc
metric in the Office dataset. Many of the objects in the Office
dataset (e.g., staplers, bike helmet) are typically detected
as isolated primitives, hence we see that the knowledge
of the task has a lesser impact on this dataset, while still
improving performance across all other metrics. Third, we
observe that Clio is able to run in a fraction of a second and
is around 6 times faster than ConceptGraphs; Khronos and
Clio-Prim also run in real-time, but have sub-par performance
in terms of other metrics. Finally, Clio-batch and Clio-online
have similar performance in most cases. Their performance
difference is due to the fact that Clio-online is executed in
real-time and might drop frames as required to keep up with
the camera image stream. This difference sometimes helps
and sometimes hinders the performance metrics.

As an example of Clio’s ability to use task information to
form adequate scene representations, Fig. 4| shows a subset of
the detected objects from Clio for two different tasks sets. For
a task involving getting all condiment packets, Clio represents
a group of different type condiment packets collectively as
one object, while for an alternative set of tasks requiring
specific types of condiments, Clio represents the pile as
multiple objects distinguished by sauce type, yielding a more
flexible and useful scene representation. Qualitative results
for the large-scale five-floor building dataset are included in
the video attachment.

For both Clio and [9], after creating the scene graph, we
assign the label with the highest cosine similarity to each
of the detected objects. To improve the reliability of CLIP
given the low texture regions of the Replica dataset, we
include global context CLIP vectors by incorporating dense
CLIP features from [63] for Clio. We report accuracy as the
class-mean recall (mAcc) and the frequency-weighted mean
intersection-over-union (f-mIOU). Table [[] shows that Clio
achieves comparable performance to the leading zero-shot
methods, indicating that our task-aware clustering does not
degrade performance on closed-set tasks.

C. Open Vocabulary Places Clustering

Since manually labeling semantic 3D regions is a highly
subjective task, we evaluate the performance of Clio’s regions
via a proxy closed-set task, where Clio is provided the set of
possible room labels for the scenes as tasks. We label rooms
in three datasets: Office, Apartment, and Building. We do not
analyze the Cubicle or Replica [17] as they only consists of
a single room. We set a« = 0 to disable assignment to the
null task as every place is relevant to at least one room label,
and we hold all parameters constant across scenes.

We use the precision and recall metrics presented by [7]
to compare our proposed CLIP embedding vector association
strategy, Clio (average), as well another more naive strategy,
Clio (closest), which uses the embedding vector taken from
the closest image that the place node is still visible from.
In addition, we use the purely geometric room segmentation
approach from Hydra [7] as a point of comparison for the
closed set performance. Results from this comparison are
presented in Table [II} which also includes the F1 score as a
summary statistic. The results in Table |LII| are averaged over
5 trials, and standard deviation of all metrics is reported. We

Dataset Method Precision? Recallt F11
Hydra 0.93 + 0.01 0.87 + 0.01 0.90 &+ 0.00
Clio (closest) 0.87 £ 0.06 0.78 £ 0.02 0.82 £ 0.01
Apartment i average) 098 £ 0.02 054 £000 069 £ 0.00
Hydra 0.61 £ 0.03 0.84 £+ 0.03 0.70 £ 0.01
Office Clio (closest) 0.67 £ 0.03 0.79 £ 0.01 0.72 £ 0.01
Clio (average) 0.73 £+ 0.01 0.80 £ 0.00 0.76 £+ 0.01
Hydra 0.87 £ 0.01 0.71 £ 0.02 0.78 £ 0.01
Buildin Clio (closest) 0.72 £ 0.04 0.82 £ 0.01 0.77 £ 0.02
s Clio (average) 079 £ 0.02 0.84 £ 0.01 0.81 £+ 0.01
TABLE III. Comparison of geometric room segmentation accuracy.

desks and
room shelves

a kitchenette LUIINEHS a kitchenette

a workspace a conference a storage area

coats and a
coat-rack

Fig. 5. Qualitative examples of places clustering. The first figure shows
regions that result from clustering by task prompts resembling room category
labels. The second figure shows regions that result from clustering by task
prompts that are a mix of potential rooms and objects.

note that our chosen association strategy outperforms both the
purely geometric approach of Hydra [7] and the more naive
Clio (closest) for the Office and Building scene, but performs
relatively poorly in terms of F1 score in the Apartment.
This is due to the nature of the scenes; the Office and the
Building scene contain labeled open floor-plan rooms that
require semantic knowledge to be detected (e.g., a kitchenette
in the Office scene or stairwells in the Building scene). The
Apartment primarily contains geometrically distinct rooms,
which are straightforward to segment with the geometric
approach in [7], and are instead over-segmented by Clio,
as evident from the high precision but low recall of our
method. On the other hand, semantically similar regions
that are connected, as present in the Office, lead to under-
segmentation and lower recall compared to Hydra [7].

Fig. [B] qualitatively demonstrates Clio’s capability to pro-
duce task-relevant regions on the Office scene. We compare
two different granularities of tasks; the first is similar to the
provided room labels in the closed-set proxy evaluation while
the second is much more granular and object-driven. The
resulting regions reflect this difference in granularity despite
being produced by Clio using the same set of parameters.
More visualizations supporting the meaningfulness of Clio’s
region clustering are provided in Appendix [J}

D. Online Evaluation on Spot

To demonstrate the real-time use of Clio for robotics, we
conduct mobile manipulation experiments using a Boston
Dynamics Spot quadruped robot equipped with an arm and
gripper. During the experiments, the robot constructs a map
with Clio in real-time while exploring a scene, and then is
tasked to navigate to and pick up objects matching a provided
natural language prompt (e.g., Fig. [2). We use the onboard
front-left and front-right RGB-D cameras and odometry from
Spot as inputs to Clio. We run Clio on a laptop capable of
being mounted on the robot that is equipped with an Intel
19-13950HX CPU with 24 cores, 64GB of RAM, and an
NVIDIA GeForce RTX 4090 Laptop GPU.

For these experiments, a separate process (running in
parallel to Clio) allows the user to input a natural language
command to pickup or drop-off an object. The command
is embedded using CLIP and used to select the object in
the scene graph with the highest cosine similarity to the
prompt. Then we compute the shortest path through the place
nodes to the target object via Dijkstra’s algorithm. We smooth
and follow the resulting trajectory to navigate to the object

| Gy R Success (retry): 14.3%
:38.1%

Success: 71.4%

Spot Failure: 19.0%
Partial Success: 33.3%
Detection Failure: 9.5%
Planning Issue: 23.8%
I Wrong Object: 4.8%

Failure: 28.6% Navigation Issue: 14.3%

Fig. 6. Breakdown of grasp results for the 21 object grasp attempts
performed by Spot. “Wrong object” refers to the wrong Clio object being
selected, “Detection failure” refers to the selected image coordinates for
grasping not corresponding to the target object, “Navigation issue” refers
to the trajectory resulting in a pose where the object was not visible, “Spot
Failure” refers to the Spot API failing to pick up a correctly identified grasp,
and “Success (retry)” refers to the Spot API grasp command failing to pick
up the object on the first attempt but succeeding after repeated attempts.
by commanding Spot to sequentially navigate to sampled
waypoints. After reaching the target object, we select the
pixel centroid from the current input semantic segments with
the highest cosine similarity to the prompt embedding as a
grasp candidate as input to the Spot API grasp command.
We perform 7 trials of a mobile manipulation experiment
where we use Clio and our planner described above to grasp
a variety of 0bjectsE| Each trial consists of a mapping phase,
where we teleoperate Spot to observe all the objects in the
scene (consisting of two room-like areas joined by a hallway).
After the mapping phase, we move Spot to a starting location
and then command grasps of 3 random target objects for
a total of 21 unique grasp attempts. Clio runs the entire
time during the trial, and no post-processing of the 3D scene
graph is performed. We present a breakdown of the 21 trials
in Fig. @ Overall, we achieve a 57% success rate for the
grasps and a 71% success rate if we disregard the cases where
Spot failed to actually grasp a correctly identified object.
Notably, Clio was only unable to select the correct target
object in the scene graph once (i.e., the “Wrong Object”
failure category). The video attachment also demonstrates a
pick-and-place experiment with a sequence of 4 pick-and-
place actions over a larger area where Spot is operated with
the laptop onboard. These experiments together emphasize
the suitability of Clio for use onboard real robotic platforms.

VII. LIMITATIONS

Despite the encouraging experimental results, our approach
has multiple limitations. First, while our method is zero-shot
and is not bound to any particular foundation model, it does
inherit some limitations from the foundation models used in
implementation such as strong vulnerability to prompt tuning.
For instance, in Appendix [H] we discuss how performance
is affected by different CLIP models. Second, we currently
average CLIP vectors when merging two primitives, but it
would be interesting to consider more grounded ways to
combine their semantic descriptions. Third, Clio can over-
cluster if two primitives individually have similar cosine
similarity to the same task but somehow the task requires
distinguishing them as separate objects (e.g., we might want
to distinguish a fork from a knife when setting the table,
even though they might have similar relevance to the task).
Finally, we currently consider relatively simple, single-step

2We consider 7 different objects for grasping: a rope dog toy, a snorkel,
a stuffed animal, a backpack, a measuring tape, a water bottle, and two
different colored plastic cones. Trials are performed with the laptop off-board
and connected to Spot via WiFi due to logistical challenges (e.g., battery
life) inherent in repeated manipulation trials, while the video attachment
shows an uninterrupted experiment with onboard computation.

tasks. However, it would be desirable to extend the proposed
framework to work with a set of high-level, complex tasks.

VIII. CONCLUSION

We have presented a task-driven formulation for 3D
metric-semantic mapping, where a robot is provided with
a list of natural language tasks and has to create a map
whose granularity and structure is sufficient to support those
tasks. We have shown that this problem can be expressed
in terms of the classical Information Bottleneck and have
developed an incremental version of the Agglomerative Infor-
mation Bottleneck algorithm as a solution strategy. We have
integrated the resulting algorithm in a real-time system, Clio,
that constructs a 3D scene graph —including task-relevant
objects and regions— as the robot explores the environment.
We have also demonstrated Clio’s relevance for robotics, by
showing it can be executed in real-time onboard a Spot robot
and support pick-and-place mobile manipulation tasks.

ACKNOWLEDGEMENT

The authors would like to acknowledge Bryan Zhao for
his help in prototyping an earlier version of code to perform
trajectory planning on 3D scene graphs for a prior project.

REFERENCES

[1] S. Soatto and A. Chiuso, “Visual representations: Defining properties and deep
approximations,” in Intl. Conf. on Learning Representations (ICLR), 2016.

[2] C. Cadena et al., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robotics, vol. 32, no. 6,
pp- 1309-1332, 2016, arxiv preprint: 1606.05830, (pdf),

[3] L Armeni, Z. He, J. Gwak, A. Zamir, M. Fischer, J. Malik, and S. Savarese, “3D
scene graph: A structure for unified semantics, 3D space, and camera,” in Intl.
Conf. on Computer Vision (ICCV), 2019, pp. 5664-5673.

[4] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3D dynamic scene
graphs: Actionable spatial perception with places, objects, and humans,” in
Robotics: Science and Systems (RSS), 2020, (pdf), (media), (video). [Online].
Available: http://news.mit.edu/2020/robots-spatial-perception-0715

[51 S. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “SceneGraphFusion:
Incremental 3D scene graph prediction from RGB-D sequences,” in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2021.

[6] N. Hughes, Y. Chang, and L. Carlone, “Hydra: a real-time spatial perception

engine for 3D scene graph construction and optimization,” in Robotics: Science

and Systems (RSS), 2022, (pdf).

N. Hughes, Y. Chang, S. Hu, R. Talak, R. Abdulhai, J. Strader, and L. Carlone,

“Foundations of spatial perception for robotics: Hierarchical representations

and real-time systems,” Intl. J. of Robotics Research, 2024, arXiv preprint:

2305.07154, (pdf) (video).

K. Jatavallabhula et al., “Conceptfusion: Open-set multimodal 3d mapping,” in

Robotics: Science and Systems (RSS), 2023.

[91 Q. Gu et al., “Conceptgraphs: Open-vocabulary 3d scene graphs for perception

and planning,” 2023.

A. Kirillov et al., “Segment anything,” arXiv:2304.02643, 2023.

A. Radford et al., “Learning transferable visual models from natural language

supervision,” in Intl. Conf. on Machine Learning (ICML), ser. Proceedings of

Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR,

18-24 Jul 2021, pp. 8748-8763.

A. M. Treisman and G. Gelade, “A feature-integration theory of attention,” in

Cognitive Psychology, vol. 12, 1980, pp. 97-136.

N. Tishby, F. Pereira, and W. Bialek, “The information bottleneck method,” Proc.

of the Allerton Conference on Communication, Control and Computation, vol. 49,

07 2001.

N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in Advances in

Neural Information Processing Systems (NIPS), ser. NIPS’99, 1999, pp. 617-623.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in Advances in

Neural Information Processing Systems (NIPS), 2023.

[7

8

[10]
[11]

[12]

[13]

[14]

[15]

[16] OpenAl, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.08774

[17] J. Straub et al., “The Replica dataset: A digital replica of indoor spaces,” arXiv
preprint arXiv:1906.05797, 2019.

[18] M. Oquab et al., “Dinov2: Learning robust visual features without supervision,”
arXiv preprint arXiv:2304.07193, 2023.

[19] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z. Chen, and C. Gan, “3d-llm:
Injecting the 3d world into large language models,” arXiv, 2023.

[20] C.Zhao, Y. Shen, Z. Chen, M. Ding, and C. Gan, “Textpsg: Panoptic scene graph
generation from textual descriptions,” 2023.

[21] M. Chang et al., “Goat: Go to any thing,” arXiv preprint arXiv:2311.06430, 2023.

[22] S. Garg, “Robohop: Segment-based topological map representation for open-

world visual navigation,” in 2nd Workshop on Language and Robot Learning:
Language as Grounding, 2023.

[23]

[24]

[25]

[26]

[27]
[28]

[29]
[30]
[31]

[32]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps for robot
navigation,” in IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE,
2023, pp. 10608-10615.

R. Firoozi et al., “Foundation models in robotics: Applications, challenges, and
the future,” 2023.

L. Bianchi, F. Carrara, N. Messina, C. Gennaro, and F. Falchi, “The devil is in the
fine-grained details: Evaluating open-vocabulary object detectors for fine-grained
understanding,” 2023.

M. Yuksekgonul, F. Bianchi, P. Kalluri, D. Jurafsky, and J. Zou, “When and why
vision-language models behave like bag-of-words models, and what to do about
it?” arXiv preprint arXiv:2210.01936, 2022.

P. Sharma et al., “A vision check-up for language models,” arXiv preprint
arXiv:2401.01862, 2024.

S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie, “Eyes wide shut? exploring
the visual shortcomings of multimodal 1lms,” arXiv preprint: 2401.06209, 2024.
X. Zhao et al., “Fast segment anything,” 2023.

K. Kim, Y. Oh, and J. C. Ye, “Zegot: Zero-shot segmentation through optimal
transport of text prompts,” 2023.

Z. Zhou, Y. Lei, B. Zhang, L. Liu, and Y. Liu, “Zegclip: Towards adapting clip
for zero-shot semantic segmentation,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 11 175-11 185.

M. Minderer et al., “Simple open-vocabulary object detection,” in European Conf.
on Computer Vision (ECCV). Springer, 2022, pp. 728-755.

S. Liu et al., “Grounding dino: Marrying dino with grounded pre-training for
open-set object detection,” arXiv preprint arXiv:2303.05499, 2023.

B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl, “Language-driven
semantic segmentation,” in Intl. Conf. on Learning Representations (ICLR), 2022.
D. Kim, N. Kim, C. Lan, and S. Kwak, “Shatter and gather: Learning referring
image segmentation with text supervision,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2023.

R. Huang et al., “Segment3d: Learning fine-grained class-agnostic 3d segmenta-
tion without manual labels,” arXiv preprint arXiv:2312.17232, 2023.

R. Roberts, D.-N. Ta, J. Straub, and F. Dellaert, “Saliency detection and model-
based tracking: a two part vision system for small robot navigation in forested
environment,” in Intl. Soc. Opt. Eng. (SPIE), 2012.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
arXiv preprint arXiv:2003.08934, 2020.

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3d gaussian splatting
for real-time radiance field rendering,” ACM Transactions on Graphics, vol. 42,
no. 4, July 2023.

J. Kerr, C. Kim, K. Goldberg, A. Kanazawa, and M. Tancik, “LERF: Language
embedded radiance fields,” in iccv, 2023.

M. Qin, W. Li, J. Zhou, H. Wang, and H. Pfister, “Langsplat: 3d language gaussian
splatting,” arXiv preprint arXiv:2312.16084, 2023.

K. Blomgqyvist, F. Milano, J. J. Chung, L. Ott, and R. Siegwart, “Neural implicit
vision-language feature fields,” arXiv preprint arXiv:2303.10962, 2023.

C. M. Kim, M. Wu, J. Kerr, K. Goldberg, M. Tancik, and A. Kanazawa, “Garfield:
Group anything with radiance fields,” arXiv preprint arXiv:2401.09419, 2024.
F. Taioli, F. Cunico, F. Girella, R. Bologna, A. Farinelli, and M. Cristani,
“Language-enhanced rnr-map: Querying renderable neural radiance field maps
with natural language,” in Intl. Conf. on Computer Vision (ICCV), 2023, pp.
4669-4674.

S. Peng, K. Genova, C. M. Jiang, A. Tagliasacchi, M. Pollefeys, and
T. Funkhouser, “Openscene: 3d scene understanding with open vocabularies,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2023.

H. Ha and S. Song, “Semantic abstraction: Open-world 3d scene understanding
from 2d vision-language models,” in Conference on Robot Learning (CoRL),
2022.

J. Wang, J. J. Tarrio, L. de Agapito, P. F. Alcantarilla, and A. Vakhitov,
“Semlaps: Real-time semantic mapping with latent prior networks and quasi-
planar segmentation,” IEEE Robotics and Automation Letters, vol. 8, pp. 7954—
7961, 2023.

S. Koch, P. Hermosilla, N. Vaskevicius, M. Colosi, and T. Ropinski, “Lang3DSG:
Language-based contrastive pre-training for 3D Scene Graph prediction,” arXiv
e-prints, p. arXiv:2310.16494, Oct. 2023.

K. Yamazaki et al., “Open-fusion: Real-time open-vocabulary 3d mapping and
queryable scene representation,” arXiv preprint arXiv:2310.03923, 2023.

C. Kassab, M. Mattamala, L. Zhang, and M. Fallon, “Language-extended indoor
slam (lexis): A versatile system for real-time visual scene understanding,” arXiv
preprint arXiv:2309.15065, 2023.

H. Chang et al., “Context-aware entity grounding with open-vocabulary 3d scene
graphs,” arXiv preprint arXiv:2309.15940, 2023.

A. Takmaz, E. Fedele, R. W. Sumner, M. Pollefeys, F. Tombari, and F. Engel-
mann, “Openmask3d: Open-vocabulary 3d instance segmentation,” arXiv preprint
arXiv:2306.13631, 2023.

S. Gordon, H. Greenspan, and J. Goldberger, “Applying the information bot-
tleneck principle to unsupervised clustering of discrete and continuous image
representations,” in Intl. Conf. on Computer Vision (ICCV), 2003, pp. 370-377
vol.1.

Y. Wang, T. G. Rudner, and A. G. Wilson, “Visual explanations of image-
text representations via multi-modal information bottleneck attribution,” arXiv
preprint arXiv:2312.17174, 2023.

D. T. Larsson, D. Maity, and P. Tsiotras, “Information-Theoretic Abstractions
for Planning in Agents With Computational Constraints,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7651-7658, Oct. 2021.

, “Q-Tree Search: An Information-Theoretic Approach Toward Hierarchical
Abstractions for Agents With Computational Limitations,” IEEE Trans. Robotics,
vol. 36, no. 6, pp. 1669-1685, Dec. 2020.

https://arxiv.org/abs/1606.05830
https://arxiv.org/pdf/2002.06289.pdf
http://news.mit.edu/2020/robots-spatial-perception-0715
https://www.youtube.com/watch?v=SWbofjhyPzI&feature=youtu.be
http://news.mit.edu/2020/robots-spatial-perception-0715
https://arxiv.org/pdf/2201.13360.pdf
https://arxiv.org/pdf/2305.07154.pdf
https://youtu.be/AEaBq2-FeY0
https://doi.org/10.48550/arXiv.2303.08774

[57] C.Parameshwara et al., “Towards visual foundational models of physical scenes,”
2023.

[58] A. Eftekhar, K.-H. Zeng, J. Duan, A. Farhadi, A. Kembhavi, and R. Krishna,
“Selective visual representations improve convergence and generalization for
embodied ai,” 2023.

[59] L. Mur-Labadia, R. Martinez-Cantin, and J. J. Guerrero, “Bayesian deep learning
for affordance segmentation in images,” arXiv preprint arXiv:2303.00871, 2023.

[60] L. Mur-Labadia, J. J. Guerrero, and R. Martinez-Cantin, “Multi-label affordance
mapping from egocentric vision,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2023, pp. 5238-5249.

[61] S. Soatto and A. Chiuso, “Visual scene representations: sufficiency, minimal-
ity, invariance and deep approximation,” in ICLR Workshop, ArXiv version:
1411.7676, San Diego, CA, 2014.

[62] L. Schmid, M. Abate, Y. Chang, and L. Carlone, “Khronos: A unified approach for
spatio-temporal metric-semantic slam in dynamic environments,” arXiv preprint:
2402.13817, 2024, (pdf).

[63] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola, “Distilled feature
fields enable few-shot language-guided manipulation,” in 7th Annual Conference
on Robot Learning, 2023.

[64] G. Tlharco et al., “Openclip,” Jul. 2021. [Online]. Available: https://doi.org/10.
5281/zenodo.5143773

APPENDIX
A. Agglomerative Information Bottleneck

Algorithm [I] provides the pseudocode for the Agglomer-
ative Information Bottleneck [14] discussed in Section
The goal of Algorithm [I]is to find an optimal hard clustering
assignment p(Z|z) that compresses an initial signal X into a
compressed signal X while preserving relevant information
about a relevancy variable Y (which in our case is a set of
tasks). The algorithm runs until a set threshold ¢ is reached
which is used to regulate the amount of compression with
respect to preserving information about Y.

Algorithm 1 Agglomerative Information Bottleneck

Input: 4, initial primitives {z1,...aon} = X, task-list Y

Output: p(Z|x): hard assignment of primitives to clusters
% Initialization:

. set p(y|z) using eq. ()

T;=x; Vr; € X

: p(&;) = p(x;) = 1/N % uniform distribution

s p(ylE) = p(ylei), Yy € Y

: Compute d;; using eq. for all ¢+ =
ji=1,...,]Y]
% Main loop:

6: while § < do

7 dop = I’Ilil’lij (d”)

8

9

m.pm!_)»—

1,...,|X| and

p() = P(@"(a) +)§(9(Cb) :
=\ _ p(Ta,y)+p(ny
p(y|z) = 5= Vy €Y '
100 p(Zlz)=1if x € £,UTp, 0 otherwise Va € X
11: compute § from eq. (3) for batch or eq. (6) for online
12: end while

13: return p(Z|z)

B. Incremental Agglomerative IB

As mentioned in Section we form an incremental
version of the Agglomerative IB to run Clio online. For
this, we run Agglomerative IB on each individual connected
component ¢ using a re-weighted definition of (k). Assum-
ing that p(x) is a uniform distribution we can write the
incremental equivalent of d(k) as:

_ X (X Y) = H((X)w-13Y)
X I(X;Y)

dc (k) (6)

where X, are the primitives in component c. This gives
the exact same result as Agglomerative IB on the full
graph which lets us implement the stopping condition of
Algorithm [I] across each connected component Therefore,
we can solve Agglomerative IB in an incremental manner
by only performing Agglomerative IB on the subset of
connected components of the graph that are affected by
new measurements using Algorithm Here, when Clio
receives new primitives X, ..,, we add the primitives to their
respective sub-graphs and for each of the sub-graphs that
received new primitives we run Agglomerative IB until the
stopping condition from eq. (6) is met, repeating as new
primitives are received.

Algorithm 2 Incremental Agglomerative Information Bottle-
neck

Input: ¢ € C {set of connected sub-graphs}
Xnew {newly received primitives}
Output: p(Z|z): hard assignment of primitives to clusters
1: C < X,cw {update corresponding sub-graphs with new
primitives }
2: for each ¢ in C do
3: if ¢ updated then ~
4: update p(Z|z),z € X., & € X, with Algorithm EI
using stop condition from eq. (6)
end if
end for
return p(Z|z)

N W

Here we provide the proof to the expression in eq. (6).
Given a connected component ¢ we want to cluster X, the
primitives within the component, into clusters X, indepen-
dent of the rest of the graph. Let us also define o for the
primitives not in ¢ such that X .UX, = X and X.NX, = &.
Since P(X) is uniformly distributed,

HXY) = 7) og2U2)y
cl %,

| X p(y)

Let us define A such that

1 p(ylz)
] ;p(ylx) 80y ®)
this allows us to rewrite 7(X;Y") as follows:
1
106:Y) = 3 p(ule) oa(PA7)) 4 A
| X1 4 p(y)
Xl v
“elrxv)y+a
X ()

since we are only clustering in c,

~ X
1Y) =

(X)) Y) +A (10)

Substituting in for I(X;;Y) and I(Xj_1;Y) in @), we
obtain our re-weighted expression in (6).

https://arxiv.org/pdf/2402.13817.pdf
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

(c) Cubicle Scene

Fig. 7. Custom open-vocabulary 3D datasets of an office floor, apartment,
and cubicle.

C. Office, Apartment, and Cubicle Datasets

For each of the office, apartment, cubicle and building
datasets, we collect RGB-D images with an Intel RealSense
D455. A visualization of the scenes are shown in Fig. [7}

A visualization of the resulting scene graphs are also
shown in Fig. [§]

D. Office Scene Task List

Here we provide a list of tasks used during mapping and
querying of the office scene. The number of objects assigned
to each task is included in parentheses. There are 27 distinct
objects in total.

1) get a black Expo marker (2)

2) get a painting of a tractor (1)

3) move rack of magazines (1)

4) get my Signals and Systems textbook (1)
5) something to cut paper (3)

6) get black glasses (1)

7) get box of tissues (2)

8) get my gloves (1)

9) get orange knit hat to keep my head warm (1)
10) get rock with holes (1)

11) something to put on a hot dog (1)

12) get can of tuna (1)

13) grab black backpack (1)

14) grab teal backpack (1)

15) move the bin of clothes (1)

16) move the printer (3)

17) organize the pile of red dishes and plates (1)
18) get stapler (2)

19) get a yellow rubber duck (1)

20) organize the pile of hardware tools (1)

E. Apartment Scene Task List

Here we provide a list of tasks used during mapping and
querying of the apartment scene. The number of objects
assigned to each task is included in parentheses. There are
28 distinct objects in total.

1) get can of WD-40 (1)

2) clean toaster (1)

3) find deck of cards (1)

4) find pile of hats (1)

5) find spice bottles (1)

6) get a kitchen knife (3)

7) get pocket knife (1)

8) get bike helmet (1)

9) get bottle of tide (1)
10) get cast iron skillet (1)
11) get hair dryer (1)

12) get hairbrush (1)

13) get notebooks binders (1)
14) get pizza cutting wheel (1)
15) get soy sauce (1)

16) get toolbox (1)

17) get violin case (1)

18) move pile of clothes (1)
19) move rack of dishes (1)
20) bring me a pillow (2)
21) get alarm clock (1)

22) get all chocolate snacks (1)
23) get chapstick (1)

24) get first aid kit (1)

25) move popcorn bags (1)

F. Cubicle Scene Task List

Here we provide a list of tasks used during mapping
and querying of the cubicle scene. All tasks here have one
corresponding object. There are 18 objects in total.

1) get condiment packets
2) get drink cans

3) get eyeglasses

4) get glasses case

5) get grey jacket

6) get my silver water bottle
7) get notebooks

8) get mudstone rock

9) tool to cut paper
10) get sticky notes
11) get textbooks

12) get waste bins

13) move hats

14) clean backpacks

15) get red crockery

16) get hardware drill

a hallway or -
a workspace a kitchenette

(a) Office Scene

. a dresser and ERe [N
a kitchen e dnaives null task

(b) Apartment Scene

Fig. 8. Example 3D scene graphs for the self-collected Office, Apartment and Cubicle datasets. Scene graphs layers are drawn in the following order:
objects (as cubes), places (as spheres) and regions (as cubes). The bounding box of each object is drawn below, and a footprint is drawn for each place
primitive to highlight the 2D positions of the nodes. Places and regions are colored by their closest task as shown in the legend below each figure.

17) get quartz rock
18) get tape measure

G. Building Scene Task List

Here we provide a list of tasks used during mapping and
querying of the building scene. Note that some tasks have
many occurrences of relevant items in the dataset.

1) get Lysol

2) get vacuum cleaner

3) get fire extinguisher

4) get yellow wet floor sign
5) get clamps

6) get epoxy and resin bottles
7) get roles of tape

8)

9
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)

a conference

oo null task

a desk and floorspace
shelves with chairs

(c) Cubicle Scene

locate screwdrivers
move jet engine

get earmuffs

move co2 tanks
check office printer
get books

get basketball

refill dish soap bottles
get trashbins

move pink foam
stack blue foam
check microwave
clean sink

get bottles of cleaner

22) stuff with MIT on it
23) get tape measure
24) grab airplane wing
25) clean stairs

H. Open Vocabulary Tasks on OpenCLIP model

Here we repeat the experiments from Table [I] but this time
use a different CLIP model (ViT-H-14 from OpenCLIP [64])).
Due to the higher compute requirements for this model we
do not run Clio-online and instead only run Clio-batch.
We found that this model tends to produce higher cosine
similarity scores between image primitives and tasks for both
relevant and irrelevant pairings, and thus we increase the null
task value and cosine similarity threshold («) to 0.26 for Clio,
Khronos-task, and ConceptGraphs-task.

Scene Method I0UT SAccT RAcct Sprect Rprect F11 Objs| TPF(s)l

CG 0.06 056 089 039 052 065 231 3.15
. Khronos [62] 0.18 0.83 083 0.16 017 028 623 1.16
5 Clio-Prim 020 072 089 015 015 025 956 1.14
£ CG-thres 0.06 056 089 043 057 070 49 3.15
© Khronos-thres 0.18 0.83 0.83 0.19 020 032 195 1.16
Clio-batch 0.17 078 094 028 031 047 96 1.16"
CG 0.08 035 059 023 030 040 434 1233
Khronos [62] 0.15 0.63 0.63 023 023 034 1202 1.15
8 Clio-Prim 016 0.63 063 020 021 031 1717 1.13
% CG-thres 0.07 026 052 0.16 025 034 257 1233
Khronos-thres 0.14 0.59 059 024 024 034 334 1.15
Clio-batch 0.11 059 078 035 045 057 213 115"
CG 0.08 030 052 0.13 020 029 908 3.54
2 Khronos 0.09 035 059 0.1 0.16 025 1081 1.03
£ Clio-Prim 013 048 069 0.12 0.16 026 1482 0.99
£ CG-thres 0.06 031 055 039 055 055 68 3.54
S Khronos-thres 0.09 035 0.59 0.11 0.17 0.26 363 1.03
Clio-batch 0.10 038 0.69 0.16 028 040 222 1.01*

TABLE IV. Results of locating objects of interest via open-set task query
for three datasets. We include results for OpenCLIP ViT-H-14. The office,
apartment, and cubicle datasets have 27, 28, and 18 objects of interest
respectively. Results generated with 3090 GPU and Intel i9-12900K. Shaded
methods are informed by the list of tasks. First and second-best results are
bolded and underlined, respectively. *Total time for Clio-batch normalized
by number of images; clustering step for batch run once on entire graph
takes approximately 30 seconds and thus not suitable for online use.

1. Closed-Set Places Clustering Task List

For the experiment shown in Table [Tl we report the
task prompts used for each scene. Note that we prefix each
categorical prompt with “an image of ...” to mimic similiar
closed-set experiments (e.g., Replica).

For the Apartment scene, we used

1) an image of a kitchen

2) an image of a bedroom

3) an image of a doorway

For the Office scene, we used

1) an image of a computing workspace

2) an image of a hallway or corridor

3) an image of a kitchenette

4) an image of a conference room

For the Building scene, we used

1) an image of a student lounge

2) an image of a kitchnette or utility closet
3) an image of a classroom

4) an image of a conference room

5) an image of a stairway

6) an image of a workshop or machine shop
7) an image of an aircraft hangar of garage

J. Places Clustering Results Visualization

We include an additional visualization of clustering places
into relevant regions on the office dataset by showing exam-
ple figures of a subset of the regions in Fig. [9| to supporting
the meaningfulness of Clio’s region clustering.

a conference
room

a kitchenette QIVIREGHS

a workspace

desks and
shelves

a storage area

blue and black [NSNASEN

a kitchenette BEISEISERT] null task
a table

coat-rack

Fig. 9. Visualization of region clustering results on office dataset with
example images from regions included for two different task lists.

	Introduction
	Related Work
	Problem Formulation: Task-Aware 3D Scene Understanding
	Task-Driven Clustering
	Clio: Real-time Task-Driven Open-Set 3D Scene Graphs
	Clio Frontend
	Clio Backend

	Experiments
	Open-Set Object Clustering Evaluation
	Closed-Set Object Evaluation
	Open Vocabulary Places Clustering
	Online Evaluation on Spot

	Limitations
	Conclusion
	Appendix
	Agglomerative Information Bottleneck
	Incremental Agglomerative IB
	Office, Apartment, and Cubicle Datasets
	Office Scene Task List
	Apartment Scene Task List
	Cubicle Scene Task List
	Building Scene Task List
	Open Vocabulary Tasks on OpenCLIP model
	Closed-Set Places Clustering Task List
	Places Clustering Results Visualization

