
Resampling-free Particle Filters in High-dimensions

Akhilan Boopathy1, Aneesh Muppidi2, Peggy Yang1, Abhiram Iyer1, William Yue1, Ila Fiete1

Abstract— State estimation is crucial for the performance
and safety of numerous robotic applications. Among the suite
of estimation techniques, particle filters have been identified as
a powerful solution due to their non-parametric nature. Yet, in
high-dimensional state spaces, these filters face challenges such
as ’particle deprivation’ which hinders accurate representation
of the true posterior distribution. This paper introduces a
novel resampling-free particle filter designed to mitigate particle
deprivation by forgoing the traditional resampling step. This
ensures a broader and more diverse particle set, especially vital
in high-dimensional scenarios. Theoretically, our proposed filter
is shown to offer a near-accurate representation of the desired
posterior distribution in high-dimensional contexts. Empirically,
the effectiveness of our approach is underscored through a
high-dimensional synthetic state estimation task and a 6D pose
estimation derived from videos. We posit that as robotic systems
evolve with greater degrees of freedom, particle filters tailored
for high-dimensional state spaces will be indispensable.

I. INTRODUCTION

State estimation remains at the heart of many robotic
applications, from autonomous navigation to manipulation
tasks. Precise and timely estimates of the system’s state are
critical to ensure the safe and effective operation of robotic
systems. Among state estimation techniques, particle filters
have emerged as a particularly potent tool [1]. Their non-
parametric nature allows them to flexibly model a wide
variety of distributions, making them ideal for capturing the
intricacies of complex robotic systems.

However, using particle filters in high-dimensional state
spaces has specific challenges. One issue is the so-called
’particle deprivation’ or ’sample impoverishment’ [2]. This
refers to the scenario where large regions of the state space
lose all representation during particle resampling, making
it challenging to recover density in these regions later if
necessary. In high-dimensional spaces, particle deprivation
becomes increasingly problematic, often resulting in a parti-
cle filter that does not sufficiently represent the true posterior
distribution.

In light of these challenges, this paper presents three
primary contributions:

1) We introduce a novel resampling-free particle filter that
mitigates the issue of particle deprivation. By avoiding
the conventional resampling step, our approach ensures
a more diverse set of particles, enhancing representa-
tion in high-dimensional spaces.

2) On the theoretical front, we rigorously show that our
proposed particle filter provides a close approximation
to the desired posterior distribution, even when parti-
cles lie in high-dimensional state spaces.

1MIT, 2Harvard

3) We empirically demonstrate the efficacy of our method
on a high-dimensional synthetic state estimation task
and 6D pose estimation from videos.

This paper aims to bridge the gap between particle filter
theory and its applicability in high-dimensional robotic sys-
tems. By presenting a resampling-free approach, we hope to
pave the way for more robust state estimation methods in
complex robotic applications.

II. RELATED WORK

Particle filters have gained immense popularity in state
estimation tasks due to their flexibility in handling nonlinear
and non-Gaussian systems [1], [3]. More recent work has
further expanded the applicability of particle filters to sce-
narios in which models of the environment are not available
by learning the components of a particle filter [4], [5], [6].

An integral step in both traditional and modern particle
filter algorithms is resampling, which ensures that particles
with low weights are replaced by replicating particles with
high weights [7]; resampling aims to increase the number
of particles in areas intended to have high density. How-
ever, frequent resampling can lead to particle deprivation, a
phenomenon where the diversity of particles diminishes over
time, leaving the filter susceptible to divergence from the true
state [2], [8].

Recognizing these challenges, researchers have explored
resampling-free particle filters to mitigate the problem of
particle deprivation [9], [10]. An underlying feature of these
methods is the use of deterministic variational inference
techniques that allow for estimation of the posterior distri-
bution [11]. These methods have shown potential in main-
taining particle diversity over extended periods of opera-
tion. However, unlike traditional particle filters, for which
convergence guarantees have been extensively studied [12],
[13], [14], resampling-free particle filters lack theoretical
guarantees regarding their performance, especially in high-
dimensional state spaces.

Our work addresses this gap, offering theoretical insights
into the performance of resampling-free particle filters in
high-dimensional scenarios and providing empirical evidence
to support these claims. While building upon the foundations
laid by previous works, we introduce key innovations that
set our method apart, ensuring robust state estimation even
in complex robotic systems.

III. DESIGNING A RESAMPLING-FREE PARTICLE FILTER

Here, we develop a resampling-free particle filter by de-
signing a particular flow over particles that enables particles
to track the true density we wish to estimate. We then prove

ar
X

iv
:2

40
4.

13
69

8v
1

 [
cs

.R
O

]
 2

1
A

pr
 2

02
4

that our method converges to the true density even in high-
dimensional state spaces. Finally, we demonstrate that our
method is computationally efficient in time and memory.

A. Using Flows to Track Posterior Density

a) Setup: We consider a continuous-time hidden
Markov model with hidden state x ∈ Rd and observations yt,
where t denotes time and d is the state space dimensionality.
For our presentation, we consider a continuous-time setting,
but our analysis and algorithm apply to discrete-time as well.
Let Pt(y|x) denote the probability density of observing y at
time t such that the probability of observing a constant y
in an interval from t1 to t2 is e

∫ t2
t1

logPt(y|x)dt. Denote the
negative log-likelihood of observing yt at time t under state
x as:

Lt(x) = − logPt(yt|x) (1)

We may interpret Lt(x) as a loss function. We wish to find
the posterior distribution pt(x) over x given all observations
from y0 to yt. By Bayes’ rule, the posterior updates as:

pt(x) + dpt(x) ∝ pt(x)Pt(yt|x)dt (2)

where the constant of proportionality is set such that pt(x)+
dpt(x) integrates to 1. Intuitively, this equation states that
the posterior after time dt is proportional to both the prior
distribution pt(x) and the likelihood of observing the data
yt under state x for an interval dt. For small dt, using
the definition of Pt(y|x), this likelihood is expressed as
e
∫ t+dt
t

logPt(yt|x)dt = edt logPt(yt|x) = Pt(yt|x)dt. After
taking log of both sides and dividing by dt, this yields an
expression for the time derivative of the log posterior:

d

dt
log pt(x) = Zt − Lt(x) (3)

where Zt is a normalizing constant. Note that for pt(x) to
always remain a probability distribution, d

dt

∫
pt(x)dx = 0,

which implies:∫
d

dt
pt(x)dx =

∫
pt(x)

d

dt
log pt(x)dx

=

∫
pt(x)(Zt − Lt(x))dx = 0 (4)

Thus,
Zt = Ex∼pt

[Lt(x)] (5)

For notational convenience, we define a normalized loss
L̃t(x) = Lt(x) − Zt representing the loss at x relative to
the losses on the full density pt(x).

b) Defining a Vector Field: Next, we design a vector
field Ft ∈ Rd → Rd that when applied to posterior pt,
will yield a flow that tracks the posterior over time. We
will first assume Ft yields a flow correctly tracking pt, then
select a specific Ft satisfying this property. The continuity
equation [15] can be used to relate vector fields to the
changes in density they induce:

ṗt = −∇ · (ptFt) (6)

where ∇· denotes divergence and ˙ denotes time derivative.
We may rewrite the left-hand side as:

pt
d

dt
log pt = −∇ · (ptFt) (7)

Substituting in Eqn 3:

ptL̃t = ∇ · (ptFt) (8)

Now, suppose there exists a time-dependent potential func-
tion ψt ∈ Rd → R such that its gradient with respect to x
equals ptFt: ∇ψt = ptFt. Then:

ptL̃t = ∇2ψt (9)

Note that ∇2 represents the Laplacian operator. We may
solve for ψt by inverting the Laplacian as:

ψt = −[ptL̃t] ⋆ K (10)

where ⋆ denotes convolution and K ∈ RP → R is a kernel
defined as [16]:

K(∆x) = C||∆x||2−d
2 (11)

where C =
Γ(d

2+1)

d(d−2)π
d
2

and Γ(·) denotes the gamma function.

Then, the gradient of ψ can be expressed as:

∇ψt = −∇[ptL̃t] ⋆ K (12)

The resulting Ft can be written as:

Ft = −∇[ptL̃t] ⋆ K

pt
(13)

If vector field Ft is applied to density pt, this yields a flow
on pt that exactly tracks the true posterior as specified by
Bayes’ rule (as specified by Eqn 3). Note that there may be
other Ft satisfying this property; however, this is the unique
vector field such that ptFt can be expressed as the gradient
of a function ψt.

c) Applying the Flow to Particles: In practice, we
cannot always exactly model the posterior density pt since
it often may not take an easily parametrically variable
form. Instead, we use a set of n particles x1t , x

2
t , ...x

n
t to

approximate the posterior density:

pt(x) ≈
1

n

∑
i

δ(x− xit) (14)

where δ(·) denotes the δ function. From Eqn 13, note that
ptFt may be written as:

ptFt = −∇[ptL̃t] ⋆ K (15)

Plugging in the particle approximation:

pt(x)Ft(x) = −∇

[
1

n

∑
i

δ(x− xit)L̃t(x)

]
⋆ K (16)

Applying the convolution on the right-hand side:

pt(x)Ft(x) = −∇

[
1

n

∑
i

L̃t(x
i
t)K(x− xit)

]
(17)

Intuitively, pt(x)Ft(x) corresponds to the movement of prob-
ability density at x. We would like to set the movement of
each particle xjt such that its movement captures the local
value of pt(x)Ft(x) around xtj , thus capturing the correct
overall movement of probability density. In other words, we
would like to set Ft(x

j
t) such that:

Ft(x
j
t) = nEζ [pt(x

j
t + ζ)Ft(x

j
t + ζ)] (18)

where ζ represents a random variable taking values close to
0. Using our expression for pt(x)Ft(x):

Ft(x
j
t) = Eζ

[
−∇xj

t

[∑
i

L̃t(x
i
t)K(xjt − xit + ζ)

]]

= −∇xj
t

[∑
i

L̃t(x
i
t)Eζ [K(xjt − xit + ζ)]

]
Finally, we simply approximate Eζ [K(xjt − xit + ζ)] as:

Eζ [K(xjt − xit + ζ)] ≈ C(||xjt − xit||22 + γ2)
2−d
2 (19)

where γ is a small constant added to approximate the fact
that xjt − xit + ζ will always be non-zero with probability
1 even when xjt and xit are equal. This yields the following
final flow for particle xjt :

Ft(x
j
t) = −C∇xj

t

[∑
i

L̃t(x
i
t)(||x

j
t − xit||22 + γ2)

2−d
2

]
= −Cγ2−d∇xj

t
L̃t(x

i
t)

− C
∑
i

(d− 2)L̃t(x
i
t)

(||xjt − xit||22 + γ2)
d
2

(xit − xjt) (20)

Intuitively, the first term of the update simply performs
gradient descent on the loss L̃t. The second term corresponds
to an attraction-repulsion force that shifts point xjt towards
point xit if the loss on point xit is favorable (i.e. < 0) and
away from point xit if the loss is unfavorable (i.e. > 0).
Please see Fig 1 for an illustration of our update rule; note
that the attraction-repulsion force may result in an update
opposite to the direction of gradient descent.

B. Theoretical Guarantees of Convergence to Posterior

The particle ensemble approximation of the posterior
introduces an error with the true posterior. In this section,
we quantify this approximation error theoretically.

Let us denote the true posterior by pt and our particle
ensemble approximation by qt. We assume pt flows ac-
cording to the true vector field Ft while qt flows under an
approximated vector field F̃t. For simplicity, we assume that
both pt and qt are discrete and consist of N points each,
denoted {xit}Ni=1 for p and {zit}Ni=1 for q, though the bound
can be generalized to the continuous case by taking the limit
in N .

We use the Wasserstein distance as our distance measure.
The Wasserstein distance between pt and qt is defined as

W (pt, qt) = min
π

N∑
i=1

d(xit, z
π(i)
t) (21)

Fig. 1: Example of the particle updates computed by our
particle filter. Black lines indicate lines of constant likelihood
Pt, the black arrow indicates increasing likelihood, red dots
indicate particles. Sample update directions are indicated
at four points: orange arrows indicate the gradient descent
on the negative log-likelihood, and blue arrows indicate the
attraction-repulsion force.

where the expression is defined over a metric space with
distance measure d, and the minimum is taken over all
permutations π on [N]. Let πt denote the minimizing π for
the distributions at time t. Additionally, suppose that d has
the shift-invariant property; that is,

d(x+ δ, z + δ) = d(x, z) (22)

for all x, z, δ.
We present the following theorem on the approximation

error.
Theorem 1: Let LF and Ld be the Lipschitz constants of

F and d, respectively. Further, suppose that the maximum
pointwise discrepancy between F and F̃ is bounded by ε

N .
Then,

W (pt, qt) ≤
(
W (p0, q0) +

ε

LF

)
eLdLf t − ε

LF
. (23)

Proof: Assume that pt follows the true flow Ft and
qt follows the approximate flow F̃t. We then bound the
Wasserstein distance at time t + dt using the Wasserstein
distance at time t.

W (pt+dt, qt+dt)

≤
∑
i

d(xit + Ft(x
i
t)dt, z

πt(i)
t + F̃ (z

πt(i)
t)dt)

=
∑
i

d(xit + [Ft(x
i
t)− F̃t(z

πt(i)
t)]dt, z

πt(i)
t)

≤
∑
i

d(xit, z
πt(i)
t) + Ld||Ft(x

i
t)− F̃t(z

πt(i)
t)||dt

where we applied the shift-invariant property of d. We then

Fig. 2: Comparison of the performance (measured as KL divergence with the true posterior distribution) of our particle
filter with standard Monte Carlo Localization (MCL) on a synthetic localization problem with adjustable dimensionality.
n denotes the number of particles. Margins indicate standard errors over 10 trials. [Left] Performance over the course of
particle filter iterations on a 10-dimensional problem. [Right] Performance at the final iteration over varying dimensions.

rewrite the above as∑
i

d(xit, z
πt(i)
t)

+ Ld||Ft(x
i
t)− Ft(z

πt(i)
t) + Ft(z

πt(i)
t)− F̃t(z

πt(i)
t)||dt

which can be bounded by∑
i

d(xit, z
πt(i)
t) + Ld(LF d(x

i
t, z

πt(i)
t) + ε)dt (24)

and rewritten as

(1 + LdLF dt)W (pt, qt) + Ldεdt. (25)

We thus obtain a differential equation as our final inequality:

W (pt+dt, qt+dt) ≤ (1 + LdLF dt)W (pt, qt) + Ldεdt (26)

which solves via Grönwall’s inequality [17] to

W (pt, qt) ≤
(
W (p0, q0) +

ε

LF

)
eLdLf t − ε

LF
. (27)

Our result reveals that the error at time t scales linearly
with the error at time 0 (as n or d is varied). Critically,
this means that even in very high-dimensional state spaces,
if a strong initial approximation of the prior distribution p0
is provided, then the approximated posterior qt is guaranteed
to track pt up to some constant error term and scale factor.
In other words, if W (p0, q0) is bounded by a dimension-
independent constant K, then W (pt, qt) can also be bounded
by a dimension-independent constant: our particle filter
avoids the curse of dimensionality. We note that W (p0, q0)
may generally scale with the dimensionality of the state
space: in higher dimensional spaces, more particles may
be necessary to approximate any distribution to the same
precision. However, this dimensionality dependence is purely

due to the difficulty of approximating distributions in high-
dimensional spaces, and is unavoidable for any particle filter.
Our particle filter adds no further error in high-dimensional
spaces relative to low-dimensional ones.

Moreover, unlike classical convergence results on standard
(resampling-based) particle filters [12], due to the determin-
istic nature of our particle filter (it avoids any sampling),
our convergence results are not probabilistic. Instead, con-
vergence is always guaranteed to hold.

Interestingly, note that we may directly apply the classical
convergence results [12] at time step 0 of our algorithm, and
achieve the same convergence rate (up to constant terms and
scale factors) at future timesteps t. For instance, the classical
O(1n) convergence rate of (Ep[f(x)] − Eq[f(x)])

2 for any
bounded function f directly applies to our filter as well,
including the dimension-independence of the convergence
rate.

C. Computational Efficiency

We present our full algorithm in Algorithm 1. Observe
that each step of the algorithm requires looping over all
n particles to update each of them, and each particle’s
update step requires computing displacements with all other
particles. Thus, our algorithm’s runtime is O(n2T) where
T is the number of total timesteps and n is the number
of particles. Note that the quadratic dependence on n can
be computationally expensive for large numbers of particles.
However, as we have previously shown, if the initial error of
our particle filter is bounded, then the error in the posterior
is independent of dimension; thus, the required number of
particles to achieve a particular error rate also does not scale
with dimension.

Storing each particle requires O(d) memory, resulting in a
memory consumption of O(nd), which is the minimum that
can be reasonably expected to represent the particles.

Fig. 3: Performance Analysis of 6D Pose Estimation Methods on the ”Cracker Box” Model: This figure presents a comparative
analysis of the translation and rotation mean error between our proposed method and the conventional gradient descent
approach. The evaluation is based on 1912 RGB video sequences of the ”cracker box” model. Both methods were tested
under identical configurations, using 80 particles. The mean error is computed over the x, y, z coordinates and averaged for
both translation and rotation. Specifically, the translation error measures the deviation in centimeters from the ground truth
translation, while the (signed) rotation error quantifies the angular difference in degrees from the true rotation. Note that the
rotation error can be positive or negative, with the optimal value being 0.

Algorithm 1 Resampling-free Particle Filter

Require: Initial particles {xi0}ni=1, time step ∆t, small
constant γ, total timesteps T , negative log-likelihood
function Lt, constant C, dimensionality d

1: for t = 1, 2, . . . , T do
2: Compute Lt(x

i
t) for all i

3: Zt =
1
n

∑
i Lt(x

i
t)

4: for j = 1, 2, . . . , n do
5: L̃t(x

j
t) = Lt(x

j
t)− Zt

6: xjt+1 = xjt − Cγ2−d∇xj
t
L̃t(x

j
t)

7: xjt+1 = xjt+1 − C
∑

i
(d−2)L̃t(x

i
t)

(||xj
t−xi

t||22+γ2)
d
2
(xit − xjt)

8: end for
9: end for

IV. EXPERIMENTS

To assess the effectiveness of our approach on high-
dimensional localization, we conduct experiments on a syn-
thetic high-dimensional localization task with a variable
state-space dimensionality and 6D pose estimation.

A. Synthetic Localization

a) Setting: We consider the following log-likelihood
function:

Lt(x) =
1

2
((x− u)T ξt)

2 (28)

where u ∈ Rd is an unknown parameter drawn from N(0, I)
and ξt ∈ Rd are drawn iid from N(0, I). Due to the simple
form of the likelihood, we may analytically solve for the true
posterior over x. Specifically, assuming a prior of N(0, I)

over x, the corresponding expected log posterior after t
timesteps may be expressed as:

log pt(x) = −1

2
||x||22 −

t

2
||x− u||22 (29)

We compare our particle filter and a baseline of standard
Monte Carlo Localization (MCL) [18]. For MCL, we add
Gaussian noise from N(0, ϵI) as the motion model: P (ξt+1−
ξt|ξt) ∼ N(0, ϵI), where ϵ is a hyperparameter. For both
methods, we conduct grid searches over each method’s
relevant hyperparameter over 5 orders of magnitude and
report results for the best setting. We run the particle filter
for 50 iterations and evaluate performance at each iteration t
using KL divergence between a multivariate Gaussian fit to
the particles and the true posterior at time t. We also assess
performance as a function of the state space dimensionality
d.

b) Results: In Fig 2, we find that for both particle
filters, the KL divergence initially increases as the true
posterior shifts away from the prior distribution, but then
decreases as the true posterior concentrates its density.
Our method outperforms MCL over all iterations tested.
Strikingly, while MCL worsens greatly as the number of
particles decreases, our method maintains its performance.
Moreover, our method much more gracefully handles higher
dimensional state spaces, achieving roughly a ×10 reduction
in KL divergence compared to MCL at the highest dimension
tested.

B. 6D Pose Estimation

a) Setting: 6D pose estimation, which involves estimat-
ing the 3D rotation and translation of objects relative to the

camera, is central to many robotic tasks such as manipulation
and navigation, enabling efficient grasp planning, obstacle
avoidance, and more. Historically, local-feature or template-
matching techniques have been the backbone for estimating
the 6D pose of objects. These methods typically involve
matching image features against pre-generated templates or
features of a 3D object model, thereby recovering the object’s
pose [19].

We evaluate the performance of our particle filter to
perform pose estimation. Here, note that each particle cor-
responds to a pose estimate for the object in question. We
adapt the approach in [19] to factorize the posterior into two
components: the 3D translation and the 3D rotation of the
object; each particle corresponds to a specific translation and
rotation. Thus, each particle has 6 dimensions represented as
a combination of translation and rotation.

We use the same approach as in [19] to compute the
likelihood of a particular observation y being consistent
with a pose (T,R) consisting of translation T and rotation
R. Critically, we assume access to a reference object for
which we have observations under a variety of rotations.
We use a pre-trained autoencoder that allows us to compare
the similarity of two objects: the observation y under the
candidate translation T and the appearance of reference
object under candidate rotation R. If the pose is more likely,
then the reference object at rotation R will be similar to
the observation translated with T . Thus, we set generate a
likelihood function as follows:

P (y|(T,R)) ∝ S(g(crop(y, T)), g(ȳR)) (30)

where g is a pre-trained encoder mapping images to a vector
code, crop(y, T) applies a crop to image y to isolate an
object in the image assuming it is located at translation T ,
ȳR denotes a reference image of the object under rotation R,
and S is a similarity function. Given this likelihood function,
we run our particle filter as described in Algorithm 1 using
randomly initialized initial pose estimates. We compare our
particle filter with a baseline of simply applying gradient
descent on the negative log-likelihood function (correspond-
ing to ignoring the attraction-repulsion force in our update
equation Eqn 20).

b) YCB dataset results: Our experiments were con-
ducted on the YCB Video dataset [20], specifically on RGB
video sequences of household objects, both textured and
textureless. Each video sequence consists of a series of
frames in which the object may have varying pose. The
objects in this dataset are annotated with their 6D poses
at each frame. For our experiment, we used the ”cracker
box” object which consisted of 1912 RGB video frames. We
evaluated the performance of our particle filter at estimating
the object’s pose over time using 80 particles. Specifically,
we measured the error between the true pose of the object
and mean pose estimated by our particles.

As seen in Figure 3, our results revealed a marked en-
hancement in 6D pose estimation accuracy using PoseRBPF
as opposed to gradient descent. Our proposed method con-
sistently yielded a diminished error when compared to the

gradient descent baseline. Both in terms of rotation and trans-
lation error rates, our algorithm exhibited superior efficiency
in terms of number of iterations, arriving at values closer to
the ground truth faster than gradient descent. This analysis
underscores the potential of our approach in handling pose
estimation tasks.

V. CONCLUSION

We develop a novel resampling-free particle filter designed
to circumvent particle deprivation issues that arise when
applying traditional particle filters in high-dimensional state
spaces. Through theory and experiments, we demonstrate
that our approach avoids the curse of dimensionality and is
practically effective in high-dimensional localization. We be-
lieve particle filters explicitly designed for high-dimensional
state spaces will be critical in practical applications as robots
are increasingly designed with more degrees of freedom.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge,
Mass.: MIT Press, 2005.

[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188,
2002.

[3] A. Doucet, N. De Freitas, N. J. Gordon, et al., Sequential Monte Carlo
methods in practice, vol. 1. Springer, 2001.

[4] R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle
filters: End-to-end learning with algorithmic priors,” Robotics: Science
and Systems (RSS), 2018.

[5] P. Karkus, S. Cai, and D. Hsu, “Differentiable slam-net: Learning
particle slam for visual navigation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2815–2825, June 2021.

[6] A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet, “Differ-
entiable particle filtering via entropy-regularized optimal transport,”
in Proceedings of the 38th International Conference on Machine
Learning (M. Meila and T. Zhang, eds.), vol. 139 of Proceedings of
Machine Learning Research, pp. 2100–2111, PMLR, 18–24 Jul 2021.

[7] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in 2006 IEEE nonlinear statistical signal process-
ing workshop, pp. 79–82, IEEE, 2006.

[8] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in IEE proceedings
F (radar and signal processing), vol. 140, pp. 107–113, IET, 1993.

[9] M. Pulido and P. J. van Leeuwen, “Sequential monte carlo with
kernel embedded mappings: The mapping particle filter,” Journal of
Computational Physics, vol. 396, pp. 400–415, 2019.

[10] F. A. Maken, F. Ramos, and L. Ott, “Stein particle filter for nonlinear,
non-gaussian state estimation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5421–5428, 2022.

[11] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose bayesian inference algorithm,” Advances in neural informa-
tion processing systems, vol. 29, 2016.

[12] D. Crisan and A. Doucet, “A survey of convergence results on particle
filtering methods for practitioners,” IEEE Transactions on signal
processing, vol. 50, no. 3, pp. 736–746, 2002.

[13] N. Chopin, “Central limit theorem for sequential monte carlo methods
and its application to bayesian inference,” The Annals of Statistics,
2004.

[14] P. Del Moral, A. Doucet, and A. Jasra, “Sequential monte carlo
samplers,” Journal of the Royal Statistical Society Series B: Statistical
Methodology, vol. 68, no. 3, pp. 411–436, 2006.

[15] H. Lamb, Hydrodynamics. University Press, 1924.
[16] R. Cristoferi, “The laplace and the poisson equations in the whole

space.,” 2017.
[17] B. Pachpatte, “A note on gronwall-bellman inequality,” Journal of

Mathematical Analysis and Applications, vol. 44, no. 3, pp. 758–762,
1973.

[18] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo local-
ization: Efficient position estimation for mobile robots,” Aaai/iaai,
vol. 1999, no. 343-349, pp. 2–2, 1999.

[19] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“Poserbpf: A rao-blackwellized particle filter for 6d object pose
tracking,” in Robotics: Science and Systems (RSS), 2019.

[20] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” Robotics: Science and Systems (RSS), 2018.

	Introduction
	Related Work
	Designing a Resampling-free Particle Filter
	Using Flows to Track Posterior Density
	Theoretical Guarantees of Convergence to Posterior
	Computational Efficiency

	Experiments
	Synthetic Localization
	6D Pose Estimation

	Conclusion
	References

