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Superfluids with strong spatial modulation can be experimentally produced in the area of cold
atoms under the influence of optical lattices. Here we address 87Rb bosons at T=0 K in a flat
geometry under the influence of a periodic potential with the Gross-Pitaevskii theory. The statics
and dynamics of vortex excitations are studied in the case of one dimensional (1D) and of two
dimensional (2D) optical lattices, as function of the intensity of the optical lattice. We compute
how the vortex energy depends on the position of its core and the energy barrier that a vortex
has to surmount in order to move in the superfluid. The dynamics of a vortex dipole, a pair of
vortices of opposite chirality, differ profoundly from the case of a uniform superfluid. In the 1D
case, when parallel ridges of density are present, the dynamics depends on the positions of the two
vortices. If they are in the same channel between two ridges, then the two vortices approach each
other until they annihilate each other in a short time. If the two vortices are in distinct channels
the dipole undergoes a rigid translation but with a velocity depending on the intensity of the optical
lattice and this translation velocity can even change sign with respect to the case of the uniform
superfluid. Superimposed on this translation an oscillatory motion is also present. A superposition
of translation along a channel and an oscillation is also found with a single vortex when the system
is bounded inside a circular trap. These oscillatory motions can be both longitudinal, i.e. along the
channel, as well as transverse. In all cases the transverse motions are one-side, in the sense that the
vortex core never crosses the equilibrium position nearest the starting position. In the case of the
2D lattices we study (square, triangular and honeycomb), the two vortices of a dipole move mainly
by jumps between equilibrium positions and approach each other until annihilation. This behavior
has some similarity with what has been found for a vortex dipole in the supersolid state of dipolar
bosons. We show that a rapid rump-down of the optical potential improves the visibility of the
density holes at the vortex core.

I. INTRODUCTION AND SUMMARY

One of the key properties of a superfluid is the presence
of quantized vorticity. In the case of bosons this has been
experimentally verified in superfluid 4He1 and in Bose-
Einstein condensates (BEC) of cold atoms2. A quantum
vortex is an excitation of the system with quantized cir-
culation and angular momentum and usually such exci-
tation is studied in a superfluid that is uniform or with
an inhomogeneity that is weak on the scale of the healing
length of the superfluid. At present there is the possibil-
ity of studying vortices in spatially strongly inhomoge-
neous systems, both in terms of the spatial scale as well
as in terms of large contrast between the maximum and
the minimum densities. In the realm of cold atoms it is
possible to generate a periodic potential (optical lattice,
OL) acting on the atoms and this potential is obtained
by standing waves of suitable crossing light beams3. The
period of the optical lattice can be comparable to the
healing length and the local density can vary even by or-
ders of magnitude. A recent experiment4 has verified the
theoretical prediction5 that even at the lowest tempera-
tures the superfluid fraction of the superfluid is less than
unity due to the induced density modulation.

Another system that is predicted to be a spatially
strongly inhomogeneous superfluid is a submonolayer of

4He adsorbed on a substrate of fluorographene, a sheet
of graphene decorated by fluorine atoms. The adsorp-
tion potential of a He atom on this substrate is strongly
corrugated but not so much to cause localization of the
atoms like on graphite. Theory6 shows that the system
is superfluid and the local density has a very large excur-
sion in space. A supersolid (SS) offers another example
of a strongly inhomogeneous superfluid. In a SS the in-
homogeneity arises from a spontaneous broken symmetry
of the translational invariance. Such SS state has been
found in cold atom systems, for instance in dipolar bosons
like 164Dy7. Again the local density can vary by a large
amount and the healing length is comparable with the
lattice parameter of the SS.

Different ways have been devised to create vortices in
BEC superfluids, such as phase imprinting8, by dragging
obstacles9, by means of artificial gauge fields10, and more
recently using a versatile, deterministic 2D vortex collider
in homogeneous atomic superfluids11.

Complex dynamics of vortices under the action of the
optical lattice in a trapped BEC sample have been un-
veiled in a theoretical study of vortices within the two-
dimensional GP equation with the OL and magnetic
trap12, where it was found that depending on the phase
of the OL relative to the parabolic magnetic trap, it is
possible either to trap the vortex at the center of the trap,
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or the vortex moves along an unwinding spiral, towards
the periphery of the trap.

The interplay of lattice physics and rotation physics
was studied by calculating the vortex-lattice structures
near a Mott transition13. A single BEC loaded in a ro-
tating OL can show a rich variety of vortex structural
transitions14

There have been predictions of novel types of vortex
states of repulsive BECs confined by a shallow optical
lattice (matter-wave gap vortices), which are spatially
localized and dynamically stable in 2D as well as in 3D
optical lattices15.

Interestingly, vortex dynamics in non-homogeneous
systems can be linked to ”glitches” in rotating pulsars,
i.e. a sudden speed up of the spinning stars, occurring at
random intervals. These events are believed to be a mani-
festation of the presence of a superfluid component in the
stellar interior, the glitch occurring when many vortices
jump from the inside of the star to the solid crust, trans-
ferring angular momentum and thus speeding it up. It
has been shown recently, using cold atom experiments
as analogs of neutron stars, that this requires simulta-
neous crystalline and superfluid phases, i.e. a supersolid
state16.

A subject that apparently has received very little at-
tention is the behavior of vortex dipoles. Such configura-
tions have been experimentally obtained in BEC in the
work of Refs.9. However topics such as the interaction
of such dipoles and the ensuing dynamics are still unex-
plored. Our study provide an insight into these issues,
and how they are modified by optical lattice.

All this gives a motivation for studying vortices in
strongly inhomogeneous superfluids, the aim of the
present paper. We show how strongly the dynamics of
vortices and the lifetimes of pairs of vortex-antivortex are
affected by an optical potential. The experimental real-
ization of generation of vortex dipoles in a suitable trap
for cold atoms11 open the possibility of experimental ver-
ification of our predictions.

Vortices in the SS state of matter in dipolar bosons
have been theoretically addressed17–20 in recent years and
some relevant phenomena have been uncovered, like a re-
duced angular momentum associated to the quantum of
circulation17. A peculiar behavior has been found20 in
the dynamic of a vortex dipole, i.e. a pair of vortices
of opposite chirality, in a SS. In a uniform superfluid,
when the distance l between the two vortices is larger
than the healing length ξ, the pair is a stable entity and
moves with a constant velocity as a rigid body in a di-

rection perpendicular to the vector l⃗ joining the two vor-
tices. Contrary to this, in dipolar bosons in a SS state it
was found that the two vortices moves by jumps between
equilibrium sites in the lattice and approach each other
until the two vortices annihilate themselves in a short
time. At the basis of this behavior is a basic property
of a vortex in a SS: it is energetically favorable to have
its core at a discrete set of positions, the locus of mini-
mum density. The natural question is if such properties

are specific of a SS state or if they are generic ones when
a density modulation is present, whatever is its origin.
To answer this question we address in the present paper
the study of bosons in an external periodic potential like
that produced by light standing waves. We study the
ground state and vortices of the standard model of BEC,
point-like bosons with a contact interaction, in the case
of 87Rb with the Gross-Pitaevskii equation in an external
periodic potential Vext(r⃗). We consider the case of modu-
lation in one dimension (1D) and in two dimensions (2D)
for three lattices: square, triangular and honeycomb.

The system is subject to periodic boundary conditions
in all three space directions, and translational invariance
along the z-direction perpendicular to the lattice poten-
tial plane is assumed. The length in the z direction is
of order of the healing length of the superfluid so that
the system can be considered as a quasi-two dimensional
system.

In the studied range of intensity of our optical poten-
tials we find that the bosons are in a superfluid state
with a reduced superfluid fraction. The local density is a
periodic function of position reflecting the symmetry of
the optical potential and the excursion between maxima
and minima can be very large, depending on the strength
of the modulation of Vext(r⃗). In a uniform superfluid the
vortex excitation energy ∆Ev does not depend on the
position of its core. On the contrary, in the presence of
the optical potential ∆Ev depends on the position of its
core and it is a strong function of the local density. The
minima of ∆Ev are at the positions of the minima of the
local density, i.e. at the maxima of Vext(r⃗), consistently
with the observation of pinning of the vortex at the low
density site of an OL was observed21. Therefore ∆Ev is
a periodic function of position and this has a dramatic
effect on the dynamics of vortices. The flow field of a vor-
tex is strongly deformed from the circular shape of the
uniform case and we characterize the vortex excitation
energy and its structure as function of the amplitude of
the optical potential.

The dynamics of a vortex dipole is also strongly af-
fected by the presence of the optical potential.

For a 2D potential, where the equilibrium positions of
the vortex are isolated points, the dipole moves mainly by
jumps between equilibrium sites approaching each other
until the two vortices annihilate themself in a short time.
In our theory no thermal or stochastic effects are present
and these jumps are manifestations of tunneling of the
vortices between equilibrium sites.

The behavior is different in the case of a 1D modulation
where the equilibrium positions for a vortex form a series
of parallel lines in the x-y plane.

If the two vortices of the dipole are located in the same
channel they do not translate but they move one against
the other until they annihilate and the excitation energy
goes into phonons of the superfluid. If the two vortices
are located in adjacent channels they move along these
channels and the motion is a composition of a uniform
translation and of an oscillation. In all cases the trans-
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lation velocity of the pair differs from that expected for
a uniform superfluid and it can even invert the direction
of motion for large amplitude of the optical potential. A
combination of translation and oscillation is found also
for a single vortex in a trap in presence of a 1D OL.. The
frequency of this oscillation is the same as in the case of
a vortex dipole moving along two neighboring channels.
Therefore this oscillatory motion seems to be an intrin-
sic and novel character of the motion of a vortex moving
along a channel. Notice that this oscillatory motion is
quite different from that of a massive particle around a
minimum energy position because the vortex oscillation
is one-side, i.e. the vortex never crosses the position of
the minimum energy and it remains on the side from
which it started.

The local density goes to zero at the position of the
vortex core. In the case of a strong modulation exper-
imentally it can be difficult to detect the presence of a
vortex because there is a small contrast between the van-
ishing density of the vortex core and the small value of
the density at the minima of the modulated system. We
show that by starting from a state with a number of vor-
tices in the modulated superfluid, such vortices remain
in the homogeneous superfluid after that the optical po-

tential is suddenly removed, allowing for an easier visual
detection due to the increased contrast between the van-
ishing density at the core positions and the density of the
surrounding, almost homogeneous phase.

The content of the paper is as follow. In Sect.II the
theory and the computational method are described. In
Sect. III the ground state, the vortex state and the dy-
namics of a vortex pair are studied in the case of 1D opti-
cal potential. In this Section we study also the dynamics
of a vortex when the system in confined in a circular
trap in the x-y plane. The case of 2D optical potentials
is studied similarly in Sect. IV. In Sect. V we study
the time evolution of a confined system after the optical
potential is removed, as a way to directly image vortex
positions in these highly inhomogeneous systems. Our
conclusions are contained in Sect. VI.

II. METHOD

The Gross-Pitaevskii (GP) energy functional for the
Bose system reads

E =

∫
dr

[
h̄2

2m
|∇ψ(r)|2 + V (r)ρ(r)

]
+

1

2
g

∫
dr ρ2(r) (1)

where V (r) and ρ(r) = |ψ(r)|2 represent the external po-
tential and the boson number density, respectively. The
coupling constant is g = 4πash̄

2/m, m being the atomic
mass. The number density ρ is normalized such that∫
V
ρ(r) dr = N where N is the total number of atoms.

As model system we take 87Rb atoms and the scattering
length as describing the (repulsive) Rb-Rb interaction is
as = 100.4 a0

22.
Minimization of the action associated to Eq. (1) leads

to the following Euler-Lagrange equation (GP equations)

ih̄
∂ψ(r⃗, t)

∂t
=

[
− h̄2

2m
∇2 + V (r⃗) + gρ(r⃗, t)

]
ψ(r⃗, t) ≡ Hψ(r⃗, t) , (2)

When steady states are studied the left hand side of
Eq.(2) is replaced by µψ(r⃗, t) where µ is the chemical
potential. The numerical solutions of Eqs. (2) provide
the time-evolution of the 87Rb system with arbitrary N
in three-dimensions. The same equation in imaginary
time allows us to obtain stationary state solutions start-
ing from a suitable initial function. µ is determined so
that the desired value of N is achieved. We consider an
external potential depending only in x and y.

In our computations the length Lz of the computa-
tion box is much smaller of the other sides. Under this

condition we simplify the computation by neglecting the
dependence of ψ on the z coordinate and therefore the
calculations become effectively 2-dimensional. Accord-
ingly, vortex states considered here are not subject to
three-dimensional instabilities like corrugation/bending
of the vortex core as the transverse dimension is effec-
tively suppressed. For this reason often in the following
we will describe the properties of the system as it appears
in the x-y plane only.

Eq.(2) is solved either in real time or imaginary
time by using Hamming’s predictor-modifier-corrector
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method initiated by a fourth-order Runge-Kutta-Gill
algorithm23. The spatial mesh spacing and time step
are chosen such that, during the real time evolution, ex-
cellent conservation of the total energy of the system is
guaranteed.

We will use in the present work different forms for the
external potential V appearing in the GP equation (2).
In particular, we will consider periodic potentials both in
one dimension and in two dimensions, as described in the
following Sections. These potentials are easily produced
in experiments using crossed laser fields with appropriate
wavelengths (optical lattices, OL).

III. 87RB IN 1D OPTICAL LATTICE

One-dimensional lattice potentials are often used in ex-
periments. In the simplest form, like the one used here,
they produce modulated density patterns characterized
by a periodic alternation of stripes of maxima and min-
ima in the gas density. Here we consider the form

VOL(x) = 2V0 cos
2(kx) (3)

The wavevector k determines the lattice constant of the
periodic potential, d = 2π/k. For the cases investigated
here we chose d = 60000 a0 = 3.175µm. The sizes of the
supercell in the x-y plane are, for most of the calculations
done, Lx = Ly = 44.45µm, corresponding to 14 stripes
in the x direction, although for the sake of visibility the
plots shown in this paper are often limited to smaller
portions of the supercell.

Along the z-direction we chose the value Lz =
1.429µm. The total number of atoms N in most of our
calculations is chosen so that it corresponds to an areal
density na = N/(LxLy) = 9.92µm−2. In the following,
some calculations will be performed using larger supercell
sizes Lx, Ly, corresponding to 20 stripes in the x direc-
tion. However, we will always take the number of atoms
N such that the areal density na = N/(LxLy) is not
changed.

The healing length for the uniform system (V0 = 0)
is ξ = h̄/

√
2mµ = 1.039µm, where µ = gρ is the Rb

chemical potential in the absence of the lattice modula-
tion. Notice that Lz is of the same order of magnitude
of the healing length, and therefore our system can be
considered quasi-2D. Due to the imposed translational
invariance along the z direction, along which the den-
sity is therefore constant, the calculations are effectively
2-dimensional, involving a spatial discrete mesh only in
the x-y plane.

We will consider different values for the potential
strength V0 in the following, and often the following val-
ues V0 = 2, 4, 7, 9× 10−14Ha have been used.

It is customary to express the lattice well depths V0 in
terms of the so-called recoil energy as V0 = sER, where

FIG. 1: Density profiles (in units of cm−3) along the x-axis,

for different values of Ṽ . From the highest to the lowest peak
values: Ṽ = (7, 4, 2).

ER =
h̄2π2

2md2
(4)

In the present case ER = 8.600 × 10−15 Ha. The val-
ues of V0 quoted above therefore correspond to s =
2.3, 4.6, 8.1, 10.5. For much larger values of s the bosons
are expected to become localized forming rows of inde-
pendent quasi-one dimensional superfluids.
In the following we will use a more manageable no-

tation where the optical potential strength V0 is ex-
pressed in terms of an adimensional quantity Ṽ such that
V0 = Ṽ × 10−14 Ha = Ṽ × 3.158nK.
In Fig.1 we show for some values of Ṽ the density along

the x-axis, the direction of the modulation showing the
periodic alternation of minima and maxima in the density
profile. The values of the density at these extrema are
reported in Table I, together with the calculated chemical
potentials.
It can be noticed that already an intensity Ṽ = 4 the

maximum density is ten times larger of the minimum
density. Despite such large inhomogeneity the system
is superfluid. The superfluid fraction can be computed
from the non-classical translational inertia24 as

fs = 1− lim
vx→0

⟨P̂x⟩
Nmvx

(5)

where ⟨P̂x⟩ = −ih̄
∫
ψ∗(r⃗)∂ψ(r⃗)/∂xdr⃗ is the expectation

value of the momentum in the x-direction of the 87Rb
and Nmvx is the total momentum of the system if all
the atoms were moving with the constant velocity vx.
Alternatively, one could estimate the superfluid frac-

tion from5

fs =
L2
x∫ Lx

0
dx < n(x) >

∫ Lx

0
dx < n(x) >−1

(6)
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FIG. 2: Superfluid fraction in the 1D lattice as a function of
Ṽ in the direction of the modulation.

where< n(x) > is the number density of the ground-state
configuration averaged over the transverse y-z directions.
We find that the values of fs from the two definitions
agree with each other to within 1%.

The dependence on Ṽ of the superfluid fraction (in
the direction parallel to the modulation) is shown in

Fig.(2) and the values of fs for some values of Ṽ are
given in Table I. We notice that the suppression of the
superfluid fraction in the direction of the modulation is
quite substantial. In the direction perpendicular to the
modulation, i.e. in the y direction, the superfluid frac-
tion is unity in all cases. Therefore we have a strongly
anisotropic superfluid.

A. Single vortex properties

A linear, singly quantized vortex excitation in the z
direction, with the core in the position (xv, yv), can be
generated by the “phase imprinting”, i.e. we compute the
lowest energy state obtained by starting the imaginary
time evolution from the initial wave function

ψv(r) = ρ
1/2
0 (r)

[
(x− xv) + i(y − yv)√
(x− xv)2 + (y − yv)2

]
(7)

where ρ0(r) is the ground-state density of the vortex-free
system. This wave function has unit circulation in the
x-y plane and it is orthogonal to the ground state. Such
properties are maintained during the imaginary time evo-
lution until the lowest energy state with such properties
is reached. During this evolution, the vortex position and
core structure change to provide at convergence the low-
est energy configuration for a vortex with unit of circula-
tion h/m in clockwise direction. The sign of the circula-
tion can be changed by changing the sign of the complex i
in Eq.(7). We have verified that it is possible to study the
dynamics of a vortex also in real time when it is started
from a non-stationary position. In fact in this case we

FIG. 3: Structure of a singly-quantized vortex at x=y=0,
one of the stable sites at the density minimum, for the case
Ṽ = 2. The density is in units of cm−3.

find that the evolution in imaginary time has a rapid
transient during which the imprinted phase and modulus
of Eq.(7) are modified reflecting the presence of the ex-
ternal potential. During this stage the initial vortex core
position is essentially unaffected and it is only for much
larger imaginary times that the vortex core position mi-
grates to the nearest equilibrium position. The protocol
we follow for real time study of a vortex is therefore to
perform a short imaginary time evolution and after to
evolve the system in real time.
The flow field of a linear vortex has a long-range char-

acter, ∼ 1/r, where r is the distance from the position of
the vortex core. We have imposed antiperiodic boundary
conditions25 in order that the condition of no flow across
the boundary of the computational cell is satisfied20.
This is equivalent to sum over the phases of an infinite
array of vortex-antivortex, i.e. a vortex of opposite chi-
rality is present in each nearest neighbor cell of the com-
putation cell26. Equation (7) can be easily generalized to
accommodate a vortex array made of an arbitrary num-
ber of vortices and/or antivortices27. The case of a pair
of vortices with opposite circulation (vortex dipole) will
be considered in in the following. In the case of a vortex
dipole we impose however the usual periodic boundary
conditions since the flow fields of the two vortices tend
to cancel at the cell boundaries.
In general, we find that the stable vortex positions

are at the sites of minimum density, i.e. at the locus
of maxima of the external potential (see also the follow-
ing Sections, where different types of optical lattices are
employed), in agreement with earlier observations21. In
the case of the present one-dimensional lattice potential
the stable positions correspond to the set of lines in the
y direction (or better planes if we consider also the z di-
rection) where the density is minimum. Therefore these
lines are at the bottom of a kind of channels along which
a vortex can freely move with no change of energy.
The equilibrium vortex structure at one of such sites
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Ṽ ρmin (cm−3) ρmax (cm−3) µ (nK) fs

0 6.943× 1012 6.943× 1012 2.584 1

2 2.609× 1012 1.256× 1013 8.062 0.744

4 0.777× 1012 1.696× 1013 11.923 0.355

7 0.136× 1012 2.098× 1013 15.839 0.095

TABLE I: Ṽ is the amplitude of the periodic potential; ρmin and ρmax are the density values at the bottom and top of the
modulated density; µ is the chemical potential and fs is the superfluid fraction in the x-direction computed from the non-
classical translational inertia.

FIG. 4: Streamlines for a vortex in the one-dimensional lat-
tice, for the case Ṽ = 2. The x and y axis show coordinates
in µm.

is shown in Fig.3 for the case Ṽ = 2. The streamlines
for the velocity field v⃗ = h̄∇ϕ/m (ϕ being the phase of
the wavefunction) are shown in Fig.4. Notice the strong
deformations with respect to the circular patterns ex-
pected from a vortex in a homogeneous system. In order
to display these deformations more clearly in Fig.5 we
also show the streamlines of the modified phase ϕ̃ as de-
fined in Eq.(8) further on. ϕ̃ represents the deviation of
the phase from the imprinted phase in Eq.(7).

Besides the stable positions at the bottom of the low
density channels, there are also metastable positions at
the density maxima, with higher energy than the equi-
librium one. The associated energy barrier for vortex
migration from one channel to the neighboring one de-
pends on the amplitude of the modulation.

In Table II the vortex excitation energy and the en-
ergy barrier, both per particle and per unit length of the
vortex, as well as the angular momentum are reported
for selected values of Ṽ . The vortex excitation energy
∆Ev is finite because the computation box is finite (in
an infinite system ∆Ev would diverge with the size of
the system in a logarithmic way). ∆Ev in the modu-
lated system is smaller than in the uniform system and
it decreases for increasing Ṽ because the vortex core is
located in a region where the density decreases as Ṽ in-

FIG. 5: Streamlines of ∇⃗ϕ̃ for a vortex in the one-dimensional
lattice, for the case Ṽ = 2. The x and y axis show coordinates
in µm.

creases. The energy barrier is a strongly increasing func-
tion of Ṽ and this reflects the strong variation of the ratio
ρmax/ρmin. We notice also the reduced value of the an-
gular momentum and this reflects the reduced superfluid
fraction in presence of the modulation. In the homo-
geneous state (Ṽ = 0) the angular momentum deviates
from the theoretical value Nh̄ due to the boundary effect
of the computation box.

B. Vortex dipole properties

Due to the presence of particular stable sites for a
vortex caused by the presence of the spatial periodic-
ity imposed by the optical lattice potential, a number of
properties are expected to differ from those in a (nearly
homogeneous) superfluid.
In classical hydrodynamics of incompressible fluids, a

vortex dipole is a stable entity that moves with a con-
stant velocity that is perpendicular to the plane defined

by the vortex axis and the vector l⃗ joining the vortex and
the antivortex core positions and inversely proportional
to the distance l between them. The same behavior holds
in superfluid systems1,29 when l is much larger than the
healing length, and the vortex dipole propagates with a
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Ṽ ∆Ev/N (nK/µm) (EB − EH)/N (nK/µm) < L̂z > (Nh̄)

0 0.022 - 0.925

2 0.018 0.0026 0.788

4 0.011 0.0062 0.492

7 0.005 0.0109 0.198

TABLE II: ∆Ev = (EH − E0)/Lz is the energy (per unit length) cost to create a vortex in the minimum density sites, E0

being the energy value (per atom) in the absence of the vortex; (EB −EH)/Lz is the energy barrier (per unit length) to move

a vortex across the maximum density ridge; < L̂z > is the angular momentum along the z-axis in units of Nh̄.

FIG. 6: Trajectories along y of a dipole with the vortices
in two different channels. The vortices are initially set at
positions x = ±2d and with the same y. The y coordinates
of the two vortices of the dipole remain equal at all times
within the grid of the computation. From top to bottom:
Ṽ = 0, 1, 2, 3, 4, 6, 7.

constant velocity vd = h̄/(ml). For example, in the ab-
sence of any modulation, a vortex-antivortex pair sepa-
rated by a distance equal to l = 4d = 12.7µm is found to
translate with a constant velocity 0.058 ± 0.002 µm/ms
(the error bar being estimated from the fit to the cal-
culated data), to be compared with the hydrodynamical
theoretical value vd = 0.057 µm/ms.

We have studied the real-time evolution of a vortex
dipole imprinted in the superfluid in a 1D optical lattice
described above. The position of the vortex core is lo-
cated at each time step by carefully scanning the spatial
mesh to find the minimum in the density corresponding
to the vortex core. In particular, we will consider two
different initial states for the vortex-antivortex pair, i.e.
(i) the vortices are located in different minimum energy
channels, at initial positions x = ±2d, where d is the
lattice constant; (ii) the vortices are located in the same
channel (at x = 0), at initial positions y = ±2d.

In the case (i) we find that the vortex pair move with
a roughly constant velocity, the two vortices remaining
in the same initial channel. The translation velocity de-
creases as the intensity Ṽ increases until between 4 and
6 the velocity changes sign, i.e. it is in the opposite di-
rection of motion compared to that of the homogeneous
superfluid. This is shown in Fig.6. This is a novel effect
not seen before. Superimposed on the translation is a
weak oscillation for small values of Ṽ but the oscillation
becomes very intense for large values of Ṽ , for the largest
intensity the motion periodically changes direction. The
period of this oscillation becomes shorter for increasing
Ṽ . For Ṽ = 7 the period is about 1.9ms−1. We will
discuss more quantitatively the origin of some of these
effects in the following.

This behavior of the dynamics of the vortex dipole in
distinct channels appears to be quite general: a) we have
verified this when the vortex and the anti vortex lie in far-
ther apart channels, b) when the vortex and the anti vor-
tex start with a different y coordinate they rapidly syn-
chronize their motion at a common y coordinate, i.e. they
minimize their distance remaining in the initial channels.

A rather peculiar behavior occurs when the initial po-
sitions of the two vortices in different channels do not
coincide with the stable positions at the density minima,
but are rather slightly displaced with respect to it, in
opposite directions. During the ensuing dynamics, the
vortices are found to move along the channels with com-
plex trajectories shown in Fig.7. Such trajectories are
the result of a uniform translation along the y direction
and of two oscillatory motions (occurring with the same
frequency) along x and y directions. It should be stressed
that this oscillatory motion perpendicular to the direc-
tion of translation is not an oscillatory motion around
the position of minimum energy but it is rather a one-
side oscillation: if the vortex starts to the right of the
minimum at all times it remains on this side of the min-
imum and it never crosses to the other side. The same
holds it it starts to the left. Therefore this dynamics
is quite distinct from that of a massive particle moving
around a minimum energy position.

In the case (ii), vortex and anti-vortex started in the

same channel, for Ṽ = 4, 7 the two vortices moves to-
wards one another, remaining in the same channel, until
they annihilate at the origin, as shown in Fig.8. However,
in the case of a less modulated structure (Ṽ = 2), they
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FIG. 7: Dynamics of a vortex dipole when the initial vortex
positions are slightly displaced with respect to the channel
axis. The three vertical lines show the locii of minimum den-
sity. The simulation refers to the case Ṽ = 2.

remain initially in the same channel and move towards
one another until they nearly touch at time t = 32ms
(still being in the density minimum same channel): at
this point, they appear to repel each other and jump
to the next channel, annihilating there at a later time.
We notice that a similar behavior has been observed in
experiments9, where vortices in BEC are found to ap-
proach each other so closely that they appear to coalesce,
but then move away from each other after the close en-
counter. This combination of jump and approach of the
vortex pair two vortices of the dipole has some similar-
ity with what we find in the case of 2D modulations as
described in the next subsection.

From the equation for the velocity of a vortex within
the GP equation we can understand at a qualitative level
some aspects of our results. The flow field of one vortex
on the other is in the transverse direction of the chan-
nel, i.e. in the region where the density of the superfluid
is increasing. This variation of density gives rise to a
component of the velocity of the vortex in the longitudi-
nal direction along the bottom of the channel. Following
Ref.28 we write the vortex wave function ψv(r⃗, t) with the
core located at position r⃗0 at time t as

ψv(r⃗, t) = (x+ iy − x0 − iy0)ρ̃e
iϕ̃ (8)

where ρ̃(r⃗, t) and ϕ̃(r⃗, t) represent deviations of the mod-
ulus and of the phase from the ideal gas form, the first
factor in eq.(8). ρ̃(r⃗, t) and ϕ̃(r⃗, t) contain the follow-
ing effects: the contribution due to the presence of other
vortices, the effect of an external potential and, finally,
the deviation of the ψv from the ideal gas form due to

FIG. 8: Trajectories along y of the two vortices of a dipole
started in the same channel. The vortices are initially set at
positions y = ±2d. From left to right Ṽ = 7, 4, 2.

the inter-atomic interactions. On the basis of the Gross-
Pitaevskii equation here adopted the velocity of the vor-
tex is28

˜⃗v ≡ h̄

m
(∇ϕ̃− κ̂×∇logρ̃) (9)

where the vector κ̂ is the unit vector in the direction of
the circulation, i.e. in the z direction in the present case.
As soon as the vortex position moves out of the bottom
of the channel the second contribution to the velocity in
Eq.(9) becomes non-zero due to the increasing density
and its gradient is in the x direction. The vector product
of these two vectors is in the y direction and points to-
ward the other vortex. Therefore the velocity of one vor-
tex of the pair has one longitudinal contribution from the
external potential and a transverse contribution from the
gradient of the phase due to the other vortex of the pair.
This transverse term might dominate if the amplitude of
the external potential is weak enough so that the vortex
pair could move across channels but in any case due to
the longitudinal contribution the two vortices move also
against each other until they annihilate. The longitudi-
nal contribution to the vortex velocity might dominate
for large amplitude of the external potential so that the
two vortices remain in the starting channel until anni-
hilation. Eq.(9) for the velocity of the vortex core also
explain why we see one-side oscillations of the vortex:
the gradient of the local density tends to bring the vor-
tex core toward the minimum density position but at this
minimum this contribution to the velocity vanishes.
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On the basis of Eq.(9) for the velocity of a vortex we
can also understand why the translation velocity of the
vortex dipole lying in two different channels is reduced
with respect to the homogeneous case. In fact from Fig.5
one can see that the direction of ∇ϕ̃ along the line cor-
responding to y = 0 has the opposite direction of the
one of the homogeneous case, i.e. it points downward for
x > 0 and upward for x < 0 and not vice versa as should
be for a positive circulation vortex in a homogeneous su-
perfluid. This means that the induced velocity due to
the other vortex of the dipole is reduced compared with
the value for the homogeneous system. Why the transla-
tion velocity even changes direction at large modulations
and a longitudinal oscillation is present, however, cannot
explained by these simple considerations.

C. Single vortex in a trap

An important question is if the oscillations in the dy-
namics of a vortex pair displayed in Fig.7 are a conse-
quence of the mutual coupling between vortex-antivortex
or are rather a property of the single vortex. We there-
fore considered the dynamics of a single vortex initially
imprinted in a position slightly displaced from a posi-
tion of minimum energy by the same amount as in the
dipole simulation just described. However boundary ef-
fects mask the genuine dynamics in the case of an ex-
tended system with anti-periodic boundary conditions.
To avoid this we used instead a finite system confined in
the x-y plane by an additional circular ”box” potential
of the form

Vbox(x, y) = U0(1−
1

e(R−R0)/σ + 1
) (10)

where R =
√
x2 + y2, R0 is the chosen value for the ra-

dius of the circular trap. We chose the following values:
R0 = 14.3µm, U0 = 60nK, and σ = 0.212µm. With
such choice, the potential Vbox becomes different from
zero as R approaches R0 and rapidly becomes very re-
pulsive reaching the value U0. As a result, the system
is essentially unaffected in the inner region by this po-
tential, where the system density is very close to that of
the extended system, and goes exponentially to zero for
radial distances from the center larger that R0. We chose
the number of atoms so that the density pattern in the
interior of the circular trap is very similar to that of the
extended system, for a given value of Ṽ .
We perform the computation with the external poten-

tial V (r⃗) = VOL(x, y) + Vtrap(x, y) and VOL is such that
the center of the trap is a maximum of the OL, i.e. the
center of the trap is an equilibrium position for the vor-
tex core. We find that the vortex remains immobile if
initially it is located at or very near the center of the
trap, in the low density channel passing through it. If
the initial position of the vortex is off-center along the
y direction by a larger amount, however, the vortex is

FIG. 9: Upper curve: displacement x(t) of the vortex core
perpendicular to the channel axis; lower curve: displacement
y(t) of the vortex core parallel to the channel axis. The dotted
line shows a least-square fit to y(t), The simulation refers to

the case Ṽ = 2.

found to migrate towards the edge of the trap and disap-
pears once it approaches the trap edge.
When the initial position is at y = 0 but slightly off

center along the x-direction, i.e. away from an equilib-
rium position, then the vortex moves toward the border
of the trap and the radial motion is the superposition of
a uniform motion in the radial direction and of a longitu-
dinal and transverse oscillatory motion, similarly to the
case of a vortex dipole shown in Fig.7. As in the case of
the vortex dipole the oscillatory motion is one-sided: the
vortex never crosses the line of minimum density but it
remains on the same side of the channel from which it
started. This is shown in Fig.9.
We have estimated, from the trajectories x(t) and y(t),

the frequency characterizing these oscillations, which is
reported in Fig.10 as a function of Ṽ , together with the
average translation velocity of the vortex along the chan-
nel.

We finally note that the frequencies found for the oscil-
lations of a single vortex, as discussed above, agree with
the ones found for the case of a vortex dipole propagating
in parallel channels.
We have checked the effect of changing the density of

the system on the oscillation frequency in Fig.10. We
thus studied the dynamics of a vortex slightly displaced
from the equilibrium position in the transverse direction
x, as described before, but when the total number of
atoms in the system is doubled (halved). We find that
both the amplitude and frequency of the transverse oscil-
lations are unaffected by the increased (decreased) den-
sity. Also the frequency of the back-and-forth oscillations
along the channel axis is not changed, whereas its ampli-
tude is reduced as the density increases.
A natural question is if these oscillations might be due

to the coupling of the vortex motion with the phonon
excitations in the system which can be created by the



10

FIG. 10: Upper panel: average translation velocity of a sin-
gle vortex starting from a slightly displaced x-position from
the center of the trap; Lower panel: calculated frequency of
the oscillations occurring during the vortex motion along the
channel.

vortex motion through the system. However, this is
not the case. In fact we have computed, by using the
Bogoliubov-de Gennes approach, the dispersion relation
perpendicular and parallel to the channel direction. The
phonons propagating in a direction perpendicular to the
channels, having a dispersion relation which flattens at
the Brillouin zone boundary, are those with the highest
density of states. Their frequencies are found to be30 in
the range 0.12 < ω < 0.4 ms−1 (corresponding to the

range 7 > Ṽ > 2), i.e. much smaller than the observed
vortex oscillation frequencies.

IV. 87RB IN 2D OPTICAL LATTICE

A. Square lattice

The external potential V (r⃗) acting on the Rb atoms
is taken in the form of a periodic potential with square
symmetry, i.e. V (r) = VOL(x, y), where

VOL(x, y) = V0[cos
2(κx) + cos2(κy)] (11)

As done in the previous Sections, the optical potential
strength V0 is expressed in the following in terms of an
adimensional quantity Ṽ such that V0 = Ṽ × 10−14 Ha
= Ṽ × 3.158nK.
We first computed the ground-state in the presence

of the periodic potential VOL, for different values of the
amplitude Ṽ .
We will use in the following a shorthand notation where

the site of maximum density (corresponding to the min-

FIG. 11: Structure of a singly-quantized vortex in the stable
hollow site, for the case Ṽ = 2. The vortex core is at the
origin (x = y = 0). The density is in units of cm−3.

imum of the lattice potential) is called ’top’ (T), the site
with minimum density (corresponding to the maximum
of the lattice potential) is called ’hollow’ (H), and the sad-
dle point between two adjacent top sites is called ’bridge’
(B).
As in the case of the 1D potential discussed in Section

III, the system is superfluid, with a superfluid fraction fs
which depends on the amplitude of the lattice modulation
V0. The relevant densities at the various lattice sites, and
the calculated superfluid fraction are reported in Table
III.

B. Vortices

We imprint a single vortex using the procedure de-
scribed before. If the vortex initial position is in a generic
point of the unit cell of the modulating potential, dur-
ing the imaginary time evolution the vortex core moves
to the closest minimum density position. We find that
stable vortex positions are at the low density sites corre-
sponding to the maxima of the optical potential (hollow
site), as discussed in the following. In the case of a square
lattice these equilibrium positions have the same square
symmetry. The vortex structure at the hollow site is
shown in Fig.11 for the case Ṽ = 2.
We show in Figs.12 the equilibrium vortex structure

for different values of the potential depth Ṽ , including
the value Ṽ = 0. In order to improve the visualization of
the vortex core structure, we show in the figures the den-
sity differences with respect to the configuration without
vortex.
We show in Fig.13 the calculated vortex excitation en-

ergy per unit length ∆Ev ≡ (Ev − E0)/Lz as a function
of density of Rb atoms.
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Ṽ ρH (cm−3) ρT (cm−3) ρB (cm−3) µ(nK) fs

0 6.943× 1012 6.943× 1012 6.943× 1012 2.584 1

2 2.797× 1012 1.338× 1013 6.462× 1012 8.48 0.929

4 0.9412× 1012 2.079× 1013 5.295× 1012 13.57 0.768

7 0.1668× 1012 3.151× 1013 3.329× 1012 19.97 0.513

9 0.0537× 1012 3.793× 1013 2.288× 1012 23.59 0.375

TABLE III: Ṽ is the amplitude of the periodic potential; The density values at the Hollow, Top and Bridge sites are shown;
µ is the chemical potential; fs is the superfluid fraction computed from the non-classical translational inertia.

Ṽ ∆Ev/N (nK/µm) (EB − EH)/N (nK/µm) (ET − EH)/N (nK/µm) < L̂z > (Nh̄)

0 0.0220 - - 0.925 (0.927∗)

2 0.0199 0.00049 0.00210 0.858

4 0.0163 0.00046 0.00468 0.708

7 0.0108 0.00026 0.00886 0.486

9 0.0078 0.00019 0.01147 (unstable) 0.356

TABLE IV: ∆Ev = (EH − E0)/Lz is the energy (per unit length) cost to create a vortex in the minimum density (hollow)

sites, E0 being the energy value (per atom) in the absence of the vortex; < L̂z > is the angular momentum along the z-axis in

units of Nh̄ (the value at Ṽ = 0 denoted with an asterisk has been computed with a bigger cell, with a surface area in the x-y
plane 4 times larger the one used for all the calculations; (EB − EH)/Lz and (ET − EH)/Lz are the energy barriers (per unit
length) to move a vortex across the bridge site and the top site, respectively.

FIG. 12: Relative density difference (ρvort − ρnovort)/ρnovort

showing the minimum energy vortex structure (hollow site)

for Ṽ = 0, 2, 4, 7.

Notice the decrease of the vortex energy, for a given N ,
with the modulation amplitude of the lattice potential.
This is a consequence of the decreasing density in the
region of the vortex core as Ṽ increases.
The streamlines around the vortex core are shown in

Fig.14 for Ṽ = 7.
Besides the stable position at the hollow site, we have

FIG. 13: Vortex total energy as a function of the areal den-
sity of Rb atom. From top to bottom: Ṽ = 0, 2, 4, 7, 9. The
density na = 9.92µm−2 is the one used in most of the calcu-
lations discussed in the paper.

found that the saddle point between two adjacent density
minima (bridge site in the following) is a metastable equi-
librium position for a vortex, with slightly higher energy
than the equilibrium one. A third metastable position for
the vortex is found, at least for not too large value of Ṽ ,
at the high-density sites (top site in the following), corre-
sponding to the minima of the optical potential. We show
the vortex structures for these configurations in Fig.15,
together with the stable hollow configuration.

In a uniform superfluid the energy of a vortex does
not depend on the position of its core so that it is free to
move under the influence of a perturbation. Our results
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FIG. 14: Streamlines for a vortex in the hollow site, for the
case Ṽ = 7. The x and y axis show coordinates in µm.

FIG. 15: Structure of a singly-quantized vortex, for the case
Ṽ = 2 (only a portion of the density in the x-y plane is shown).
From left to right: (i) hollow (most stable) site; (ii) bridge site;
(iii) top site. The density is in units of cm−3.

show that in presence of a 2D optical lattice the vortex
energy becomes a periodic function of position. The as-
sociated energy barriers for vortex migration along the
lattice are reported in Table IV. These barriers will play
an important role, as discussed in the following, in the
dynamics of vortices across the lattice.

C. Vortex dipole properties

Following the protocol described in Sect. III.B we im-
print a vortex dipole in the 2D modulated superfluid and
follow its real time dynamics. Instead of rigidly translat-
ing as in an homogeneous superfluid phase, in the pres-
ence of spatial modulation the vortex and antivortex ap-
proach each other by a series of jumps from one site to
another moving mostly across the saddle positions until
they annihilate in a very short time and their energy is
released in the form of density wave excitations.

The path followed during the annihilation process de-
pends on the amplitude Ṽ of the optical lattice: the
smaller the modulation, the farther the dipole moves
along the y-direction before annihilation, and the longer
it takes for the dipole to disappear. This is shown in

FIG. 16: Trajectories of the two vortices of the dipole in the
x-y plane ending in vortex dipole annihilation. Left panel:
the two vortices are initially placed at x = ±2d = ±6.35µm.
From top to bottom: Ṽ = 2, 4, 7. The label on each trajec-
tory gives the observed annihilation time in milliseconds. The
crosses show the positions of the T sites where the Rb den-
sity is maximum. Right panel: the two vortices are initially
placed at x = ±3d = ±9.53µm.

Fig.16, where it appears that the vortex hopping occur
mostly across bridge sites. The two vortices are initially
placed at x = ±2d = ±6.35µm (left panel of Fig.16).
In the right panel of Fig.16 the annihilation paths are
shown instead when the two vortices are initially placed
at a larger mutual distance, x = ±3d = ±9.53µm. We
recall that in absence of OL the vortex dipole would move
rigidly with constant velocity in the y direction.
It is of interest a comparison with the dynamics of a

vortex dipole in the supersolid state of dipolar bosons20.
There is some similarity with what we find here in that
the vortices of the dipole move by approaching each other
by jumps between equilibrium sites with final annihila-
tion but the studied case for dipolar atoms did not show
any translation of the dipole in the direction perpendic-
ular to the line joining the vortices.
The energy released immediately after the annihila-

tion goes into excitations of the system. In order to gain
some insights on the character of the excitations we com-
puted the spectral density of the kinetic energy of the
superfluid velocity field, decomposing it into compress-
ible and incompressible parts31–33. Briefly, one splits the
density-weighted velocity field u⃗(r⃗, t) ≡

√
ρ(r⃗, t)v⃗(r⃗, t)

into a compressible (C) and an incompressible (I) part,

u⃗(r⃗, t) = u⃗I(r⃗, t) + u⃗C(r⃗, t), such that ∇⃗ · u⃗I(r⃗, t) = 0

and ∇⃗ ∧ uC(r⃗, t) = 0. One can therefore decompose the
kinetic energy E into two parts, E = EI + EC , where

EI,C =
m

2

∫
dr⃗|u⃗I,C(r⃗, t)|2 (12)

The compressible component is attributed to the ki-
netic energy contained in the sound field, while the in-
compressible part gives the contribution from quantum
vortices.
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In k⃗-space, the total incompressible (compressible) ki-
netic energy EI,C is given by

EI,C =
m

2
Σj=x,y

∫
d2k⃗|Fj(k⃗)|2 (13)

where

Fj(k⃗) =
1

2π

∫
d2r⃗e−ik⃗·r⃗uI,Cj (r⃗) (14)

(the time-dependence is implied).
The one-dimensional spectral density in k-space is

given by integrating over the azimuthal angle

EI,C(k) =
mk

2
Σj=x,y

∫ 2π

0

dϕk|Fj(k⃗)|2 (15)

We show in Fig.(17) the spectral density of the kinetic

energy, EI,C(k, t) for the case Ṽ = 4, when the two vor-
tices are initially placed at positions x = ±2d (whose
trajectories are displayed in the left panel of Fig.16.
The horizontal arrows show two relevant wave vectors:
kvv = 2π/l, where l is the initial vortex-vortex distance,
and kd = 2π/d, which is the wave vector corresponding
to the periodic modulation with lattice constant d. The
lower panel clearly shows the sharp transition when the
vortices disappear with a strong drop of the incompress-
ible kinetic energy. The peak in the incompressible part
appearing below the wave-vector kvv before annihilation
is a general feature also found in the calculations for a
vortex dipole in Ref.33 (see in particular the Fig.3 of that
reference). After vortex annihilation the compressible
part (upper panel) starts showing features connected to
density fluctuations (sound waves). One can notice that
also before vortex annihilation a faint time modulation is
present over an extended range of k vectors and its period
is about 7 ms. We have computed30 the phonon frequen-
cies of the Rb gas in presence of the 2D OL but without
vortices and find that this 7 ms period falls inside a gap
of the phonon spectrum. The vortex dipole represents a
defect in the modulated system and our interpretation of
this oscillation is in term of a localized vibration of the
Rb gas around the moving vortex dipole.

D. Triangular and Honeycomb optical lattice.

We consider here two other lattice types, with trian-
gular symmetry. The periodic potential mimics what is
actually employed in experiment where a potential with
triangular symmetry is created by three laser beams that
intersect in the x–y plane mutually enclosing angles of

120◦ with lattice vectors k⃗1, k⃗2 and k⃗3 (see Ref.34).
We use here the following form:

V tri
OL = Ṽ {4

3
− 4

9
[cos(⃗b1 ·R⃗)+cos(⃗b2 ·R⃗)+cos((⃗b1−b⃗2)·R⃗)]}

(16)

FIG. 17: Kinetic energy spectra for the case Ṽ = 4, square
OL. Top: compressible part; bottom: incompressible part.

where R⃗ = (x, y), b⃗1 = k⃗2 − k⃗1, b⃗2 = k⃗2 − k⃗3, and

k⃗1 = κ(
√
3/2,−1/2), k⃗2 = κ(0, 1), k⃗3 = −κ(

√
3/2, 1/2).

k is the wave vector of the laser employed for the lattice
beams. Here κ = 4π/(3d), d being the lattice constant
(the same used in the square optical lattice). The nu-
merical coefficients in the previous equations are such to
give the same min-max excursion, (0, 2V0), of the square
optical potential used in the previous sections. The num-
ber of Rb atoms N is also chosen such to have the same
mean density as in the square lattice case. The density
of the Rb atoms is a periodic function of position with
triangular symmetry.
A different symmetry of the density of the atoms can

be obtained in the presence of the potential

V hon
OL (x, y) = −V tri

OL(x, y) + 2V0 (17)

so that the role of maxima and minima of V tri
OL(x, y) are

exchanged. In this case the maxima in the Rb density
will be at the points of an honeycomb lattice.
We have studied the vortex properties in these two

cases. As in the case of the square lattice we find that
the equilibrium positions of a vortex are at the sites of
minimum density.
We show in Figs.(18) and (19) the equilibrium vortex

structure for different values of the potential depth Ṽ , in-
cluding the value Ṽ = 0, in the triangular and honeycomb
lattice, respectively. In order to facilitate the visualiza-
tion, as done in Fig.(12), we show the density differences
with respect to the configuration without vortex.
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FIG. 18: Relative density difference (ρvort − ρnovort)/ρnovort

showing the minimum energy vortex structure (hollow site)

in the triangular lattice for for Ṽ = 0, 2, 4, 7.

FIG. 19: Relative density difference (ρvort − ρnovort)/ρnovort

showing the minimum energy vortex structure (hollow site)

in the honeycomb lattice for Ṽ = 0, 2, 4, 7.

Finally, we show in Fig.(20) and (21) the trajectories
of a vortex-antivortex pair, obtained by solving the time-
dependent equation (2), as they propagate through the
lattice before undergoing annihilation after some time.
Again, the propagation occurs in the form of jumps across
the lower energy barrier sites, and the lower the modula-
tion, the longer it takes for the annihilation to occur and
the larger is the displacement of the dipole before anni-
hilation. From these results and those for the square lat-
tice we conclude that the basic features of the motion of a
vortex dipole do not depend on the lattice symmetry and
that the lifetime of the vortex dipole can be controlled
by the intensity of the OL.

FIG. 20: Trajectories in the x-y plane ending in the vortex
dipole annihilation, for the triangular lattice. The two vor-
tices are initially placed at x = ±2d = ±6.35µm. From top to
bottom: Ṽ = 2, 4, 7. The label on each trajectory report the
observed annihilation time in milliseconds. The crosses show
the positions of the T sites where the Rb density is maximum.

FIG. 21: Trajectories in the x-y plane ending in the vortex
dipole annihilation, for the honeycomb lattice. The two vor-
tices are initially placed at x = ±2d = ±6.35µm. From top to
bottom: Ṽ = 2, 4, 7. The label on each trajectory report the
observed annihilation time in milliseconds. The crosses show
the positions of the T sites where the Rb density is maximum.
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E. Visualizing vortices in optical lattices

As previously discussed, the direct visualization of vor-
tices in the system studied here might be difficult, espe-
cially for large values of the amplitude of the OL. This is
a consequence of the fact that the vortex cores tend to lo-
calize in the low-density sites of the periodic lattice. We
suggest here that a simple way to visually detect the pres-
ence of vortices in the modulated system can be achieved
by sudden removal of the optical lattice potential.

One way to experimentally cause vortex nucleation is
by means of rotation of the optical lattice. We consider
here the the case of the square lattice with the same radial
confining potential (circular ”box”) used to analyze the
dynamics of a single vortex in the 1-dimensional lattice
described in Section III.C.

To enforce rotations (with some fixed angular velocity
ω, around the z-axis) we work in the co-rotating frame,
described by the Hamiltonian{

H − h̄ωL̂z

}
Ψ(r) = µΨ(r) (18)

where L̂z is the total angular momentum operator in the
z-direction and H is the Hamiltonian of Eq.(2).

We first compute the stationary state in the presence of
a rotation of the system with constant ω by solving the
Euler-Lagrange equations in imaginary time associated
with the previous Hamiltonian. If the imposed angu-
lar velocity is large enough (i.e. larger than the critical
frequency for a single vortex nucleation), a number of
vortices will eventually populate the system, which may
later be visualized. These vortices, as it happens in ro-
tating finite superfluid samples, are initially nucleated
on the boundaries of the system, and rapidly settle to an
equilibrium position at a distance from the center which
depends on the value of the rotational frequency: the
larger the latter is, the closer to the center will be the
vortices in the stationary-state configuration.

As an example, we show in the first panel of Fig.(22)
the stationary state obtained with ω = 2π × 8 Hz in
presence of a square OL with value Ṽ = 7. At first sight,
the resulting density profile resembles that of the ground-
state in the absence of rotation. However, a finite value
for L̂z indicates the presence of vorticity in the system.
A possible way to increase the vortex visibility is to

rapidly remove the periodic potential (but keeping the
radial confinement active) so that the system may evolve
towards a more homogeneous state where the increased
contrast between the empty core and the background
density may allow to reveal the vortex positions.

We therefore perform a real-time dynamics, starting
from the stationary state shown in the first panel of
Fig.22, with a linear ramp of the optical potential which
brings its value from Ṽ = 7 to zero in 5 ms. The three
panel (from left to right, from top to bottom) of Fig.22
show snapshots of the Rb density during the real-time
evolution, clearly showing a ring of six vortices as the

FIG. 22: From left to right, from top to bottom: panel (1):
density of the stationary state in the co-rotating frame, for
Ṽ = 7; panel (ii-iv): density patterns at t = 1.6 ms, t = 4.1
ms, and t = 6.4 ms, during the time evolution of the state
(1) when the amplitude Ṽ is ramped linearly to zero in 5 ms.
The density is in units of cm−3.

density modulations are suppressed. Notice that the vor-
tex core positions rotate with the imposed angular veloc-
ity ω.
We remark that the time required to visually disclose

the vortex cores is so short that the final core positions
(last panel in the figure) coincide with their initial po-
sitions in the modulated phase shown in the first panel.
Such short times exclude the possibility that vortices are
nucleated during the quench from the modulated to the
homogeneous phase.

V. CONCLUSIONS

We have studied the superfluid phase of boson 87Rb
atoms under the influence of an optical potential which
induces a spatial modulation of the local density. The
main interest is on the static and dynamical properties
of vortex excitations. We have studied the system at zero
temperature with the mean field Gross-Pitaevskii equa-
tion and our investigation is mainly on the regime of
strong modulation when the excursion between low and
high density becomes quite large. We study the system
in a flat geometry so that one can neglect the transverse
direction and the system is close to the 2D limit. The dy-
namics of a vortex in an almost 2D superfluid is rather
simple when no other vortex is present within its healing
length: the core moves with the gradient of the phase due
to other vortices. Consequences of this law are, for in-
stance, that a vortex dipole is a stable entity and it rigidly
translates with constant velocity and that one vortex in
a circular trap performs a procession around the trap
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center. Deviations from such behaviors in a weakly inho-
mogeneous superfluid have been studied by a number of
authors as discussed in the Introduction. We have stud-
ied a rather different regime, when the inhomogeneity is
very large. In presence of an intense optical potential we
find a vortex behavior quite different from that of the
uniform superfluid. Depending on the symmetry of the
optical lattice two vortices of opposite chirality, a vortex
dipole, can move by jumps approaching each other until
annihilation with a lifetime of the pair depending on the
intensity of the optical lattice or the vortices of the dipole
do translate but with a velocity even of opposite direc-
tion of that present in the uniform case and, in addition,
this translation takes place together with an oscillatory
motion. Or a single vortex in a trap does not perform a
processional motion but it move toward the periphery of
the trap with a complex motion consisting of translation
and of an oscillation. These periodic motions are single-
side in the sense that they never cross the equilibrium
position from the starting place, a behavior quite differ-
ent from that of a massive particle around an equilibrium
position. Such features of the vortex motion derive from
two facts, on one hand the vortex energy depends on the
local density at the position of its core and the energy
is lowest where the density has a minimum, I.e. at the
positions of the maxima of the optical lattice.

A consequence of this is that a vortex is not free to
move but it is pinned to specific sites or lines depend-
ing on the symmetry of the optical lattice. On the other
hand the stream lines have large deviations from the sim-
ple circular shape of the uniform superfluid. The super-
fluid fraction is reduced from unity, even if our system
is at zero temperature, and this reduction can be quite
large for large amplitudes of the optical potential. In the
case of 1D optical potential the superfluid has a stripe
structure and the superfluidity is very anisotropic: the
superfluid fraction is unity along the stripes and it is re-
duced in the direction perpendicular to the stripes. At
the same time a vortex has a unit circulation but a re-
duced angular momentum compared to that of a uniform
superfluid.

It is possible now to generate experimentally vortex
dipoles in a superfluid of cold atoms11 so it should be
possible to verify our predictions for the dynamics of vor-
tices in a modulated superfluid. We have studied the case
of 87Rb atoms but our results should be valid for other
bosons with positive scattering length. The jumping be-
havior and annihilation of a vortex dipole seen in the case
of a 2D optical lattice have some similarity with that of
a vortex dipole in a supersolid20.

Our study is based on a mean field theory and we
should pose the question of the accuracy of such theory
because it is known that a Mott transition to a localized
state sets in when the optical lattice is strong enough35.
In terms of recoil energy the amplitude of the optical po-
tential in our study is much smaller of the amplitudes for
which experimentally the localization has been found to
set in. In addition we have indication of the internal con-

sistency of the used theory because we have performed
computations30 of the excitation spectrum of our system
with the Bogoliubov-de Gennes equation and no sign of
instability has been found. This gives confidence on our
theoretical results.

We have been able to explain at a qualitative level
some aspects of our results like the approach of the two
vortices of a dipole or the one sided oscillations in terms
of the expression of the velocity of the vortex core and
its relation to the gradient of the local density of the
superfluid.

One would like to see a treatment of the systems of our
study on the basis of an approximate analytic treatment
like a suitable extension of the point-vortex approxima-
tion as explored in Ref.28. Different extensions of the
present study come to mind. One is the study of vortices
in the supersolid phase of soft core bosons or in super-
solid with a stripe structure. The flat geometry used in
our computations does not allow flexural motion of the
core of the vortex. Of interest will be a similar study
when the system is extended in the third direction and
key questions are the fate of the Kelvin waves that char-
acterize the motion of a vortex core in 3D1 or if additional
excitations are present similar to kinks of a dislocation
in a solid. Theory predicts that a supersolid phase with
a stripe structure can be present with dipolar bosons36.
Our results for the vortex behavior in a 1D modulated
system should be relevant also for such supersolid system.
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