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Abstract

Traditional meta-analysis assumes that the effect sizes estimated in individual stud-

ies follow a Gaussian distribution. However, this distributional assumption is not al-

ways satisfied in practice, leading to potentially biased results. In the situation when

the number of studies, denoted as K, is large, the cumulative Gaussian approximation

errors from each study could make the final estimation unreliable. In the situation when

K is small, it is not realistic to assume the random-effect follows Gaussian distribution.

In this paper, we present a novel empirical likelihood method for combining confidence

intervals under the meta-analysis framework. This method is free of the Gaussian as-

sumption in effect size estimates from individual studies and from the random-effects.

We establish the large-sample properties of the non-parametric estimator, and intro-

duce a criterion governing the relationship between the number of studies, K, and the

sample size of each study, ni. Our methodology supersedes conventional meta-analysis

techniques in both theoretical robustness and computational efficiency. We assess the

performance of our proposed methods using simulation studies, and apply our proposed

methods to two examples. confidence Interval; Empirical Likelihood; Meta-analysis;

Random-effect Model.

1 Introduction

Meta-analysis is a statistical method to combine results from multiple studies, facilitating

the inference-making process concerning specific parameters of interests, such as odds ratio.

0To whom correspondence should be addressed.
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Parameters estimated from individual studies can be combined using either a fixed-effect

or a random-effects meta-analysis model (Higgins and Thompson, 2009; Deeks and others,

2022). A fixed-effect model assumes that a single parameter value is common to all studies,

and a random-effects model assumes that parameters of the underlying studies follow some

distributions.

Let the random variable Yi (i = 1, 2, · · · ,K) denote an effect size estimate from study

i. Here Yi could be the mean difference between treatment groups, log-odds ratios, log-

hazard ratios, or other effect size estimates from study i. The conventional random-effects

meta-analysis model is defined as

Yi = θi + ϵi, θi = θ + ξi (1)

where θi is the true effect size of study i, θ is the common overall effect size, ϵi is the within-

study random error and ξi is a random variable reflecting study-specific deviation from the

common overall effect. In the literature, it is often assumed that ϵi and ξi are independent

Gaussian variables, with ϵi ∼ N (0, σ2
i ) and ξi ∼ N (0, τ2), where σ2

i is the within-study error

variance and depends on the sample size ni of study i. For instance, σ2
i is usually in the

order of n−1
i . The between-study variance τ2 reflects the heterogeneity in the effect sizes

across studies. Under the conventional random-effects meta-analysis model, the marginal

distribution of Yi is a Gaussian distribution with mean θ and variance σ2
i + τ2. The overall

effect θ can be estimated by the maximum likelihood method (Brockwell and Gordon, 2001;

Normand, 1999); and the between-study variance τ2 can also be estimated by the (profile)

maximum likelihood method (Brockwell and Gordon, 2001; Hardy and Thompson, 1996;

Partlett and Riley, 2017; Langan and others, 2019), DerSimonian and Laird’s method of

moments (DerSimonian and Laird, 1986) or quantile approximation (Brockwell and Gordon,

2007). Equation (1) becomes a fixed-effect meta-analysis model when ξi = 0 (E ξi = 0

and τ2 = 0). Within the existing literature, both models have leaned upon a Gaussian

assumption. Nonetheless, practical reality often deviates from this parametric assumption,

as demonstrated by (Lee and Thompson, 2008; Brockwell and Gordon, 2001; Sutton and

Higgins, 2008).

One important objective in meta-analysis is to estimate a confidence interval for the

overall effect size. The confidence interval can be constructed using the asymptotic distri-

bution for the estimator θ̂ , derived from a maximum likelihood approach (Brockwell and

Gordon, 2001) or a profile likelihood approach (Brockwell and Gordon, 2001; Hardy and

Thompson, 1996). Both approaches relied on the assumption that the estimator θ̂ approx-

imately follows a Gaussian distribution, which however may not be true if ni and/or K is

small. Constructing a confidence interval for θ based on alternative parametric distributions

was proposed, including t-distribution, other parametric distributions which allow for poten-
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tially skewed and heavy tails in random-effects distributions (Sidik and Jonkman, 2002; Lee

and Thompson, 2008; Baker and Jason, 2008; Ozturk and Balakrishnan, 2020), and quan-

tile approximation (Brockwell and Gordon, 2007; Jackson and Bowden, 2009). Confidence

distributions (CDs), which can be viewed as “distribution estimators” (Schweder and Hjort,

2002), is a technique which can be used to construct point estimators, confidence intervals

and p-values. The fusion of CD functions from individual studies have been explored for

constructing a confidence interval for the overall effect size (Singh and others, 2005; Xie and

others, 2011). Nevertheless, the CD approach still relies on Gaussian assumptions for the

integration of CD functions from individual studies into a unified CD function. For example,

Singh and others (2005) and Xie and others (2011) used Gaussian distribution to construct

CD functions and Nagashima and others (2019) proposed a parametric bootstrap algorithm

based on Gaussian and t-distributions. We refer the reader to Veroniki and others (2018)

for a review of methods (all depend on parametric assumptions) to calculate a confidence

interval for the estimated overall effect size from a random-effects meta-analysis.

Different from the existing meta-analysis methods, we consider a more challenging situa-

tion where only the 1−α confidence interval for the effect size of study i, [Li, Ui], is observed,

and individual study effect size estimates Yi and within-study error variance estimate σ̂2
i are

not observed. Further, we seek to relax the Gaussian assumption. The aim of this paper

is to propose a novel non-parametric meta-analysis method based on empirical likelihood

(EL) to make robust inferences on the confidence interval of the overall effect size θ. We

relax the Gaussian distributional assumption for Yi and θi. In other words, we consider

Yi = θi + ϵi, ϵi ∼ Fi(·); θi = θ + ξi, ξi ∼ G(·), (2)

where the distributions Fi, G are not subject to any parametric assumption. The proposed

non-parametric method allows K → ∞, which is more reasonable than many existing lit-

erature where K was treated as a constant. This innovation empowers the non-parametric

meta-analysis to effectively manage a substantial number of studies.

The rest of the paper is organised as follows. The proposed non-parametric meta-analysis

method is presented in Section 2 and 3. We evaluate the performance of the proposed

method using simulation studies in Section 4. Two real example applications are presented

in Section 5. The paper concludes with a discussion and theoretical proofs for the large

sample theory are provided in Web Appendix A of the Supplementary Material.

2 Model-based meta-analysis approach

For the parametric Gaussian models presented in Section 1, Singh and others (2005) and

Xie and others (2011) developed a general framework for combining results from indi-
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vidual studies in a meta-analysis. They used a Confidence Distribution (CD) function

H(X, θ) of the data X and parameter θ, from which inference on confidence intervals,

point estimates or p-values can be derived. Their method amalgamates the individual

study’s CD functions Hi(Xi, θ) into a unified CD function Hc(θ), through a monotonic

function gc(H1(X1, θ), · · · , HK(XK , θ)). Under the Gaussian assumption in the random-

effects meta-analysis model, and assuming the estimated effect size Yi and the within-study

error variance σ2
i for studiy i are available, a typical CD function for θ is

Hi(θ) = Φ

(
θ − Yi

si

)
, (3)

where Φ(·) is the cumulative Gaussian distribution function, s2i = σ2
i + τ̂2 in the random-

effects model (s2i = σ2
i in the fixed-effect model), and τ̂2 is the estimated between-study

variance.

Singh and others (2005) and Xie and others (2011) summarized methodologies used in

the literature in group decision analysis, where linear combination of individual study result

is commonly used as the final outcome. They introduced the following linear combination

function

gc(u1, · · · , uK) =

K∑
k=1

wk Φ
−1(uk), (4)

where the weight wk = 1/sk. Then the combination of CDs for θ is defined as

Hc(θ) = Φ

gc(H1(θ), · · · , HK(θ))√∑K
i=1 w

2
i

 = Φ

∑K
k=1 wk

θ−Yk

sk√∑K
i=1 w

2
i

 .

Inference on θ can then be obtained using the combined CD function Hc(θ). For instance,

the (1− β) confidence interval for θ can be constructed as

[LC , UC ] = [H−1
c (β/2), H−1

c (1− β/2)]. (5)

The above approach involves two assumptions: 1. The model error terms in model (1)

in Section 1 follow a Gaussian distribution; 2. The linear combination in (4) follows a zero-

mean Gaussian distribution. If each of the sample size ni is large enough, the model error

term in model (1) can be assumed to be Gaussian, i.e. the above assumption 1 is reasonable,

but it fails if ni is small. However, this is a strong assumption. If the first assumption is

violated, the second assumption will also be false. If the Gaussian assumption is not held

true for some individual studies, in the presence of a large number of studies, i.e. large

K , the accumulated errors by combining all different studies might not be bounded. For

instance, under model (2) without the Gaussian assumptions, if we consider θi ∼ N(θ = 0, 1)

but yij |θi ∼ χ2(4)− 4+ θi, Yi = n−1
i

∑ni

j=1 yij , then we will not be able to use the combined
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statistic Z = K− 1
2

∑K
i=1(θ−Yi)/si to construct the meta-analysis confidence interval, since

Z will not converge to 0 when K → ∞. This can be seen from Figure 1. Furthermore,

the relationship between the number of studies K and sample size ni in meta-analysis has

not been extensively discussed. We will propose a non-parametric method and relax this

Gaussian assumption in the following section and discuss the relationship between K and

ni.

Figure 1: The empirical mean of Z with θi ∼ N(0, 1), yij |θi ∼ χ2(4) − 4 + θi and Yi =

n−1
i

∑ni

j=1 yij . We consider the setting with large K = 100, 500, 1000, 5000, 10000, 50000

and small ni = 20, 40, 60 for all i.

3 Non-parametric meta-analysis based on empirical like-

lihood

In this section, we propose a robust inference procedure for conducting meta-analysis that

does not make distributional assumptions on effect size estimates for individual studies.

Hence, this new approach is more reliable even if some studies have a small sample size ni.

We first present a generalized theorem and necessary assumptions.

Let Wi(θ) be an r-dimensional function of θ for study i. If Wi(θ) is asymptotically

unbiased to 0 at the true parameter value θ0, we can construct the estimating equation

1
K

∑K
i=1 Wi(θ) = 0 for the unknown parameter θ. Following standard conventions in the

literature, individual studies are independent of each other. Hence, we assume that the

following assumptions hold.
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Assumption 1. Asymptotic Unbiaseness. For any i, at the true parameter θ0,

EWi(θ0) = O(n
−1/2
i ),

which means that each component of EWi is in the order of n
−1/2
i .

Assumption 2. Independence. Wi(θ), i = 1, · · · ,K are independent.

We then consider the Empirical Likelihood (EL) approach and define the EL function

L(θ) = sup

{
K∏
i=1

pi :

K∑
i=1

pi Wi(θ) = 0,

K∑
i=1

pi = 1

}
.

At the true parameter θ0, the corresponding EL ratio statistic is

R(θ0) =
L(θ0)

supθ L(θ)
. (6)

We further need the following assumptions to discuss the large-sample properties of the EL

ratio statistic.

Assumption 3. Finite Variance. For any i, at the true parameter θ0, Wi(θ0) has a

full rank finite covariance matrix Mi = var (Wi(θ0)), and Mi, i = 1, · · · ,K are uniformly

bounded by M, which means for any vector e ∈ Rr, supi e
T Mi e ≤ eT Me.

Note that Assumption 3 always holds in practice, since typical classical statistical estima-

tion can always be formalised as a sequence of asymptotically unbiased estimating equations,

such as the likelihood inference and generalised estimating equation approaches. The finite

variance of Mi is guaranteed when we use standardised estimating equations.

The last assumption is about the relationship between the number of studies K and

the individual study sample size ni, which is necessary when we discuss the large sample

theories of meta-analysis under a non-parametric approach. To illustrate this assumption,

we introduce the following notation and assumption. Let n(K) be the minimum number of

individual sample sizes, that is n(K) = min{ni, i = 1, · · · ,K}.

Assumption 4. Large Sample Order Condition. K/n(K) → 0, as K → ∞ or n(K) →

∞.

Assumption 4 includes the scenario in the literature, whereK is treated as a fixed number

and sample sizes ni may goes to infinity. First, the above assumption allows K to be a fixed

number and in this case, as all ni goes to infinity, the above assumption is always true.

In addition, the above assumption is more general since it allows allows K, the number of

studies, to go to infinity. Assumption 4 implies that for large values of K, we only need K

to be in a lower order than all ni, the sample sizes of individual studies. It gives a sufficient
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condition required for that meta-analyses can be conducted with a substantial multitude of

studies. Recently, Cai and others (2023) discussed the case of large K but finite ni.

Under these assumptions, we have the main result as presented in the following theorem,

with the proofs given in Web Appendix A of the Supplementary Material.

Theorem 5. Assume that R(θ) is an EL ratio statistic defined in (6). Under Assumptions

1-4, as K → ∞, we have −2 logR(θ0) → χ2(r) in distribution.

For a fixed confidence level β, we can construct the (1− β)-level confidence interval for

θ as

{θ : −2 logR(θ) ≤ χ2
1−β(r)}. (7)

Next, we will apply this theorem to two different meta-analysis models. The key point in

applying the EL inference is to construct an estimating equation to define the EL ratio

statistic.

3.1 Random-effects meta-analysis

Consider the random-effects meta-analysis model (2). Assume that we have collected 1− α

confidence intervals [Li, Ui] for the parameter θi from K studies. The sample size for each

study is denoted as ni, i = 1, 2, · · · , K. Based on the confidence intervals [Li, Ui], we

define

Wi(θ) =
Ui + Li − 2θ

Ui − Li
, (8)

which can be written as Wi(θ) =
Gi(θ)−Gi(θ)

Gi(θ)+Gi(θ)
, with Gi(θ) = Ui−θ and Gi(θ) = θ−Li. Then

E(Gi(θ0)) = E (θ0 − Yi + Yi − Li) = E (E(θ0 − Yi)|θi) + E(Yi − Li)

= E(θ0 − θi) + E(Yi − Li) = E(Yi − Li),

and E(Gi(θ0)) = E(Ui − Yi). Because of the large sample property of Yi, it is generally true

that

E(Yi − Li) = O(n
−1/2
i ), E(Ui − Yi) = O(n

−1/2
i ).

On the other hand, when using empirical likelihood method to construct confidence intervals,

we have E(Yi − Li) − E(Ui − Yi) ≤ c · n−1
i , for some constant c. This holds as well when

confidence intervals are constructed via symmetric distributions, such as t-distribution or

Gaussian distribution, since E(Yi − Li) − E(Ui − Yi) = 0. Therefore, we here focus on the

confidence intervals such that,

E(Yi − Li)− E(Ui − Yi) ≤ c · n−1
i .
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Now we have

E(Gi(θ0))− E(Gi(θ0)) = O(n−1
i ), E(Gi(θ0)) + E(Gi(θ0)) = O(n

−1/2
i ), (9)

and thus Assumption 1 is satisfied, i.e.,

EWi(θ0) = O(n
−1/2
i ). (10)

Now we define

L(θ) = sup

{
K∏
i=1

pi :

K∑
i=1

pi

(
Li + Ui − 2θ

Ui − Li

)
= 0,

K∑
i=1

pi = 1

}
,

then the corresponding EL ratio statistic isR(θ0) = L(θ0)/ supθ L(θ). According to Theorem

5, we have −2 logR(θ0) → χ2(1) in distribution.

3.2 Fixed-effect meta-analysis

We now consider a fixed-effect model, i.e. for all i = 1, . . . ,K, θi = θ in equation (2). Since

this is a special case of the random-effects model, we can still use the method presented in

the previous subsection to make inferences. In the fixed-effect model, we can also use the

confidence level to construct the estimating equation. First, we define

Vi(θ) = I{Li ≤ θ ≤ Ui} − (1− α). (11)

Most of the time, the confidence interval [Li, Ui] is constructed based on an asymptotic

distribution rather than an accurate distribution, hence, the expectation of (11) is approx-

imately equal to 0. For example, when the confidence interval [Li, Ui] was constructed

according to the central limit theorem, we have

EVi(θ0) = E (I{Li ≤ θ0 ≤ Ui} − (1− α)) = O(n
−1/2
i ).

However, in the random-effects meta-analysis model the above Vi(θ0) is not asymptotically

unbiased to 0. This is demonstrated by the following result under model (1) with the

Gaussian assumption for ϵi and ξi,

EVi(θ0) = E
(
I
{
Yi − z1−α

2
· σ̂i ≤ θ0 ≤ Yi + z1−α

2
· σ̂i

})
− (1− α)

= E
(
Φ

(
z1−α

2
− θi − θ0

σ̂i

)
− Φ

(
−z1−α

2
− θi − θ0

σ̂i

))
− (1− α).

This expectation does not converge to 0, and it cannot be used to construct the asymp-

totically unbiased estimating equation in the random-effects model. Therefore, we consider

the following three ways to define EL ratio statistic in the fixed-effect meta-analysis model.

Denote Vi(θ) as the estimating equation for study i, and r as the dimension of Vi(θ).
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• Case I: the estimating equation based on the confidence level, i.e. the following function

Vi(θ) = I{Li ≤ θ ≤ Ui} − (1− α).

• Case II: the estimating equation based on symmetry (this is the same as the random-

effects model), i.e. using the following function

Vi(θ) = Wi(θ) = z1−α
2

Li + Ui − 2θ

Ui − Li
.

• Case III: the estimating equation based on confidence level and symmetry. In this

case, r = 2, and Vi(θ) = (Vi1(θ), Vi2(θ))
T, where

Vi1(θ) = I{Li ≤ θ ≤ Ui} − (1− α), Vi2(θ) = z1−α
2

Li + Ui − 2θ

Ui − Li
.

By choosing an appropriate Vi(θ), we can define three different empirical likelihood statistics,

which allow us to make inferences on the confidence interval in meta-analysis,

Lf1(θ) = sup

{
K∏
i=1

pi :

K∑
i=1

piI{Li ≤ θ ≤ Ui} = 1− α,

K∑
i=1

pi = 1

}
,

Lf2(θ) = sup

{
K∏
i=1

pi :

K∑
i=1

pi

(
Li + Ui − 2θ

Ui − Li

)
= 0,

K∑
i=1

pi = 1

}
, (12)

Lf3(θ) = sup

{
K∏
i=1

pi :

K∑
i=1

piI{Li ≤ θ ≤ Ui} = 1− α,

K∑
i=1

pi

(
Li + Ui − 2θ

Ui − Li

)
= 0,

K∑
i=1

pi = 1

}
.

Then the corresponding empirical likelihood ratio statistics are

Rfk(θ0) =
Lfk(θ0)

supθ Lfk(θ)
, k = 1, 2, 3

respectively. Following Theorem 5, we have −2 logRf1(θ0) → χ2(1), −2 logRf2(θ0) →

χ2(1) and −2 logRf3(θ0) → χ2(2), in distribution. Then for a fixed confidence level β, we

can construct the (1− β)-level confidence interval for θ based on (7).

4 Simulation Studies

To demonstrate the performance of the proposed non-parametric method, we conduct a

comprehensive comparison against two established methods: the existing CD method and

the conventional meta-analysis method. To be specific, DerSimonian & Laird method is

used to estimate τ2 in CD method, and ‘rma’ in the ‘metafor’ R package where we use

REML to estimate τ2.

We consider four different scenarios in this section, which corresponds to model (2) but

have different distributions for the zero-mean error terms,

yij ∼ F (· | θi, σ2), Yi = n−1
i

ni∑
j=1

yij ,

θi = θ + ξi, ξi ∼ G(· | τ2), (13)
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where E(yij) = θi, i.e. θi is the expected effect size of study i, Yi is the estimated effect size

of study i, and θ is the overall effect size. The parameter σ2 is the within-study variance.

This model setting is the same as (2), where var(Yi) is in the order of σ2
i = σ2/ni. For all

scenarios, we set θ = 0, and σ2 = 1, and we consider different values of K, 20, 60 and 100.

We set the four simulation scenarios as follows, with different distributions F and G.

• Scenario 1 is the Gaussian distribution case, where F = N (θi, σ
2) and G = N (0, τ2).

This is equivalent to model (1).

• Scenario 2 sets F = N (θi, σ
2) and G to log-normal distribution with mean 0 and

variance τ2. The individual study effect θi is not Gaussian. This is common in

practice. For example, a study’s effect size may have a positive and heavy tail. We

choose ξi = c2 · log-normal(1, 1) + d2, where c2 and d2 are constants such that the

distribution of ξi has mean 0 and variance as a pre-specified value τ2.

• Scenario 3 sets F to be non-Gaussian, but G to be Gaussian N (0, τ2). When an

individual study has a small sample size, the individual studies’ effect size estimate

Yi does not follow a Gaussian distribution. In our simulation, we first generate θi ∼

N (0, τ2), i = 1, 2, · · · , K. Given the sample size ni and θi, draw yij | θi ∼ a3,i ·

χ2(4) + b3,i such that E(yij | θi) = θi, var(yij | θi) = σ2.

• Scenario 4 is the most general case where we set both F and G to be non-Gaussian.

We choose G to be the distribution of c4 · χ2(4) + d4 to generate θi, and we obtain

random sample Yi = n−1
i

∑ni

j=1 yij with yij | θi ∼ a4,i · log-normal(1, 1) + b4,i, where

a4,i and b4,i are such that E(yij | θi) = θi, and var(yij | θi) = σ2.

For each scenario, we obtain the estimated effect size and the estimated within-study

variance by Yi = n−1
i

∑ni

j=1 yij and σ̂2
i =

∑ni

j=1(yij − Yi)
2/(ni(ni − 1)), respectively. Then

the 1− α = 95% two-side confidence interval [Li, Ui] of θ is generated by either

Li = Yi − z1−α/2 · σ̂i, Ui = Yi + z1−α/2 · σ̂i, ni ≥ 30, (14)

for large ni, or

Li = Yi − t1−α/2(ni − 1) · σ̂i, Ui = Yi + t1−α/2(ni − 1) · σ̂i, ni < 30, (15)

for small ni, where tβ(n) is the β-quantile for the t-distribution with degree of freedom n.

We consider the settings of different values of τ2, ranging from 0 to 100. When τ2 = 0, it

becomes a fixed-effect meta-analysis model. Based on the observations [Li, Ui], we compare

1− β = 95% confidence intervals which are constructed via the conventional meta-analysis

method, the CD method and the non-parametric EL method.

10



4.1 Scenarios 1, 2 and 3

We consider the conventional settings of random-effects meta-analysis model (τ2 ̸= 0) and

fixed-effect meta-analysis model (τ2 = 0). Figure 2 shows the results coverage probability

against the ratio of between-study variance and within-study variance for Scenarios 1 to

3, based on different values of K, 20, 60, and 100, σ2 = 1, and different values of τ2,

0, 0.001, 0.01, 0.1, 1, 10 and 100. For each study, the number of observations ni is drawn

randomly from the uniform distribution 0.2 · U [100, 500].

Figure 2: The coverage probabilities of 1 − β = 95% confidence intervals which are con-

structed via the conventional meta-analysis method, CD method and EL method respec-

tively under the setting of different K and τ2 in Scenario 1. In each setting the ni is sampled

from 0.2 · U [100, 500].
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The simulation results for Scenario 1 are shown in the first row of plots in Figure 2. For

all three methods the coverage probabilities of the confidence interval for the overall effect

are close to the nominal level 0.95, under all different values of τ2. Under the Gaussian

assumptions, the non-parametric EL method is as good as the conventional meta-analysis

and the CD method.

In Scenario 2, the individual study’s effect size estimate is Gaussian but the random-

effect is a log-normal distribution. From the second row of plots in Figure 2, we can see that

all three methods, the conventional meta-analysis, the CD approach and the non-parametric

EL method give underestimated coverage probabilities, for large values of τ2 (with values

1, 10, 100) and small values of K. When K = 20, the larger τ2 is, the worse performance

for the conventional meta-analysis and the CD method. This is because the Gaussian

assumption for the individual study’s effect size is invalid and the error is mainly from

the non-Gaussian random-effects. When τ2 becomes larger, the error of using a Gaussian

distribution to approximate a log-normal distribution becomes larger, especially when K is

small. The performance of all three methods improves as K increases. For example. when

K = 100, all three methods provide reasonably well coverage probability for overall effect

estimate.

The proposed non-parametric EL method exhibits a notable and significant advantage

over the other methods in Scenario 3, where the study effect size is a χ2 distribution but

the random-effect is a Gaussian distribution. The results are presented in the third row of

plots in Figure 2. The coverage probabilities of confidence intervals derived from both the

conventional and CD methods exhibit a rapid decline as the number of studies (K) increases,

especially when the true τ2 value is small. This decline implies a notable departure from

the anticipated large sample properties for these methods.

In cases where τ2 is small, it is understood that the primary source of error originates

from the within-study approximation. Given that the true distribution for each study in

Scenario 3 follows a χ2 distribution, the within-study error, under the Gaussian assumption,

becomes considerably inflated. Consequently, the conventional and CD methods manifest

ineffectiveness. However, as the τ2 value increases, errors in the overall effect estimation stem

mainly from the random effects. This scenario proves beneficial for the conventional and CD

methods, as the Gaussian approximation aligns more closely with the true distribution of θi,

resulting in smaller between-study approximation errors. In contrast, the non-parametric

EL method is more robust and perform better for both small and large values of τ2. Just

as with the conventional and CD methods, there is a potential for convergence challenges

within the non-parametric EL method. Notably, as K increases, the convergence probability

fails to align with the true nominal value of 0.95. This deviation can be attributed to
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the insufficiency of the sample size (ni) within each study, as governed by Assumption 4.

Further exploration of the effect of augmenting the sample size (ni) will be undertaken in

the subsequent subsection, focusing on Scenario 4.

4.2 Scenario 4 and results based on different ni

We now study the performance of different methods under Scenario 4, that both the individ-

ual study effect size and random-effects are non-Gaussian. The top-row plots within Figure

3 present results for relatively small ni values, drawn from 0.2 · U [100, 500]. It’s evident that

neither the conventional meta-analysis method nor the CD method performs well under

small τ2 values. Although the non-parametric EL method exhibits an improved coverage

probability, it still falls considerably short of the target nominal value of 0.95. This perfor-

mance gap can be attributed to the relatively modest ni values presented in this scenario.

Significantly larger values of ni are needed to guarantee the convergence of the log-likelihood

ratio statistic. The bottom row of plots in Figure 3 shows the performance with large values

of ni, which are random values from U [4K, 5K]. We can see that the coverage probabilities

based on the conventional meta-analysis method and the CD method converge very slowly

to the true nominal value 0.95, even if we have a large number of ni and a large number of

K. For instance, when τ2 = 0,K = 100 and ni is drawn from U [400, 500], both the conven-

tional method and the CD method give coverage probabilities about 0.4. Remarkably, the

non-parametric EL method exhibits significantly improved coverage probabilities, outper-

forming the conventional and CD methods. Under the same conditions, the non-parametric

EL method approximates a coverage probability of about 0.8, converging much faster to the

true nominal value.

4.3 The relationship between K and ni in the Scenario 4

Further, we study the relationship between K and ni in different methods under Scenario

4 with fixed τ2 = 0.01. The simulation results are show in Figure 4. When K is fixed, the

coverage probability of each method will converge to the true nominal value as ni increases,

but our EL method performs better and robustly especially in the small ni. When ni is fixed,

the coverage probability of each method will not converge as K increases since Assumption

4 is not satisfied.

4.4 Convergence of the non-parametric EL estimator

Assumption 4 was not well addressed in the meta-analysis literature, but it was the key

condition to guarantee the consistency of the meta-analysis estimate. Here we further use
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Figure 3: The coverage probabilities of 1 − β = 95% confidence intervals which are con-

structed via conventional meta-analysis method, CD method and EL method respectively

under the setting of different K and τ2 in Scenario 4. In each setting the ni is sampled from

0.2 · U [100, 500] (top panel) or sampled from U [4K, 5K] (bottom panel).

a numerical study to demonstrate the convergence of the distribution of the log-likelihood

function at the true parameter, under different settings of K and ni, i.e. numerical justifica-

tion of Theorem 5. For brevity, here we only consider the convergence of different methods

mentioned in the fixed-effect model. We use QQ plots to empirically examine the accuracy

of the χ2(r) approximation to the distribution of the log-likelihood function at the true

parameter, −2 logR(θ0).

Taking F (· | θi) = χ2(4), θi = θ0 = 4 for the fixed-effect meta-analysis model, and

n1 = n2 = · · · = nK = n, we compare the sample quantiles obtained from 1000 replicated

values of −2 logR(θ0) under different methods. The theoretical asymptotic distributions

of −2 logR(θ0) under EL1, EL2 and EL3 are χ2(r) distributions, with r = 1 for EL1 and

EL2, and r = 2 for EL3. The sample quantiles are plotted in Figure 5. The proximity of

sample quantiles to the 45-degree straight line in QQ plots indicates the degree of resem-

blance between the distribution of these samples and the χ2(r) distribution. From these

QQ plots we can conclude that, when K/n = o(1), except for extreme upper quantiles, the
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Figure 4: The coverage probabilities of 1 − β = 95% confidence intervals which are con-

structed via conventional meta-analysis method, CD method and EL method respectively

under the setting of different K and ni in Scenario 4. In each setting the ni is the same for

each i and τ2 = 0.01.

distributions of −2 logR(θ0) under different methods are reasonably well approximated by

a χ2(r) distribution. A specific instance can be observed in the top-right panel of Figure 5,

where n = 800 and K = 200. Here, the alignment between sample quantiles and theoretical

quantiles is strikingly close. When K/n increases, especially when K = 800 and n = 200,

the convergence of −2 logR(θ0) to χ2(r) diminishes. It is shown by the left-bottom plot

of Figure 5, that −2 logR(θ0) does not converge to χ2(r), since Assumption 4 may be vio-

lated. When n = K (the top-left plot and the bottom-right plot), −2 logR(θ0) seems still

to converge to χ2(r), but its performance is not as good as the result with n = 800 and

K = 200.

5 Application

We apply our proposed methods to two real examples. Example 1 has a large number of

studies (K = 74), whilst Example 2 has a small number of studies (K = 6). The assumption

for K to be bounded in the existing methodologies may not be valid for a large value K such

as in Example 1, since the accumulated errors from each Gaussian approximation within

each study may be too large. For a small number of K such as in Example 2, the Gaussian

assumption for θi in the conventional meta-analysis methods may not be valid.

5.1 Example 1: Mortality in patients with non-COVID illnesses

during and before pandemic

During the COVID-19 pandemic, healthcare providers struggled to manage and deliver

quality health care services. Quantifying the effect of COVID-19 pandemic on patients
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Figure 5: A QQ plot with sample quantiles obtained from 1000 replicated values of

−2 logR(θ0) under different methods (EL1, EL2 and EL3) and the corresponding the quan-

tiles of the χ2(r) distribution (r = 1 for EL1 and EL2, r = 2 for EL3) under different settings:

(n,K) = (200, 200), (200, 800), (800, 200), (800, 800). The 45-degree line is included in each

plot.

with non-COVID illnesses and on healthcare systems compared to pre-pandemic times can

help to understand the impact and disruption of pandemic on health care. A systematic

review and meta-analysis of mortality in patients with non-COVID illness during and before

the COVID-19 pandemic was conducted (Lau and others, 2022), which presented a meta-

analysis (74 observational studies with 491,862 patients), and showed an increased mortality

rate during COVID-19 pandemic compared with a pre-pandenmic period for patients with

non-COVID illnesses. They studied the log-risk ratio (RR), where

risk ratio =
risk during the pandemic

risk before the pandemic
,

where risk is defined as the ratio of the number of death and the number of patients; and

the log-odds ratio (OR), where

odds ratio =
odds during the pandemic

odds before the pandemic
,

where the odds is the ratio of the number of death and the number of alive.

Table 1 shows the confidence intervals for the estimated overall effect. We also used

the the CD function method and our proposed non-parametric empirical likelihood method.

The pandemic is associated with an increased risk of mortality, with consistent results across
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the conventional meta-analysis, CD and EL methods as well as fixed-effect and random-

effects meta-analysis. Our EL approach resulted in larger CIs (RR: 1.206 (1.104, 1.469),

OR: 1.537, (1.293, 2.070)), which is expected as our method is non-parametric.

Due to the heterogeneity of different studies, a random-effects model is more realistic.

Table 1 shows that, when the CD method is used, the risk ratio is 1.384 (95%CI: 1.278 to

1.500) from the random-effects model, and is attenuated to 1.075 (95%CI: 1.068 to 1.082)

when we used a fixed-effect model. However, when using our EL method, the risk ratios are

closer to each other between the random-effects and fixed-effect meta-analyses. In particular,

the non-parametric approach with empirical likelihood Lf2 in (12) can be used in both

random-effects model and fixed-effect model. The results are similar despite under different

model assumptions. We observed similar patterns for OR in this example.

Table 1: Example 1. The combined confidence interval under each method based on the

confidence interval of log-risk ratio or log-odds ratio in each study reported in Lau and others

(2022). Combined confidence intervals were estimated by the conventional meta-analysis,

CD method, EL methods in random-effects model and fixed-effect model. The conventional

meta-analysis was fitted by using ‘rma’ in the ‘metafor’ R, and for the conventional random-

effect meta-analysis we used REML method to estimate the between-study variance τ2.

Fixed-effect meta-analysis Random-effects meta-analysis

Method Est. 95% CI Method Est. 95% CI

Risk Ratio

Conventional 1.075 (1.068, 1.082) Conventional 1.455 (1.270, 1.668)

CD 1.075 (1.068, 1.082) CD 1.384 (1.278, 1.500)

EL1 1.166 (1.086, 1.443) EL 1.206 (1.104, 1.469)

EL2 1.206 (1.104, 1.469)

EL3 1.175 (1.117, 1.447)

Odds Ratio

Conventional 1.318 (1.284, 1.353) Conventional 1.647 (1.407, 1.929)

CD 1.318 (1.284, 1.353) CD 1.650 (1.401, 1.944)

EL1 1.397 (1.385, 1.547) EL 1.537 (1.293, 2.070)

EL2 1.537 (1.293, 2.070)

EL3 1.423 (1.385, 1.577)
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5.2 Example 2: Stillbirths in pregnancy people with and without

COVID-19 vaccination

During the pandemic, COVID-19 vaccination was developed and rolled out at an unprece-

dented scale and speed addressing the global public health emergency. However, COVID-19

vaccination hesitancy has been identified as an issue. Apprehension surrounding pregnancy

was identified as one contributing source of vaccination hesitancy (Bhattacharya and others,

2022; Golder and others, 2023; Razai and others, 2021). Evidence of the effectiveness of

COVID-19 vaccination in pregnant women can help to improve the uptake of the vaccina-

tion in this vulnerable group. Stillbirth is an important perinatal outcome, which is the

death or loss of a baby before or during delivery. The impact of COVID-19 mRNA vacci-

nation on stillbirth was evaluated in a systematic review (Prasad and others, 2022) and a

meta-analysis of six studies (66,067 vaccinated v.s. 424,624 unvaccinated pregnant people).

Table 2 showed that results are inconsistent across methods. From the results obtained

from the CD method, COVID-19 vaccination is associated with lower risk of stillbirths.

However, in other methods (conventional random-effects meta-analysis, EL random-effects

meta-analysis and EL fixed-effect meta-analysis), we found no evidence for the association

of COVID-19 vaccination with stillbirths. In summary, the CD method implies that the

COVID-19 vaccination is associated with a reduced risk of still-birth. However, the results

from meta-analysis using the non-parametric EL method and the conventional meta-analysis

method cannot confirm this.

6 Discussion

This paper introduces a novel non-parametric method for conducting meta-analysis of con-

fidence intervals. The approach is rooted in empirical likelihood, applicable to both fixed-

effect and random-effects meta-analysis models. Notably, the non-parametric EL method

departs from the conventional Gaussian assumption often relied upon, while still yielding

large sample theoretical outcomes. Our contribution provides the solutions in addressing

the requirements regarding the number of studies (K) and the sample size (ni) within each

study, to ensure the consistency and asymptotic normality of the overall effect estimate. This

theoretical result fills a crucial gap that has not been addressed in the current landscape of

meta-analysis literature.

The distinguish feature of the non-parametric EL approach is in its reliance on an

asymptotically unbiased estimating equation for the unknown parameter, derived from

the confidence intervals obtained from individual studies. As long as the function Wi(θ)

within the estimating equation Wi(θ) = 0 remains asymptotically unbiased at a rate
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Table 2: Example 2. Stillbirths in pregnancy people with and without COVID-19 vacci-

nation. confidence intervals were estimated by using the conventional random-effects and

fixed-effect meta-analysis, the CD method and different non-parametric empirical likelihood

methods (EL), based on the confidence interval of log-risk ratio or log-odds ratio in each

study reported in Prasad and others (2022).

Fixed-effect meta-analysis Random-effects meta-analysis

Method Est. 95% CI Method Est. 95% CI

Risk Ratio

Conventional 0.859 (0.739, 0.997) Conventional 0.859 (0.737, 1.001)

CD 0.859 (0.739, 0.997) CD 0.859 (0.739, 0.997)

EL1 0.644 (0.644, 1.163) EL 0.867 (0.762, 1.030)

EL2 0.867 (0.762, 1.030)

EL3 0.854 (0.736, 1.080)

Odds Ratio

Conventional 0.858 (0.738, 0.997) Conventional 0.859 (0.736, 1.001)

CD 0.858 (0.738, 0.997) CD 0.858 (0.738, 0.997)

EL1 0.643 (0.643, 1.163) EL 0.867 (0.761, 1.030)

EL2 0.867 (0.761, 1.030)

EL3 0.856 (0.735, 1.080)

EWi(θ0) = O(n
−1/2
i ) (as per Assumption 1), the non-parametric EL approach guaran-

tees a consistent estimate. This assumption, being quite mild, holds true for a wide array

of existing statistical estimators, such as the maximum likelihood estimator derived from

score functions, the estimating equations in Cox partial likelihood for survival analysis, and

the generalized estimating equation approach.

In our illustrative examples, our non-parametric EL method produced wider 95%CI for

the overall effect. In example 2, the confidence intervals estimated from the EL method

are consistent across methods, in contrast, confidence intervals estimated by CD methods

or the conventional meta-analysis are not consistent between the fixed-effect random-effect

models. In particular, it reveals distinctive insights that diverge from existing meta-analysis

techniques. In Example 2, the non-parametric EL method leads to different conclusion

- there is insufficient evidence that COVID-19 vaccination is associated with the risk of

stillbirths. This exemplifies the effectiveness of the proposed approach in addressing the

underlying challenge in meta-analysis, particularly when individual study estimates violate

the Gaussian assumptions.
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