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In this work, we predict that periodic structures without gain and loss do not exhibit an S-
shaped hysteresis curve in the presence of saturable nonlinearity (SNL). Instead, the input-output
characteristics of the system admit ramp-like optical bistability (OB) and multistability (OM) curves
that are unprecedented in the context of conventional periodic structures in the literature. An
increase in the nonlinearity (NL) or the gain-loss parameter increases the switch-up and down
intensities of different stable branches in a ramp-like OM curve. Revival of the typical S-shaped
hysteresis curve requires the device to work under the combined influence of frequency detuning
and PT -symmetry. An increase in the detuning, NL and gain-loss parameters reduces the switching
intensities of the S-shaped OB (OM) curves. During the process, mixed OM curves that feature a
fusion between ramp-like and S-shaped OM curves emanate at low values of the detuning parameter
in the input-output characteristics. The detuning parameter values for which ramp-like, S-shaped,
and mixed OM appear varies with the NL coefficient. For a given range of input intensities, the
number of stable states admitted by the system increases with the device length or NL. When the
laser light enters the device from the opposite end of the grating, nonreciprocal switching occurs at
ultra-low intensities via an interplay between NL, detuning, and gain-loss parameters.

I. INTRODUCTION

In optical fibers, nonlinearities (NLs) arise through
intensity-dependent variation in the refractive index
(RI). The induced nonlinearity depends on the laser
power and the nature of the material. For instance, an
ordinary silica fiber features a low nonlinear coefficient
value and induces third-order cubic nonlinearity alone,
and higher-order nonlinearities are uncommon in them
[1]. Experimental measurements show that the fifth and
seventh-order nonlinear coefficients have a pivotal role in
controlling the nonlinear phase shift induced by the high-
intensity laser in chalcogenide fibers [2, 3]. The variations
in the doping concentration along the fiber length create
inhomogeneous nonlinear profiles [4, 5].
Sulfide- [6, 7], and heavy-metal-doped oxide [8] glasses

exhibit nonlinear saturation response. These materials
possess a faster nonlinear and slower thermal response
than silica fibers [9]. In such cases, cubic nonlinearity
may not accurately characterize the induced RI varia-
tions [10] at higher input intensities (P0) [11]. In real-
ity, the nonlinear response of such materials cannot in-
crease infinitely, and it saturates beyond a value of in-
put intensity known as critical intensity. In other words,
there is a maximum limit for the intensity-dependent RI
change. Beyond this limit, the variations in the intensity-
dependent RI cease [12]. The intensity at which the
nonlinear response saturates varies for different materi-
als [13]. For instance, the effect of saturable nonlinearity
(SNL) comes into play at moderately high intensities in
CdSxSe1−x semiconductor-doped glasses fiber [14].
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Periodic perturbations in the RI of the fiber in the
form of Bragg gratings lead to the reflection of a band
of input optical signals. The range of wavelengths re-
flected by the fiber Bragg grating (FBG) is called the
photonic bandgap (PBG) or stopband [15]. An associa-
tion between PBG and intensity-dependent RI promotes
the study of several nonlinear effects that include all-
optical switching. The anticipation for alternative solu-
tions to control light with light has accelerated substan-
tial research growth in nonlinear FBGs. Investigations on
the steady-state switching dynamics of FBGs mainly tar-
get a reduction in the switching intensities [1]. Switching
in an FBG is described by the OB or OM phenomenon
[16]. As the name suggests, the transmission characteris-
tics of nonlinear FBGs present two or more output states
for a given input power. For studying OB in FBGs, re-
searchers employed numerous materials with a variety of
nonlinearities [17–19].

An alternative way to control the steering dynamics
of the FBG is to tailor the characteristics of the input
signal. For instance, tuning the operating wavelength of
continuous wave (CW) far away from the Bragg wave-
length (λb) reduce the switching intensities [16]. In time
domain approach, the manipulation of the rise and fall
time of the Gaussian and rectangular pulses leads to a
reduction in the switching intensities [18, 20, 21]. Ta-
pering the coupling coefficient [22] along the direction of
propagation (z) is the other method to control the steer-
ing dynamics of FBGs. Structural modifications in the
FBG’s physical structure can also decrease the switching
intensities to a large extent. In particular, a phase-shift
region in the middle of the grating leads to the steering
at ultra-low powers [23]. To date, phase-shifted FBGs
are the first choice of researchers for realizing low-power
all-optical switch (AOS) in the context of conventional
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FBGs [24, 25]. In chirped FBGs, spatially varying the
grating period (Λ) along z leads to low-intensity switch-
ing [26].

The primary theme of the article is the study of nonre-
ciprocal switching dynamics in a grating structure in the
presence of saturable nonlinearity (SNL). For the steer-
ing dynamics to be nonreciprocal, the nonlinear response
of the device must be direction-dependent. In other
words, the input-output characteristic curves pertaining
to the different light launching directions (left and right)
should be distinguishable. Acquiring asymmetric switch-
ing response requires the incorporation of parity and
time (PT ) symmetry notions [27–31] into the traditional
FBG structures [32–35]. Nonreciprocal mode interac-
tion occurs when the periodic perturbation is a complex
function of the form n0 +n1Rcos(2πz/Λ)+ isin(2πz/Λ).
Physical realization of a parity and time symmetric-FBG
(PTFBG) requires gain and loss regions to be placed next
to each other in one period Λ (unit cell) and periodically
repeating the unit cell for the entire device length (L).
The cosine and sine terms in the expansion of this com-
plex exponential function signify the modulation in the
real (n1R) and imaginary (n1I) parts of the complex RI
profile [n(z)]. Such an arrangement ensures that the sys-
tem obeys the PT -symmetric condition n(z) = n∗(−z)
[36–39].

In the context of FBGs, Poladian conceptualized the
complex periodic perturbation of the RI profile [40], and
Kulishov et al. carried out the first systematic study on
the linear response of the device [41]. The groundwork
laid by Kulishov et al. paved the way for non-Hermitian
Physicists to accomplish significant discoveries in linear
PTFBGs [42, 43]. Lin et al. reiterated the same study
done by Kulishov et al. [41] and pointed out that oper-
ating the nonlinear PTFBG at the unitary transmission
point leads to the loss of bistable or multistable switch-
ing behavior [44]. Several years ago, researchers thought
that the nonlinear FBG switches function in the unbro-
ken PT -symmetric regime alone [45]. Due to the limited
range of operation, the field of all-optical switching in
nonlinear PTFBGs was not receiving significant research
interest in the past.

Contemporary works on the steady-state switching dy-
namics of PTFBGs validate that the gain and loss param-
eter (g) impacts in reducing the switch-up and down in-
tensities provided that its magnitude is closer to the value
of the coupling parameter (κ) [32–34]. Subsequently, it
is found that the PTFBGs inscribed on a chalcogenide
fiber (that supports higher-order nonlinearities) feature
lower switching intensities than the silica based PTFBGs
(that supports cubic nonlinearity alone) [32]. Operat-
ing the PTFBGs at wavelengths other than the Bragg
wavelength aids in reducing these switching intensities
further. The choice to work at shorter or longer wave-
lengths must concur with the sign of nonlinearity. In
Ref. [32], the existence of ramp-like OB (OM) curves
confirm that the broken regime is not an instability do-
main. Including a chirping inhomogeneity in a PTFBG

opens the door for low-power switching as long as the
signs of nonlinearity, chirping (C), and detuning (δ) pa-
rameters match. The interplay between chirping and bro-
ken PT -symmetry generates optical bistable and multi-
stable states with high spectral uniformities. Suitable
manipulation of the detuning parameter alters the spec-
tral span over which OB and OM occur [33, 34]. The
concept of launching light from the rear end serves as a
new route for realizing low-power AOS. Both homoge-
neous and inhomogeneous PTFBGs exhibit low-intensity
switching in the presence of right light incidence condi-
tions [32, 33, 35]. Under the modulation of Kerr non-
linearity, the switching intensities get reduced, provided
that the sign of chirping and the detuning parameter is
negative (C and δ < 0) [34]. Allowing the nonlinearity
to vary inhomogeneously along the propagation length
in a PTFBG also helps in the realization of ultralow-
power AOS. Such a customization also leads to peculiar
OB curves with zero switching intensities in the broken
PT -symmetric regime [46].

Researchers have investigated different types of non-
linear FBGs and PTFBGs in the past from a switching
viewpoint without including SNL. The scientific contri-
butions that deal with the impact of SNL on the dynam-
ics exhibited by non-periodic structures are many. Never-
theless, there seem to exist no works dealing with switch-
ing dynamics exhibited by nonlinear periodic structures
with SNL. Therefore, we present the mathematical func-
tion that describes SNL in periodic structures in Sec. II.
Furthermore, this section also deals with the derivation
of the first-order differential equations or coupled mode
equations of the present system in detail. The conven-
tional model was used in the literature to study soliton
dynamics in periodic structures [47]. Since the seminal
proposal by Merhasin et al. [48], the literature does not
find any further systematic research on FBGs with SNL
from switching or any other application perspectives. For
the fist time, we now investigate the switching dynamics
shown by a conventional FBG with SNL. We also wish to
know whether the SNL parameter alters the characteris-
tics of the hysteresis curves and the switching intensities.
Therefore, Sec. III – deals with the transmission charac-
teristics of conventional FBG with SNL. We take a step
further toward the study of steering dynamics exhibited
by a PTFBG with SNL. The gain-loss parameter serves
as an additional degree of freedom to manipulate the OB
curves. Further, it allows us to study the switching in
two different PT -symmetric operating regimes, namely,
the unbroken and broken PT -symmetric regimes. Sec-
tion IV deals with the input-output characteristics of the
proposed system in the unbroken regime for the left light
incidence condition. Inclusion of PT -symmetry also fa-
cilitates the study of nonreciprocal switching in FBGs
under a reversal in the direction of light incidence (right)
in the presence of SNL, which is dealt by Sec. V. The
OB curves, stemming from the input-output character-
istics of a conventional FBG and an unbroken PTFBG
influenced by the SNL term, exhibit peculiar behaviors.
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Notably, the characteristics of the OB curves differ signif-
icantly between existing systems studied in the literature
and the proposed ones. This underscores the importance
of conducting a comprehensive study of both regimes to
understand their responses to variations in system pa-
rameters. However, this article, at present, refrains from
discussing the outcomes related to the system’s operation
in the broken regime (g > κ), considering the unique and
extensive dynamics of the system in the absence of gain
and loss and in the unbroken regime, which will be ad-
dressed separately. Section VI summarizes the important
results of the present work.

II. THEORETICAL FRAMEWORK

The RI distribution [n(z)] of a PTFBG that includes
the SNL effect reads as

n(z) = n0 + n1Rcos(2πz/Λ) + in1Isin(2πz/Λ)

−n2f(|E|2). (1)

Squaring Eq. (1) and neglecting higher-order terms in
n1I , n1R, and n2 results in

n2(z) = n2
0 + 2non1Rcos(2πz/Λ) + 2in0n1Isin(2πz/Λ)

+2n0n2f(|E|2). (2)

The function f(|E|2) =
1

1 + |E|2
better describes the

SNL in periodic structures and has a nonlinear term in
the denominator [47–50]. The proposed model is analo-
gous to the discrete version of the Vinetskii–Kukhtarev
equation that accounts for the SNL in 1-dimensional op-
tical lattices and waveguide arrays [51, 52]. In Eq. (2),
n0 and n2 represent the constant RI and nonlinear co-
efficient of the FBG, respectively. The RI perturbations
(n1R, n1I and n2) are small compared to the core RI
(n0). At a given operating wavelength (λ), the coupling
parameter (κ) dictates the amount of coupling between
the counter-propagating fields, and its mathematical rep-

resentation reads κ =
πn1R

λ
. The balanced gain and loss

levels (g) supplied to achieve PT -symmetry depend on
the modulation of n1I , and the relation between these

two parameters reads as g =
πn1I

λ
. The saturable non-

linearity parameter (S) is mathematically related to the
nonlinear coefficient of the material (n2) via the mathe-

matical expression, S =
2πn2

λ
[32, 33, 53]. The incident

optical field (E) is the superposition of the forward (Ef )
and backward (Eb) field distributions, and it reads as [15]

E(z) = Ef exp(ikz) + Eb exp(−ikz), (3)

where k signifies the magnitude of the wave vector. Ob-
taining the governing equations that describe the propa-
gation of fields in a PTFBG requires the substitution of

squared RI given in Eq. (2) and electric field distribution
(Eq. (3)) in the time-independent Helmholtz equation
given below [42]:

d2E

dz2
+ k2

(

n2(z)

n2
0

)

E = 0. (4)

While expanding Eq. (4), derivative terms like E
′′

f

and E
′′

b can be neglected using the slowly varying en-
velope approximation (SVEA) [44, 54]. Along these
lines, the rapidly oscillating exponential terms of the
form exp[±i(2πz/Λ + kz)] also get neglected [42]. The
four-wave mixing (FWM) terms E∗

fEb and E∗
bEf are as-

sumed to have no significant impact on the propagation
[34, 35, 47]. Under these circumstances, retaining the
self-phase modulation (SPM) and cross-phase modula-
tion (XPM) terms is sufficient while expanding the non-
linearity. The ratio between the SPM and XPM terms
is 1:1 (mathematically) [47, 48]. Also, the equations are
further rearranged for the forward and backward prop-
agating fields with retention of the phase mismatch and
effective feedback terms. With these assumptions, the
resulting equation reads

iE
′

f exp(ikz)− iE
′

b exp(−ikz)

+(κ+ g)Eb exp[i(2πz/Λ− kz)]

+(κ− g)Ef exp[−i(2πz/Λ− kz)]

−S
Ef exp(ikz) + Eb exp(−ikz)

1 + |Ef |2 + |Eb|2
= 0. (5)

The nonlinear first-order differential equations for the
transmitted and reflected waves read as

iE
′

f + (κ+ g)Eb exp[i(2πz/Λ− 2kz)]

−
SEf

(1 + |Ef |2 + |Eb|2)
= 0, (6)

iE
′

b + (κ− g)Ef exp[−i(2πz/Λ− 2kz)]

−
SEb

(1 + |Ef |2 + |Eb|2)
= 0. (7)

From the fundamentals of FBGs, the detuning param-
eter (δ) that indicates the deviation in the operating
wavelength (λ) from the Bragg wavelength (λb) reads as

δ = k − π/Λ = 2πn0

(

1

λ
−

1

λb

)

. Numerically, it is possi-

ble to separate the detuning parameter from the coupling
term by adopting a transformation u, v = Ef,b exp(∓iδz)
[55], and the resulting equations read

du

dz
= iδu+ i (k + g) v −

iSu

(1 + |u|2 + |v|2)
, (8)

−
dv

dz
= iδv + i (k − g)u−

iSv

(1 + |u|2 + |v|2)
. (9)
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These equations are valid for left light incident condi-
tions. Under a reversal in the direction of light incidence
(right), the term κ+ g in Eq. (8) changes to κ− g. Sim-
ilarly, the term κ− g in Eq. (9) is replaced by κ+ g.
Before delving into the theoretical investigation of the

system based on the above governing model, it is crucial
to address why its consideration holds merit. To do so,
we first highlight how this mathematical model distin-
guishes itself from those already discussed in the existing
literature [47, 48]. Previous studies in the literature focus
on exploring the dynamics of solitons and their interest-
ing collision properties in photorefractive crystal based
one dimensional optical lattices and bulk longitudinal
gratings. Although the fundamental study pertaining to
the stable nature of solitons with phase-matched condi-
tion has been quite extensively investigated in these sys-
tems [47, 48], both the fundamental and application per-
spectives of continuous wave (CW) remain unexplored to
date. In the present investigation, we analyze the switch-
ing properties of CW states in the FBGs with an addi-
tional term known as the detuning parameter indicating
a substantial difference between the Bragg wavelength
and the wavelength of the input light.
The inclusion of PT -symmetry terms sets the current

governing model apart from those found in the literature,
presenting a distinctive feature that diverges from estab-
lished formulations and introducing a unique dimension
to the theoretical framework, enabling the study of OB
in diverse operating conditions, including both unbroken
and broken regimes, under two different light incidence
conditions (left and right). This multifaceted approach,
made possible by the presence of PT symmetry terms, is
notably impossible in existing models where the absence
of such terms limits the feasibility of exploring such sce-
narios. Similarly, the incorporation of the detuning pa-
rameter into the system further distinguishes the present
model from existing ones, enabling the study of nonlinear
characteristics at nonsynchronous wavelengths. This ad-
dition not only enhances the practicality of the approach
at phase mismatched conditions but also provides an ad-
ditional degree of freedom to manipulate the character-
istics of OB/OM curves.
We use the well-known implicit Runge-Kutta fourth-

order method to solve the system of coupled equations in
(8) and (9) with the following boundary conditions

u(0) = u0 and v(L) = 0. (10)

The input and output intensities read as P0 = |u0|
2 and

P1(L) = |u(L)|2, respectively.

A. Overview of OB

Before we present the simulation results, we provide an
overview of the OB and OM phenomena. As the input in-
tensity (P0) varies, the output intensity [P1(L)] increases
linearly. A sudden jump in the output intensity occurs at

one particular value known as switch-up intensity (P ↑

th)

indicating an onset of a second stable branch of the OB,
and the mechanism is commonly known as switch-up ac-
tion. A part of the input-output curve corresponding to
input intensities lying between zero and switch-up repre-

sents (0 < P0 < P ↑

th) the first stable branch of the OB
curve. Once the system switches to the second branch,
output remains in it for a given range of input intensi-
ties. In the case of OM, switching to the successive sta-
ble states happen at distinct switch-up intensity values.
Tuning the input intensity in the reverse direction com-
pletes the s-shaped hysteresis curve. During this process,
the system does not return to the previous stable branch
at the same switch-up intensity value. But, it returns to
its previous state at another critical intensity known as

the switch-down intensity (P ↓

th) during the switch-down
mechanism. For any value of input intensities between

the switch-up and down values (P ↓

th < P0 < P ↑

th), the
output of the system is bistable. The difference between
the critical switch-up and down intensities dictates the

width of the hysteresis curve (∆Pth = P ↑

th − P ↓

th).

B. Choice of device length and coupling coefficient

It is well-known that the feedback offered by the
system is an essential ingredient besides the intensity-
dependent RI for the OB/OM to occur in FBGs. Insuf-
ficient coupling strength inhibits the formation of OB.
On the other hand, the value of κ cannot be arbitrarily
large in PTFBGs [32–34]. Optimizing the device length
(L) is essential for the desirable OB/OM curves to ap-
pear. In practice, the value of the coupling parameter (κ)
ranges from 1 to 10 cm−1 [1]. In the literature, we could
find FBGs fabricated in a wide range of physical lengths
ranging from 1 mm to 20 cm [56]. In our numerical ex-
periments, we observe that desirable OB curves in the
input-output characteristics of a FBG with SNL occur
when the coupling coefficient is reduced to a value that
is approximately ten times less than the values we used
in our previous works [32, 33]. Therefore, the coupling
coefficient (κ) is assumed to have a value of 0.4 cm−1

throughout this article (unless specified). However, the
product of these two parameters (κL) will never go be-
yond the permitted numerical values (1 to 50) as the re-
duction in the coupling is compensated by the increment
in the device length [32]. With this note, we now look
into the nonlinear transmission characteristics of the sys-
tem under different operating conditions. The nonlinear
PTFBG works in the unbroken PT -symmetric regime
under the condition κ > g [53, 54]. At the unitary trans-
mission point, an inevitable phenomenon is the possibil-
ity of the breaking of the PT -symmetry in the system,
when κ = g. Above this condition, the system operates in
the broken regime where κ > g. An alternative perspec-
tive on the boundary of PT -symmetry breaking can be
gained by investigating the dispersion curves supported
by the same system (but with partial differential equa-
tions taking into account the time co-ordinate), which
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was recently done by Tamilselvan et al. [57] in the case
of modulational instability analysis. We investigate the
proposed system for different values of NL parameters at
two different lengths (L = 20 and 70 cm).

C. Some practical considerations

It is important to emphasize that although observing
the OB and OM curves in FBGs is possible experimen-
tally, it requires addressing several practical challenges,
including the identification of a suitable fiber material
that offers SNL at relatively low power. From the avail-
able scientific literature, it is evident that semiconductor-
doped glass having strong SNL can possess a third-order
nonlinear coefficient (n2) in a range varying from 10−15

to 10−13 m2/W [6, 58]. CdS1−xSex is an example of this
type of glass material characterized by a fast nonlinear
response time of 10−11 second and a significant nonlin-
earity value [58–61]. When dealing with physical units,
it is important to take into account the effective area of
the fiber (Aeff ) in the mathematical formula for the cal-
culation of saturable nonlinearity [62]. With the value
of Aeff assumed to be 100 µm2, the saturable nonlin-
earity (S) for the above material is found to be 0.5927
W−1/cm at the operating wavelength of 1060 nm and
n2 = 10−15m2/W [8, 58, 63] (note that a conventional
silica fiber, on the other hand, exhibits a third-order non-
linearity value of 2.6× 10−20 m2/W [19–21, 62]).
Along these lines, the third-order susceptibility [χ(3)]

of sulfide and heavy-metal doped oxide glass with a range
of RI 2.19 – 2.5 lies, respectively, within a range of 3.1
– 5.6 × 10−13 esu at 1.06 µm [8, 64] and 1.2±0.4 –
7.9±2.4 × 10−13 esu at 1.25 µm [8]. For instance, the
third-order nonlinear coefficient [n2 = 24π/n0 χ(3)] of
PbO(60)TeO2(25)SiO2(15) at 1.25 µm measures to be
3.322 × 10−12 m2/W , provided that the RI is 2.27 and
χ(3) = 1 × 10−13 [8, 64]. Some other examples of this
type of glass materials are GeS2(87.3)Ga2S3(13.7), and
La2S3(35)Ga2S3(65) [8].
In light of these facts, we present some practical val-

ues that can aid experimental physicists in creating low-
power OB/OM curves influenced by SNL. These values
are listed in Table I. For comparative purposes, the values
that were used for the formation of OB and OM curves
are also presented from the already existing literature.
The table suggests that in the presence of SNL, the de-

vice length should be increased by at least ten times to
observe OB and OM curves, while the coupling coefficient
must be reduced in an appropriate way to maintain the
feedback parameter (κL) in the optimal range. For the
conventional FBG without PT -symmetry, the gain and
loss parameters are zero, but in the unbroken regime of an
FBG with PT -symmetry, they can take values between
0–4 cm−1. Note that the coupling and gain-loss coeffi-
cients at the unitary transmission point can be equal to
4 cm−1.
The existing literature predominantly covers experi-

mental studies on the nonlinear-optical effects of heavy-
metal and sulfide-glass at near-infrared wavelengths be-
tween 1 and 1.250 µm. For instance, Borrelli et al. have
carried out a systematic study on the nonlinear proper-
ties of these glasses at 1.06 µm [64]. Kang’s similar study
[8] on the nonlinear optical properties of these materials
at 1.25 and 1.06 µm has provided us an important in-
formation pertaining to the selection of the Bragg wave-
length (λb) for the proposed system, which falls at a value
of 1060 nm wavelength. Given an assumed RI of 2.27 for
the background material [PbO(60)TeO2(25)SiO2(15)], a
difference of 0.05 nm between the operating wavelength
of the system and λb can induce a detuning value (δ) of
6.3472 cm−1, (for which the grating period is calculated
to be, Λ = 233.48 nm).
Similarly, another essential experimental challenge is

finding a suitable CW source that can deliver a high kW
power in the given wavelength range. YLR CW Ytter-
bium fiber lasers that are available (commercially) are
highly suitable for this purpose because of their high sta-
bility, efficiency, beam quality, and long lifetime. They
can provide an input power of up to 4 kW to the system
[67]. It is important to note that intensity is a measure
of power confined per unit area of the core. For instance,
if the effective area of the core is 100 µm2 and the input
power is in Watts, the input intensities (P0) that are re-
quired to create OB and OM states can be in the order
of MW/cm2 [36, 37, 65].
Developing PTFBGs with complex RI profiles can be

accomplished through external pumping in fibers doped
with rare-earth dopants. Nonetheless, selecting a suit-
able dopant material that can generate the desired gain
and loss regions is a notable challenge. To overcome this
obstacle, adding Er3+ and Cr3+ dopants onto a suitable
glass substrate to develop gain and loss regions, respec-
tively, is a promising option.

III. OB/OM IN CONVENTIONAL BRAGG
STRUCTURES WITH SNL

As the input intensity varies from zero, the output in-
tensities increase sharply, leading to the formation of a
ramp-like first stable state, as shown in Fig. 1. The
output of the system jumps from the first to the second
stable state at the switch-up intensity and remains in
it for a finite increase in input intensities as delineated
in Fig. 1(a). Since the curve in Fig. 1(a) features a
ramp-like first stable state, it is called a ramp-like OB
curve to differentiate it from the conventional S-shaped
OB curve that features a gradual variation in the output
against the input intensities. Along these lines, if multi-
ple stable branches appear on the top of a ramp-like first
stable state, they can be referred to as the ramp-like OM
curves, provided that the variations in the output against
the input intensities are sharp (abrupt) in all the stable
branches.
As we tune the nonlinearity parameter gradually, a
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TABLE I. Comparison of various device parameters used in physical units

Symbol Device Physical Values

parameter values used in the literature

n2 third-order nonlinear 10−15 – 10−13 m2/W [8, 58] 2.6× 10−20 m2/W [18, 20, 65]

coefficient 2.2 ×10−16 m2/W [21]

2.7 ×10−13 cm2/W [19]

2 ×10−17 m2/W [66]

Aeff effective area of 100 µm2 1 – 100 µm2 [62]

the fiber

S saturable nonlinearity 0.5 – 6 W−1/cm 1.0544 × 10−5 W−1/m [18, 20, 65]

L device length 20 cm 1 cm [19–21, 65], 3.5 cm [18]

κ coupling coefficient 0.4 cm−1 0.8 cm−1 [18], 5 cm−1[20, 65]

g gain-loss 0 (conventional)

coefficient 0 – 4 cm −1 0 - 1200 cm −1 [36, 37]

(unbroken regime)

n0 RI of the core 2.27 2.19 – 2.5 [8, 64]

λb Bragg wavelength 1060 nm 1000 nm [37, 66]

λb−λ variations in operating ± 0.05 nm -0.015 nm [19], 0.125 nm [20, 65]

wavelength (λ) from λb

δ detuning parameter 0 – 2.5 cm−1 0.005 cm−1 [18], -0.9611 cm−1 [20],

-1.8039 cm−1 [21], 4.74 cm−1 [65],

4.75 cm−1 [18]

P0 and P1(L) input and output 0 – 15 MW/cm2, 0 – 400 MW/cm2 [19],

intensities 0 – 100 GW/cm2 [18]

0 – 30 GW/cm2 [20, 65]

0 – 4 × 1014 W/m2 [36, 37]

transition from the ramp-like OB (S < 1 W−1/cm) to
the ramp-like OM (S ≥ 1 W−1/cm) is visible in Figs. 1
(c) and (e). The number of stable states in the ramp-like
OM curve increases with an increase in the NL. For an
easier understanding, we name the stable branches in a
specific order, namely following the first stable branch
in Fig. 1, they are named as 2nd, 3rd, . . . , n − 1, and

n. Let P
↑(1)
th , P

↑(2)
th , . . . , and P

↑(n)
th be the input intensi-

ties required to switch-up from first to second, second to
third, . . . and n− 1 to nth branch, respectively. The cor-

responding switch-down values are given by P
↓(1)
th , P

↓(2)
th ,

. . . , and P
↓(n)
th . Once the system switches to the nth sta-

ble branch, no further switching in the form of OB or
OM is supported by the system for any increase in in-
put intensity (P0 > Pn

th), as confirmed by the numerical
simulations.

From Figs. 1(a), (c), (e) and (g), we infer that the
width and switching intensities of the first hysteresis
curve are low. However, when the input intensity in-
creases, the width of the successive stable branches in-
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FIG. 1. OB (OM) curves exhibited by a conventional FBG
with SNL at δ = 0 cm−1. The device length assumes a value
of L = 20 and 70 cm in the left and right panels, respectively.
Role of (a)–(d) coupling coefficient (κ) and (c) – (h) NL on
OB (OM) curves.

creases in a ramp-like OM curve and their switch-up and
down intensities decrease with an increase in the coupling
parameter (κ), as shown in Figs. 1(a) – (d). Addition-
ally, the output intensities fall steeply with an increase in
the coupling coefficient. An increase in the NL parame-
ter (S) leads to an increase in the output, switch-up, and
down intensities of all the stable branches. In the left
panel of Fig. 1, we find that the number of stable states
supported by the system for smaller device lengths is less.
We can generate ramp-like OM curves with more stable
states by tuning the device length in the simulations, as
shown in the right panel of Fig. 1. In other words, the
higher the value of L, the higher the number of stable

states. Before switching, the input-output curves admit
a ramp-like first stable state, as shown in Figs. 1(b), (d),
(f) and (h).
Generally, nonlinear FBGs display an S-shaped hys-

teresis curve in their input-output characteristics [16–
18, 20, 22, 23, 25]. On the contrary, the input-output
characteristics of the proposed system display ramp-like
OB and OM curves. In the literature, we can find these
kinds of OM curves in coupled active ring resonators [68]
and photonic metamaterial multilayers with graphene
sheets [69]. What differentiates the ramp-like OM curves
in Refs. [32, 33] from the ramp-like OM curves admit-
ted by the proposed system is as follows: The width of
the successive stable branches decreases with an increase
in the input intensities in Refs. [32, 33]. On the other
hand, in the proposed system of FBG with SNL, the con-
verse effect occurs, i.e., the width of the successive stable
branches increases with an increase in the input intensi-
ties.

IV. OB IN THE UNBROKEN PT -SYMMETRIC
REGIME: LEFT INCIDENCE

A. Controlling the switching dynamics at Bragg
condition with PT -symmetry

In the previous section, we have investigated the OB
(OM) behavior in a conventional FBG with SNL. In this
section, we present the results pertaining to the OB (OM)
behavior induced by the impact of PT -symmetry in the
unbroken regime. As we tune the input intensities, the
system’s output varies sharply along the ramp-like first
stable branch. As a consequence of the increase in the NL
parameter, the ramp-like OB (S < 1 W−1/cm) curves
transform into ramp-like OM (S ≥ 1W−1/cm), as shown
in Figs. 2(a), (c), and (e). An increase in the device
length increases the number of stable states for a given
range of input intensities, as shown in the right panel of
Fig. 2. The width of each hysteresis curve is broader
than its former in these figures. These results are sim-
ilar to the observations made from Figs. 1(a), (c), and
(e). Compared to the conventional case discussed in Fig.
1, the switch-up, down and output intensities of differ-
ent stable branches of the ramp-like OM curves increase
with an increase in the gain and loss parameter in the
unbroken regime for all the values of S, as depicted in
Figs. 2(a), (c),(e), and (g).

B. Retrieving S-shaped OB via frequency detuning

We have observed that the conventional FBGs and un-
broken PTFBGs with SNL give rise to unconventional
OB (OM) curves in their nonlinear transmission charac-
teristics at the synchronous wavelength (δ = 0 cm−1).
Recall that the detuning parameter aids in lowering the
input intensity required for switching, provided that its
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FIG. 2. (a) – (f) Variations in the ramp-like OB (OM) curves
against the gain and loss parameter (g) at κ = 0.4 cm−1.
(g) and (h) Continuous variation of first and nth switch-up
and down intensities, respectively. The device length assumes
a value of L = 20 and 70 cm in the left and right panels,
respectively.

sign matches with the type of nonlinearity [32, 33]. Keep-
ing this fact in mind, we present the results pertaining
to the operation of PTFBG with SNL for positive val-
ues of the detuning parameter (δ > 0 cm−1). Interest-
ingly, detuning the system far away from the synchronous
wavelength favors the formation of the typical S-shaped
hysteresis curves, as shown in Figs. 3(a) – 3(c). The
nonlinear parameter controls the steering dynamics in
two different ways: First, it serves as an additional de-
gree of freedom to control the switching intensities, as
shown in the top panel of Fig. 3. Second, it alters the
range of the detuning parameters or the spectral span

(δS) at which the S-shaped OB (OM) curves occur, as
shown in the bottom panels of Fig. 3. Let the mini-
mum and maximum values of the detuning parameter at
which the S-shaped OB curves appear be δmin and δmax,
respectively. For the values of the detuning parameter
below δmin, the system exhibits a hysteresis curve with
a different envelope which will be discussed separately in
the next section.
The switch-up and down (P ↑

th and P ↓

th) intensities and
hysteresis width of the S-shaped OB curve decrease with
an increase in the value of the detuning parameter, as
shown in the bottom panels of Fig. 3. For instance, the
bistable curves with the broadest and narrowest width
occur at δmin and δmax, respectively. At this juncture,
one may wish to reduce the switch-up and down in-
tensities by increasing the detuning parameter further.
However, the value of the detuning parameter cannot be
greater than δmax because it would result in insufficient
feedback to create any desirable bistable feature. Thus,
the switch-up and down intensities corresponding to the
S-shaped hysteresis curves are lowest at δmax and highest
at δmin for a given set of system parameters. A further re-
duction in them is feasible via an increase in the gain and
loss parameter, as shown in Figs. 3(d) and (l). Specif-
ically, an increase in g leads to a significant decrease in
the switch-up and down intensities for fixed values of S
and δ.
As we tune the input intensity further, the OB curves

transform into the OM curves with an increase in the de-
vice length (L = 70 cm), provided that the other system
parameters remain unchanged. For some values of input
intensities, the output intensity even experiences three
(tristability) or four (tetrastability) stable states. In con-
trast to the OM curves shown in Fig. 1, the width of the
successive stable branches decreases with an increase in
the input intensity. There is a significant reduction in
the switching intensities (corresponding to the different
stable branches) with an increase in the detuning, nonlin-
earity, and gain-loss parameters, as shown in Figs. 3(f),
(g), and (h), respectively.

C. Mixed OM curves

The bottom line of the investigations carried out in the
previous sections is as follows: FBGs and PTFBGs with
SNL do not admit a typical S-shaped hysteresis curve in
their input-output characteristics at δ = 0 cm−1. The
concept of frequency detuning makes it feasible to re-
trieve the S-shaped OB (OM) curves in the presence of
PT -symmetry. It should be noted that the values of the
detuning parameter used in Fig. 3 are considerably large,
which means that the system is operated far away from
the Bragg wavelength. A natural question that comes to
mind at this point is that what happens to the charac-
teristics of the OB (OM) curves for smaller values of de-
tuning parameter, i.e., operating wavelengths of incident
light close to the synchronous wavelength. To address
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FIG. 3. Frequency detuning induced S-shaped OB (OM) curves in an unbroken PTFBG (g = 0.35 cm−1) with SNL at
κ = 0.4 cm−1. The light launching direction is left. The device length is L = 20 and 70 cm in the top and middle panels,
respectively. The plots on the rightmost panel depict the decrease in switching intensities with an increase in the gain and loss
parameter (g = 0.37 cm−1). The bottom panel illustrates the variation in the values of detuning parameter or the spectral
span (δmin < δ < δmax) for which S-shaped OB curves occur. The switching intensities are high and low at δmin and δmax,
respectively. The OB curves with the broadest and narrowest hysteresis width appear at δmin and δmax, respectively.

this query, we choose the values of the detuning param-
eter in the range of 0 < δ < δmin and investigate the
nonlinear response of the proposed system via numeri-
cal simulations. Recall that δmin signifies the minimum
value of the detuning parameter required to generate the
S-shaped OB (OM) curves in the nonlinear regime.

In the left panels of Fig. 4 (L = 20 cm), we ob-
serve two distinct regions in the input-output character-
istics curves. In region 1, increasing the input inten-
sities induce sharp variations in the output intensities
leading to the formation of ramp-like first stable states
(0 < P0 < P r

th), as shown in Fig. 4(a). As we tune
the input intensity further, the system’s output jumps to
the second stable state branch. There exists a bistable
region with a narrow hysteresis width between the first
and the second stable branch. The output intensities
show gradual variations against the increasing input in-

tensities (P r
th < P0 < P ↑

th). If the input intensity is tuned

further (P0 > P ↑

th), the output jumps to the next stable
branch. The output intensities vary gradually in it for a

given range of input intensities (P0 > P ↑

th) at L = 20 cm.

When the input intensities decrease, the system returns

to the second stable branch at P ↓

th. Region 2 represents
the values of input intensities for which the system’s out-

put is bistable (P ↓

th < P0 < P ↑

th). Thus, the overall shape
of the curves looks like a mix of ramp-like and S-shaped
OB curves. These kinds of OB curves were previously
reported in graphene-based quantum systems [70].

An increase in the value of the detuning parameter
leads to a reduction in the switch-up and down intensities

(P ↓

th and P ↑

th) of the different stable branches, as shown
in Figs. 4(b), (c), (h) and (i). The mixed OB (OM)
curves appear only for a set of values of the detuning
parameter (δmix), as shown in the continuous variation
curves in the bottom panel of Fig. 4. The spectral span
or the range of detuning parameters for which mixed OM
curves (δmix) occur varies according to the values of the
NL parameter, as shown in Figs. 4(h) and (i).

Increasing the device length (L = 70 cm) brings signif-
icant variations in the characteristics of the mixed OM
curves, as shown in Figs. 4(d), (e), and (f). As the value
of input intensity increases, the system exhibits a ramp-
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FIG. 4. Mixed OB (OM) curves in an unbroken PTFBG with SNL at κ = 0.4 cm−1. The light launching direction is left. The
device lengths are L = 20 and 70 cm in the top and middle panels, respectively. (g), (h) and (i) Variations in the range of
input intensities at which ramp-like stable state appear, and the bistable region (BS) region in (a), (b), and (c), respectively
against detuning.

like first stable state followed by a series of ramp-like hys-
teresis curves in which the variations in the output inten-
sities against the input are sharp. Also, the width of the
successive stable branches increases in region 1. The de-
vice generates S-shaped OM curves in region 2 for higher
intensities. In this regime, the width of the successive
stable branches decreases with an increase in the input in-
tensities. In the literature similar OM curves that feature
a mix of ramp-like OM and S-shaped OM curves have al-
ready been reported in graphene nanodisk–quantum dot
hybrid systems [71]. The interplay between the detuning
and nonlinearity parameters decreases the switch-up and
down intensities of the different stable branches consid-
erably.

V. OB IN THE UNBROKEN PT -SYMMETRIC
REGIME: RIGHT INCIDENCE

In the context of linear FBGs, Kulishov et al. have first
conceptualized the launching of the incident light from
the rear end [41]. Later, Komissarova et al. and Raja
et al. have extended this idea to the nonlinear domain
[32, 33, 35]. It remains the simplest yet the most effective
method to realize low-power AOSs [34, 46].

A. Low power ramp-like OB (OM) curves

Except for a reversal in the light launching direction,
Figs. 5(a), (c), and (e) depict the same light-guiding
dynamics with the same system parameters as in Figs.
2(a), (c), and (e), respectively. We observe a low-power
ramp-like OB curve at S = 0.5 W−1/cm which trans-
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FIG. 5. Low-power (a) ramp-like OB (b), (d), and (f) Mixed
OM, (c) and (e) ramp-like OM curves exhibited by an unbro-
ken PTFBG with SNL at L = 20 cm and κ = 0.4 cm−1. (f)
and (g) Continuous variations in different regions of mixed
OM curves. The direction of light incidence is right.

forms to a ramp-like OM curve for S ≥ 1 W−1/cm, at
δ = 0 cm−1, which confirms that the transition in the OB
(OM) curves with an increase in the NL is independent
of the direction of light incidence.

Comparing the plots in the left panels of Figs. 5 and
2, we can justify that the reversal in the light incidence
direction results in a significant reduction in the switch-
ing intensities of various stable states of a ramp-like OM
curve. Similar to Fig. 2, an increase in the value of g
or S increases the switch-up and down intensities corre-
sponding to the different stable branches of the ramp-like
OB (OM) curve in Fig. 5(a), (c) and (e).

B. Mixed OM curves

When the unbroken PTFBG operates at wavelengths
closer to the synchronous wavelength, a mix of ramp-like
and S-shaped stable states appear in the input-output
characteristics of the system, as shown in Figs. 5(b), (d),
and (e). The mixed OB curves have two distinct regions,
as shown in the schematic in Fig. 4(a). In region 1, as
we tune the value of input intensity from zero, the out-
put intensities vary sharply in the first stable branch for
0 < P0 < P r

th. An increase in input intensities above
P r
th allows the output intensities to jump from the ramp-

like first stable branch to the second stable branch, indi-
cating the first switching scenario. The output intensi-
ties do not show significant variations against the input

for a wide range of input intensities P r
th < P0 < P ↑

th.

Further increase in the input intensities above P ↑

th leads
to a sudden jump in the output representing the sec-
ond switching scenario. The system does not return to

the second stable branch at P ↑

th under a decrement in

the input intensities. Rather, it occurs only at P ↓

th. For

the values of input intensities between P ↓

th < P0 < P ↑

th,
the input-output curve features two stable states for any
given input intensity value, as shown in Figs. 5(g) and
(h). The switch-up and down intensities required to jump
from (to) the ramp-like first stable branch to (from) the
second stable branch of the mixed OM curve reduce dra-
matically, thanks to the concept of reversal in the light
incidence direction, as confirmed by Figs. 5(d) and 5(f).
The switch-up and down intensities of the S-shaped hys-
teresis curve in region 2 also decrease to a large extent
under a reversal in the direction of light incidence condi-
tion. The values of the detuning parameter at which the
mixed OB occurs (δmix) depend on the NL, as shown in
Figs. 5(g) and (h).

C. OM curves at L = 70 cm

1. Low-power ramp-like OM curves

An increase in the device length from L = 20 to 70 cm
increases the number of stable states for the given values
of the input intensity, as shown in Fig. 6. The character-
istics of the OM curve varies accordingly with the value
of the detuning parameter. For δ < 0.3 cm−1, the system
generates ramp-like OM curves in its input-output char-
acteristics, as shown in Figs. 6(a) and (b). The first and
the successive stable branches show ramp-like or sharp
variations in the output with the input intensities. The
width of the successive stable branches increases with
an increase in the input intensities in the ramp-like OM
curves. An increase in the detuning parameter leads to
a decrease in the switch-up and down intensities.
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FIG. 6. Low-power (a), (b) Ramp-like OM, (c) mixed
OM curve with more number of ramp-like stable branches
(d) Mixed OM curve with more number of S-shaped stable
branches at L = 70 cm, κ = 0.4 cm−1 and S = 1 W−1/cm.
The direction of light incidence is right.

2. Low power mixed OM curves at S = 1 W−1/cm

For some values of the detuning parameter, the system
generates mixed OM curves that feature a fusion between
ramp-like and S-shaped OM curves, as shown in Figs.
6(c) and (d). Earlier, we have presented a schematic of
the mixed OB in Fig. 4(a), which holds good for all de-
vice lengths. The system features diverse forms of mixed
OM curves. For 0.25 cm−1 < δ < 0.4 cm−1, the number
of ramp-like hysteresis curves in region 1 is more than
the S-shaped ones in region 2, as shown in Fig. 6(c).
An increase in the detuning parameter leads to a de-
crease in the switch-up and down intensities of various
stable branches. Any further increase in the detuning
parameter leads to the formation of asymmetric mixed
OM curves in which the number of S-shaped hysteresis
curves is more than that of the ramp-like states. For in-
stance, the plot features only one ramp-like OB curve in
region 1 at δ = 0.65 cm−1, as shown in Fig. 6(d).
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FIG. 7. Low-power (a), (b) Ramp-like OM, (c) mixed
OM curve with more number of ramp-like stable branches
(d) Mixed OM curve with more number of S-shaped stable
branches at L = 70 cm, κ = 0.4 cm−1 and S = 2 W−1/cm.
The direction of light incidence is right.

3. Low power ramp-like and mixed OM curves when S = 2
W−1/cm

The range of the detuning parameters at which low-
power mixed OM curves appears at S = 1 W−1/cm is
limited. The spectral span of the low-power mixed OM
(δmix) curves increases with an increase in the NL pa-
rameter as shown in Fig. 7. For δ < 0.2 cm−1, the
system exhibits low-power ramp-like OM behavior for a
given value of input intensities, as shown in Fig. 7(a).
For δ > 0.2 cm−1, the mixed OM curves appear in the
plots, as shown in Fig. 7(b). An increase in the detun-
ing parameter decreases the output, switch-up and down
intensities of the different stable branches of the mixed
OM curve. Also, it leads to a reduction in the number of
ramp-like stable branches in region 1 and an increase in
the number of S-shaped stable branches in region 2.
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FIG. 8. Frequency detuning induced ultralow power S-shaped OB curves in an unbroken PTFBG with SNL. The direction of
light incidence is right. (a) – (d) The system parameters are the same as in Fig. 3(a) – (d), respectively. (e) – (g) Variations
in switching intensities and hysteresis width against the detuning and NL. (h) low-power S-shaped OM curves at L = 70 cm
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TABLE II. Summary of variations in the hysteresis curves shown by PTFBG with SNL vs detuning parameter in various
operating regimes. Here, LI and RI represent the left and right light incidence conditions, respectively.

Nature of Classification of Range of Nature of variations Operating Light incidence Figure

OB/OM the curves δ in the output intensities regime condition no.

curves

Ramp-like OB Type – I δ = 0 sharp Conventional Fig. 1

and OM curves case

unbroken LI Fig. 2

unbroken RI Figs. 5(a), (c), (e),

6(a), (b), 7(a) and (b)

Mixed OB and Type – II 0 < δ < δmin sharp at unbroken LI Fig. 4

OM curves low input intensities

gradual at unbroken RI Figs. 5(b), (d), (f),

higher input intensities 6(c), (d), 7(c) and (d)

S-shaped OB Type – III δmin < δ < δmax gradual unbroken LI Fig. 3

and OM curves unbroken RI Fig. 8

D. Ultra-low power S-shaped OB (OM) curves

The search for realizing S-shaped OB (OM) curves at
ultra-low intensities motivated us to study the switching
dynamics of an unbroken PTFBG with SNL for positive
values of the detuning parameter under right light in-

cidence conditions. The system offers control over the

switch-up and down intensities (P ↑

th and P ↓

th ) via an in-
dependent tuning of one or more system parameters, as
shown in Figs. 8(a) – 8(d). In the first approach, they
get reduced via the frequency detuning, as shown in Figs.
8(a) – (c). The higher the difference between the oper-



14

TABLE III. Role of different control parameters on the critical switch up (P ↑
th), down (P ↓

th) intensities and hysteresis width
pertaining to the hysteresis curves shown by PTFBG with SNL in different operating regimes. Here, LI and RI represent the
left and right light incidence conditions, respectively.

Type of Increase in Impact on Impact on Operating Light incidence Figure

OB/OM the control the switching the hysteresis regime condition no.

curve parameters intensities width

Type – I S increases increases conventional Fig. 1

case

Type – I g increases increases unbroken LI Fig. 2

unbroken RI Figs. 5(a), (c) and (e)

Type – I S increases increases unbroken LI Fig. 2

unbroken RI Figs. 5(a), (c) and (e)

Figs. 6(a), (b), 7(a) and (b)

Type – II g and S increases increases unbroken LI Fig. 4

Type – II δ decreases decreases unbroken LI Figs. 4(a), (b) and (c)

unbroken RI Figs. 5(b),(d) and (f)

Figs. 6(c),(d), 7(c) and (d)

Type - III δ, S, decreases decreases unbroken LI Fig. 3

and g unbroken RI Fig. 8

ating and Bragg wavelengths, the lesser is their values,
and the narrower is the hysteresis width.

Tuning the NL parameter to a high value (S ≥ 1
W−1/cm) can perform the equivalent job of reducing the
switch-up and down intensities at fixed values of the gain
and loss parameter, as shown in Figs. 8(b) and (c). For
example, their values are less than 7 and 2.5 kW/cm2

at S = 1 and 2 W−1/cm, respectively. Similar to the
descriptions made in Sec. IVB, the S-shaped OB curves
occurring for a set of specific values of the detuning pa-
rameter (δmin < δ < δmax), vary with the value of NL.
Numerical investigations reveals that light incidence di-
rection (left and right) does not alter the values of detun-
ing parameters at which S-shaped OB occurs. In other
words, the spectral span depends only on the NL param-
eter and is independent of the light launching directions.
Note that the hysteresis width and switching intensities
are the lowest and highest at δmax and δmin, respectively.

An alternate solution to reduce the switch-up and
down intensities is to increase the gain and loss levels
(from g = 0.35 to 0.36 cm−1) at a fixed value of the de-
tuning parameter (δ). In this fashion, they reduce to a
level of < 1.1 kW/cm2, provided that the value of NL is
high (S = 2 W−1/cm), as portrayed by the dash-dotted
curve in Fig. 8(d).

In equivalent normalized units, the curve indicated by
the solid line in Fig. 8(d) features switching intensities

less than 0.0011. In the literature, the lowest ever switch-
ing intensities recorded so far in the context of PTFBGs
lies in the range 0.04 < P0 < 0.05 (theoretically) [34, 46].
But the curve indicated by the solid line in Fig. 8(d) fea-
tures switching intensities less than 0.0011. To the best
of our knowledge, this should be the lowest switching in-
tensities ever realized in the context of PTFBGs.

How does the reversal in the light incidence direction
lower the switching intensities dramatically? There seem
to exist a few scientific articles that address this natural
query. When the light gets launched from the other in-
put surface of the PTFBG, the two counter-propagating
modes interact constructively in the gain regions [41].
The asymmetric nature of the complex RI distribution
prohibits a constructive interaction between the modes
for the left light incidence condition. Even though this
interactive picture traces its origin to the linear domain,
it is still applicable to nonlinear PTFBGs. Studies on
the spatial distribution of the total electric field (super-
position of the forward and backward traveling waves)
suggest that the maxima of the optical field lie in the
gain for the right light incident conditions and vice-versa
[35]. The nonreciprocal switching at ultra-low power in-
tensities arises from such a mutual arrangement of the
optical field maxima in the gain-loss structure.
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1. Low power S-shaped OM

Ultralow-power S-shaped OB shown in the top panel
of Fig. 8 transforms into low-power S-shaped OM curves
upon increasing the device length to L = 70 cm, as shown
in Fig. 8(h). The first hysteresis curve features the
narrowest hysteresis width. The hysteresis width of the
successive stable branches increases with an increase in
the intensities. The interplay among the detuning, NL,
gain, and loss parameters leads to a dramatic reduction in
switch-up and down intensity values of various branches.
In short, the individual roles of different system param-
eters on the switching intensities remain the same irre-
spective of the light incidence condition. Comparing the
plots in Fig. 3(h) and Fig. 8(h), we conclude that the
switch-up and down intensities required to generate the
OM curves reduce more than ten times (approximately)
under a reversal in the light incidence direction. It is
worthwhile to mention that the model presented here is
not confined to the FBGs, but applies to periodic devices
like photonic crystals that share a closer resemblance in
their bandgap structure and operation to FBGs.

VI. CONCLUSIONS

The outcomes of the present work are summarized in
Table II. Instead of admitting an S-shaped hysteresis
curve, conventional and unbroken FBGs exhibited ramp-
like OB and OM curves. We discovered that the switch-
ing intensities of different stable branches in a ramp-like
OB (OM) curve increases with an increase in the gain-
loss parameters, as seen in Table III. We found that op-
erating the unbroken PTFBG at wavelengths far away
from the synchronous wavelength restored the S-shaped
OB curves, which experienced a decrease in the switch-
ing intensities with an increase in the NL, detuning, and

gain-loss parameters. The system admitted mixed OM
curves in which ramp-like first stable states preceded the
S-shaped stable states for the values of detuning param-
eter closer to the Bragg wavelength.
Dramatic reduction in the switch-up and down inten-

sities of the various OB (OM) curves occurred under a
reversal in light incidence direction. In particular, they
fell below 1.1 kW/cm2 in the case of an S-shape OB
curve with higher values of detuning, NL, and gain-loss
parameters, which must be the lowest-switching intensi-
ties in the context of PTFBGs. The numerical results
presented here confirm that the presence of SNL in a
PTFBG opens a road map to control light with light in
diverse fashions. Also, they indicate that the PTFBGs
are not only interesting from a theoretical perspective,
as they appear to be attractive platforms for the prac-
tical realization of ultra-low power AOS, thanks to the
number of independent approaches they offer to control
the switching intensities. A potential avenue for subse-
quent research could involve constructing a system com-
prising two tunnel-coupled gratings with opposite direc-
tions. This setup, as we hope, could facilitate the explo-
ration of the interplay between mutually non-reciprocal
transmission directions in the coupled gratings [72].
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