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Abstract

Let A and S denote the double arrow of Alexandroff and the Sorgen-
frey line, respectively. We show that for any n ≥ 1, the space of all
unions of at most n closed intervals of A is not homogeneous. We also
prove that the spaces of non-trivial convergent sequences of A and S are
homogeneous. This partially solves an open question of A. Arhangel’skǐi
[Ar87]. In contrast, we show that the space of closed intervals of S is
homogeneous.

Keywords: Double arrow, Hyperspaces, Homogeneous spaces, Sorgenfrey, Non-
trivial convergent sequences.
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1 Introduction.

Given a space X, we denote by Exp (X) the set of all non-empty closed subsets of
X. For a non-empty open set V of X, let [V ] = {F ∈ Exp (X) : F ⊂ V } and
〈V 〉 = {F ∈ Exp (X) : F ∩ V 6= ∅}. The collection of all sets [V ] and 〈V 〉 is a subbase
for a topology on Exp (X) called the Vietoris topology. From now on, Exp(X) will be
considered with this topology. Since 〈∪iVi〉 = ∪i〈Vi〉 for any collection of non-empty
open sets Vi; if X is generated by a base, then the Vietoris topology on Exp (X) is
generated by the subbase of all sets of the form [V ] and 〈W 〉 with V open sets and W
basic sets. It is known that if X is compact, then Exp(X) is also compact. Given a
space X, a hyperspace of X is any subspace of Exp (X). All subsets of Exp (X) will
be considered hyperspaces.

Let X be a Hausdorff space. A set S ⊂ X will be called a nontrivial convergent
sequence in X if S is countably infinite and there is x ∈ S such that S \ V is finite for
any open neighborhood V of x. The point x is called the limit of S and we will say that
S converges to x. The hyperspace of all nontrivial convergent sequences in X will be
denoted Sc(X). The later space was introduced by Garćıa-Ferreira and Ortiz-Castillo
in [GO15] for metric spaces and studied in a more general setting in [MPP18]. Today
has a great interest among topologists. In the usual sense, a convergent sequence in
X is a function f : ω → X for which there exists x ∈ X such that for each open
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neighborhood V of x, there is m ∈ ω with f(n) ∈ U for all n ≥ m. If f ′′(ω) is infinite,
then ({x} ∪ f ′′(ω)) ∈ Sc(X).

A topological space X is homogeneous if for every x, y ∈ X there exists an auto-
homeomorphism h of X such that h(x) = y. Several classic results on homogeneity
involve the study of the Exp(X). In this paper we are motivated by the following
general question.

Question 1.1. When is Exp(X) homogeneous?

In the 1970’s, it was shown by R. Schori and J. West [SW75] that Exp([0, 1]) is
homeomorphic to the Hilbert cube. In particular, it is possible that the hyperspace
Exp(X) is homogeneous while X is not. On the other hand, if κ > ℵ1, then Exp (2κ) is
not homogeneous (see [Sce76]). Thus, the question of homogeneity of the hyperspace
turns out to be quite subtle.

A. Arhangel’skǐi in [Ar87] asked the following question (which appears in [AvM13]).

Question 1.2. Is the hyperspace Exp (A) homogeneous?

In this paper we partially answer Question 1.2, by showing that.

Theorem 1.3. Cm(A) is not homogeneous for any m ≥ 1.

Where Cm(A) is the hyperspace of A consisting of all unions of at most m non-
empty closed intervals.

The following result can be seen as a companion of the previous Theorem.

Theorem 1.4. Sc(A) is homogeneous.

In [BM23] the authors show that the symmetric products Fm(A) are not homoge-
neous for any m ≥ 2. Since Fm(A) ⊂ Cm(A), now we are a little more closer to answer
Question 1.2.

The paper is organized as follows. In section 2 we prove that Sc(A) and Sc(S)
are homogeneous. In section 3 we prove that the space of non-empty closed intervals
of S is homogeneous. In section 4 we give a geometric characterization for spaces of
unions of at most m non-empty closed intervals of a compact linearly ordered space
and we prove that in the case of the double arrow this spaces are non-homogeneous.
Finally, in section 5 we give a metrization theorem that was obtained in our efforts to
prove Theorem 1.3 and generalizes a classical result on compact spaces. We will use
[En89] as a basic reference on topology and [AvM13] as a reference for homogeneity
and hyperspaces.

2 Homogeneity of Sc(A) and Sc(S)

Let A0 = ]0, 1] × {0},A1 = [0, 1[ × {1} and A = A0 ∪ A1. Define the lexicographical
ordering 〈a, r〉 ≺ 〈b, s〉 if a < b or a = b and r < s. The set A with the order topology
is the double arrow space.

Proposition 2.1. If S, T ∈ Sc(A), then there exists a homeomorphism h : A → A

such that h′′(S) = T .

Proof. Let S, T ∈ Sc(A). First, we will prove that if S = {x} ∪ {xn : n ∈ Z+} and
P = {〈0, 1〉} ∪ {〈1/2n, 1〉 : n ∈ Z+}, then there is a homeomorphism h1 : A → A
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such that h′′
1 (S) = P . Since A is homogeneous, there is a homeomorphism f : A→ A

with f(x) = 〈0, 1〉. We have that the sequence f(xn) converges to f(x) = 〈0, 1〉,
so we can define inductively z1 = max{f(xn) : n ∈ Z+} and zm = max{f(xn) : n ∈
Z+}\{z1, . . . , zm−1} for m ≥ 2. By convergence, we can choose a clopen neighborhood
V1 of 〈0, 1〉 such that f(xn) ∈ V1 for every n with f(xn) 6= z1 and z1 /∈ V1. Because
A \V1 and [〈1/2, 1〉, 〈1, 0〉] are homeomorphic to A and A is homogeneous, there exists
a homeomorphism g1 : A \ V1 → [〈1/2, 1〉, 〈1, 0〉] such that g1(z1) = 〈1/2, 1〉. As
before, we can choose a clopen neighborhood V2 of 〈0, 1〉 such that f(xn) ∈ V2 for
every n with f(xn) 6= z1, z2 and z1, z2 /∈ V2. There exists a homeomorphism g2 :
V1 \ V2 → [(〈1/22, 1〉, 〈1/2, 0〉] with g2(z2) = 〈1/22, 1〉. Recursively, we can choose a
clopen neighborhood Vm of 〈0, 1〉 such that f(xn) ∈ Vm for every n with f(xn) 6=
z1, . . . , zm and z1, . . . , zm /∈ Vm. There exists a homeomorphism gm : Vm−1 \ Vm →
[〈1/2m, 1〉, 〈1/2m−1, 0〉] with gm(zm) = 〈1/2m, 1〉.

We define the homeomorphism g =
⋃

gm : ]〈0, 1〉, 〈1, 0〉] → ]〈0, 1〉, 〈1, 0〉]. Hence,
we have the homeomorphism g : A→ A with g(x) = g(x) if x 6= 〈0, 1〉 and g(〈0, 1〉) =
〈0, 1〉. In this way, h1 := g ◦ f is the desired homeomorphism.

Finally, by the previous argument there is a homeomorphism h2 : A→ A such that
h′′
2 (P ) = T . Therefore, the homeomorphism h := h2 ◦ h1 is as required.

Since the Sorgenfrey line is homeomorphic to [0, 1[ with the subspace topology, we
will assume that the S = [0, 1[. In a very similar way we can prove the following.

Proposition 2.2. If S, T ∈ Sc(S), then there exists a homeomorphism h : S→ S such
that h′′(S) = T .

Proof of Theorem 1.4:

Proof. Let S, T ∈ Sc(A) and h as in the previous proposition. Let us define h :
Sc(A) → Sc(A) such that h(X) = h′′(X). If X ∈ Sc(A), then h−1(X) ∈ Sc(A), so
h(h−1(X)) = X and h is onto. If X, Y ∈ Sc(A) and h(X) = h(Y ), then h′′(X) =
h′′(Y ), so X = Y by the injectivity of h. Hence, h is bijective and h(S) = T .

We will prove that h is continuous. Let B a basic set of Sc(A). We have two

cases. If B = Sc(A)∩ [V ] with V an open set of A, then h
−1

(B) = Sc(A)∩h
−1

([V ]) =

Sc(A) ∩ [h−1(V )]. If B = Sc(A) ∩ 〈V 〉 with V a basic set of A, then h
−1

(B) =

Sc(A) ∩ h
−1

(〈V 〉) = Sc(A) ∩ 〈h
−1(V )〉. Therefore, h is continuous.

To end, we will prove that h is an open map. Let B a basic set of Sc(A). If B =

Sc(A)∩ [V ] with V an open set of A, then h
′′
(B) = Sc(A)∩h

′′
([V ]) = Sc(A)∩ [h

′′(V )].

If B = Sc(A) ∩ 〈V 〉 with V a basic set of A, then h
′′
(B) = Sc(A) ∩ h

′′
(〈V 〉) =

Sc(A) ∩ 〈h
′′(V )〉.

Analogously, we can prove that

Proposition 2.3. Sc(S) is homogeneous.

3 Homogeneity of C1(S)

Let ∆2 = {(x, y) ∈ S2 : x ≤ y}. Let Cn(S) ⊂ Exp(S) be the hyperspace of all unions
of at most n non-empty closed intervals of S.

Proposition 3.1. The function ρ : ∆2 → C1(S) defined by ρ(a, b) = [a, b] is a homeo-
morphism.
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Proof. It is easy to see that ρ is a bijection. For the continuity, we will prove that the
preimages under ρ of [V ] and 〈W 〉, with V an open set and W = [c, d[ a basic open
set, are open.

Let V an open set of S. There exists basic intervals Vj such that V =
⋃

j
Vj .

Let (a, b) ∈ ρ−1([V ]) = {(x, y) ∈ ∆2 : [x, y] ⊂
⋃

j
Vj}. We define B =

⋃
{Vj :

[a, b] ∩ Vj 6= ∅}. We have that B is an interval and open set that contains [a, b]. Let
(x, y) ∈ ∆2 ∩ B2. Since x, y ∈ B, we have that [x, y] ⊂ B ⊂

⋃
j
Vj = V . Therefore,

(a, b) ∈ ∆2 ∩B2 ⊂ ρ−1([V ]) and ρ−1([V ]) is open.
Let W = [c, d[ a basic interval of S and (a, b) ∈ ρ−1(〈W 〉). By definition, [a, b] ∩

W 6= ∅. We have two cases.
Case 1. If c ≤ b < d, let us consider (x, y) ∈ ∆2 ∩ (S×W ). Thus, [x, y] ∩W 6= ∅.

In this way, (a, b) ∈ ∆2 ∩ (S×W ) ⊂ ρ−1(〈W 〉).
Case 2. If b ≥ d, necessarily a < d. Let (x, y) ∈ ∆2 ∩ (] ←, d[ × [d,→ [). By

definition, [x, y]∩W 6= ∅. Therefore, (a, b) ∈ ∆2 ∩ (]←, d[× [d,→ [) ⊂ ρ−1(〈W 〉). We
conclude that ρ−1(〈W 〉) is open.

To show that ρ−1 is continuous, we will prove that ρ is an open map. Without loss
of generality, let V = ∆2 ∩ (C ×S) an open set of ∆2, with C a basic interval of S and
[a, b] ∈ ρ′′(V ). Thus, (a, b) ∈ V , that is to say a ≤ b and a ∈ C. Let B = [a,→ [ and
consider [x, y] ∈ 〈C〉 ∩ [B]. Since [x, y] ∩ C 6= ∅ and [x, y] ⊂ B, we have that x ∈ C,
so (x, y) ∈ V . In this way, [a, b] ∈ 〈C〉 ∩ [B] ⊂ ρ′′(V ). Therefore, ρ′′(V ) is an open
set.

Corollary 3.2. C1(S) is homogeneous.

Proof. By the previous proposition, C1(S) is homeomorphic to ∆2. By [[BM23], The-
orem 1.4] the results holds.

Question 3.3. Is the hyperspace C2(S) homogeneous?

4 Non-homogeneity of Cm(A)

The purpose of this section is to prove Theorem 1.3. It will be convenient to introduce
some notation.

We will think of an element of the finite power x ∈ mX as a function x : m→ X.
Given a linearly ordered space X, let ∆m(X) = {x ∈ mX : ∀i ∈ m − 1(x(i) ≤
x(i + 1))} and let Fm(X) be the hyperspace of X consisting of all finite non-empty
subsets of cardinality at most m. Let ρ : ∆m(X) → Fm(X) be the map given by
ρ(x) = {x(0), . . . , x(m − 1)} and let ∼ denote the equivalence relation on ∆m(X)
defined by x ∼ y if and only if ρ(x) = ρ(y). We consider ∆m(X)/∼ as a topological
space with the quotient topology.

The following classical fact gives us a more geometric representation of Fm(X).

Proposition 4.1 ([Ga54]). If X is a linearly ordered space, then the map ρ̃ : ∆m(X)/∼
→ Fm(X) given by ρ̃([x]) = ρ(x) is a homeomorphism.

Let (X,<) be a linearly ordered space. For m ≥ 1, we denote Cm(X) ⊂ Exp(X)
as the hyperspace of all unions of at most m non-empty closed intervals in X. Let
̺ : ∆2m(X)→ Cm(X) be the map defined by ̺(x) =

⋃
i∈m

[x(2i), x(2i+ 1)] and let ≈
the equivalence relation on ∆2m(X) defined by x ≈ y if and only if ̺(x) = ̺(y). Let
p : ∆2m(X) → ∆2m(X)/≈ be the quotient map. We will sometimes write [x] instead
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of p(x) to represent the equivalence class. We consider ∆2m(X)/≈ as a topological
space with the quotient topology.

Proposition 4.2. If (X,<) is a linearly ordered space, then ̺ is continuous.

Proof. We will prove that the preimages under ̺ of [V ] and 〈W 〉, with V an open set
and W a basic interval, are open.

Let V an open set of X. There exists basic intervals Vj such that V =
⋃

j∈J
Vj .

Let x ∈ ̺−1([V ]) = {y ∈ ∆2m(X) :
⋃

i∈m
[y(2i), y(2i + 1)] ⊂

⋃
j∈J

Vj}. For each
i ∈ m we define Wi =

⋃
{Vj : [x(2i), x(2i + 1)] ∩ Vj 6= ∅}. We have that Wi is an

open interval that contains [x(2i), x(2i+ 1)]. Let y ∈ ∆2m(X) ∩
∏

i∈m
W 2

i . For all i,
y(2i) and y(2i+ 1) are in Wi, so

⋃
i∈m

[y(2i), y(2i + 1)] ⊂
⋃

i∈m
Wi ⊂

⋃
j∈J

Vj = V .

Therefore, x ∈ ∆2m(X) ∩
∏

i∈m
W 2

i ⊂ ̺−1([V ]) and ̺−1([V ]) is open.
Let W be a basic open interval of X and let x ∈ ̺−1(〈W 〉) be given. By definition,

there exists j such that [x(2j), x(2j + 1)] ∩W 6= ∅. If W = ] ←, a[, then we define
B =

∏
i∈2m Bi with Bi = X if i 6= 2j and B2j = W . If y ∈ ∆2m(X) ∩ B, then

[y(2j), y(2j + 1)] ∩W 6= ∅, that is to say
⋃

i∈m
[y(2i), y(2i+ 1)] ∩W 6= ∅. In this way,

x ∈ ∆2m(X) ∩B ⊂ ̺−1(〈W 〉). The proof for W = ]a,→ [ is similar. When W = ]a, b[
we have two cases.

Case 1. a < x(2j + 1) < b. Define B =
∏

i∈2m Bi with Bi = X if i 6= 2j + 1
and B2j+1 = W . If y ∈ ∆2m(X) ∩ B, then [y(2j), y(2j + 1)] ∩W 6= ∅. We have that⋃

i∈m
[y(2i), y(2i+ 1)] ∩W 6= ∅. In this way, x ∈ ∆2m(X) ∩B ⊂ ̺−1(〈W 〉).

Case 2. x(2j + 1) ≥ b. Necessarily x(2j) < b. Define B =
∏

i∈2m Bi with Bi = X
if i ∈ 2m \ {2j, 2j + 1}, B2j = ] ←, b[ and B2j+1 = ]a,→ [. If y ∈ ∆2m(X) ∩ B, then
[y(2j), y(2j + 1)] ∩W 6= ∅. Therefore, x ∈ ∆2m(X) ∩B ⊂ ̺−1(〈W 〉).

We conclude that ̺−1(〈W 〉) is open.

Analogously to Proposition 4.1, the following result gives us a more geometric
representation of Cm(X).

Corollary 4.3. If (X,<) a compact linearly ordered space, then the map ˜̺ : ∆2m(X)/ ≈
→ Cm(X) given by ˜̺([x]) = ̺(x) is a homeomorphism.

Proof. Since ̺ is continuous, we have that ˜̺ is a continuous bijection. Let x ∈ 2mX \
∆2m(X). There are i, j ∈ 2m such that i < j and x(i) > x(j). Since X is Hausdorff,
there exists two disjoint basic intervals V and W with W < V such that x(i) ∈ V
and x(j) ∈ W . Let A =

∏
k∈2m Xk an open neighborhood of x with Xk = X for

all k ∈ 2m \ {i, j}, Xi = V and Xj = W . We have that x ∈ A ⊂ 2mX \ ∆2m(X),
so ∆2m(X) is closed in 2mX. Since 2mX is compact, so is ∆2m(X). Therefore,
∆2m(X)/ ≈ is compact and ˜̺ is a homeomorphism.

Remark 4.4. We note that ∆2(X) = ∆2(X)/ ≈. By the previous Corollary and
Proposition 4.1, we have that F2(X) ∼= C1(X).

Let π : A → [0, 1] be the projection onto the first factor π(〈x, r〉) = x. For any
a ∈ A we will denote by a the constant sequence a of finite length m, where the value
of m should be understood by context. Let πi : mA → A be the projection onto
the i-th coordinate, and for any function h : mA → mA, let hi = πi ◦ h denote its
i-th coordinate function. Recall that a partial function f : A → A is monotone if it
is either non-decreasing or non-increasing, and f is strictly monotone if it is either
strictly increasing or strictly decreasing.

We recall the following results.
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Proposition 4.5 ([BM23] Proposition 2.2). Let h : A→ A be a monotone continuous
function. Then there is a clopen interval J so that either h ↾ J is constant or h ↾ J is
strictly monotone.

Proposition 4.6 ([BM23] Proposition 3.2). Every clopen subset of mA is homeomor-
phic to mA.

Lemma 4.7. If Cm(A) is homogeneous, then it is homeomorphic to 2mA.

Proof. Suppose Cm(A) is homogeneous, then there is an autohomeomorphism h :
∆2m/≈ → ∆2m/≈ such that h([〈0, 1〉]) = [x], where x is some fixed point such that
π(x(0)) < π(x(1)) < · · · < π(x(2m−1)). On one hand, notice that, if J0 < · · · < J2m−1

is a sequence of pairwise disjoint clopen intervals with x(i) ∈ Ji for i ∈ 2m and
max(π(Ji)) < min(π(Ji+1)) for i ∈ 2m − 1, then p ↾

∏
i∈2m

Ji :
∏

i∈2m

Ji → ∆2m/≈ is

an embedding. On the other hand, observe that for any 0 < ǫ < 1 the clopen cube
2m[〈0, 1〉, 〈ǫ, 0〉] is a saturated neighborhood of 〈0, 1〉 such that p′′(2m[〈0, 1〉, 〈ǫ, 0〉])
is homeomorphic to ∆2m/≈. Since h is continuous, there is an ǫ > 0 such that
h′′(2m[〈0, 1〉, 〈ǫ, 0〉]/ ≈) ⊆

∏
i∈2m

Ji. Thus, we have that

2m
A ∼=

∏

i∈2m

Ji
∼= h′′(2m[〈0, 1〉, 〈ǫ, 0〉]/≈) ∼=

2m[〈0, 1〉, 〈ǫ, 0〉]/≈ ∼= ∆2m/≈

where the second homeomorphism follows from Proposition 4.6.

We are now ready to prove the main result of the section.

Proof of Theorem 1.3:

Proof. We proceed by contradiction. Suppose that there is a homeomorphism h :
∆2m/≈ → 2mA, and let Γ = {[x] ∈ ∆2m/≈ : x ∈ A}. Recall that the diagonal
{(x, x) ∈ 2A : x ∈ A} is not a Gδ subspace as A is a non-metrizable compact space.
It follows from this that Γ is not a Gδ in ∆2m/≈ as otherwise this would imply that
π′′
{0,1}(p

−1(Γ)) = π′′
{0,1}({x ∈ ∆2m : x ∈ A}) = {(x, x) ∈ 2A : x ∈ A} would also

be one, where π{0,1} : 2mA → 2A denotes the projection onto the first 2 coordinates.
Notice that, since A × 2m−1{〈0, 1〉} =

⋂
n∈ω

A × 2m−1{[〈0, 1〉, 〈 1
n
, 0〉]} ⊆ 2mA and A

is a perfect space, then every closed subset of A × 2m−1{〈0, 1〉} is a Gδ set in 2mA.
Analogously, every closed subset of any line parallel to one of coordinates axis, is also a
Gδ set in 2mA. We now consider the embedding α : A→ 2mA given by α(x) = h([x]).
By applying Proposition 4.5 2m-times, we can find a clopen interval J such that
αj := πj ◦ α ↾ J is monotone for every j ∈ 2m. Since h′′(Γ) is not a Gδ in 2mA, it
follows, by our previous observations, that there exists j0 6= j1 ∈ 2m such that αj0 and
αj1 are strictly monotone restricted to J . We will assume that both αj0 ↾ J, αj1 ↾ J
are strictly increasing, as the other cases are analogous.

The proof of the following result is is analogous to the proof of [[BM23], Claim
3.5].

Claim 4.8. There is a countable subset C ⊆ π′′(J) such that

π(αj0(〈a, 0〉)) = π(αj0(〈a, 1〉))

and
π(αj1(〈a, 0〉)) = π(αj1(〈a, 1〉))

6



for any a ∈ π′′(J) \ C. In other words, αjk (〈a, 1〉) is the immediate successor of
αjk (〈a, 0〉) for k ∈ 2.

For each a ∈ A := π′′(J) \ C, let P−
a = α(〈a, 0〉), Q+

a = α(〈a, 1〉) and let

P+
a = α(〈a, 0〉) ↾(2m\{j0}) ∪ (j0, 〈π(αj0(〈a, 0〉)), 1〉)

and
Q−

a = α(〈a, 1〉) ↾(2m\{j1}) ∪ (j1, 〈π(αj1(〈a, 0〉)), 0〉).

Pick an element [xa] belonging to h−1({P+
a , Q−

a }) \ ˜̺−1([〈a, 0〉, 〈a, 1〉]). Observe
that, by our choice of xa, there is a ℓa ∈ 2m so that π(xa(ℓa)) 6= a. Let

AP,< = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) < a},

AP,> = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) > a},

AQ,< = {a ∈ A : h([xa]) = Q−
a , π(xa(ℓa)) < a}

and
AQ,> = {a ∈ A : h([xa]) = Q−

a , π(xa(ℓa)) > a}.

We may assume, without loss of generality, that AP,< is uncountable as the other
cases are similar. By successively refining AP,<, we can find an uncountable subset
B ⊆ AP,<, a natural number ℓ and a rational number r ∈ Q such that ℓa = ℓ and
π(xa(ℓ)) < r < a for any a ∈ B.

Consider the clopen sets

U :=
⋃

j∈2m

π−1
j ([〈0, 1〉, 〈r, 0〉]) and V :=

⋂

j∈2m

π−1
j ([〈r, 1〉, 〈1, 0〉]).

Claim 4.9. The sets U and V are saturated.

Proof. Let x ∈ p−1(p′′(U)). There is y ∈ U such that
⋃

i∈m
[x(2i), x(2i + 1)] =⋃

i∈m
[y(2i), y(2i+1)]. Since there is j ∈ 2m and k ∈ m with 〈0, 1〉 ≤ y(j) ≤ 〈r, 0〉 and

y(j) ∈ [x(2k), x(2k + 1)], then 〈0, 1〉 ≤ x(2k) ≤ 〈r, 0〉. Thus, x ∈ U .
Let x ∈ p−1(p′′(V )). There is y ∈ V such that

⋃
i∈m

[x(2i), x(2i+1)] =
⋃

i∈m
[y(2i),

y(2i+ 1)]. Since y(j) ∈ [〈r, 1〉, 〈1, 0〉] for any j ∈ 2m, we have that
⋃

i∈m
[x(2i), x(2i+

1)] ⊂ [〈r, 1〉, 〈1, 0〉] for any j ∈ 2m. It follows that x(j) ∈ [〈r, 1〉, 〈1, 0〉] for any j ∈ 2m,
that is to say, x ∈ V .

We have that Ũ := p′′(U) and Ṽ := p′′(V ) form a clopen partition of ∆2m/≈.
Notice that X := {[xa] : a ∈ B} ⊂ Ũ and Y := {[〈a, 0〉] : a ∈ B} ⊂ Ṽ . Since B is
infinite (uncountable) and ∆2m/≈ is compact, then the set of accumulation points X ′

and Y ′ of X and Y , respectively, are both non-empty. It follows that X ′ ∩ Y ′ = ∅.

Claim 4.10. The sets h′′(X) = {P+
a : a ∈ B} and h′′(Y ) := {P−

a : a ∈ B} have the
same accumulations points.

Proof. We shall prove that the accumulation points of h′′(X) are contained in the
accumulation points of h′′(Y ) as the other case is analogous. Let P be an accumulation
point of h′′(X) and let W :=

∏
j∈2m Jj be a clopen neighborhood of P where each

Jj is a clopen interval. Since P is an accumulation point, then there is an infinite
subset B′ ⊆ B such that {P+

a : a ∈ B′} ⊆W. By construction P−
a (j) = P+

a (j) for any
j ∈ 2m \ {j0} and a ∈ B. In particular, P−

a (j) ∈ Jj for any j ∈ 2m \ {j0} and a ∈ B′.
Observe that P+

a (j0) 6= P+
b (j0) for any a 6= b ∈ B as αj0 ↾ J is strictly monotone. Thus,
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there is an infinite subset B′′ ⊆ B′ such that π(P+
a (j0)) /∈ {π(min(Jj0)), π(max(Jj0))}

for all a ∈ B′′. It follows that, {P−
a : a ∈ B′′} ⊆ W and hence, P is an accumulation

point of h′′(Y ) as required.

Since h is a homeomorphism, then X and Y have the same accumulation points
which is a contradiction. This finishes the proof of the Theorem.

It would be interesting to see if the above theorem can be extended to the hyper-
space of all finite unions of non-empty closed intervals C(A).

Question 4.11. Is the hyperspace C(A) homogeneous?

5 A metrization theorem

Proposition 5.1. Let X be a compact Hausdorff space. If there exists a Gδ-set
C ⊂ X2 homeomorphic to X such that for every x ∈ X there are a ∈ C and a unique
b ∈ C with x = π1(a) = π2(b), then X is metrizable.

Proof. For each n ∈ ω, let Gn be an open subset of X2 such that C =
⋂

n∈ω
Gn and

Gn+1 ⊂ Gn. Since X2 is normal and C is closed, we can define a sequence of open
sets Un as follows. Let U0 = G0 and for n > 0 let Un such that C ⊂ Un ⊂ Un ⊂
Un−1 ∩ Gn. It follows that C =

⋂
n∈ω

Un. Let x ∈ X and (s, x) ∈ C. For n ∈ ω, let

Un[s] := {y ∈ X : (s, y) ∈ Un}. Hence, Un[s] ⊂ Un−1[s] for any n > 0, since

Un[s] = π′′
2 (Un ∩ ({s} ×X)) = π′′

2 (Un ∩ ({s} ×X)) ⊂ π′′
2 (Un ∩ {s} ×X)

⊂ π′′
2 (Un−1 ∩ ({s} ×X)) = Un−1[s]

where the second equality follows from [[En89], Corollary 3.1.11].

Claim 5.2. For any open neighborhood V of x, there exists n ∈ ω such that

x ∈ Un[s] ⊂ V

Proof. We proceed by contradiction. Let V be an open neighborhood of x with Un[s] 6⊂
V for any n ∈ ω. We choose xn ∈ Un[s] \ V . It follows that

⋂
n∈ω

Un[s] = {x}, since

if z ∈
⋂

n∈ω
Un[s] ⊂

⋂
n∈ω

Un[s], then (s, z) ∈
⋂

n∈ω
Un ⊂ C. Since X is compact, the

pseudocharacter and the character of x are equal. Since the sets Un[s] are open, the
pseudocharacter of x is countable. Hence, X is first countable. By [[En89], Theorem
3.10.31] X is sequentially compact. In this way, there exists a convergent subsequence
of (xn)(n ∈ ω), let us say with limit L. Since each set Um[s] is closed and contains
infinitely many elements of such subsequence, we have that L belongs to each one of
them. Thus, L ∈

⋂
m∈ω

Um[s] = {x}. By convergence, there are infinite elements of
the subsequence in V , which is a contradiction.

For each (s, t) ∈ C and n ∈ ω we can choose open neighborhoods Bs,n and Bt,n

such that Bs,n ×Bt,n ⊂ Un. Since X is compact, there exists a finite subcover Bn of
{Bt,n : t ∈ X}. We claim that B =

⋃
n∈ω
Bn is a countable base for X. Let x ∈ X and

V an open neighborhood of x. By the claim, there is n ∈ ω such that x ∈ Un[s] ⊂ V .
We choose Bz,n from Bn with x ∈ Bz,n. Therefore, x ∈ Bz,n ⊂ Un[s] ⊂ V .

By the Urysohn’s metrization theorem, X is metrizable.

As a consequence, we obtain the following classical fact.
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Corollary 5.3 ([Sn45]). Let X a compact Hausdorff space. If the diagonal of X is a
Gδ-set, then X is metrizable.
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Departamento de Matemática
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