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Seamless Underwater Navigation with Limited
Doppler Velocity Log Measurements

Nadav Cohen and Itzik Klein

Abstract—Autonomous Underwater Vehicles (AUVs) com-
monly utilize an inertial navigation system (INS) and a Doppler
velocity log (DVL) for underwater navigation. To that end,
their measurements are integrated through a nonlinear filter
such as the extended Kalman filter (EKF). The DVL velocity
vector estimate depends on retrieving reflections from the seabed,
ensuring that at least three out of its four transmitted acoustic
beams return successfully. When fewer than three beams are
obtained, the DVL cannot provide a velocity update to bind
the navigation solution drift. To cope with this challenge, in
this paper, we propose a hybrid neural coupled (HNC) ap-
proach for seamless AUV navigation in situations of limited
DVL measurements. First, we drive an approach to regress
two or three missing DVL beams. Then, those beams, together
with the measured beams, are incorporated into the EKF. We
examined INS/DVL fusion both in loosely and tightly coupled
approaches. Our method was trained and evaluated on recorded
data from AUV experiments conducted in the Mediterranean
Sea on two different occasions.The results illustrate that our
proposed method outperforms the baseline loosely and tightly
coupled model-based approaches by an average of 96.15%. It also
demonstrates superior performance compared to a model-based
beam estimator by an average of 12.41% in terms of velocity
accuracy for scenarios involving two or three missing beams.
Therefore, we demonstrate that our approach offers seamless
AUV navigation in situations of limited beam measurements.

Index Terms—Autonomous Underwater Vehicle, Doppler Ve-
locity Log, Extended Kalman Filter, Deep Learning

I. INTRODUCTION

NAVIGATING underwater environments has garnered sig-
nificant attention in recent years due to its importance

across scientific missions and various industries, such as oil
and gas exploration, marine, subsea, and military operations.
Underwater navigation poses challenges because traditional
methods reliant on global navigation satellite system (GNSS)
signals are ineffective, as these signals cannot penetrate water.
The most promising and used sensors for autonomous un-
derwater vehicle (AUV) navigation are the inertial navigation
system (INS) and a Doppler velocity log (DVL) [1].
As a self-contained system, the strapdown INS can offer con-
tinuous high-rate updates of the platform’s position, velocity,
and orientation. The INS derives its navigation solution by
integrating the inertial data from the inertial sensors, which
are susceptible to inherent errors and noises. These factors
contribute to the accumulation of errors in the navigation
solution over time [2]. To mitigate these errors, an aiding
sensor in the form of the DVL is utilized. It operates by
transmitting four acoustic beams to the seabed. Upon receiving
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the reflected beams, the Doppler effect is utilized to calculate
the velocity vector of the platform by evaluating the frequency
shift between the transmitted and received beams [3]. To ef-
fectively integrate these sensors, a nonlinear filter is employed
due to the nonlinear characteristics of the INS equations of
motion. Common choices include the extended Kalman filter
(EKF) or the unscented Kalman filter (UKF) [4].
The DVL operates under a condition known as ”bottom lock,”
which occurs when at least three out of the four transmitted
beams are reflected back to the sensor [5]. When this condition
is met, the velocity vector updates provided by the DVL are
integrated with the INS using a loosely coupled (LC) approach.
This involves initially calculating the velocity vector of the
platform through parameter estimation using the beam velocity
measurements and the least squares estimator. Subsequently,
once the velocity vector is obtained, it is incorporated into
the nonlinear filter to mitigate the inertial errors. In real-world
scenarios, the bottom lock condition is not always achieved,
rendering the LC approach impractical as the LS estimator
struggles to estimate Cartesian velocity. To circumvent this
challenge, the raw DVL measurements, specifically the beam
velocity readings, can be directly integrated into the nonlinear
filter using a tightly coupled (TC) approach. This approach
is adaptable to any number of beams, ranging from one to
four. However, as the number of beams decreases, the system’s
capability to mitigate navigation errors diminishes [6].
Scenarios involving partial DVL measurements can occur due
to various factors, including extreme roll and pitch maneuvers
like while diving, passing over underwater structures such as
trenches and rocks that may deflect the beams, and obstruc-
tions such as marine wildlife blocking the sensor’s view. A
visualization of these scenarios can be seen in Fig.1. To tackle
these scenarios, research has started to emerge, beginning
with Tal et al., who proposed an extended loosely coupled
(ELC) approach [7]. This method utilizes partial DVL beam
measurements along with external information to compute the
three-dimensional velocity vector of the AUV, which is then
fed into the navigation nonlinear filter. Additionally, in [8],
the authors proposed a TC implementation of INS/DVL along
with a pressure sensor to address scenarios involving partial
beam measurements. In [9], the authors analyzed the geometric
relationship between the DVL beam configuration and a zero
velocity vector assumption. They derived a zero velocity
update-aided virtual beam method to continuously operate the
TC fusion and also proposed an LS support vector machine-
aided virtual beam method to integrate into the TC INS/DVL
fusion. Moreover, an approach has been proposed to estimate
the platform’s velocity vector based on past DVL measure-
ments and a motion model specifically designed for short
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time periods [10]. With recent advancements in computational
efficiency and proven results of data-driven approaches, deep
learning (DL) has started to emerge as a method to address
the problems associated with partial beam measurements. In
[11], the authors employed a convolutional neural network
(CNN) to regress a single missing beam in cases where it is
absent. Subsequently, they investigated various combinations
of missing beam regression using a long short-term memory
(LSTM) based network in [12]. Our previous work consists
of a series of networks referred to as BeamsNet, which
demonstrated how one-dimensional CNNs can enhance DVL
measurements [13], compensate for missing beams [14, 15],
and provide velocity updates in cases of complete DVL outage
[16].
In this paper, we leverage our previous work by adapting
and modifying the BeamsNet framework to directly regress
missing beam measurements instead of the AUV’s velocity
vector. Subsequently, we integrate the regressed missing beams
together with the measured ones into the EKF using both LC
and TC integration approaches to form a seamless AUV nav-
igation solution. Specifically, we focus on scenarios involving
two and three missing beams. The contributions made in this
study are outlined below:

1) A tailored BeamsNet architecture, uniquely crafted to
forecast missing beams in situations where two or three
beams are absent, leveraging both past DVL beam
measurements and the current partial measurement.

2) Hybrid neural LC (HNLC) methodology designed to in-
corporate incomplete DVL measurements with regressed
beam data forming a velocity vector update to the EKF.

3) Hybrid neural TC (HNTC) methodology fusing re-
gressed and measured beams as an update to the EKF.

To emphasize our approach’s robustness, we evaluate it using
real-world AUV data collected on two separate occasions. The
training and validation datasets consisted of approximately
four hours of data, spanning nine distinct missions with varied
maneuvers, speeds, depths, and other factors. In contrast, the
test dataset comprised a mission of four hundred seconds,
conducted on a separate date under different sea conditions.
This diverse test scenario aimed to underscore the robustness
of the HNC approach. In situations of limited beam mea-
surements, we compare HNLC and HNTC to the baseline
TC and LC (pure inertial) and a model-based average beam
estimator. Our approach offers an improvement of 96.15% on
average over the baseline model-based LC and TC approaches.
Additionally, it demonstrates superior performance compared
to a model-based beam estimator by an average of 12.41%
in terms of velocity accuracy for scenarios involving two or
three missing beams.
The rest of the paper is organized as follows: Section II intro-
duces the mathematical background of INS/DVL fusion, exam-
ining both the LC and TC approaches. Section III presents the
suggested hybrid neural coupled approach. Finally, Sections
IV and V discuss the results and the conclusions, respectively.

II. INS/DVL FUSION

In this section, we describe the implementation of the error-
state EKF for INS/DVL fusion. Throughout the implemen-
tation, three main reference frames will be indicated with
an upper script. The first frame, denoted as b, represents
the body frame centered at the vehicle’s center of mass. In
this frame, the x-axis aligns with the vehicle’s longitudinal
axis, pointing in the forward direction. The z-axis extends
downward, and the y-axis extends outward, completing the
right-hand orthogonal coordinate system. The second frame,
denoted as n, represents the navigation frame, which is locally
defined relative to the Earth’s geoid. We utilize the north-east-
down (NED) coordinate system within this frame, where the
x-axis aligns with true north, the y-axis points eastward, and
the z-axis points downward following the direction of gravity.
The final coordinate, denoted as DV L, represents the DVL
frame, with its sensitive axes determined by the manufacturer.
The transformation from the DVL frame to the body frame is
described by a fixed transformation matrix, known in advance
[17].
The error-state EKF implementation is employed for the
INS/DVL fusion. We denote the error-state vector as δx ∈
Rn×1, which represents an n-dimensional vector, formulated
as:

xt = xe − δx (1)

in this context, xt ∈ Rn×1 and xe ∈ Rn×1 denote the true
state and the estimated state, respectively. Specifically, in the
scenario of INS/DVL fusion, involving n = 12 error-states,
we utilize δxn:

δxT = [(δvn)
T

(ϵn)
T

δba
T δbg

T ]T ∈ R12×1 (2)

in this formulation, δvn ∈ R3×1, ϵ ∈ R3×1, ba ∈ R3×1,
and bg ∈ R3×1 denote the velocity error-states expressed in
the navigation frame, misalignment error, accelerometer bias
residual error, and gyroscope bias residual error, respectively
[18]. The linearized differential equation governing the error
state is represented as follows:

δẋ = Fδx+Gn (3)

where n ∈ R12×1 denotes the system noise vector, F ∈
R12×12 represents the system matrix, and G ∈ R12×12 is
the system noise distribution matrix. The system incorporates
multiple independent sources of noise, each assumed to follow
a zero-mean Gaussian distribution. These sources of noise can
be represented as:

n = [na
T ng

T nab

T ngb

T ]T ∈ R12×1. (4)

where na ∈ R3×1 and ng ∈ R3×1 represent the addi-
tive noise for the accelerometer and gyroscope, respectively.
Additionally, nab ∈ R3×1 and ngb ∈ R3×1 denote the
Gaussian random walk distributions for the accelerometer and
gyroscope, respectively. The system matrix, F, is defined as:

F =


Fvv Fvϵ 03×3 Cn

b

Fϵv Fϵϵ Cn
b 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

 (5)
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Fig. 1: A visualization of various scenarios where an AUV may encounter conditions limiting DVL beam measurements. On
the left-hand side, the initial operation of the AUV, diving, is illustrated, characterized by a significant pitch angle. In the
middle, the acoustic beams encounter uneven terrain, while on the right-hand side, the DVL view is obstructed by sea animals.

where Cn
b denotes the transformation matrix from the body

frame to the navigation frame. The specific sub-matrices of
F can be referenced in textbooks like [19, 20]. Concerning
the distribution of system noise, the matrix G is defined as
follows:

G =


03×3 Cn

b 03×3 03×3

Cn
b 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 (6)

where 03×3 represents a three-by-three zero matrix, and I3×3

denotes a three-dimensional identity matrix.
The Kalman filtering process typically consists of two distinct
phases: the prediction and update steps. During the prediction
step, the a priori error state, denoted as δx−, is initialized to
zero to facilitate linearization, which is a crucial aspect of the
EKF method.

δx− = 0 (7)

Next, the state covariance is propagated using the known
model, which in this case corresponds to the INS nonlinear
equations of motion:

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Qk−1 (8)

Here, P−
k denotes the a priori state covariance estimate at

time k, and P+
k−1 represents the a posteriori state covariance

estimate at time k−1. The transition matrix, denoted as Φk−1,
is typically derived through a power-series expansion of the
system matrix, F, and the propagation interval, τs:

Φk−1 =

∞∑
r=0

Fr
k−1

r!
τ rs (9)

The discrete process noise covariance matrix is derived from
its continuous form Q = E[nnT ]. It accounts for the inherent
uncertainty in the model and is typically approximated as
follows: [21]:

Qk−1 =
1

2

(
Φk−1Gk−1QGT

k−1 +Gk−1QGT
k−1Φ

T
k−1

)
∆t.

(10)
The next stage of the Kalman filter is the update step, which
is executed using the following equations:

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1
(11)

P+
k = [I−KkHk]P

−
k (12)

δx+
k = Kkδzk (13)

where Kk represents the Kalman gain, which balances be-
tween incorporating new measurements and predictions from
the system’s dynamic model. The matrices Hk and Rk corre-
spond to the measurement matrix and noise covariance matrix,
respectively. Finally, δx+

k and P+
k denote the a posteriori error

state and the estimated covariance state, respectively.
To determine the measurement matrix Hk, it is essential to
first inspect the geometry of the DVL operation. The DVL is
installed inside the AUV such that its transducers are oriented
toward the seabed. The DVL operates in an ”×” type con-
figuration, also known as the ”Janus Doppler configuration”
[22]. In the ”×” type configuration, the transactors are located
with a relative yaw and pitch angles to the DVL’s sensor body
frame, which usually differs from the platform’s body frame,
in the following manner:

bı̇ =
[
cosψı̇ sin θ sinψı̇ sin θ cos θ

]
1×3

(14)

where bı̇ such that ı̇ = 1, 2, 3, 4 represents the beam number,
and ψ and θ denote the yaw and pitch angles relative to
the body frame, respectively. The pitch angle is fixed and
predetermined by the manufacturer, maintaining the same
value for each beam. The yaw angle can be expressed, for
example, by [7]:

ψı̇ = (ı̇− 1) · 90◦ + 45◦ , ı̇ = 1, 2, 3, 4 (15)

A. Loosely Coupled INS/DVL Fusion

In the LC approach, the AUV velocity vector estimation
through raw DVL beam measurements, is conducted sepa-
rately to the EKF framework, utilizing a parameter estimation
method known as least squares (LS) parameter estimation.
Let vDV L represent the velocity vector expressed in the DVL
frame, and T be the transformation matrix mapping it to the
velocity in the beam directions, denoted by vBeam. Therefore,
the relation between them can be defined as follows:

vBeam = TvDV L, T =


b1
b2
b3
b4


4×3

(16)
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The beam measurements are subject to inherent errors, which
are modeled by:

y = T[vDV L(1+ sDV L)] + bDV L + nDV L (17)

where, bDV L ∈ R4×1 represents the bias vector, sDV L ∈
R3×1 denotes the scale factor vector, and nDV L ∈ R4×1

stands for a zero-mean white Gaussian noise. After obtaining
the raw measurements, the subsequent step involves extracting
vd by filtering the data based on the following cost function:

v̂DV L = argmin
vDV L

|| y −TvDV L ||2. (18)

The solution to this LS problem is obtained by multiplying the
observations with the pseudo-inverse of the matrix T [23]:

v̂DV L = (TTT)−1TTy. (19)

Finally, the estimated velocity vector from the DVL is trans-
formed to the body frame using:

v̂b
DV L = Cb

dv̂
DV L (20)

where Cb
d represents a known constant transformation matrix

from the DVL frame to the body frame and v̂b
DV L denotes the

DVL velocity in the body frame.
To derive Hk for the LC approach, we examine the innovation
residual and employ a first-order perturbation approximation
while neglecting higher-order error components:

δz = Ĉb
nv̂

n − vb
DV L

= Cb
n(I3 + ϵ[×])(vn + δvn)− vb

DV L

=��
��*

vb
DV L

Cb
nv

n +Cb
nδv

n +Cb
nϵ[×]vn −������:0

Cb
nϵ[×]δvn − vb

DV L

≈ Cb
nδv

n −Cb
nv

n[×]ϵ
(21)

therefore Hk can be formulated into the following:

HLC
k = [Cb

n −Cb
nv

n[×] 03×3 03×3] (22)

The loosely coupled integration offers two primary advantages:
simplicity and redundancy. However, its main drawbacks arise
from the use of cascaded filters (LS and EKF), which results
in a sub-optimal solution, and the requirement of at least three
available beams to estimate the velocity vector.

B. Tightly Coupled INS/DVL Fusion

In the TC approach, the DVL raw beam measurements are
directly processed through the EKF update stage. Each raw
beam measurement is handled separately in the following
manner:

δzi = bTi Ĉ
b
nv̂

n − bTi v
b
DV L

= bTi C
b
n(I3 + ϵ[×])(vn + δvn)− bTi v

b
DV L

=�����:bTi v
b
DV L

bTi C
b
nv

n + bTi C
b
nδv

n + bTi C
b
nϵ[×]vn

−�������:0
bTi C

b
nϵ[×]δvn − bTi v

b
DV L

≈ bTi C
b
nδv

n − bTi C
b
nv

n[×]ϵ

(23)

where δzi is the residual of the ith beam measurement
and therefore Hk,i, that corresponds to this beam, can be
formulated into the following:

HTC
k,i = [bTi C

b
n − bTi C

b
nv

n[×] 01×3 01×3] (24)

One of the advantages of the TC approach is its ability to
operate in cases where there is no bottom lock, meaning that
at least three beams are reflected back to the sensor from the
seabed, including scenarios with fewer than three beams. The
actual Hk is determined by the number of available beams
by concatenating the Hk,i. For example, in an ideal case with
four beams, the measurement matrix would be:

HTC
k =


HTC

k,1

HTC
k,2

HTC
k,3

HTC
k,4


4×12

(25)

It has been demonstrated in the literature that the TC approach
consistently outperforms its LC counterpart in terms of both
accuracy and robustness [24].

III. HYBRID NEURAL COUPLED INS/DVL FUSION

In this section, we introduce a deep learning methodology
inspired by the BeamsNet framework [13, 14] to allow re-
gression of missing beams and thus enable seamless AUV
navigation in scenarios with limited DVL measurements. Ad-
ditionally, we explore the feasibility of integrating our hybrid
neural approach into the error-state EKF framework using both
LC and TC approaches.

A. Missing Beams Regression

Our proposed framework utilizes N past DVL measurements
and the current partial beam measurements (one or two).
Considering that AUVs generally do not engage in extreme
maneuvers and commonly operate at speeds lower than 4
[m/s], we opted to concentrate on a brief time window
N preceding the partial beam measurements. In doing so,
we leverage a data-driven methodology to extract pertinent
features facilitating the prediction of missing beams. The
proposed approach’s architecture relies on a one-dimensional
convolutional neural network (1DCNN), as depicted in Fig. 2.
The first step of the network is feature extraction from past
DVL measurements using a 1D convolutional layer with a
kernel size of 2×1 and stride of 2×1, followed by a hyperbolic
tangent function. Then, a residual connection between the flat-
tened output of this layer and the flattened input is established
and inserted into a set of fully connected layers followed by
rectified linear units. The output of this section is concatenated
with the current partial beam measurements, along with an
additional input, which is the average over the N past DVL
measurements. Lastly, it passes through a fully connected layer
that outputs the missing beams. The network can also be
formulated mathematically in the following manner:

Input: X = [x1, x2, . . . , xN ] (26a)

Input: P (26b)
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Fig. 2: A schematic representation of the revised BeamsNet
architecture, comprising of one-dimensional convolutional lay-
ers and fully connected layers.

where X is a vector of N past DVL beam measurements and
P represents the current partial DVL beam measurements. M
is the third input representing the mean of the past DVL beam
measurements:

M =
1

N

N∑
i=1

xi (27)

In the ith convolutional layer, the output Zi is obtained as
follows:

Zi = σTanh

 m∑
j=1

(xi+(j−1)s · wj) + b

 (28)

where m represents the window/kernel size, b signifies the
bias, s denotes the stride, and wj represents the weights. Ad-
ditionally, σTanh denotes the Tanh activation function, defined
as follows:

σTanh(x) =
ex − e−x

ex + e−x
(29)

Combining the output of the flattened convolutional layer Z
(28) with the input X (26a), resulting in layer Y :

Y = Z +X (30)

The output L of the first fully connected layer is computed
as:

L = σReLU(W2(σ(W1Y + b1)) + b2) (31)

where W1 and W2 represent the weight matrices, and b1 and
b2 represent the bias vectors. Additionally, σReLU denotes the
ReLU activation function, defined as follows:

σReLU(x) = max(0, x) (32)

After obtaining L in (31), it is stacked with P (26b) and M
(27) to form U :

U = stack{L,P,M} (33)

Finally, the output Ô of the neural network is computed as:

Ô = σReLU(W3U + b3) (34)

where W3 is the weight matrix and b3 is the bias vector.
During the training process, we employ the mean squared error
(MSE) loss function:

MSE(O, Ô) =
1

n

n∑
i=1

(Oi − Ôi)
2 (35)

where O represents the reference data and n in the number of
data points.
The optimization process is carried out using the root mean
square propagation (RMSprop) optimizer. The model is trained
with a batch size of 4, a learning rate of 0.001, and a learning
rate decay factor of 0.1 every 35 epochs. Training is conducted
over 100 epochs. The differences in hyper-parameters between
the architectures for handling two or three missing beams
are presented in Table I. Notice that the same architecture is
applied with differences only in the input and output shapes.

TABLE I: Variations in hyperparameters for two and three
missing beam networks within the modified BeamsNet archi-
tecture.

Network Type Input Shape Output Shape

2 Missing Beams

Layer1 - Conv1D 3 6
Layer2 - FC 12 16
Layer3 - FC 16 2
Layer4 - FC 8 2

3 Missing Beams

Layer1 - Conv1D 5 10
Layer2 - FC 20 16
Layer3 - FC 16 3
Layer4 - FC 8 3

B. Hybrid Neural Coupled EKF

Once the network is trained, it is incorporated into the naviga-
tion filter to address scenarios of partial beam measurements.
When the system identifies the number of missing beams, (17)
undergoes a slight modification. Now, the vector y depicted
in (17) is no longer in R4×1 but rather in either R2×1 or
R1×1, depending on the number of beam measurements. The
output of the suggested approach completes the missing beams
to obtain a total of four beam measurements. Let the beams
be denoted as beam1 to beam4 according to (14). For the
two missing beams scenario, we arbitrarily choose beam1 and
beam3 as the missing beams, while when three beams are
missing, we arbitrarily choose beam2 to be available. There-
fore, for the scenario of two missing beams, the measurement
vector is defined as:

yHNC
2beams = [Ô[1], y[1], Ô[2], y[2]] ∈ R4×1 (36)

and for three missing beams as

yHNC
3beams = [Ô[1], y[1], Ô[2], Ô[3]] ∈ R4×1 (37)

where y[n] and Ô[n] represent the beam measurements in
the nth position of the DVL and the network’s output as
defined in (34), respectively. These measurements can then
be integrated into the filter using the HNLC approach or the
HNTC approach. Notice that in both cases, the measurement
matrix remains consistent with that of a regular situation
involving complete four-beam measurements, even though the
missing beams are obtained from a different source (network
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Fig. 3: Hybrid-Neural EKF information flow. The EKF is
initialized and constantly propagates the INS model while
awaiting the DVL velocity update. Upon receiving the DVL
velocity update, if the bottom lock condition is met, the
update procedure is carried out regularly, either in an LC or
TC approach. However, if there are fewer than three beams,
the data is directed through the appropriate path and the
missing beams are forecasted using the proposed approach
and subsequently utilized within the filter.

regression). This ensures the preservation of the filter update
structure. Specifically, HHNLC

k is equivalent to HLC
k as de-

fined in (22), and HHNTC
k is equivalent to HTC

k as defined
in (24).
The flow of information, as outlined in Fig.3, begins by
propagating the navigation solution using the INS model and
its corresponding estimated covariance as per (8). Then, when
a DVL sample is deemed valid, the first step is to determine
the number of available beams. If there are three or four
beams available, the update phase proceeds as usual, following
either an LC or TC integration approach. If fewer beams are
available, the previously stored past DVL beam measurements,
along with the current partial measurements, are inputted into
our proposed deep learning model to forecast the missing
beams. Once all four beams are available, they are used to
update the filter either by the LC or TC methods.

IV. ANALYSIS AND RESULTS

A. Field Experiments and Dataset

To evaluate our approach, we generated data by conducting
missions with an AUV in the Mediterranean Sea. Specifi-
cally, we employed a modified ECA Group A18D mid-size
AUV called Snapir. It is capable of autonomously perform-
ing missions up to 3000 meters in depth with 21 hours of
endurance [25]. The Snapir AUV is outfitted with the iXblue

Phins Subsea INS, which utilizes fiber optic gyroscope (FOG)
technology for precise inertial navigation [26]. Additionally,
Snapir uses a Teledyne RDI Work Horse Navigator DVL
[27], renowned for its capability to provide accurate velocity
measurements with a standard deviation of 0.02 [m/s]. The
INS operates at a frequency of 100 [Hz], while the DVL
operates at 1 [Hz].
To thoroughly assess the robustness of our approach, we uti-
lized data from two different dates. One dataset was employed
for training and validating our data-driven approach, while
the testing data comes from a separate mission. The dataset
utilized for training and validation was collected in May 2021.
The dataset comprises nine distinct missions characterized by
various parameters, including maneuvers, depth, speed, sea
conditions, and more. Eight of the missions were utilized for
training, containing 12,799 DVL samples, equivalent to 3.5
hours of data. An example of two trajectories can be seen
in Fig. 4. Additionally, 1758 DVL samples were reserved for
validation, which we refer to as trajectory 1. For testing, an
additional 400 seconds of data from another sea experiment
conducted in June 2022 were employed. This data is denoted
as trajectory 2. Additionally, corresponding inertial measure-
ment unit (IMU) measurements were captured and utilized in
the EKF to propagate the INS and filter model. The ground
truth (GT) solution is the one provided by the Delph INS filter
using a post-processing software designed for iXblue’s INS-
based subsea navigation [28].

Fig. 4: Example of two out of the eight trajectories used to
train our proposed network.

The data provided by the Teledyne RDI Work Horse Navigator
DVL comprises velocity samples. To obtain the beam velocity
measurements, we utilized the error model specified in (17),
considering a DVL bias of 0.01 [m/s] and additive white noise
with a standard deviation of 0.042 [m/s] in all three axes and
for both missing beam cases. The angle θ in (14) was set to
20◦, and the angle ψ, defined in (15), is utilized to construct
the matrix T as in (16).

B. Evaluation Metrics

To evaluate the effectiveness of our proposed method, we
utilized the root mean square error (RMSE) metric, specifically
looking at the velocity RMSE (VRMSE):

V RMSE(vı̇, v̂ı̇) =

√∑M
ı̇=1(vı̇ − v̂ı̇)2

M
(38)



7

where, M represents the total number of samples, vı̇ repre-
sents the ground truth velocity vector, while v̂ı̇ signifies the
predicted velocity vector.
Additionally, the velocity relative total error (VRTE) is utilized
as a percentage to gauge the relative discrepancy between the
model’s predictions and the reference data using the VRMSE
metric. The formula computes the absolute difference between
the model’s and GT VRMSE, and then normalized by the GT
VRMSE. Finally, it’s multiplied by 100 to express the error
in percentage.

V RTE =

(
|VRMSEmodel − VRMSEreference|

VRMSEreference

)
× 100 (39)

where VRMSEmodel and VRMSEreference denote the VRMSE
of the model’s predictions and the GT data, respectively.

C. Experimental Results

Initially, we explored the different durations of partial DVL
measurements, ranging from 5 seconds up to 25 seconds, on
the filter performance. We observed that the performance of
the model-based approaches was consistently satisfactory. This
is attributed to the high quality of the inertial sensors. Hence,
we extended our investigation to a 30-second window of partial
beam measurements and evaluated the performance of both
LC and TC approaches in these scenarios. To ensure a fair
comparison with the network’s beam prediction, we applied
also an average estimator to regress the missing beams. It is
important to emphasize that the regressed beams are not actual
DVL beam measurements. Thus, this should be reflected in
different variance values in the measurement noise covariance
matrix Rk. Moreover, as the network utilizes all N past DVL
beam measurements along with the current measured ones, it
introduces correlations that should also be reflected in the mea-
surement noise covariance matrix. However, for simplicity, we
assume these effects are small and neglect them. In Fig. 5, the
behavior of the velocity error states in the EKF is presented.
The error remains bounded within the estimated covariance
sleeve (1 sigma), except for a few measurements that exceed
it. Additionally, the estimated covariance by the EKF appears
to be converging over time. This behavior is expected when all
four beams are available, as indicated by the tight constraint
on the velocity error state. However, in scenarios where the
bottom lock condition is not met, leading to fewer available
beams, the uncertainty in the velocity measurements increases,
resulting in a wider covariance sleeve.
Figure 6 displays a magnified perspective spanning a 30-
second duration, depicting the covariance of velocity esti-
mates derived from partial DVL measurements for instances
where two beams are missing, covering both trajectory 1 and
trajectory 2. This visualization elucidates the divergence of
uncertainty during encounters with missing beam situations,
followed by subsequent convergence once all the beams are
available again. This behavior is also observed in the case of
three missing beams, but as expected, with a higher divergence
rate and final value. When two beams are missing, the baseline
LC EKF operates solely on pure inertial navigation, as the
velocity cannot be estimated using the LS parameter estima-
tor. This explains the divergence of the estimated velocity

(a) Results of trajectory 1.

(b) Results of trajectory 2.

Fig. 5: Velocity error states. The blue line represents the veloc-
ity error state vector bounded within the estimated covariance
sleeve (shown in red) of the EKF for trajectory 1 in (a) and
trajectory 2 in (b).

covariance, represented by a black curve. On the other hand,
in the baseline TC approach, partial DVL measurements are
utilized to mitigate error accumulation. Although the partial
measurements do not provide full velocity information, they
offer more certainty compared to the LC approach, as indicated
by the magnitude of the green curve. When examining the
HNLC and HNTC approaches, no divergence is observed, and
the standard deviation values in both the neural loosely and
neural tightly coupled methods are similar, with only a small
difference as illustrated in Fig.6.
All of the factors mentioned above contribute to a significant
improvement in VRMSE. Our HNLC and HNTC approaches
outperform the model-based methods in both cases of two
and three missing beams. Specifically, for two missing beams,
the proposed approach demonstrates an improvement of over
93.6%, and for three missing beams, more than 94.9% in
terms of VRTE. We also compared our approach to an average
estimator, which takes the past DVL beam measurements and
calculates the average to forecast the missing beam. Then,
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utilizes it in the LC or TC methods to update the EKF.
This comparison is considered fair as both methods receive
the same inputs. The average estimator yields good results
primarily because the AUV’s maneuvers are not extreme
and do not change frequently. However, the neural coupled
approach is able to outperform the estimator in terms of
VRMSE. With two missing beams, the proposed approach
demonstrates an improvement of over 5.8% for two missing
beams and over 11.4% for three missing beams. All the results
are summarized in Table II, and the performance of all the
methods in terms of position accuracy in the North-East plane
is illustrated in Fig.7.

(a) The estimated velocity standard deviation for trajectory 1 over
time.

(b) The estimated velocity standard deviation for trajectory 2 over
time.

Fig. 6: The estimated velocity standard deviation trajectory
1 (a) and trajectory 2 (b) over time, comparing the baseline
LC and TC approaches to the suggested HNLC and HNTC
approaches. The suggested approaches were able to maintain
an almost constant standard deviation, whereas in the model-
based approaches, it diverges.

(a) Trajectory 1 in the North-East plane.

(b) Trajectory 2 in the North-East plane.

Fig. 7: Visualization of the trajectory of all inspected ap-
proaches with respect to the reference trajectory in red, plot-
ted in the North-East plane. The model-based LC and TC
approaches exhibit divergence during the 30-second period
of missing beams, whereas the other methods maintain good
results. The suggested approach outperforms both model-based
methods.

V. CONCLUSIONS

The underwater environment poses significant challenges for
navigation due to its harsh conditions and the unavailabil-
ity of GNSS signals for precise position updates. Typically,
navigation systems integrate an INS with a DVL using an
EKF. The DVL relies on a condition known as bottom lock,
which requires at least three received beams out of the four
transmitted. When fewer beams are available, the navigation
solution suffers, whether in a TC or LC approach. In this
paper, we proposed the HNLC and HNTC approaches to cope
with limited beam scenarios. We designed a deep learning
architecture to regress the missing beams using past beam
measurements. In addition to comparing the results to the
baseline model-based filter performance, we also compared
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TABLE II: A comparison of the HNLC and HNTC approaches’ performance with respect to the model-based LC and TC
baseline, and the model-based beam regressor (average estimator) in terms of both the VRMSE and the VRTE.

Scenario Method VRMSE [m/s] VRTE w.r.t Baseline VRTE w.r.t Average
Estimator

Trajectory 1 Trajectory 2 Trajectory 1 Trajectory 2 Trajectory 1 Trajectory 2

2 Missing Beams

Baseline LC 8.62 12.01 N/A N/A N/A N/A
Baseline TC 2.80 6.08 N/A N/A N/A N/A
Average LC 0.19 0.42 97.7 % 96.5 % N/A N/A
Average TC 0.18 0.41 93.2 % 93.1 % N/A N/A

HNLC (Ours) 0.17 0.35 97.9 % 97.0 % 10.6 % 14.5 %
HNTC (Ours) 0.17 0.35 93.6 % 94.1 % 5.8 % 14.2 %

3 Missing Beams

Baseline LC 9.53 11.23 N/A N/A N/A N/A
Baseline TC 5.17 10.53 N/A N/A N/A N/A
Average LC 0.28 0.35 96.9 % 96.8 % N/A N/A
Average TC 0.29 0.34 94.3 % 96.6 % N/A N/A

HNLC (Ours) 0.25 0.29 97.3 % 97.3 % 11.4 % 15.8 %
HNTC (Ours) 0.25 0.29 94.9 % 97.1 % 12.2 % 14.8 %

it to an average estimator, which receives the same inputs as
our suggested network. Our approach was evaluated on real-
world AUV data from two different occasions to emphasize
its robustness. The results demonstrate that the suggested
approach outperforms the model-based approaches by an av-
erage of 95.65% and the performance of the average estimator
by an average of 11.27% in scenarios with two missing
beams. In the case of three missing beams, it outperforms
the model-based approaches by an average of 96.65% and the
performance of the average estimator by an average of 13.55%.
Our proposed approach requires only software modifications to
enable seamless AUV navigation, even in situations of limited
beam measurement.
In future work, we intend to delve deeper into investigating
the cross-correlations that arise from using DL approaches
with past and current DVL beam measurements, particularly in
how they impact the measurements’ noise covariance matrix.
Additionally, prior research has indicated that incorporating
inertial data alongside past and current DVL measurements
may lead to improved beam and velocity estimation. How-
ever, this approach introduces additional correlations between
the process data and the measurement data, which must be
carefully addressed when integrating them into the EKF. We
aim to analyze the effects of these correlations on performance
in future studies.
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