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ABSTRACT

In this work we revisit the problem of the dynamical stability of hierarchical triple systems with

applications to circumbinary planetary orbits. We carry out more than 3 · 108 numerical simulations

of planets between the size of Mercury and the lower fusion boundary (13 Jupiter masses) which

revolve around the center of mass of a stellar binary over long timescales. For the first time, three

dimensional and eccentric planetary orbits are considered. We explore systems with a variety of

binary and planetary mass ratios, binary and planetary eccentricities from 0 to 0.9 and orbital mutual

inclinations ranging from 0◦ to 180◦. The simulation time is set to 106 planetary orbital periods. We

classify the results of those long term numerical integrations into three categories: stable, unstable and

mixed. We provide empirical expressions in the form of multidimensional, parameterized fits for the two

borders that separate the three dynamical domains . In addition, we train a machine learning model on

our data set in order to have an alternative tool of predicting the stability of circumbinary planets. Both

the empirical fits and the machine learning model are tested against randomly generated circumbinary

systems with very good results regarding the predictions of orbital stability. The empirical formulae

are also applied to the Kepler and TESS circumbinary systems, confirming the stability of the planets

in these systems. Finally, we present a REST API with a web based application for convenient access

of our simulation data set.

Keywords: Binary stars (154) — Celestial Mechanics(211) — Dynamical evolution (421) — Exoplanet

dynamics (490)

1. INTRODUCTION

Binary stars make up a considerable fraction of the stellar population in our galactic neighborhood (e.g. Raghavan
et al. 2010; Janson et al. 2012; Offner et al. 2022). Despite the significant technical challenges of observing exoplanets

in such environments, a number of them have already been discovered1. Some of those exoplanets were found to be in

circumbinary orbital configurations, i.e. the planet orbits the center of mass of the stellar binary. A vital part of ruling

out false positives in the search for exoplanets is the assessment of whether or not predicted orbital configurations are

dynamically stable (e.g. Kostov et al. 2021). This is especially true for circumbinary planets since they experience

significant gravitational perturbations from the stars they orbit. Besides the great practical use, stability studies can

also be informative in various problems related to planet formation (e.g. Childs & Martin 2021; Kenyon & Bromley

2021) or habitability (e.g. Georgakarakos et al. 2021; Georgakarakos 2022).

The problem of determining stable orbit configurations with three gravitating bodies, is one of the classical problems

in Celestial Mechanics. Over centuries, many have attempted to find solutions to this problem (e.g. see Georgakarakos

2008). While general analytical solutions do exist, they can be impractical (Sundman 1913). Hence, authors have

recently focused on investigating the stability of configurations of particular astronomical and astrophysical interest,

such as triple stellar and planetary systems around binary stars with the aim of deriving suitable criteria for determining

the dynamical fate of those systems. A variety of methods and tools have been used to achieve this goal, i.e. analytical

1 NASA Exoplanet Archive(http://exoplanetarchive.ipac.caltech.edu).
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methods (e.g. Shevchenko 2015), numerical approaches (e.g. Doolin & Blundell 2011) and more recently Machine

Learning (e.g. Lam & Kipping 2018). Numerical solutions of ordinary differential equations are the backbone of

the latter two approaches. Almost half a century ago, Harrington (1977) carried out a limited number of numerical

simulations of three body systems and suggested a simple stability criterion based on his results. Later, Dvorak (1986),

based on numerical simulations of circumbinary planets on initially circular and coplanar oribts around an equal mass

binary star, suggested parabolic fits that separate dynamically stable and unstable regions in which a planet could or

could not survive, respectively. This work was extended to binaries with unequal stellar components a few years later

(Dvorak et al. 1989) and to non-coplanar orbits by Pilat-Lohinger et al. (2003). Finally, the work of Dvorak (1986)

was recently extended to retrograde orbits (Hong & van Putten 2021).

The most widely used empirical criterion has been the one presented in Holman & Wiegert (1999). Therein, the

authors investigated the dynamical stability of planets in binary systems, either in S-type (the planet orbits one of

the stars) or in P-type (the planet orbits both stars) configuration. They performed numerical simulations of massless

particles on initially circular and prograde orbits around the binary or around one of the stars, in the binary plane

of motion and with different initial orbital longitudes. A variety of binary masses and eccentricities was considered.

Similar work on circumbinary planets was done by Quarles et al. (2018).

In this paper we aim to extend and homogenize the results of previous studies on the dynamical stability of circumbi-

nary planetary orbits. We remedy the limitations and inconsistencies that arise from combining stability estimates

from different works by carrying out a self-consistent set of numerical simulations over the longest timescale ever used

in such studies. The most notable differences of this work compared to the research cited above are: i) a comprehensive

scan of 3D angular momentum directions of the planet. We investigate coplanar and non-coplanar (even perpendicular)

configurations with prograde and retrograde orbits; ii) we investigate systems where the planetary body has some mass

- it is not approximated as a massless particle, iii) a comprehensive scan of orbital eccentricities, where the planet can

be initially on a circular or on an elliptic orbit (with up to 0.9 eccentricity), and iv) a substantially longer timescale of

system evolution, since we propagate the system for 106 planetary orbital periods, which is at least 100 times longer

than Holman & Wiegert (1999) and in certain cases, especially for eccentric planetary orbits, that number is of the

order of several thousands.

Similarly to Dvorak (1986), we construct empirical fits of two borders of specific stability behaviour: an upper critical

border, above which all starting positions for the planet along its orbit remain stable over the integration time and a

lower critical border, below which the planetary orbit is unconditionally unstable . In order to show that our results

are applicable to real systems, we apply our stability criteria to currently known circumbinary systems. Moreover, we

make our stability catalog available to the community in several convenient ways, including through a web-portal and

an online application programming interface (API).

The rest of this article is structured as follows: in section 2 we explain the method and setup of our numerical

experiments. In section 3 we present our results along with the empirical stability formulae derived by our simulation

outcome data. In section 4 we compare our fits against results from random simulations. In section 5, we use Machine

Learning to study the problem of circumbinary stability, while in section 6 we apply our fits to real exoplanetary

systems discovered by Kepler and TESS. Section 7 briefly describes the online tools we have developed that make our

results widely accessible. Finally, we conclude this article with a discussion and a summary of our results.

2. METHODOLOGY

A hierarchical triple system consists of a binary system and a third body on a wider orbit around the center of mass

of that binary. The motion of such a system can be pictured as the motion of two binaries: the binary itself (which

is called the inner binary) and the binary which consists of the third body and the centre of mass of the inner binary

(which is called the outer binary). The problem under investigation here, i.e. the dynamical stability of circumbinary

planetary orbits is a special case of a hierarchical triple configuration. The inner binary consists of the two stars, while

a planet orbits their center of mass. Figure 1 is a schematic representation of such a system.

In order to study the problem of dynamical stability of circumbinary planets, we made extensive use of numerical

simulations. At the heart of our simulations is the regularized, symplectic integrator with time transformation de-

veloped in Mikkola (1997). This code is not only symplectic in nature, which guarantees adequate conservation of

system energy and angular momentum, it is also one of the few symplectic algorithms that can handle highly eccentric

orbits and strong, localized gravitational interactions without loss of accuracy. The code uses Jacobi coordinates, i.e.

it calculates the relative position and velocity vectors of the stars and the planet at every time step. The systems
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Figure 1. A schematic representation of a circumbinary orbit.

are normalized such that the gravitational constant G = 1 and the masses of the binary stars m1 + m2 = 1. The

initial semi-major axis of the binary was also normalized to unity in corresponding units. We convert the output of

the integrator to a set of Keplerian orbital elements for the binary stars and the planet.

All systems consist of a stellar binary and a planet on a wider orbit around the binary center of mass. There were

no restrictions in the initial orbital configurations, i.e. we investigated circular and eccentric orbits, coplanar and

non-coplanar orbits and none of the three bodies was taken to be massless. All the bodies were treated as point masses

and Newtonian gravity was the only effect considered.

2.1. Sampled parameter space

Our aim is to be as comprehensive as possible in this study, which entails sweeping all relevant parameters.We make

use of two mass parameters,

Mb =
m2

m1 +m2
and Mp =

mp

m1 +m2
, (1)

where m1 and m2 are the masses of the two stars and mp is the mass of the planet. The mass parameter space was

sampled as follows

Mb ∈ {0.5, 0.3, 0.1, 0.05, 0.02, 0.01} (2)

and

Mp ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. (3)

As our reference plane, we consider the initial orbital plane of the binary with the x-axis pointing at the direction of

the binary longitude of pericenter. Hence, the binary pericenter started at zero in all cases. The choice of the initial

mutual inclination between the orbital planes of the binary and that of the planet covers both prograde and retrograde

orbits. We sampled values between 0◦ and 180◦ with a step of 18◦, i.e.

Im ∈ {0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦}. (4)

For non-coplanar orbits, the longitude of the ascending node of the planet Ωp ∈ {0◦, 90◦ and 180◦}. The planetary

longitude of pericenter ϖp (when dealing with coplanar orbits) and argument of pericenter ωp (when working with

three dimensional orbits) were given the same values as Ωp. We considered initially circular and eccentric orbits for

both the binary and the planetary orbit. Thus, the eccentricities were sampled as

eb, ep ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, (5)
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where eb and ep are the binary and planetary eccentricity respectively. Initially, the planet was placed at eight different

positions with

fp ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}, (6)

where fp denotes the true anomaly of the planet. When the planet was on an intially circular orbit, it was started at

the same angular positions around the stellar binary. For eccentric binaries, we used fb = 0◦ and fb = 180◦, fb being

the true anomaly of the stellar binary. Finally, the integration time was set to 106 orbital periods of the planet.

2.2. Working definition of dynamical stability

In the context of this work, a system was classified as dynamically stable when the numerical simulations showed no

sign of instability for any initial position of the planet on its orbit over the full time interval, i.e. 106 orbital periods

of the planet. A system was considered to be unstable if at least one of the following conditions was satisfied: a)

either the binary or the planetary orbital eccentricity exceeds unity, b) orbit crossing occurs, c) ab/ab0 ≤ 0.001 or

ab/ab0 ≥ 100, d) ap/ab0 ≥ 1000, where ab and ap are the binary and planetary semi-major axes respectively and ab0
is the initial binary semi-major axis.

For each set of parameters (Mb,Mp, Im, eb, ep,Ωp, ωp, ϖp) we recorded three different stability regimes-areas i) stable

motion for all initial true anomaly/angular position combinations, ii) mixed stable-unstable motion with at least one

true anomaly/angular position combination being stable and at least one being unstable and iii) unstable motion for

all initial true anomaly/angular position combinations. For a given set of parameters, the semi-major axis of the

planet where the transition between two of the above mentioned areas of stability-instability behavior takes place

is called the critical semi-major axis acr. Hence, we define two such critical semi-major axes: the outer (or upper)

critical semi-major axis, which is the border between regimes (i) and (ii) and the inner (or lower) critical semi-major

axis, which is the border between regimes (ii) and (iii). This stability classification scheme was introduced in Dvorak

(1986), and is motivated by the fact that nonlinear dynamical systems display extreme sensitivity to changes in initial

conditions in regions that are in - or close to chaotic - domains.

3. RESULTS

A Graphical representation of our results can be found in Figures 2 and 3 which contain plots of the outer critical

semi-major axis against the inner one, averaged over the various parameters. The parameter that had the greatest

effect on the stability of the systems was the planetary eccentricity (top right panel of figure 2). High planetary

eccentricity values (ep > 0.7) drive the two critical borders far away from the stellar binary. That effect was stronger

when combined with moderate to high values of the binary eccentricity. This is to be expected since one of the main

drivers of dynamical instability in the hierarchical three body problem is resonance overlap (Chirikov 1979). The

resonance width in such configurations is proportional to both eccentricities and has a strong dependence on the outer

eccentricity when the latter becomes large (e.g. Mardling 2008, 2013).

The binary mass ratio and the mutual inclination seem to have a moderate effect on the location of the two stability

borders. As seen in the bottom left panel of figure 2, the smallest value for the binary mass ratio, Mb = 0.01 appears

to lead to larger areas of stable circumbinary motion. As we progress to higher values of the binary mass ratio, the

stable area starts to shrink and it reaches its minimum when the inner binary consists of comparable mass bodies. A

hint for this kind of behavior is given by secular evolution. We know for instance that the maximum eccentricity for a

circumbinary orbit is proportional to m1m2(m1−m2)/(m1+m2)
3 (Georgakarakos & Eggl 2015) or, if we express that

in terms of the binary mass ratio, to (2M2
b − 3Mb + 1)Mb. For that kind of binary mass dependence, smaller values

of Mb yield smaller values of maximum ep and probably more stable systems.

When considering the effect of the mutual inclination on circumbinary stability, our simulation outcome confirmed

that, generally, retrograde orbits near inclinations of 180◦ appear to be more stable, i.e. the stability borders were

closer to the stellar binary compared to a prograde system with the same parameters (e.g. Georgakarakos 2008, 2013,

and bottom right panel of figure 2). However, and this was seen in previous studies as well (e.g. Doolin & Blundell 2011;

Chen et al. 2020), there were cases where the behavior of the stability border as a function of the mutual inclination

did not follow that trend but it was more complicated. Figure 4 provides such an example.

While all bodies in our simulations were massive, we focused on relatively low mass external perturbers that do not

exceed one percent of the mass of the inner binary. Consequently, the mass of the outer companion did not have a

significant effect on the stability borders (top row of figure 3). Unsurprisingly, the highest value of Mp = 0.01 showed

the larger impact, especially for systems where the binary members had a significant mass difference.
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Figure 2. Mean and standard deviation of outer vs inner stability borders in units of log10 of the binary semi-major axis. The
color scale refers to the binary orbit eccentricity (top left), the planet’s orbital eccentricity (top right), the binary mass ratio
(bottom left), and the mutual inclination (bottom right). Stability limits depend strongly on the planetary orbital eccentricity
which accounts for most of the variance in the system. Stability borders also show roughly the same sensitivity to the binary
star orbital eccentricity, the binary mass ratio as well as the inclination of the system.

Finally, the slowly evolving angles, i.e. the longitude of the ascending node and the argument of pericenter of the

planetary orbit did not substantially affect the location of our critical borders as seen in the bottom row of figure

3. Of course, there were cases for which there was a significant deviation between the smallest and largest stability

border values for different combinations of the slow varying angles. This difference in the dynamical evolution of a

planetary systems depending on the orientation of the orbits, however, is something well known in Celestial Mechanics

(e.g. Michtchenko & Malhotra 2004; Hadjidemetriou 2006).

Figure 5 contains a collection of plots covering a large portion of our parameter space and providing a sense of how

the various parameter combinations affect the location of the critical semi-major axes.

3.1. Fitting formulae

In order to quantify the results of our numerical experiments and provide a tool for assessing the stability status of

a given system, we derived empirical formulae for the two critical borders over our entire parameter space. We tested

models of first, second and third order in all parameters. By using a χ2 goodness-of-fit test we evaluated how well

our statistically derived empirical conditions reflected the simulation output. Some preliminary tests showed that,

generally, a third order model in the independent variables fitted our data points better than the other models.

A third order fit with seven independent variables, however, has a large number of coefficients which we consider

impractical. In order to reduce the size of the fit without compromising its accuracy and validity, we took the following

course of action. In the first place, for every specific combination of Mb,Mp, Im, eb and ep we recorded the highest
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Figure 3. Same as Figure 2, but for the planet to binary mass ratio Mp = mp/(m1 +m2) (top left), a zoomed-in plot of the
same (top right) the pericenter (bottom left), and the longitude of the ascending node (bottom right). In the parameter regime
we have chosen for this study, the planet’s mass does not substantially affect the stability limits. Aligned pericenters lead to
higher instability in a system. The relative position of the nodes does not significantly impact the location of stability limits.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  18  36  54  72  90  108  126  144  162  180

Mb=0.05  Mp=10
-3

  eb=0.8  ep=0

a
c
r

Im

Figure 4. Critical semi-major axis against mutual inclination for system with Mb = 0.05,Mp = 10−3, eb = 0.8 and ep = 0. The
red color triangles represent the inner critical border while the green color circles indicates the outer one.
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Figure 5. Critical semi-major axis against mutual inclination for various eccentricity values. The circles denote the outer
limit (largest value recorded among the different combinations of the planetary pericenter and node), while the inner limit is
represented by triangles (smallest value recorded). The colors correspond to different planetary eccentricity values. Finally,
Mp = 10−3.
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outer border value among all pairs of Ωp−ωp, while for inner border we kept the smaller value. Apparently, for special

configurations such as coplanar systems or three dimensional systems with initially circular planetary orbits we had

only one slow varying angle to consider. Recording the extreme values of the critical axis among the results for the

slow varying angle combinations and using them as input data to derive suitable fits, we eliminate two variables from

the fitting process which results into a much smaller expression. In addition, the fitting formulae that will be obtained

that way, will be closer to the physical meaning of our two dynamical borders we gave in section 2. Finally, we dropped

the planetary mass from the fitting variables. As we saw earlier that the specific parameter had little effect on the

critical distance. As can be seen from Figures 2 and 3 the difference between the impact of certain parameters on the

stability borders can vary by several orders of magnitude. We, therefore, chose an exponential (base 10) form of the

fit function. Finally, all angles were given in radians.

The fitting process was accomplished in two stages. In the first stage we derived a full third order model with respect

to the remaining four parameters. In the second stage, we tried to reduce the size of the model while at the same time

minimizing loss of accuracy. This was done by monitoring the reduced χ2 parameter, i.e. χ2
r = χ2/(n−1), n being the

number of data points. After we decided which terms we will keep in the new version of the model, we fitted the new

reduced model to our data points. We would like to add here that, in order to provide better quality fits, we applied

the above process on two data sets: the first one included planetary eccentricities of 0.8 or less while the second set

included all values of the planetary eccentricity. This split was done in order to provide a better fit for the cases where

ep ≤ 0.8 as the stability borders move up considerably when ep = 0.9.

3.2. Empirical fits for ep ≤ 0.8

If planetary eccentricity is confined to ep ≤ 0.8, the inner and outer critical semi-major axes for the planet can be

calculated using the following empirical fits:

acri = m̄ · ab · 10[(Bi±Ci)·Xi] and acro = m̄ · ab · 10[(Bo±Co)·Xo), (7)

where m̄ is a correction factor that arises from the system of units used in the simulations, namely

m̄ = [
m1 +m2 +mp

m1 +m2

1

1 +mp
]1/3 (8)

and (Bi,o ±Ci,o) ·Xi,o is the dot product between the fit coefficient vectors B (along with their uncertainty vectors

C) and the parameter vectors X for the inner and outer border, respectively. Those are

Bi = (0.20729,−0.32875, 0.10339, 0.58433, 0.36623,−0.25569,−0.06425,−0.38387,

1.01951, 0.2691, 0.38912,−0.19863,−0.25361,−0.30333, 0.09080,−0.05955),

Ci = (0.003763, 0.01015, 0.00224, 0.00922, 0.00978, 0.00982, 0.00069, 0.00947,

0.01176, 0.00687, 0.00759, 0.00420, 0.00735, 0.00913, 0.00129, 0.00280),

Xi =
(
1,Mlb, Im, eb, ep,M

2
lb, I

2
m, e2b , e

2
p,Mlbeb,Mlbep, Imeb,Mlbe

2
b ,Mlbe

2
p, I

2
meb,M

3
lb

)
,

(9)

where Mlb = log10(Mb). For the outer critical planetary semi-major axis we find

Bo = (0.23612,−0.29377, 0.2271, 1.06753, 0.62109,−0.21512,−0.06648,−1.52936,

−0.4748,−0.31329,−0.00869,+0.11846,−0.03932,−0.00933,+0.87506, 1.25895),

Co = (0.00317, 0.00927, 0.00313, 0.00905, 0.00975, 0.00910, 0.00202, 0.02330,

0.02893, 0.00389, 0.00116, 0.00119, 0.00260, 0.00041, 0.01699, 0.02373),

Xo =
(
1, Mlb, Im, eb, ep, M

2
lb, I

2
m, e2b , e

2
p, Imeb, Imep, I

2
meb, M

3
lb, I

3
m, e3b , e

3
p

)
.

(10)

3.3. Empirical fits for the entire dataset

Making use of the same structure of equations (7) for the inner and outer critical semi-major axes, we find the

following coefficients and parameters that cover the entire dataset for the inner critical semi-major axis of the planet:

Bi = (0.30889,−0.26446, 0.09362, 0.37426, 0.31306,−0.27007,−0.06102,−0.09262,

0.19436,−0.18911,−0.05466, 0.06746, 0.08715, 1.19488),

Ci = (0.00398, 0.01150, 0.00238, 0.00688, 0.00286, 0.01061, 0.00073, 0.00472,

0.00969, 0.00447, 0.00298, 0.00417, 0.00137, 0.00344),

Xi =
(
1,Mlb, Im, eb, ep,M

2
lb, I

2
m, e2b ,Mlbeb, Imeb,M

3
lb,M

2
lbeb, I

2
meb, e

3
p

)
.

(11)
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Figure 6. Error distribution from comparing our empirical fits against numerical simulation results. On the x-axis we have
bins of relative percentage error between the results from the numerical simulations and the fits of equations (7), while in the
y-axis we have the percentage of systems that fall into a specific error bin. The top row is for for the eP ≤ 0.8 case, while the
bottom row plots represent the more eccentric case.

For the outer critical semi-major axis of the planet we have:

Bo = (0.25556,−0.27038, 0.20643, 1.02175, 0.80028,−0.2101,−0.08452,−1.46178,−1.20652,

−0.04965,−0.2989,−0.00227,−0.0386, 0.01838, 0.11341, 0.83529, 1.94189)

Co = (0.00324, 0.00888, 0.00285, 0.00861, 0.00844, 0.00865, 0.00086, 0.02216,

0.02216, 0.00176, 0.00370, 0.0010, 0.00247, 0.00054, 0.00113, 0.01616, 0.01616),

Xo =
(
1,Mlb, Im, eb, ep,M

2
lb, I

2
m, e2b , e

2
p,MlbIm, Imeb, Imep,M

3
lb,MlbI

2
m, I2meb, e

3
b , e

3
p

)
.

(12)

A visual representation of the quality of the empirical fits can be found in Figures 6 and 7. In Figure 6 we have

a series of plots that show the distribution of the relative percentage error between the fits and the data points that

the fits were based upon. In all cases, the majority of the errors are within ±10%. Errors larger than 50% were

encountered in less than two percent of all cases. Figure 7 demonstrates the effectiveness of our empirical formulae for

a sample of combinations of masses and orbital eccentricities.

4. FIT PERFORMANCE AGAINST RANDOM SIMULATIONS

In order to test the quality of our fitting formulae, we carried out a set of 50000 additional simulations. The initial

conditions for the additional simulations were created by using the pseudo-random number generating GNU Fortran
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Figure 7. Critical semi-major axis ratio against mutual inclination for a variety of systems. The red color refers to the inner
boundary, while the green colour denotes the outer stability border. The continuous lines are our empirical fits as given in
subsection 3.2. The points are the output from the numerical simulations for the specific systems. Note that the majority of
the points lie between the two curves as they ideally should.

function rand . The parameters were chosen within the ranges given in section 2, i.e. Mb ∈ [0.01, 0.5], Mp ∈ [10−7, 10−2],

eb and ep ∈ [0, 0.9], Im ∈ [0◦, 180◦], ϖp, ωp and Ωp ∈ [0◦, 360◦]. In order to better target regions of interest, we sampled

values for the planetary semimajor axis from two distributions that were constructed based on the location of the inner

and outer critical borders as determined through our numerical integration grid. Rejection sampling allowed us to

create a set of 25000 random systems based on the inner critical value distribution and another set of equal number

of systems using the outer critical value distribution. The random seed number for the first set was 121, while for the

other one the seed was 446.

The results of the random simulations and how they were classified based on our fitting formulae are presented in

Tables (1) and (2). As stated in section 2, the planet is initiated at eight different positions around the binary, while

the binary was started either at pericenter or at apocenter. That makes a total of sixteen initial positions for our

systems. By definition, we would like to avoid encountering unstable orbits beyond the outer critical semi-major axis

and any stable orbits below the inner critical semi-major axis. Therefore, we define our criteria for success as follows:

the fits are predicting the stability of a system successfully when systems with 0 unstable positions were found in the

stable zone, systems with 16 unstable positions were found in the unstable zone and finally, when all other cases were

in between those two areas.

Generally, the outcome of the comparison between the fits and the results of the random system simulations was

very good. If we consider the fits for ep ≤ 0.8, the majority of the fully stable and fully unstable systems was found

in the right place. Only 1 case of a 0 and 54 cases of 16s were found in the wrong area (i.e. 0s in the fully unstable

and 16s in the fully stable area). Also, 88.0% of the systems with mixed stability behavior were correctly classified.
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Table 1. Random simulation result classification using the fits given in section 3.2.

INNER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 12148(54.7%) 1826(8.2%) 1(0.0%) 13975(62.9%)

1− 15 216(1.0%) 1825(8.2%) 32(0.1%) 2073(9.3%)

16 54(0.2%) 2245(10.1%) 3877(17.5%) 6176(27.8%)

Total 12418(55.9%) 5896(26.5%) 3910(17.6%) 22224(100.0%)

OUTER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 14905(66.8%) 1712(7.7%) 2(0.0%) 16619(74.5%)

1− 15 177(0.8%) 1468(6.5%) 18(0.1%) 1663(7.4%)

16 37(0.2%) 1685(7.5%) 2320(10.4%) 4042(18.1%)

Total 15119(67.8%) 4865(21.8%) 2340(10.5%) 22324(100.0%)

Note—N.U.I.P: Number of unstable initial positions of the planet on its initial orbit. The percentages refer to the number of
individual cases over the total number of cases. For the interpretation of numbers in bold or color please see the main body of
the paper.

In total, the success rate was 80.4%. The above mentioned numbers refer to the random systems that were drawn

from the inner border distribution, but the pattern was very similar for the systems drawn from the outer border

distribution. The success rate for those systems was 83.7%. The classification of the random systems for the restricted

dataset can be found in Table 1, where the numbers in bold, when added up, provide the total success rate numbers

mentioned above.

These percentages, however, are conservative estimates. This is because, as we saw with the results of the original

set of simulations, a fully stable or a fully unstable system, at a specific semi-major axis, may occasionally appear in

the mixed zone. In that case, we can add to the previous percentages the 0s and the 16s that are found in the mixed

zone (the blue numbers in Table 1). When we do that, the 80.4% and 83.7% rise to 98.7% and 98.9% respectively.

These numbers now represent the best case scenario. Nonetheless, we expect that the success rate would be somewhere

between those extreme values as we do not know the exact location of the 0s and 16s since for a specific set of masses,

inclination, eccentricities and slow angles we only have results for a specific semi-major axis and not a whole range as

with our initial simulations that were used to derive the fits. As seen in Table 2, where the random simulation data

are classified using fits to the entire dataset, the success prediction rates are very similar to those obtained in the case

of the fits for ep ≤ 0.8.

5. EMPIRICAL FITTING WITH MACHINE LEARNING

While the fitting formulae provided above are accurate, they are nonetheless complex with many parameters. Hence,

we opted to also train a Machine Learning model on our data set, allowing us to i) benchmark our analytical fits against

another technique, and ii) provide a simple to use trained model as an alternative where the user does not have to

manually implement the empirical formulae. We thus trained and tested an XGBRegressor model (Chen & Guestrin

2016) using its default hyperparameters on the same data set that the fits were based on. Similarly to was was done with

the fits, we trained two separate models: one for planetary eccentricities ep ≤ 0.8 and one for ep ≤ 0.9. The goodness-

of-fit of the models was initially evaluated through the mean absolute error of 10-fold cross-validations with the models

trying to predict the inner and outer borders. We got values ranging from ∼ 0.05 for the circular cases, to ∼ 0.3 for
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Table 2. Random simulation result classification using the fits given by equations in section 3.3.

INNER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 13268(53.1%) 2009(8.0%) 2(0.0%) 15279(61.1%)

1− 15 231(0.9%) 1955(7.8%) 90(0.4%) 2276(9.1%)

16 66(0.3%) 2513(10.1%) 4866(19.4%) 7445(29.8%)

Total 13565(54.3%) 6477(25.9%) 4958(19.8%) 25000(100.0%)

OUTER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 16294(65.2%) 1791(7.1%) 2(0.0%) 18087(72.3%)

1− 15 183(0.7%) 1552(6.2%) 57(0.3%) 1792(7.2%)

16 38(0.1%) 2014 (8.1%) 3069(12.3%) 5121(20.5%)

Total 16515(66.0%) 5357(21.4%) 3128(12.6%) 25000(100.0%)

Note—The notation, numbers and colors have the same meaning as in Table 1.

the eccentric cases, although those skewed by the MAE sensitivity to outliers. There were no significant differences for

any given case between the MAE of the inner and outer borders. Moreover, a grid search over hyperparameters and

testing other ML models such as LightGBM and Random Forest Regressor did not meaningfully improve the results.

Figure 8 provides information of how well the Machine Learning models did against the data sets that were used to

train them. The plots in that figure show that the errors of the Machine Learning models are more clustered towards

the center of the bar charts compared to the same plots of the empirical fits in Figure 6.

As with our empirical formulae, we tested the Machine Learning models against the results from the random

simulations we carried out. The results of that comparison are found in Tables 3 and 4. Generally, the results

are in agreement and show similarities to those of the comparison between the empirical formulae and the random

simulations. There are some differences though. First, there are more systems, from all categories, classified above the

outer critical limit; about up to 2% more. Second, there are a bit more 16s in the zone between the two limits (of the

order of 1%). These two differences imply that we have fewer 16s below the lower critical limit. Finally, in all but one

case, we recorded more fully stable systems in the fully unstable area. But those cases were not many. Regarding the

success rates, these seem to be similar to those scored by the empirical fits. The empirical formulae seem to do just a

bit better ( 1%) in most of the cases. Hence, both approaches result in useful tools for characterizing the stability of

circumbinary planets and may be used according to preference.

6. APPLICATION TO KNOWN CIRCUMBINARY PLANETARY SYSTEMS.

Among the exoplanets that have been discovered as of today, a number resides in circumbinary orbits. In this section

we apply our stability criterion to the Kepler and Tess circumbinary systems that are currently known, i.e Kepler-16

(Doyle et al. 2011), Kepler-34 and Kepler-35 (Welsh et al. 2012), Kepler-38 (Orosz et al. 2012a), Kepler-47 (Orosz

et al. 2012b, 2019), Kepler-64 (Schwamb et al. 2013; Kostov et al. 2013), Kepler-413 (Kostov et al. 2014), Kepler-453

(Welsh et al. 2015), Kepler-1647 (Kostov et al. 2016), Kepler-1661 (Socia et al. 2020), TIC 172900988 (Kostov et al.

2021) and TOI-1338 (Standing et al. 2023). In order to assess the stability status of the above systems we make use

of the parameters given in the discovery papers. These parameter values can be found in Table 5.

Evaluating our empirical fits for the systems under investigation we find that all planets are near or beyond the outer

critical semi-major axis. The values of the critical axes can be found in Table 6. Kepler-34 is the only exception with
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Table 3. Random simulation result classification using the Machine Learning model (ep ≤ 0.8).

INNER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 12658(57.0%) 1312(5.9%) 5(0.0%) 13975(62.9%)

1− 15 382(1.7%) 1671(7.5%) 20(0.1%) 2073(9.3%)

16 133(0.6%) 2560(11.5%) 3483(15.7%) 6176(27.8%)

Total 13173(59.3%) 5543(24.9%) 3508(15.8%) 22224(100.0%)

OUTER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 15415(69.1%) 1203(5.4%) 1(0.0%) 16619(74.5%)

1− 15 300(1.3%) 1344(6.0%) 19(0.1%) 1663(7.4%)

16 99(0.5%) 1884(8.4%) 2059(9.2%) 4042(18.1%)

Total 15814(70.9%) 4431(19.8%) 2079(9.3%) 22324(100.0%)

Note—The notation, numbers and colours have the same meaning as in Tables 1 and 2.

Table 4. Random simulation result classification using the Machine Learning model (ep ≤ 0.9).

INNER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 13630(54.5%) 1616(6.5%) 33(0.1%) 15279(61.1%)

1− 15 435(1.8%) 1786(7.1%) 55(0.2%) 2276(9.1%)

16 182(0.7%) 2833(11.4%) 4430(17.7%) 7445(29.8%)

Total 14247(57.0%) 6235(25.0%) 4518(18.0%) 25000(100.0%)

OUTER BORDER DISTRIBUTION

Quantity per zone

N.U.I.P. Stable Mixed Unstable Total

0 16592(66.3%) 1488(6.0%) 7(0.0%) 18087(72.3%)

1− 15 328(1.3%) 1428(5.7%) 36(0.2%) 1792(7.2%)

16 166(0.7%) 2131 (8.5%) 2824(11.3%) 5121(20.5%)

Total 17086(68.3%) 5047(20.2%) 2867(11.5%) 25000(100.0%)

Note—The notation, numbers and colors have the same meaning as in our previous Tables.
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Figure 8. Error distribution from comparing the Machine Learning model against the results from the numerical simulations.
On the x-axis we have bins of relative percentage error between the Machine Learning model and the results from the numerical
simulations, while in the y-axis we have the percentage of systems that fall into a specific error bin. The top row corresponds
to systems with ep ≤ 0.8 case, while the bottom row plots represent the more eccentric case.

its outer critical semi-major axis being 1.092 au, while the planet is located at 1.0896 au. Generally, these results are

in agreement with stability analyses done in the discovery papers mentioned above and other papers that specifically

focused on some of those circumbinary systems (e.g. Chavez et al. 2015; Popova & Shevchenko 2016).

We would like to point out, that, for this cursory analysis we neglected planet - planet interactions for the two

multi-planet systems Kepler-47 and TOI-1338, i.e. we treated them as circumbinary systems having one planet at a

time, i.e. we calculated the critical semi-major axes for one planet ignoring the presence of any other planet in the

system. Regarding Kepler-47, Orosz et al. (2012b, 2019) (and references therein) state that the unstable area around

the binary extends around 0.18 au which is in good agreement with what we have found. For TOI-1338c, as the

inclination and the longitude of the node of the outer planet are not known, Standing et al. (2023) found that the

system gets unstable for mutual inclinations 40◦ < Im < 120◦ . On the other hand, if we vary the mutual inclination

in our fits, we notice that the outer planet always lies within the stable zone.

7. ONLINE PORTAL AND API

This section introduces a reboot of ExoStab (Pilat-Lohinger & Eggl 2011), the Exostab 2.0 Application Programming

Interface (hereafter referred to as the API)2. Exostab 2.0 is a software interface designed to facilitate interaction with

large catalogs of numerical stability simulations such as constructed in this work. The API enables external programs

and applications to access and utilize the functionalities of the stability catalog in a controlled and standardized manner.

2 https://exostab2.readthedocs.io/latest/

https://exostab2.readthedocs.io/latest/
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Table 5. Circumbinary system parameter values.

System m1(M⊙) m2(M⊙) mp(MJ) Im(◦) ab(au) ap(au) eb ep

Kepler-16 0.6897 0.20255 0.333 0.4 0.22431 0.7048 0.15944 0.00685

Kepler-34 1.0479 1.0208 0.22 1.81 0.22882 1.0896 0.52087 0.182

Kepler-35 0.8876 0.8094 0.127 1.28 0.17617 0.60345 0.1421 0.042

Kepler-38 0.949 0.249 0.384 0.182 0.1469 0.4646 0.1032 0.032

Kepler-47 (b) 0.957 0.342 0.006513 0.166 0.08145 0.2877 0.0288 0.021

Kepler-47 (c) 0.957 0.342 0.05984 1.165 0.08145 0.6992 0.0288 0.024

Kepler-47 (d) 0.957 0.342 0.00997 1.38 0.08145 0.9638 0.0288 0.044

Kepler-64 1.528 0.378 0.531 2.814 0.1744 0.634 0.2117 0.0539

Kepler-413 0.82 0.5423 0.21 4.073 0.10148 0.3553 0.0365 0.1181

Kepler-453 0.944 0.1951 0.05 2.258 0.18539 0.7903 0.0524 0.0359

Kepler-1647 1.21 0.975 1.52 2.9855 0.1276 2.7205 0.1593 0.0581

Kepler-1661 0.841 0.262 0.053 0.93 0.187 0.633 0.112 0.057

TIC 172900988 1.2388 1.2023 2.74 1.45 0.191928 0.89809 0.44793 0.088

TOI-1338 (b) 1.127 0.3313 0.0685 0 0.1321 0.4607 0.155522 0.088

TOI-1338 (c) 1.127 0.3313 0.205 0-180 0.1321 0.794 0.155522 0.16

Table 6. Stability borders for known circumbinary systems.

System acr
i (au) acr

o (au) ap(au)

Kepler-16 0.551 0.688 0.7048

Kepler-34 0.804 1.092 1.0896

Kepler-35 0.410 0.511 0.60345

Kepler-38 0.349 0.427 0.4646

Kepler-47 (b) 0.178 0.198 0.2877

Kepler-47 (c) 0.179 0.200 0.6992

Kepler-47 (d) 0.181 0.206 0.9638

Kepler-64 0.457 0.627 0.634

Kepler-413 0.236 0.281 0.3553

Kepler-453 0.427 0.504 0.7903

Kepler-1647 0.310 0.397 2.7205

Kepler-1661 0.452 0.570 0.633

TIC 172900988 0.579 0.784 0.89809

TOI-1338 (b) 0.337 0.448 0.4607

TOI-1338 (c) 0.361 0.492 0.794

The API follows a RESTful architectural style, providing a well-defined set of endpoints for data retrieval, manipulation,

and control. In particular, stability limits for system configurations can be queried for and the closest matches in our

database are returned in JSON format. The reasonably dense catalog grid makes this process meaningful. The real

advantage of returning nearest neighbors is the circumnavigation of issues that arise in fitting and interpolation, such

as the mixing of dynamical behavior of systems in and out of resonance, etc. Only stability limits that were actually
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Figure 9. Web-based front-end for Exostab 2.0 API.

calculated are being returned. A web-based front-end3 allows for convenient visualization and access to query results

in a formatted table as well as through as CSV file download (see figure 9).

8. DISCUSSION

The study of planetary motion in stellar binaries and the search for a way to identify stable and unstable systems

dates back several decades. The following subsection provides some relevant context to this study.

8.1. Historical context and state-of-the-art

Harrington (1977) investigated the problem by carrying out a limited number of numerical simulations of three body

systems consisting of a stellar binary and a planet. Based on his numerical results, he derived an empirical condition

for identifying stable planetary orbits in stellar binaries. A few years later, Dvorak (1986) investigated the problem

of stable and unstable circumbinary motion in the the context of the planar elliptic restricted three body problem

with equal mass primaries. He integrated numerically a number of circumbinary orbits for 500 binary periods and a

planetary orbit was considered stable if its eccentricity remained smaller than 0.3 throughout the whole integration

time. He derived two empirical formulae representing the Lower Critical Orbit (LCO) and the Upper Critical Orbit

(UCO). These borders correspond to our inner and outer critical semi-major axis respectively.

The most widely used empirical criterion has been the one presented in Holman & Wiegert (1999). They investigated

the stability of planets in binary systems, either in circumstellar or circumbinary orbits. For the circumbinary case,

they ran numerical simulations of massless particles on initially circular and prograde orbits in the binary plane of

motion and with different initial orbital longitudes. The binary mass ratio was taken in the range 0.1-0.9 and the

binary eccentricity in the range 0-0.7. The simulation time was set to 10000 binary periods. If a particle survived the

whole integration time at all initial longitudes, then the system was classified as stable. The semi-major axis closest to

the binary at which the massless particle was stable at all initial orbital longitudes was called the critical semi-major
axis and was given by (using our notation):

ah = [1.60 + 5.10eb − 2.22e2b + 4.12Mb − 4.27ebMb − 5.09M2
b + 4.61e2bM

2
b ]ab. (13)

In many cases, however, ’islands’ of instability were noticed at values greater than the critical semi-major axis. This

was mainly due to the choice the authors of that study made in terms of how they defined the critical semi-major

axis. According to the way we defined our critical distances, such a system would be classified into the mixed stability

behavior zone.

The work of Holman & Wiegert (1999) was subsequently extended by Quarles et al. (2018). In that work, a number

of circumbinary systems was numerically simulated with many parameter ranges widened, i.e the binary mass ratio

acquired values between 0.01 and 0.5 with a step of 0.01, the binary eccentricity was given values between 0 and 0.8

with a step of 0.01 and the integration time was set to 105 binary periods. Finally, the planetary mean anomaly was

given values between 2◦ and 180◦ with a step of 2◦. The definition of stability remained the same as in Holman &

Wiegert (1999). Eventually, Quarles et al. (2018) provided two fits for the critical semi-major axis of similar form to

the one in Holman & Wiegert (1999)

3 https://apexgroup.web.illinois.edu/stability/index.html

https://apexgroup.web.illinois.edu/stability/index.html
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Figure 10. Comparison between different stability fits. Geo stands for the fits of the present work, Adel denotes the work by
Adelbert et al. (2023) and HW denotes the classification formula given in Holman & Wiegert (1999). As previously, the green
color denotes the outer critical border, while the red color represents the inner critical border. The circles are the results from
our numerical simulations.

Finally, Adelbert et al. (2023), in the context of coorbital planets around stellar binaries, they performed numerical

simulations of planets moving in the plane of the binary. They considered the same binary mass ratios as Holman &

Wiegert (1999) but their highest binary eccentricity was only 0.5. A step forward compared to previous studies was

the consideration of planetary eccentricity (up to 0.9). Unforunately, although not very clear, it appears though that

the planet was always initialized at the same single position and therefore the potential effect of different initial mean

or true anomalies could not be evaluated. The integration time was 105 binary orbits and a system was considered

unstable if the planetary semi-major axis exhibited a variation of more than 20% compared to its initial value. They

reached the following best fit based on their data:

aad = [1.36 + 5.79eb − 5.87e2b + 1.99Mb − 3.14M2
b + (1.85− 2.10e2b + 3.0ebµb)ep]

ab
1− ep

. (14)

As we can see, all the above circumbinary stability criteria cover only part of the parameter space. Also, the

definition of stability they are based on, results, on several occasions, in characterizing circumbinary planets as stable

while they are actually unstable and vice versa. Figure 10 is a graphical comparison among the criteria in Holman &

Wiegert (1999) and Adelbert et al. (2023) and the fits presented in this work for some parameter combinations. It is

clear that Holman & Wiegert (1999) fails completely as planetary eccentricity increases, while Adelbert et al. (2023)

does better but it still has its own limitations, such as for example when the binary eccentricity gets high.
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8.2. Relativistic and tidal effects

Other effects than Newtonian gravity, such as the relativistic precession of the binary pericenter or tidal friction

between the two stars, can be of importance for the orbital evolution of the entire system (e.g. Naoz et al. 2013;

Correia et al. 2016). Tidal friction between the stars may eventually shrink the binary orbit and reduce its eccentricity.

Depending on the distance between the stars, the timescale for any orbital changes that may eventually affect the

planetary orbit can be quite long. For instance, the eccentricity and semi-major axis of Kepler-34 reduced by about

5% and 3% respectively after 8 Gyr (Chavez et al. 2015). On the other hand, depending on the system parameters, the

relativistic precession of the pericenter can operate on timescales comparable to our integration time of 106 planetary

periods and have an effect on the orbital evolution of the planet (Migaszewski & Goździewski 2011; Georgakarakos &

Eggl 2015). The pericentre of Kepler-34 was found to circulate with a period of around 2 · 105 years (Chavez et al.

2015), while the integration time that corresponds to Kepler-34b, if we were to simulate the system within the context

of this work, is around 7.9 · 105 years. However, previous studies investigated the dynamical evolution of circumbinary

planets away from mean motion resonances with the binary, considering mainly secular effects. As we mentioned in

section 3, one key process to three body system instability is the overlapping of adjacent mean motion resonances

(Wisdom 1980; Mudryk & Wu 2006; Deck et al. 2013; Ramos et al. 2015; Hadden & Lithwick 2018). Therefore, the

dynamical evolution of circumbinary systems that are near mean motion resonances may deviate from that in systems

dominated by secular effects and relativistic pericenter precession. The precise impact of relativity and tidal interaction

on circumbinary systems is, therefore, a topic of ongoing research.

9. SUMMARY AND CONCLUSIONS

In this work, we have investigated the problem of dynamical stability of circumbinary orbits subject to Newtonian

gravity. We have carried out more than 3 · 108 of highly accurate numerical simulations of three dimensional and

eccentric systems considering a wide range of mass ratios that are relevant to the study of circumbinary planets.

Eccentricities of both the binary and the planetary orbits in our study range from 0-0.9. Regarding the masses used in

our simulations, for the inner binary we considered systems featuring equal mass stars down to mass ratios of 0.01 to

account for situations where we may have a star close to the minimum required mass for the onset of nuclear fusion.

For the outer perturber, i.e. the circumbinary planet, we explored mass ratios that would be valid from brown dwarf

like bodies down to Mercury mass planets. Our numerical experiments were carried out over a timescale of one million

planetary orbital periods, which is one of the longest integration times ever preformed in similar studies. This allows us

to capture dynamical effects that require some time to build up (e.g. secular resonances) and affect the planetary orbit.

We classified the parameter space into three stability regimes separated by critical borders: a zone where investigated

orbits were fully stable, a zone where investigated orbits were fully unstable and one with mixed behaviour. The

location of the critical borders was mainly affected by the eccentricities of the binary and planetary orbits, the mass

ratio of the binary and the mutual inclination between the binary and planetary orbital planes. Based on the results

of the numerical simulations we derived empirical formulae for the critical semi-major axes of circumbinary planetary

systems as a function of the system parameters that identify whether or not a configuration is dynamically stable over

a million planetary orbits. We have developed two sets of fitting formulae: one for planetary eccentricities up to 0.8

and one for planetary eccentricities as high as 0.9. The former exhibits a better performance in terms of stability

classification for most systems, while the latter is meant to cover the entire investigated parameter space.

We have also trained Machine Learning (ML) models on our data set and compared their performance in predicting

dynamical stability in circumbinary systems. The empirical formulae and the Machine Learning models were tested

against results from numerical simulations of randomly chosen circumbinary systems. Both ML and empirical classifiers

show similar performance, and constitute a vast improvement over existing techniques, in particular over Holman &

Wiegert (1999), in terms of parameter space covered. Finally, we tested our empirical stability criteria against known

Kepler and TESS systems. The results showed excellent agreement with the real systems. We have also discussed the

impact of relativity and tidal interactions.

As our simulations and subsequent results are based on Newtonian gravity and dimensionless mass ratios, they are

applicable to any gravitational system compatible with such a model. Our predictive tools may, thus, be used in

various astrophysical contexts, such as planet formation studies, minor planets with moonlets in the solar system as

well as the detection and characterization of circumbinary planets in the hunt for habitable worlds.
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Correia, A. C. M., Boué, G., & Laskar, J. 2016, Celestial

Mechanics and Dynamical Astronomy, 126, 189,

doi: 10.1007/s10569-016-9709-9

Deck, K. M., Payne, M., & Holman, M. J. 2013, ApJ, 774,

129, doi: 10.1088/0004-637X/774/2/129

Doolin, S., & Blundell, K. M. 2011, MNRAS, 418, 2656,

doi: 10.1111/j.1365-2966.2011.19657.x

Doyle, L. R., Carter, J. A., Fabrycky, D. C., et al. 2011,

Science, 333, 1602, doi: 10.1126/science.1210923

Dvorak, R. 1986, A&A, 167, 379

Dvorak, R., Froeschle, C., & Froeschle, C. 1989, A&A, 226,

335

Georgakarakos, N. 2008, Celestial Mechanics and

Dynamical Astronomy, 100, 151,

doi: 10.1007/s10569-007-9109-2

—. 2013, NewA, 23, 41, doi: 10.1016/j.newast.2013.02.004

—. 2022, MNRAS, 511, 4396, doi: 10.1093/mnras/stab3332

Georgakarakos, N., & Eggl, S. 2015, ApJ, 802, 94,

doi: 10.1088/0004-637X/802/2/94

Georgakarakos, N., Eggl, S., & Dobbs-Dixon, I. 2021,

Frontiers in Astronomy and Space Sciences, 8, 44,

doi: 10.3389/fspas.2021.640830

Hadden, S., & Lithwick, Y. 2018, AJ, 156, 95,

doi: 10.3847/1538-3881/aad32c

Hadjidemetriou, J. D. 2006, Celestial Mechanics and

Dynamical Astronomy, 95, 225

Harrington, R. S. 1977, AJ, 82, 753, doi: 10.1086/112121

Holman, M. J., & Wiegert, P. A. 1999, AJ, 117, 621,

doi: 10.1086/300695

Hong, C., & van Putten, M. H. P. M. 2021, NewA, 84,

101516, doi: 10.1016/j.newast.2020.101516

Janson, M., Hormuth, F., Bergfors, C., et al. 2012, ApJ,

754, 44, doi: 10.1088/0004-637X/754/1/44

Kenyon, S. J., & Bromley, B. C. 2021, AJ, 161, 211,

doi: 10.3847/1538-3881/abe858

Kostov, V. B., McCullough, P. R., Hinse, T. C., et al. 2013,

ApJ, 770, 52, doi: 10.1088/0004-637X/770/1/52

Kostov, V. B., McCullough, P. R., Carter, J. A., et al.

2014, ApJ, 784, 14, doi: 10.1088/0004-637X/784/1/14

Kostov, V. B., Orosz, J. A., Welsh, W. F., et al. 2016, ApJ,

827, 86, doi: 10.3847/0004-637X/827/1/86

Kostov, V. B., Powell, B. P., Orosz, J. A., et al. 2021, AJ,

162, 234, doi: 10.3847/1538-3881/ac223a

Lam, C., & Kipping, D. 2018, MNRAS, 476, 5692,

doi: 10.1093/mnras/sty022

Mardling, R. A. 2008, in The Cambridge N-Body Lectures,

ed. S. J. Aarseth, C. A. Tout, & R. A. Mardling, Vol.

760, 59, doi: 10.1007/978-1-4020-8431-7 3

Mardling, R. A. 2013, Monthly Notices of the Royal

Astronomical Society, 435, 2187,

doi: 10.1093/mnras/stt1438

Michtchenko, T. A., & Malhotra, R. 2004, Icarus, 168, 237,

doi: 10.1016/j.icarus.2003.12.010
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