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CMC FOLIATIONS ON EUCLIDEAN SPACES ARE

MINIMAL FOLIATIONS

JOSÉ EDSON SAMPAIO AND EURIPEDES CARVALHO DA SILVA

Abstract. In this article, we give complete answers to some classical

problems and conjectures on differential geometry (of foliations). For

instance, we give a complete positive answer to the classical conjecture

that states that every foliation on R
n+1 by (possibly varying) CMC

hypersurfaces is a foliation by minimal hypersurfaces. Moreover, if n ≤ 4

such a CMC foliation must consist of parallel hyperplanes. We prove

also that such conjecture holds true in much more general situations, for

instance, when the ambient space is a complete Riemannian manifold

with non-negative Ricci curvature. We prove also that for a foliation

by CMC hypersurfaces on a complete Riemannian manifold M with

sectional curvature bounded from below by −K0 ≤ 0, then the mean

curvature H of the leaves of the foliation satisfies |H | ≤
√
K0. This

gives a complete positive answer to a conjecture due to Meeks III, Pérez

and Ros. We give some answers to several other problems.
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1. Introduction

In 1986, Solomon [27] posed the following problem:

Problem 1.1. Is every foliation of Rn+1, n ≤ 7, by minimal hypersurfaces

a foliation by parallel affine hyperplanes?

In the case that the leaves are properly embedded, Problem 1.1 has an

affirmative answer if n + 1 < 8 (see [25, Theorems 1 and 3]), and it has a

negative answer if n + 1 > 8, since in those dimensions there are minimal

graphs that are not hyperplanes. In the critical dimension n+1 = 8, Solomon

in [27] stated that it appears quite difficult to settle this question, even in

the case where the leaves are properly embedded. When the leaves are not

supposed to be properly embedded the problem is much more complicated.

This article deals with the following long-standing and more complicated

problems:

Conjecture 1.2. Every foliation of R
n+1, n ≤ 7, by (possibly varying)

CMC hypersurfaces is a foliation by parallel affine hyperplanes.

Conjecture 1.3. Every foliation of Rn+1 by (possibly varying) CMC hy-

persurfaces is a foliation by minimal hypersurfaces.

Although these conjectures were only explicitly stated in 2008 by Meeks

III, Pérez and Ros (see [18, Conjecture 5.1]), many mathematicians have

been working on them since at least the 1980s. For instance, in 1987, Bar-

bosa, Gomes and Silveira in [3, Theorem 3.12] proved that Conjectures 1.2

and 1.3 have positive answers when n = 2 and under the extra hypothesis

that all the leaves of the foliation have the same constant mean curvature,

and in 1988, Meeks III in [17, Theorem 4.1] presented a beautiful positive

answer for Conjectures 1.2 and 1.3 when n = 2. Still in [18], Meeks III,

Pérez and Ros proved that Conjecture 1.3 has a positive answer if n ≤ 4.

So far the authors of this paper know, these above mentioned results from

[17] and [18] are unique cases where these conjectures are known to be true

without any additional hypothesis. One can find other partial answers or

related results in the references [1], [2], [3], [6], [7], [9], [10], [11] [12], [16],

[18], [19], [20], [21], [22], [23], [29] etc.

In this article, we give a complete positive answer for Conjecture 1.3

and prove that Conjecture 1.2 has a positive answer whether n ≤ 4. More

precisely, for a codimension one foliation F of Rn+1 and denoting by N the

vector field on R
n+1 that is normal to the leaves of F, we prove the following:
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Theorem 3.7. Let F be a codimension one CMC foliation of Rn+1. Then,

each leaf of F is a minimal and stable hypersurface. Moreover, if n ≤ 4 or

‖∇NN‖ ∈ L1(Rn+1), then F consists entirely of parallel hyperplanes.

Indeed, we prove the following much more general result.

Theorem 3.4. Let F be a codimension one CMC foliation of a complete

Riemannian manifold Mn+1 with non-negative Ricci curvature. Then, each

leaf of F is a minimal and stable hypersurface.

We prove even a more general result than Theorem 3.4 (see Theorem 3.1

and Corollary 3.5). It is worth noting that although constant on each leaf

L, the mean curvature is allowed to vary with L.

In particular, Theorem 3.4 generalizes [2, Theorem 3.1] and [1, Theorem

1.2], where we remove the hypothesis of compactness of the ambient space in

[2, Theorem 3.1] and the hypothesis of the same mean curvature in [1, Theo-

rem 1.2] (see also Corollary 3.5). Note also that Theorem 3.7, in particular,

recover the results in [17] and [18] that were mentioned above.

Note that Problem 1.1 and Conjectures 1.2 and 1.3 are closely related

to two other long-standing and well-known problems. One proposed by do

Carmo (see [7, Question, p. 133]), which is the following:

Problem 1.4. Is it true that a complete noncompact stable hypersurface

x : M → R
n+1 with constant mean curvature is minimal?

The other problem was proposed by Yau (see Problem 102 in [28]), which

is the following:

Problem 1.5. For n ≤ 7, is an oriented stable complete minimal hypersur-

face in R
n+1 a hyperplane?

Note that Theorem 3.7 gives a positive answer to Problem 1.4, provided

the hypersurface is a leaf of a foliation such that the leaves have constant

mean curvature.

It is obvious that if Problem 1.4 has a positive answer in dimension n,

then Conjecture 1.3 also has a positive answer in dimension n. Note also

that if Problem 1.5 and Conjecture 1.3 have a positive answer in dimension

n, then Conjecture 1.2 also has a positive answer in dimension n. Thus,

it is a consequence of the proof of Theorem 3.7 that if Problem 1.5 has a

positive answer in dimension n, then Conjecture 1.2 has a positive answer

in dimension n.
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Barbosa, Gomes and Silveira [3] proved that for a foliation F of M̃3(c) by

surfaces L, all with the same constant mean curvature H, then:

i) If c = 0, then the leaves of the foliation are planes.

ii) If c > 0, no such foliation exists.

iii) If c < 0, and H ≥ (−c)1/2, the leaves of F are horospheres with

H = (−c)1/2.

In the particular case of R3, as was already mentioned above, Meeks III

[17] was able to prove that the above foliation F is again given by planes

even if the mean curvature, although constant on each leaf L, is allowed to

vary with L. In the work [7], do Carmo also stated that he did not know

whether this holds for c 6= 0 (see the last paragraph of Section 2 in [7]).

Thus, the following problem becomes natural:

Problem 1.6 (Generalized do Carmo’s problem). Let F be a foliation of

M̃n+1(c) by hypersurfaces L of constant mean curvature HL, then:

i) If c = 0, is it true that the leaves of the foliation are minimal?

ii) If c > 0, is it true that no such foliation exists?

iii) If c < 0, and HL ≥ (−c)1/2, is it true that HL does not depend on

L and HL = (−c)1/2? Moreover, if n = 2, is it true that the leaves

of F are horospheres with HL = (−c)1/2?

Item ii) of Problem 1.6 was positively answered by Barbosa, Kenmotsu

and Oshikiri in [2, Corollary 3.5]. They also gave a partial answer to Item

iii) of Problem 1.6, they proved that infHL = (−c)1/2 (see [2, Theorem

3.8]). Item iii) of Problem 1.6 was positively answered by Meeks III, Pérez

and Ros in [18, Corollary 5.10] when n = 2.

In this article, we give complete positive answers to all the items of Prob-

lem 1.6 (see Theorem 4.6) and, in particular, we recover the results from [2]

and [18] above mentioned.

Another problem approached here, which is closely related to Problem 1.6,

is the following conjecture, which was also proposed by Meeks III, Pérez and

Ros in [18, Conjecture 5.1.2]:

Conjecture 1.7. Let F be a codimension one foliation of a complete Rie-

mannian manifold Mn+1. Assume that M has absolute sectional curvature

bounded from above by 1. Suppose that each leaf L of F has constant mean

curvature HL. Then |HL| ≤ 1.

Meeks III, Pérez and Ros in [18, Corollary 5.10] proved Conjecture 1.7

has a positive answer in the case that M = M̃3(−1). They also proved in
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[18, Theorem 5.23] that when M is a homogeneously regular manifold with

absolute sectional bounded from above by 1 and n = 3 or 4, the absolute

mean curvature of any leaf of a codimension one CMC foliation of M is

bounded by some constant Hn that only depends on n.

In this paper, we give also a complete positive answer to this conjecture.

Indeed, we obtain that Conjecture 1.7 holds true in the more general setting

where we ask that the sectional curvature is bounded only from below.

Theorem 4.3. Let F be a codimension one CMC foliation of a complete

Riemannian manifold Mn+1. Assume that there is K0 ≥ 0 such that the

sectional curvature of M is bounded from below by −K0. Let H : M → R be

the function that associates to each point the value of the mean curvature of

the leaf of F that contains that point. Then |H| ≤ √
K0.

2. Preliminaries

In this Section, we introduce some basic facts and notations that will

appear in the paper.

Here, the Riemannian manifolds are assumed to be connected and without

boundary and the foliations are assumed to be C2 smooth.

Let Mn+1 be an (n+1)-dimensional Riemannian manifold endowed with

a Riemannian metric gM =
∑

ω2
A and F is a foliation of codimension one

on M .

For a given point p ∈ M we can choose an orthonormal frame {e1, · · · , en, en+1}
defined around p such that the vectors e1, · · · , en are tangent to the leaves

of F and en+1 is normal to them. Taking the correspondent dual coframe

{ω1, · · · , ωn, ωn+1},

the structure equations on M are given by

(1) dωA =

n+1
∑

B=1

ωB ∧ ωBA, ωAB + ωBA = 0

(2) dωAB =
n+1
∑

C=1

ωAC ∧ ωCB +ΩAB,

where

(3) ΩAB = −1

2

n+1
∑

C,D=1

RABCDωC ∧ ωD, RABCD +RABDC = 0.
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The Ricci curvature in the direction en+1 is

(4) Ric(en+1) =
n
∑

i=1

gM (R(en+1, ei)en+1, ei).

Let ∇ be the Levi-Civita connection on M . Then for any tangent field

X, we get

(5) ∇XeA =

n+1
∑

B=1

ωAB(X)eB .

Now let θA and θAB denote the restrictions of forms ωA and ωAB to the

tangent vectors of the leaves of F . Then it is obvious that

(6) θn+1 = 0 e θi = ωi.

Since θn+1 = 0, we obtain from the structure equations

0 = dθn+1 =

n+1
∑

B=1

θB ∧ θBn+1 =

n
∑

i=1

θi ∧ θin+1.

By Cartan’s equation, we have

(7) θn+1i = −
n
∑

j=1

hijθj, hij = hji.

The second fundamental form B of the leaves is then given by

(8) B =
n
∑

i=1

θi ⊗ θin+1 =
n
∑

i,j=1

hijθi ⊗ θj.

and its norm is

‖B‖2 =
n
∑

i,j=1

h2ij .

The mean curvature vector is

(9) ~H =
1

n
tr(A)en+1,

where A is the Weingarten operator and the mean curvature function

is H = 1
n tr(A).

Observe that the sigh of H depends on the choice of en+1. The vector field

defined locally by ~H is globally defined on each leaf of F . As a consequence,

if H 6= 0 at each point of the leaf then the leaf is oriented. If N is a unitary

vector field normal to the leaves of F we can choose an adapted frame on

an open set in such a way that N = en+1. The mean curvature of the leaf

is exactly the mean curvature in the direction of N .
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The divergent of a vector field V is defined locally over M by

(10) div(V ) =

n+1
∑

A=1

gM (∇eAV, eA).

For a vector field tangent to the leaves of F the divergent along the leaves

can be computed by

(11) divL(V ) =

n
∑

i=1

gM (∇eiV, ei).

Barbosa et al. in [2] found an equation that relates the foliation with the

ambient, more precisely, they obtained the following.

Proposition 2.1. Let F be a foliation by hypersurfaces on a Riemannian

manifold M and let N be a unit field normal to the leaves of F on some

open set U of M . Then on U , we have

divN = −nH;(12a)

divL(X) = −nN(H) + ‖B‖2 +Ric(N) + ‖X‖2;(12b)

divX = divLX − ‖X‖2,(12c)

where H is the mean curvature in the direction N and X = ∇NN .

From now on, we will introduce some definitions and basic results about

stability for minimal hypersurface. For more details, we recommend the

reference [26].

Definition 2.2. Let M be a Riemannian manifold. We say that F is a

foliation of constant mean curvature (or CMC foliation) on M if

each leaf L ∈ F is a hypersurface of constant mean curvature (note that the

mean curvature possibly varies from leaf to leaf). We say that the foliation

F is a minimal foliation if each leaf L ∈ F is a minimal hypersurface.

The Riemannian volume in an n-dimensional Riemannian manifold is

the n-dimensional Hausdorff measure determined by its Riemannian metric.

Definition 2.3. Let M be a connected complete Riemannian manifold and

B(p, r) be the geodesic ball centred in p ∈ M with radius r. The volume

entropy of M is

µM = lim sup
r→+∞

ln volM (B(p, r))

r
,
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where volM (B) denotes the Riemannian volume in M of B. The lower

volume entropy of M is

µM = lim inf
r→+∞

ln volM (B(p, r))

r
.

• We say that M has polynomial volume growth if there are a

point p ∈ M , a non-negative integer d and a, b > 0 such that

volM (B(p, r)) ≤ ard + b,

for all r > 0.

• We say that M has zero volume entropy or subexponential

volume growth if µM = 0.

• We say that M has zero lower volume entropy if µM = 0.

Note that the choice of p in the above concepts is irrelevant. Note also

that “polynomial volume growth” ⇒ “zero volume entropy” ⇒ “zero lower

volume entropy”.

3. Answer to Conjecture 1.3

In this Section, we prove that Conjecture 1.3 has a positive answer in any

dimension.

3.1. Spaces with non-negative Ricci curvature. In this subsection, we

prove that Conjecture 1.3 has a positive answer in any dimension in the

following much more general setting:

Theorem 3.1. Let F be a transversely oriented codimension one CMC fo-

liation of a complete oriented Riemannian manifold Mn+1. Assume that

M has zero lower volume entropy and that Ric(N) + δ‖B‖2 ≥ 0 for some

0 < δ < 1, where N is a unit vector field on M orthogonal to F. Then, each

leaf of F is a minimal and stable hypersurface.

Proof. We start the proof of Theorem 3.1 by proving the following two lem-

mas.

Lemma 3.2. Let F be a transversely oriented codimension one foliation on

a complete oriented Riemannian manifold Mn+1. Suppose that the mean

curvature function H : M → R, which associates to each point the value of

the mean curvature of the leaf of F through that point, does not change the

sign on M . Then, µM ≥ n inf
p∈M

|H(p)|. Moreover, if additionally, Mn+1 has

zero lower volume entropy, then inf
p∈M

|H(p)| = 0.



CMC FOLIATIONS ON EUCLIDEAN SPACES ARE MINIMAL FOLIATIONS 9

Proof of the Lemma 3.2. Since F is a transversely oriented foliation on a

complete oriented Riemannian manifold Mn+1, and the mean curvature

function H : M → R, that associates to each point the value of the mean

curvature of the leaf of F that contains that point, does not change the sign

on M , we can choose the normal vector field N or −N in such a way that

H ≤ 0. Since M is a complete Riemannian manifold the flow θt : M → M

of the normal vector field N of the foliation is globally defined.

Thus, we define the smooth function ϕ : [0,+∞) → (0,+∞) given by

ϕ(t) = volM (θt(B)) =

∫

θt(B)
dM =

∫

B
θ∗t dM,

where B := B(p, r) is the geodesic ball centred at p and radius r. Using the

compactness of B allows us to differentiate under the sign of the integral,

we have

ϕ′(t0) =
d

dt

∣

∣

∣

∣

t=0

ϕ(t+ t0)

=
d

dt

∣

∣

∣

∣

t=0

∫

θt+t0
(B)

dM

=
d

dt

∣

∣

∣

∣

t=0

∫

θt0 (B)
θ∗t dM

=

∫

θt0(B)

d

dt

∣

∣

∣

∣

t=0

θ∗t dM

=

∫

θt0(B)
div(N)dM.

By Equation (12a) of the Proposition 2.1, we have

ϕ′(t0) =

∫

θt0(B)
(−nH)dM.(13)

Now, c0 ∈ [0,+∞) such that supp∈M H(p) = −c0 ≤ 0. Note that c0 =

infx∈M |H(x)|. Therefore,

ϕ′(t) =

∫

θt(B)
div(N)dM

=

∫

θt(B)
(−nH)dM

≥ (nc0)

∫

θt(B)
dM

= (nc0)ϕ(t),

for all t ≥ 0. Note that ϕ′(t) > 0, for all t ≥ 0, consequently, ϕ is an

increasing function. So, ϕ(t) ≥ ϕ(0) = volM (B) > 0, for all t ≥ 0. Thus,
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by using the inequality above and integrating the function ϕ′(s)
ϕ(s) over the

interval [0, t], we obtain:
∫ t

0

ϕ′(s)

ϕ(s)
ds ≥

∫ t

0
(nc0)ds.

Thus,

ln

(

ϕ(t)

volM (B)

)

≥ (nc0)t.

Therefore, ϕ(t) ≥ volM (B)enc0t for all t ≥ 0.

Note that volM (B(p, t+ r)) ≥ volM (θt(B)), since θt(B) ⊂ B(p, t+ r), for

all t ≥ 0. Indeed,

(14) distM (x, θt(x)) ≤
∫ t

0

∣

∣

∣

∣

d

ds
θs(x)

∣

∣

∣

∣

ds =

∫ t

0
‖N(θs(x))‖ds = t,

where distM (x, θt(x)) the Riemannian distance between x and θt(x). For all

x ∈ B and by triangular inequality, we have

distM (p, θt(x)) ≤ distM (x, θt(x)) + distM (p, x) < t+ r.

Then

volM (B(p, t+ r)) ≥ volM (θt(B)) = ϕ(t) = volM (B)enc0t, ∀ t ≥ 0.

Therefore,

µM = lim inf
t→+∞

ln volM (B(p, t))

t
≥ lim inf

t→+∞

ln(volM (B)enc0t))

t
= nc0.

Finally, if M has zero lower volume entropy, we have that µM = 0. Thus,

infx∈M |H(x)| = 0. �

The above lemma was recently proved in [16] in the particular case when

each leaf L ∈ F has constant mean curvature HL ≥ 0 and when the ambient

manifold M has zero volume entropy. Note that the result in [16] follows

from [1, Theorem 1.1].

Lemma 3.3. Let F be a transversely oriented codimension one CMC fo-

liation of a complete oriented Riemannian manifold Mn+1. Assume that

Ric(N) + δ‖B‖2 ≥ 0 for some 0 < δ < 1, where N is a unit vector field

on M orthogonal to F. Then, F is a foliation with the same constant mean

curvature.

Proof of the Lemma 3.3. Let H : Mn+1 → R be the function defined as H =

− 1
n div(N). We have that H is the function that associates to each point

the value of the mean curvature of the leaf of F that contains that point.
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Assume by contradiction that H : Mn+1 → R is a non-constant function.

Thus, ∇H 6≡ 0 on M .

We define the setA = {x ∈ M ;∇H 6= 0}. Thus, Ñ = ∇H
‖∇H‖ is well-defined

on A. For x ∈ A, L be a leaf of F such that x ∈ L. Then Ñ is a normal vector

field to the leaf L. Thus, for each point x ∈ A, we have that N(x) = ±Ñ(x),

and by continuity, this equality holds in an open neighbourhood U ⊂ A of

x. Then, ∇NN = ∇Ñ Ñ on A.

Now, we are going to show that ∇NN = 0 on A. Thus, it is enough to

show that ∇Ñ Ñ on A. Indeed, let x ∈ A and L be the leaf of F such that

x ∈ L. Since L ⊂ H−1(s) for some s ∈ R, we have that Ñ is a normal vector

field to L ∩ A. Since Ñ has unit length, we have 〈∇Ñ Ñ , Ñ〉 = 0. Then

∇Ñ Ñ is tangent to L ∩A.

Let X be an arbitrary smooth vector field on M being tangent to L ∩A.

Note that Ñ(H) is constant along L ∩ A, so X(Ñ (H)) = 0 on L ∩ A.

Moreover, X(H) = 0 and Ñ(X(H)) = 0 on L ∩A. Then

gM

(

∇Ñ Ñ ,X
)

= gM

(

∇XÑ , Ñ
)

− gM

(

∇ÑX, Ñ
)

= gM

(

Ñ ,∇XÑ −∇ÑX
)

= gM

(

Ñ , [X, Ñ ]
)

=
1

‖∇H‖ [X, Ñ ](H) = 0.

Therefore ∇Ñ Ñ = 0 on L ∩ A. It follows from Equations (12b) and (12c)

that

nN(H) = ‖B‖2 +Ric(N) ≥ (1− δ)‖B‖2 ≥ 0,

on L ∩ A. Since x was arbitrarily chosen, we obtain that N(H) ≥ 0 on A.

By continuity, N(H) ≥ 0 on the closure of A, denoted by A.

However, ∇H = 0 on M \ A and, in particular, X(H) = 0 on M \ A, for

any vector field X on M . Therefore, N(H) ≥ 0 on M .

Since M is a complete Riemannian manifold the flow θt : M → M of the

normal vector field N of the foliation is globally defined.

Since H is a non-constant function, by changing N by −N and H by −H,

we may assume that there is p0 ∈ A such that H(p0) = c0 > 0.

Let γ be an integral curve of the unit vector field N . Since M is complete,

γ may be extended to R. Since N(H) ≥ 0 on M , then H ◦ γ : R → R is a

non-decreasing function. In particular, if γ is an integral curve of the unit

vector field N such that γ(0) = p0, then H ◦ γ(t) ≥ c0 for all t ≥ 0.

Thus, we have two cases to consider.
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Case 1. γ((0,+∞)) ⊂ A.

Now, we define the function f : [0,+∞) → R given by f(s) = H ◦ γ(s).
Since nN(H) ≥ (1 − δ)‖B‖2 on A and nH2 ≤ ‖B‖2, we obtain that

f ′(s) ≥ (1− δ)(f(s))2 for all s ≥ 0. Thus, f ′(s)
f(s)2 ≥ 1− δ for all s ≥ 0.

We define the function function φ : [0,+∞) → R given by φ(s) = − 1
f(s) .

By the mean value theorem, we have

− 1

f(s)
+

1

f(0)
=

f ′(s∗)

f(s∗)2
s,

for some s∗ ∈ (0, s). Therefore, − 1
f(s) +

1
f(0) ≥ (1−δ)s, for all s ≥ 0. Setting

s → +∞, we have that the right-hand side is unbounded, but the left-hand

side is bounded, which gives a contradiction.

Case 2. γ((0,+∞)) 6⊂ A.

Thus, there is s0 > 0 such that γ(s0) ∈ A \ A and γ(s) ∈ A for all

s ∈ (0, s0). By continuity, 0 = N(H)(γ(s0)) ≥ (1−δ)‖B(γ(s0))‖2 ≥ 0. Thus

B(γ(s0)) = 0, and this implies that H(γ(s0)) = 0, which is a contradiction.

Thus, in any case, we obtain a contradiction. Therefore H must be a

constant function. �

Coming back to the proof of Theorem 3.1, by Lemma 3.3, we obtain

that each leaf of the foliation F has the same constant mean curvature. In

particular, H does not change the sign. By Lemma 3.2, H ≡ 0. Therefore

F is a minimal foliation. Finally, the stability of the leaves follows from

Theorem 1 in [20].

�

We obtain the following important consequence.

Theorem 3.4. Let F be a codimension one CMC foliation of a complete

Riemannian manifold Mn+1 with non-negative Ricci curvature. Then, each

leaf of F is a minimal and stable hypersurface.

Proof. After possibly lifting to the universal cover of M , we will assume that

M is oriented and also that any codimension one CMC foliation of M under

consideration is transversely oriented.

It follows from the Bishop–Gromov Inequality (see [14]) that every com-

plete Riemannian manifold with non-negative Ricci curvature has polyno-

mial volume growth. Therefore, M has zero lower volume entropy. By

Theorem 3.1, each leaf of F is a minimal and stable hypersurface. �

Theorem 3.1 works in the following setting:
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Corollary 3.5. Let F be a transversely oriented codimension one CMC

foliation of a complete oriented Riemannian manifold Mn+1. Assume that

M has zero lower volume entropy and Ric(N) ≥ 0, where N is a unit vector

field on M orthogonal to F. Then, each leaf of F is a minimal and stable

hypersurface. Moreover, if a leaf L is such that ‖∇NN‖
∣

∣

L
∈ L1(L), then L

is totally geodesic and Ric(N) = 0 on L. If ‖∇NN‖ ∈ L1(M), then F is a

totally geodesic foliation.

Proof. The first part follows directly from Therem 3.1.

Now, we are going to prove the second part of Corollary 3.5. Let L be

a leaf such that Since ‖∇NN‖
∣

∣

L
∈ L1(L). By using Equations (12b) and

(12c), we obtain the following equality on L

divL(∇NN) = ‖∇NN‖2 + ‖B‖2 +Ric(N).

Since Ric(N) ≥ 0, we conclude that divL(∇NN) does not change the sign

on L. By Proposition 1 in [5], we have divL(∇NN) = 0 on L. Therefore,

∇NN = 0, Ric(N) = 0 and B = 0 on L, and thus L is a totally geodesic

foliation.

Similarly, we prove that if ‖∇NN‖ ∈ L1(M), then F is a totally geodesic

foliation. �

Corollary 3.5 generalizes the main results in [2] and [1] (see Theorem 3.1 in

[2] and Theorem 1.2 in [1]), where we remove the hypothesis of compactness

of the ambient space and the same mean curvature, respectively.

Note that if Σn is a Riemannian n-manifold that has zero lower volume

entropy, then Σ × R has also zero lower volume entropy. Thus, as a con-

sequence of Lemma 3.2, we obtain the following version of [12, Corollary

1.2].

Corollary 3.6. Let Σn be a complete oriented Riemannian n-manifold that

has zero lower volume entropy. Then, for any graph Γf over Σ that has

constant mean curvature H, Γf is minimal and stable hypersurface in Σ×R.

3.2. Euclidean spaces. The next result says, in particular, that Conjec-

ture 1.3 has a positive answer in any dimension and that Conjecture 1.2 has

a positive answer whether n ≤ 4.

Theorem 3.7. Let F be a codimension one CMC foliation of Rn+1. Then,

each leaf of F is a minimal and stable hypersurface. Moreover, if n ≤ 4 or

‖∇NN‖ ∈ L1(Rn+1), then F consists entirely of parallel hyperplanes.



14 J. E. SAMPAIO AND E. C. DA SILVA

Proof. By Theorem 3.1, each leaf of F is a minimal and stable hypersurface.

Moreover, if ‖∇NN‖ ∈ L1(Rn+1), then it follows from the second part of

Theorem 3.1 that F consists entirely of parallel hyperplanes.

Now, assume that n ≤ 4.

By the first part of the proof of this theorem, the leaves are minimal and

stable hypersurfaces. We know that in an orientable space (e.g. in R
n+1) a

hypersurface is orientable if and only if it is two-sided. Since F is transversely

oriented, we have that each leaf L ∈ F is oriented. Since n ≤ 4 and each

leaf is a complete hypersurface, we have by main results in [6, 11, 22, 9, 10]

that each leaf L of the foliation is a hyperplane. �

4. Answers to Conjecture 1.7 and Problem 1.6

4.1. Spaces with sectional curvature bounded from below. In this

Subsection, we give a complete positive answer to Conjecture 1.7.

Theorem 4.1. Let F be a transversely oriented codimension one foliation

of a complete oriented Riemannian manifold Mn+1. Assume that there is

K0 ≥ 0 such that Ric(N) ≥ −nK0, where N is a unit vector field on M

orthogonal to F. Suppose that each leaf L of F has constant mean curvature

HL such that |HL| ≥
√
K0. Then HL does not depend on L. Moreover, if

Mn+1 has sectional curvature bounded from below by −K0, then |H| ≡
√
K0.

Proof. By Theorem 3.1, we may assume that K0 > 0.

Assume by contradiction that H : M → R is a non-constant function. In

particular, ∇H 6≡ 0 on M . ChangingH by −H, if necessary, we may assume

that H ≥ √
K0.

We define the set A = {x ∈ M ;∇H 6= 0}. In particular, there is p0 ∈ A
such that δ := H(p0) >

√
K0.

Let N be a unit vector field on M orthogonal to F. Similarly, as it was

done in the proof of Lemma 3.3, we obtain that ∇NN = 0 on A. Therefore

nN(H) = ‖B‖2 + Ric(N) on A. Since H ≥ √
K0, ‖B‖2 ≥ nH2 , and

Ric(N) ≥ −nK0, we obtain that nN(H) ≥ nH2−nK0 ≥ 0 on A. Therefore,

N(H) ≥ 0 on M .

Let γ be an integral curve of N . Since M is complete, γ may be extended

to R. Since N(H) ≥ 0 on M , then H ◦ γ : R → R is a non-decreasing

function. In particular, if γ is an integral curve of N such that γ(0) = p0,

then H ◦ γ(t) ≥ δ >
√
K0 for all t ≥ 0.

Thus, we have two cases to consider.

Case 1. γ((0,+∞)) ⊂ A.



CMC FOLIATIONS ON EUCLIDEAN SPACES ARE MINIMAL FOLIATIONS 15

Now, we define the function f : [0,+∞) → R given by f(s) = H ◦ γ(s).
Since N(H) ≥ H2 −K0 on A and H ◦ γ(t) ≥ δ for all t ≥ 0, we obtain

that

f ′(s)

f(s)2
≥ 1− K0

f(s)
≥ 1− K0

δ2
> 0

for all s ≥ 0.

We define the function φ : [0,+∞) → R given by φ(s) = − 1
f(s) . By the

mean value theorem, we have

− 1

f(s)
+

1

f(0)
=

f ′(s∗)

f(s∗)2
s,

for some s∗ ∈ (0, s). Therefore, − 1
f(s) +

1
f(0) ≥ (1 − K0

δ2
)s, for all s ≥ 0.

Setting s → +∞, we have that the right-hand side is unbounded, but the

left-hand side is bounded, which gives a contradiction.

Case 2. γ((0,+∞)) 6⊂ A.

Thus, there is s0 > 0 such that γ(s0) ∈ A \ A and γ(s) ∈ A for all

s ∈ (0, s0). By continuity, 0 = N(H)(γ(s0)) ≥ δ2 − K0 > 0, which is a

contradiction.

Thus, in any case, we obtain a contradiction.

Therefore, H is a constant function.

For the second part, we assume thatMn+1 has sectional curvature bounded

from below by −K0 ≤ 0. Then Ric ≥ −nK0. By the first part of this the-

orem, H is a constant function and, in particular, it does not change the

sign on M . Then, the equality |H| ≡ √
K0 is a direct consequence of the

following lemma:

Lemma 4.2. Let F be a transversely oriented foliation of a complete oriented

Riemannian manifold Mn+1 with sectional curvature bounded from below by

−K0 ≤ 0. Suppose that the mean curvature function H : M → R, which

associates to each point the value of the mean curvature of the leaf of F

that contains that point, does not change the sign on M . Then,
√
K0 ≥

inf
p∈M

|H(p)|.

Proof. By changing N by −N and H by −H, if necessary, we may assume

that H ≤ 0. Let c0 ∈ [0,+∞) such that supp∈M H(p) = −c0 ≤ 0. Note that

c0 = infx∈M |H(x)|.
Since M is a complete Riemannian manifold the flow θt : M → M of the

normal vector field N of the foliation is globally defined.
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Thus, we define the smooth function ϕ : [0,+∞) → (0,+∞) given by

ϕ(t) = volM (θt(B)) =

∫

θt(B)
dM =

∫

B
θ∗t dM,

where B := B(p, r) is the geodesic ball centred at p and radius r. By

proceeding like in the proof of Lemma 3.2, we obtain that

volM (B(p, t+ r)) ≥ volM (θt(B)) = ϕ(t) = volM (B)enc0t, ∀ t ≥ 0.

By Bishop–Gromov inequality, we obtain

volM (B(p, s)) ≤ volM̃n+1(−K0)
(BM̃n+1(−K0)

(p̃, s)),

for all s > 0, where M̃n+1(−K0) is the space form of constant sectional

curvature −K0 and BM̃n+1(−K0)
(p̃, s) is the geodesic ball of M̃n+1(−K0)

centred at p̃ and of radius s. However, we have that

volM̃n+1(−K0)

(

BM̃n+1(−K0)
(p̃, s)

)

= cn

∫ s

0

(

sinh(
√
K0t)√

K0

)n

dt,

where cn is the n-dimensional volume of the unit sphere in R
n+1 (see [2, p.

105] or [8, §III.4.1]). Thus, by using the L’Hospital rule, we obtain

n
√

K0 = lim
s→+∞

ln volM̃n+1(−K0)

(

BM̃n+1(−K0)
(p̃, s)

)

s
.

Since we also have the following equality

nc0 = lim
t→+∞

ln(volM (B)enc0t))

t
,

then nc0 ≤ n
√
K0.

Therefore infx∈M |H(x)| ≤
√
K0. �

�

As a consequence, we obtain that Conjecture 1.7 has a positive answer.

Indeed, we obtain that Conjecture 1.7 holds true in the more general setting

where we ask that the sectional curvature is bounded only from below.

Theorem 4.3. Let F be a codimension one CMC foliation of a complete

Riemannian manifold Mn+1. Assume that there is K0 ≥ 0 such that the

sectional curvature of M is bounded from below by −K0. Let H : M → R be

the function that associates to each point the value of the mean curvature of

the leaf of F that contains that point. Then |H| ≤ √
K0.
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Proof. After possibly lifting to the universal cover of M , we will assume that

M is oriented and also that any codimension one CMC foliation of M under

consideration is transversely oriented.

Assume by contradiction that there exists p0 ∈ M such that |H(p0)| >√
K0. Changing H by −H, if necessary, we may assume that H(p0) >

√
K0.

By Theorem 4.1, there is q0 ∈ M such that H(q0) <
√
K0. Thus, A =

{x ∈ M ;∇H 6= 0} 6= ∅ and we may assume that p0 ∈ A. Similarly, as it was

done in the proof of Lemma 3.3, we obtain that ∇NN = 0 on A. Therefore,

nN(H) = ‖B‖2 +Ric(N) on A.

Since H(p0) >
√
K0, ‖B‖2 ≥ nH2, and Ric(N) ≥ −nK0, we obtain that

N(H)(p0) ≥ H(p0)
2 −K0 > 0. Let D = {x ∈ A;N(H)(x) > 0}.

Let γ be the integral curve of the unit vector field N such that γ(0) = p0.

Thus, we have two cases to consider.

Case 1. γ((0,+∞)) ⊂ D.

Since N(H) > 0 on D, then H ◦ γ : [0,+∞) → R is a non-decreasing

function. In particular, then H ◦ γ(t) ≥ H(p0) >
√
K0 for all t ≥ 0.

As before, we define the function f : [0,+∞) → R given by f(s) = H ◦
γ(s).

Since N(H) ≥ H2 − K0 on A and H ◦ γ(t) ≥ H(p0) for all t ≥ 0, we

obtain that

f ′(s)

f(s)2
≥ 1 +

c

f(s)
≥ 1− K0

H(p0)2
> 0

for all s ≥ 0.

We define the function φ : [0,+∞) → R given by φ(s) = − 1
f(s) . By the

mean value theorem, we have

− 1

f(s)
+

1

f(0)
=

f ′(s∗)

f(s∗)2
s,

for some s∗ ∈ (0, s). Therefore, − 1
f(s) +

1
f(0) ≥ (1 − K0

H(p0)2
)s, for all s ≥ 0.

Setting s → +∞, we have that the right-hand side is unbounded, but the

left-hand side is bounded, which gives a contradiction.

Case 2. γ((0,+∞)) 6⊂ D.

Thus, there is s0 > 0 such that γ(s0) ∈ D \ D and γ(s) ∈ D for all

s ∈ (0, s0). By continuity, 0 = N(H)(γ(s0)) ≥ H(p0)
2 −K0 > 0, which is a

contradiction.

Thus, in any case, we obtain a contradiction. Therefore |H| ≤ √
K0. �

We obtain also the following generalization of Proposition 3.7 in [2].
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Corollary 4.4. Let F be a transversely oriented codimension one CMC

foliation of a complete oriented Riemannian manifold Mn+1 with positive

Ricci curvature. Assume that M has positive Ricci curvature. Then there is

no leaf L of F such that ‖∇NN‖
∣

∣

L
∈ L1(L), where N is a unit vector field

on M orthogonal to F. In particular, F has no compact leaf.

Proof. Assume by contradiction that there is a leaf L of F such that ‖∇NN‖
∣

∣

L
∈

L1(L). By Theorem 3.4, F is a minimal foliation. Thus,

divL∇NN = ‖∇NN‖2 + ‖B‖2 +Ric(N) > 0.

By [5, Proposition 1], divL∇NN ≡ 0, which is a contradiction.

Therefore, there is no leaf L of F such that ‖∇NN‖
∣

∣

L
∈ L1(L). �

Another consequence is the following:

Corollary 4.5. Let F be a codimension one CMC foliation of M = M̃n+1(c),

where c < 0. Then, for each leaf L of F, the mean curvature HL of L satisfies

|HL| ≤ (−c)1/2.

4.2. Space forms. In this Subsection, we present a complete positive an-

swer to Problem 1.6.

Theorem 4.6. Let F be a foliation of M̃n+1(c) by hypersurfaces L of con-

stant mean curvature HL, then:

i) If c = 0, then the leaves of the foliation are minimal. In particular,

if n ≤ 4, then the leaves of the foliation are hyperplanes.

ii) If c > 0, no such foliation exists.

iii) If c < 0 and HL ≥ (−c)1/2, then HL does not depend on L. More-

over, if n = 2, then the leaves of F are horospheres with HL =

(−c)1/2.

Proof. Item i) follows from Theorems 3.7 and Item ii) follows from Corollary

4.4

To prove Item iii), if c < 0 and HL ≥ (−c)1/2, by Theorem 4.1, HL does

not depend on L and H ≡ (−c)1/2. Moreover, if n = 2, it follows from [3,

Theorem 3.12] that the leaves of F are horospheres with HL = (−c)1/2. �

Note that, as it was already said in the introduction, Item ii) above was

already proved in [2, Corollary 3.5].

By Corollary 4.4 and Theorem 3.7 and Corollary 4.5, we obtain the fol-

lowing result:
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Corollary 4.7. Let F be a codimension one CMC foliation on M̃n+1(c).

Then we have the following:

i) If c = 0, then F is a minimal foliation.

ii) If c > 0, no such foliation exists.

iii) If c < 0, then for each leaf L of F the mean curvature HL of L

satisfies |HL| ≤ (−c)1/2.

5. Appendix: some examples

In this Section, we analyse the hypotheses of Theorem 3.4.

Note that the hypothesis in Theorem 3.4 the hypothesis that Ricci cur-

vature is non-negative cannot be removed.

Example 5.1. Let H
n+1 =

{

(x1, · · · , xn+1) ∈ R
n+1;xn+1 > 0

}

be the hy-

perbolic space with Riemannian metric gHn+1 =
dx2

1+···+dx2
n+1

x2
n+1

. Let F be a

foliation on H
n+1 given by the family of half-hyperplanes F :=

⋃

α∈(0,π) Lα,

where

Lα = {xn+1 − αxn = 0;α 6= 0 and xn+1 > 0} .
Note that F is a transversely orientable codimension one foliation and each

leaf Lα has constant mean curvature H = cos(α).

We can even obtain an example when all the leaves have the same non-zero

constant mean curvature.

Example 5.2. Let Hn+1 be the hyperbolic space as in the above example.

Fixed α ∈ (0, π2 ), we define a transversely orientable foliation F :=
⋃

t∈R Lt

on H
n+1, where each leaf Lt is given by

Lt = {xn+1 − αxn = −αt;xn+1 > 0} .

We have that each leaf Lt has constant mean curvature H = cos(α).

The next example shows that it is not possible to removed the hypothesis

of completeness of the Riemannian manifold M in Theorem 3.4.

Example 5.3. Let M =
(

R
3 \ {0}, can

)

be the euclidean space with canon-

ical Riemannian metric. Let F be a foliation on M given by the family of

spheres F :=
⋃

α∈(0,+∞) Lα, where

Lα =
{

(x, y, z) ∈ R
3;x2 + y2 + z2 = α2

}

.

Note that F is a transversely oriented codimension one foliation and each

leaf Lα has mean curvature HLα
= 1

α .
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In the last part of Theorem 3.4, the hypothesis that ‖∇NN‖ ∈ L1(M)

cannot be removed.

Example 5.4. By [4], there is a smooth function f : R8 → R such that

Graph(f) is a minimal hypersurface of R9 that is not a hyperplane. Then,

we define the foliation F :=
⋃

t∈R Lt on R
n+1, where each leaf Lt is given by

Lt = {(x, y) ∈ R
n × R; y = f(x) + t}.

We have that each leaf Lt is minimal hypersurface.

It is easy to find examples of foliations on R
3, where the leaves have

bounded non-constant mean curvature. In the next example, we present an

example of such a foliation given by level sets of a polynomial function.

Example 5.5. Let F be a foliation on R
3 given by the family of algebraic

surfaces F :=
⋃

α∈R Lα, where Lα =
{

(x, y, z) ∈ R
3; z −

(

x2 + y2 + α
)

= 0
}

.

Note that F is a transversely oriented codimension one foliation and each leaf

Lα has mean curvature HLα
(x, y, z) = 2+4(x2+y2)

(1+4x2+4y2)
3
2

and 0 ≤ HLα
(x, y, z) ≤

2.
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do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, 60440-900, Fortaleza-CE,

Brazil.

E-mail: edsonsampaio@mat.ufc.br

Euripedes Carvalho da Silva: Departamento de Matemática, Instituto Fed-
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