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A double quantum dot coupled to an optical cavity is a prototypical example of a non-trivial open quantum
system. Recent experimental and theoretical studies show that this system is a candidate for single-photon de-
tection in the microwave domain. This motivates studies that go beyond just the average current, and also take
into account the full counting statistics of photon and electron detections. With this in mind, here we provide a
detailed analysis of the waiting time statistics of this system within the quantum jump unravelling, which allows
us to extract analytical expressions for the success and failure probabilities, as well as for the inter-detection
times. Furthermore, by comparing single and multi-photon scenarios, we infer a hierarchy of occurrence proba-
bilities for the different events, highlighting the role of photon interference events in the detection probabilities.
Our results therefore provide a direct illustration of how waiting time statistics can be used to optimize a timely
and relevant metrological task.

I. INTRODUCTION

The utilization of waiting time statistics formalism extends
to the analysis of diverse stochastic processes, encompass-
ing realms such as quantum optics [1, 2], electronic transport
[3, 4], and entropy production estimation [5], as pioneered by
Stratonovich [6]. This powerful tool finds application in quan-
tum master equations, enabling the study of system dynamics
through quantum jumps, shifting the focus from explicit so-
lutions of the von Neumann equation to the examination of
waiting time distributions (WTDs) [7, 8]. Notably, this ap-
proach proves valuable when describing systems with discrete
phenomena, such as the punctual creation or annihilation of
modes, as is the case with the coupling of a double quantum
dot (DQD) to an optical cavity (CO).

The theoretical framework of the DQD-CO coupling is in-
tricate, representing a nontrivial fermionic system interacting
with a nontrivial bosonic system, allowing for analytical so-
lutions only under specific considerations [9]. These solu-
tions unveil the statistical nature and constraints of the system
[9–12]. Beyond its theoretical richness, the DQD-CO sys-
tem holds direct experimental relevance in diverse fields, in-
cluding spectroscopy [13, 14], photon observation in astron-
omy [15], the implementation of quantum circuits [16], and
emerging THz quantum technologies [17]. Notably, the sys-
tem’s distinctive feature lies in its ability to function as a pho-
todetector with a unique characteristic: the capacity to capture
microwave-scale photons, an energy range four to five times
smaller than the optical regime [18].

By employing the WTDs formalism, the analysis of the
DQD-CO system enables the explicit determination of the
probabilities associated with the success or failure of photon
detection. Additionally, this approach complements the esti-
mation of quantum efficiency through full counting statistics
[9, 10], offering valuable insights into the performance of this
system in photon detection applications.
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In this paper we investigate the waiting time statistics of
a DQD-OC setup, unraveled in terms of clicks associated
to both electron detection and photon leaks. We focus on
regimes allowing for analytical solutions, and show that these
can shed light on the potential applications of these devices as
single-photon detectors.

II. SYSTEM AND MODEL

Our focus lies in the investigation of a system comprising
a double quantum dot (DQD) coupled with an optical cavity
(OC) [10, 18], as depicted in Figure 1. The DQD can be con-
ceptualized as two fermionic reservoirs (leads), each coupled
to a potential well capable of accommodating a single fermion
at any given moment. Within the Coulomb blockade regime,
disregarding electron spin and focusing solely on its presence
in the potential wells, the Hamiltonian describing the DQD is
given by

HDQD =
ϵ

2
(|R⟩ ⟨R| − |L⟩ ⟨L|) + tc (|R⟩ ⟨L| + |L⟩ ⟨R|) , (1)

where |0⟩ represents the Fock state denoting the absence of
electrons (Z = 0), the presence of an electron in the right
dot (Z = R), or in the left dot (Z = L). Here, ϵ signifies
the energy of the dots, and tc represents the coupling energy
between them. Employing a transformation matrix|L⟩|R⟩

|0⟩

 =
−

ϵ
Ω

2tc
Ω

0
−

2tc
Ω
− ϵ
Ω

0
0 0 1


|g⟩|e⟩
|0⟩

 , Ω ≡

√
4t2

c + ϵ
2, (2)

we redefine HDQD in terms of the excited (|e⟩) and ground (|g⟩)
eigenstates, yielding

HDQD =
Ω

2
(|e⟩ ⟨e| − |g⟩ ⟨g|) ≡

Ω

2
σz. (3)

Simultaneously, the OC is envisioned as the combination
of a photon pump (e.g., LASER) with a geometric entity that
predominantly selects photons possessing a specific frequency
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FIG. 1. Double quantum dot coupled with an optical cavity.

of interest [19]. The total Hamiltonian HOC for this system is
expressed as

HOC = ωra†a + ξ
(
eiωl a† + e−iωlta

)
, (4)

where a is a bosonic mode, ωr denotes the resonance fre-
quency of the cavity, ωl is the pump frequency and ξ is the
pump strength.

Finally, to lowest order the DQD-OC coupling takes the
form [18]

HI = g
(
a†σ− + aσ+

)
, (5)

where σ+ ≡ |e⟩ ⟨g| is the raising operator for the DQD and
σ− ≡ σ

†
+.

The unitary dynamics of the DQD-OC system, expressed
by a Hamiltonian H comprising (3), (4), and (5), is given in
the rotating frame at the pump frequency, as [9]

H = ∆d
σ3

2
+ ∆ra†a + g

(
a†σ− + aσ+

)
+ ξ

(
a† + a

)
, (6)

with ∆d ≡ Ω − ωl (∆r ≡ ωr − ωl) representing the difference
between the frequency of the DQD (OC) and the frequency of
the pump.

Given the weak coupling in the DQD-OC system, the
nonunitary dynamics can be modeled using independent dis-
sipators for the DQD and OC [20, 21]. Specifically, focusing
on single-photon dissipation, κD[a] becomes the sole dissipa-
tor for the open dynamics of the OC, where κ quantifies the
dissipation rate and D[a]ρ = aρa† − 1

2 {a
†a, ρ}. In the case of

the DQD, the ideal photodetector regime [9, 18] is adopted,
with interest centered on the input of electrons in the ground
state (i.e., |0⟩ → |g⟩) and the output of electrons in the excited
state (i.e., |e⟩ → |0⟩), both occurring at the same rate Γ. This is
captured by ΓD[s†g] and ΓD[se], respectively, with s j ≡ |0⟩ ⟨ j|
( j = g, e) representing the extraction of an electron in either
the ground or excited states.

Consequently, the state ρ governing the DQD-CO system is
assumed to follow the Lindblad equation for its open dynam-
ics

ρ̇ = −i
[
H, ρ

]
+ ΓD[s†g]ρ + ΓD[se]ρ + κD[a]ρ, (7)

where H is given by equation (6).

III. WAITING TIME STATISTICS

Prior to delving into the evaluation of pertinent quantities
for DQD-CO system, it is instructive to introduce fundamen-
tal concepts of waiting time formalism [7, 8]. The Lindblad

equation (7) is recast as

ρ̇ = L(ρ), (8)

where L(ρ), given by the right side of (7), stands as the Li-
ouvilian operator of the model. This formulation enables the
expression of a formal solution

ρ(t) = eLtρ(0), (9)

which can be expanded in Dyson’s series as

ρ(t) = eL0tρ(0) +
∑
k∈M

∫ t

0
dt1eL0(t−t1)LkeL0t1ρ(0)+

+
∑

k,q∈M

∫ t

0
dt2

∫ t2

0
dt1eL0(t−t2)LkeL0(t2−t1)LqeL0t1ρ(0) + ...,

(10)
where

L j(ρ) = L jρL†j , (11)

represents the jumps observable in the system, and

L0 ≡ L −
∑
j∈M

L j (12)

is the no-jump operator. Here we also introduce the setM rep-
resenting the jump operators which we assume can be moni-
tored.

Each term in the expansion (10) corresponds to the proba-
bility associated with a specific number of jumps in the sys-
tem. Notably, the probability of a jump occurring in the j-th
channel at any given time is defined as a Waiting Time Distri-
bution (WTD), expressed as

W( j, t|ρ) = Tr
{
L jeL0tρ

}
. (13)

Marginalizing over t, and assuming that the initial state is such
that a jump must necessarily occur, yields

W( j|ρ) = Tr
{
L j

(∫ ∞

0
dteL0t

)
ρ

}
= −Tr

{
L jL

−1
0 ρ

}
, (14)

which quantifies the likelihood of a jump in channel j, given
that the initial state was ρ. Conversely, marginalizing over j
yields

W(t|ρ) = −Tr
{
L0eL0tρ

}
, (15)

which is the probability distribution that the first jump occurs
at time t, irrespective of in which channel it happens.

Similarly, for scenarios involving two jumps—one at time
t1 in channel j1 and another at time t2 in channel j2—the as-
sociated probability distribution is given by

W ( j1, t1, t2, j2|ρ) = Tr
{
L j2 eL0t2L j1eL0t1ρ

}
. (16)

Furthermore, these distributions can be employed to define
an average time for an event to occur in the system:

⟨t⟩ =
∫ ∞

0
dtW(t|ρ)t = −Tr

{
L−1

0 ρ
}
. (17)

This quantity holds significance as it characterizes the charac-
teristic time of the system’s evolution, playing a pivotal role
in defining quasi-static processes in Thermodynamics [22].
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IV. WAITING TIME STATISTICS OF THE DQD-OC
SYSTEM

The objective of this study is to formulate the probability
distributions of success and failure in the detection of a pho-
tocurrent, given the presence of a photon within the cavity.
The failure process is associated with photon leakage, while
the success process is correlated with photon absorption by an
electron. To address this problem analytically, we employ the
ideal photodetector regime, assuming a weak pump (ξ ≪ 1).
The weak pump approximation is introduced by envisioning
the activation of the pump, followed by a waiting period until
the cavity absorbs n photons. Due to the weak pump, the pho-
ton count remains nearly constant during this interval. Con-
sequently, we can analyze the system’s dynamics within this
time frame, treating the pump as negligible by setting ξ = 0
and establishing an initial condition in the density matrix rep-
resenting the n initial photons in the cavity. We denote dif-
ferent choices of initial conditions as the ”n photon scenario”,
specified by the initial density matrix

ρ(n)
0 = |ψn⟩ ⟨ψn| , |ψn⟩ ≡ |0⟩ ⊗ |n⟩ (18)

where |n⟩ is the Fock state of n photons.
In the first step toward building a waiting time distribution,

we identify the channels we can monitor—specifically, both
the electron detection (se) and photon leakage channels (a).
The channels of interest are the photocurrent channel (right
reservoir in Figure 1) and the photon leak channel (photon ac-
companied by κ in the same figure). The photocurrent channel
can be represented by

Leρ ≡ Γseρs†e , (19)

with jumps |e⟩ → |0⟩ in DQD, occurring at a rate of Γ. The
photon leak channel is modeled by

Lγρ ≡ κaρa†, (20)

resulting in photon leakage from the cavity to the environment
at a rate of κ.

Utilizing (19) and (20), we define a no-jump Liouvillian,
implicitly determining the channels we lack access to:

L0 = L − κLγ − ΓLe (21)

This no-jump Liouvillian is employed to evaluate the prob-
abilities of interest in a given scenario.

One Photon Scenario

We first consider the case n = 1. In this scenario, two prob-
abilities are of interest: the probability pγ of a single photon
leaking to the environment and the probability pe of this pho-
ton being absorbed by an electron, resulting in a photocurrent.
These probabilities are evaluated using Eq. (14), i.e.,

p j ≡ W ( j|ρ) = −Tr
{
L jL

−1
0 ρ(1)

0

}
. (22)

α = 0,5 α = 1 α = 1,5
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FIG. 2. Average time.

The assumption that we start with a single photon in the cav-
ity allows us to truncate the bosonic Hilbert space, and there-
fore obtain the following analytical expression for the success
probability:

pe =
C

C + 1
α2

(α + 1)2 , (23)

where C ≡ 4g2/(Γκ) is the cooperativity [23, 24] and α ≡ Γ/κ
quantifies the competition between the electronic and bosonic
dissipation rates. The failure probability is pγ = 1 − pe.

Notably, as C → 0 or α → 0, pe → 0, or equivalently,
pγ → 1. This is expected, as α → 0 implies more in-
tense interaction of bosonic modes with the environment than
fermionic modes, while C → 0 indicates weak interaction be-
tween DQD and OC compared to their individual interactions
with the environment. In both cases, photon absorption by an
electron is attenuated. Conversely, α,C ≫ 1 implies pe ≈ 1,
which is reasonable.

Furthermore, we evaluate the (dimensionless) average time
κ⟨t⟩ for any of the jumps (e or γ) to occur in the system, rep-
resenting the time until an event takes place (eq. 17), namely

κ⟨t⟩ = −κTr
{
L−1

0 ρ(1)
0

}
=

(α + 1)2 +C(3α + 1)
(α + 1)2(C + 1)

. (24)

Figure 5 illustrates the behavior of ⟨t⟩ in terms of C for
three distinct values of α. For 0 < α < 1, the average
time to an event increases with C, implying that the system
takes longer to transition, within an upper bound given by
κ⟨t⟩ < (3α + 1)/(α + 1)2. Interestingly, we see that if α = 1
(equal dissipation rates for the two channels) we get κ⟨t⟩ = 1,
independent of the cooperativity. Notice that this is not true
for pe, pγ.

Two Photon Scenario

Next we consider n = 2. In this scenario, four probabili-
ties of interest emerge instead of two: (i) the probability pee
of both initial photons being sequentially absorbed, resulting
in a photocurrent; (ii) the probability peγ of the first photon
being absorbed and the second leaking; (iii) the probability of
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the first photon leaking, but the second being absorbed; and
(iv) the probability pγγ of both photons sequentially leaking.
These two-sequential-jump probabilities are defined as (see
eq. 16)

pi j ≡ W( j, i|ρ) = Tr
{
L jL

−1
0 LiL

−1
0 ρ(2)

0

}
, (25)

with i, j = e, γ. We now find:

pee =
C2α5

(1 +C)(1 + α)2(1 + α +Cα)(6 + 5α + α2)
, (26)

peγ =
Cα3

(
C + 2Cα + (1 + α2)

)
(1 +C)(1 + α)2(3 + α)(1 + α +Cα)

, (27)

pγe =
Cα2 (12 + α(3 + α)(7 + α) +Cα(9 + 5α))

(1 +C)(1 + α)2(3 + α)(1 + α +Cα)
, (28)

pγγ = 1 − pee − peγ − pγe (29)

We can further idetity probabilities allow us to identify

pe1 ≡ pee + peγ =
Cα3

(2 + α)(3 + α)(1 + α +Cα)
(30)

and

pe2 ≡ pee + pγe (31)

=
Cα2

(
12 + 3(7 + 3C)α + 5(2 +C)α2 + (1 +C)α3

)
(1 +C)(1 + α)2(2 + α)(3 + α)(1 + α +Cα)

(32)

as the probability of a jump occurring in the e-channel (i.e.,
detection of a photocurrent) in the first and second measure-
ments, respectively. These quantities, along with pee (eq. 26)
and pe (eq. 23), are plotted in Figure 3, where the hierarchy

pe2 ≥ pe ≥ pe1, ∀ α,C, (33)

is observed. Eq. (33) indicates that the probability of detect-
ing a photocurrent in the first measurement in the two-photon
scenario is lower than in the one-photon scenario, while the
opposite holds for the probability of the second measurement
resulting in a photocurrent, as it is always greater than the oth-
ers. This result, independent of α and C, provides a method
for verifying the scenario and highlights the nontrivial inter-
ference effects when there are multiple photons inside the cav-
ity.

The asymptotic limits α→ ∞ and C → ∞ yield

lim
α→∞

pee =
C2

(1 +C)2 , (34)

and

lim
α→∞

peγ = lim
α→∞

pγe = lim
α→∞

pe =
C

(1 +C)2 , (35)

in which we recalled equation (23). This last result indicates
that in the strong fermionic interaction regime, the two-photon

pe2 pe pe1 pee

5 10 15 20 25
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0.2

0.3

0.4

0.5

0.6

0.7

FIG. 3. Photocurrent hierarchy.

scenario reduces to a pair of one-photon scenarios, rendering
them indistinguishable. However, the same is not true for the
large cooperativity regime, where

lim
C→∞

pee =
α4

(1 + α)2(6 + 5α + α2)
, (36)

lim
C→∞

peγ =
α2(1 + 2α)

(1 + α)2(6 + 5α + α2)
, (37)

and

lim
C→∞

pγe =
α2(9 + 5α)

(1 + α)2(6 + 5α + α2)
. (38)

In this case, a nontrivial dependence on α exists in all cases,
preventing specific conclusions. This observation underscores
α as the parameter characterizing the scenarios. Finally, it is
worth noting that

lim
α→0

pi j = lim
C→0

pi j = δiγδγ j, (39)

which is expected, as previously discussed in the one-photon
scenario.

V. CONCLUDING REMARKS

In conclusion, under the assumption of a weak-pump
regime, we have leveraged the formalism of waiting statis-
tics to derive probabilities governing the success and failure
of photocurrent conversion within a DQD-CO system, ex-
amining scenarios involving one and two incident photons.
While the extension of this approach to scenarios involving
n photons is conceptually straightforward, it is imperative to
note that the validity of this approximation diminishes as n
increases, as it fails to account for mixed states at its core,
leading to nonphysical outcomes.

Nevertheless, our methodology adequately captures the in-
terference effects between photons within the cavity, signifi-
cantly influencing the photocurrent detection process. A logi-
cal progression involves constructing WTDs for non-zero de-
tunings (ξ , 0), corresponding to scenarios with reasonable to
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strong pumping. This analysis is anticipated to shed light on
how the probabilities of photocurrent conversion evolve with
varying pump intensities.

Moreover, we envisage incorporating additional complexi-
ties into our model, such as losses through phononic channels,
as outlined in the work by Zenelaj et al. [9]. This enhance-
ment will contribute to a more realistic representation of the
DQD-CO system, accounting for factors beyond the weak-

pump approximation and further refining our understanding
of the underlying physical processes.
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