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ABSTRACT
Recently, smart roadside infrastructure (SRI) has demonstrated
the potential of achieving fully autonomous driving sys-
tems. To explore the potential of infrastructure-assisted au-
tonomous driving, this paper presents the design and de-
ployment of Soar , the first end-to-end SRI system specifi-
cally designed to support autonomous driving systems. Soar
consists of both software and hardware components care-
fully designed to overcome various system and physical chal-
lenges. Soar can leverage the existing operational infrastruc-
ture like street lampposts for a lower barrier of adoption.
Soar adopts a new communication architecture that com-
prises a bi-directional multi-hop I2I network and a downlink
I2V broadcast service, which are designed based on off-the-
shelf 802.11ac interfaces in an integrated manner. Soar also
features a hierarchical DL task management framework to
achieve desirable load balancing among nodes and enable
them to collaborate efficiently to run multiple data-intensive
autonomous driving applications. We deployed a total of 18
Soar nodes on existing lampposts on campus, which have
been operational for over two years. Our real-world evalua-
tion shows that Soar can support a diverse set of autonomous
driving applications and achieve desirable real-time perfor-
mance and high communication reliability. Our findings and
experiences in this work offer key insights into the devel-
opment and deployment of next-generation smart roadside
infrastructure and autonomous driving systems.
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1 INTRODUCTION
Autonomous driving is envisioned to revolutionize our trans-
portation system. However, current pilot commercial deploy-
ments have posed major concerns regarding the safety of
existing autonomous driving systems. Recent years have
witnessed the emergence of a new paradigm that leverages
smart roadside infrastructure (SRI) to enhance the limited
compute and perception capabilities of standalone vehicles.
In particular, several efforts [46, 47, 61, 74] have developed
SRI-assisted perception solutions for autonomous driving.
To date, the deployment of SRI is still in its infancy stage. Ex-
isting commercial products like roadside units (RSUs) [1, 42]
and experimental prototypes [49, 56, 79] are standalone road-
side systems that have limited compute and networking capa-
bilities. Moreover, they still have a very low penetration rate
and have not been fully validated in real-world deployments.

To realize the vision of infrastructure-assisted autonomous
driving, SRI must address amultitude set of key requirements.
First, as a shared infrastructure, SRI should serve a large num-
ber of vehicles and diverse autonomous driving applications.
For example, it should provide passing vehicles on-road ob-
ject detection results for informed driving decisions as well
as point cloud segmentation results for the purpose of map-
ping and navigation [63]. Therefore, SRI needs to execute the
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inferences of multiple concurrent deep learning (DL) models
while meeting stringent real-time requirements. Second, SRI
should be capable of both high-bandwidth infrastructure-to-
infrastructure (I2I) and infrastructure-to-vehicle (I2V) com-
munication. Data-intensive sensors like LiDAR and cameras
have become the de facto configuration of commercial au-
tonomous driving platforms [2, 8, 9]. These sensors produce
high-precision data at a rate of tens of Mbps, which often
needs to be shared between SRI nodes. However, to support
such a high-bandwidth I2I communication at a large spa-
tial scale, existing technologies like fiber optical Ethernet
and 5G cellular networks would incur prohibitively high de-
ployment and operational costs. Moreover, although several
vehicle-to-everything (V2X) technologies are emerging, they
are designed to achieve relatively low data rates [23]. Lastly,
to lower the barrier of adoption, the existing traffic infras-
tructure such as lampposts should be reused or retrofitted as
much as possible, which brings various physical and system
challenges. For instance, the traffic lampposts typically have
a limited power supply (i.e., ∼ 200W in our city), which is
challenging to power a fully functional SRI with advanced
compute/communication capabilities.
A key contribution of this work is to explore a large de-

sign space of smart roadside infrastructure and identify a
multitude set of key challenges that have not been addressed
collectively by existing communication and computing tech-
nologies. We present Soar , the first end-to-end SRI system
that is specifically designed for scenarios where the SRI
can be deployed at a large spatial scale and operated in-
expensively for a long period of time to support autonomous
driving. Specifically, each Soar node comprises a low-power
single-board edge computer, 802.11ac interfaces, and sen-
sors chosen from three modalities (mmWave radar, LiDAR,
and thermal camera), which carefully balances data quality,
privacy protection, and power consumption. The communi-
cation architecture of Soar comprises a bi-directional multi-
hop I2I network and a downlink I2V broadcast service. We
exploit the naturally linear topology of the roadside lamp-
post network and adopt advanced network coding to achieve
high-bandwidth and reliable multi-hop I2I communication. A
novel I2V broadcast service is designed based on the injector-
sniffer mode of 802.11ac, which incorporates lightweight
channel switching and empirical measurement-based rate
selection for realizing high-bandwidth broadcast to passing
vehicles at high speed. To tackle the distinct computing chal-
lenges encountered in the development of SRI systems, Soar
incorporates a hierarchical taskmanagement framework that
facilitates desirable load balancing among nodes and enables
efficient collaboration. Additionally, we have devised an op-
portunistic DL task scheduling mechanism to mitigate the
impact of resource contention and dynamic system delays
arising from multiple concurrent tasks on a single SRI node.

We deployed 18 Soar nodes on existing outdoor lamp-
posts on campus, operational for over 2 years. We report
experience in the design and deployment of Soar , as well
as extensive experimental results. Our real-world testbed
evaluation shows that Soar can support a diverse set of au-
tonomous driving applications and achieve a 96.1% success
rate of application-level data delivery, a 2× improvement
over the state-of-the-art baselines. Compared to traditional
802.11ac-based approaches, the I2I and I2V communication
system of Soar realizes high-bandwidth and reliable data
transmission with 5× improvement in throughput over up
to 9 hops and 3× improvement in broadcast bandwidth with
multiple vehicles, respectively. Our findings and experiences
in this work offer key insights into the development and de-
ployment of next-generation smart roadside infrastructure
and autonomous driving systems.

2 RELATEDWORK
Smart roadside infrastructure. Several studies are focused
on building real-world SRI with sensors and intelligent de-
vices [49, 56, 79]. There are also several commercial projects [6,
19, 30, 31] on SRI development. However, these efforts are
based on small-scale experimental deployments and do not
address the comprehensive set of system challenges for au-
tonomous driving. Other works [30, 33, 35, 38, 43, 44, 76]
focus on roadside unit’s software systems and vehicular net-
works but lack of real-world evaluation and deployment.
Infrastructure-assisted autonomous driving. Recently,
leveraging sensors and compute units installed on roadside
infrastructure to assist AVs has received significant attention.
Several systems propose to process the sensor data on the
infrastructure and provide application-level results to AVs
such as object identification [67, 89, 92], landmark report [82],
and parking assistance [32]. A number of studies [24, 26,
46, 47, 61, 73, 74, 88, 90] propose new methods of fusing
perceptive information between vehicles or between the
infrastructure and the vehicle. These studies focus on specific
infrastructure-assisted technologies that shed light on the
design objective of Soar in this work.
Concurrent DL task execution on cooperative edges.
Several solutions have been proposed to optimize the per-
formance of concurrent tasks on a single edge node, in-
cluding on-device DL task scheduling and model compres-
sion [37, 54, 59, 60, 85]. However, they do not address the
cooperation among edge nodes, which is essential for fully
utilizing the limited resources of the entire edge system.
Some studies focus on allocating DL tasks to the edge nodes
in a workload-balancing manner [51, 86]. However, these
approaches are designed for specific applications and are not
applicable to AVs that require high real-time responsiveness.
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Table 1: Cost and performance (Perf.) comparison between Soar and two alternative paradigms.

Paradigm
Module I2I Computing I2V Cost

Method Perf. Method Perf. Method Perf. Installation Operation
Ethernet+Cloud Fiber Ethernet High Cloud computing High 5G V2X High High Medium
5G+Cloud/Edge 5G cellular Low/Medium Cloud computing High 5G V2X High Medium/High High

Hybrid 5G/Ethernet+Cloud Hybrid 5G/Ethernet Medium Cloud computing High 5G V2X High High Medium/High
Soar 802.11ac multi-hop Medium Collaborative edge Medium 802.11ac broadcast Medium Medium Low

3 OVERVIEW
3.1 Applications
Soar aims to enable a myriad of infrastructure-assisted au-
tonomous driving applications that provide sensing informa-
tion to vehicles in real time. Here we highlight three typical
applications, each with representative characteristics that
pose design requirements for Soar .
Percpetion sharing. A crucial application of SRI is to lever-
age sensors (e.g., LiDARs, etc.) to enhance the perception of
autonomous vehicles (AVs). The information shared from the
infrastructure to the vehicle can be raw sensor data [46, 47]
or computed perception results [74]. AVs can integrate such
information from the infrastructure with their own to con-
struct comprehensive scenes and enhance their ability to un-
derstand and respond to complex driving environments. As a
representative data-intensive application, perception sharing
imposes the requirement for SRI to process and transmit a
substantial volume of data to AVs in real time. For exam-
ple, sharing LiDAR point clouds with AVs [47] requires a
data transmission bandwidth over 30Mbps (for a 32-line
LiDAR [18]).
Traffic monitoring. Traffic flow monitoring [92] offers in-
sights into traffic congestion and potential alternative routes
that extend beyond the vehicle’s visual range. As an essen-
tial requirement, it requires real-time data transmission be-
tween infrastructures when vehicles/pedestrians need to be
tracked continuously over a period of time. Consequently,
the infrastructure system must exhibit satisfying scalability
and cost-effectiveness to support large-scale deployment and
coordination. In addition, it underscores the need for robust
communication between infrastructure nodes.
Accident warning. Accident warning [67] can aid AVs in
detecting pedestrians and cyclists, especially under condi-
tions of poor visibility or in areas with blind spots. As a
life-critical application, it necessitates the infrastructure to
deliver warning information to the vehicle timely. Consider-
ing that SRI may have to support multiple applications con-
currently and mainstream perception-related applications
are typically based on compute-intensive deep learning (DL)
algorithms, it is essential for the SRI to handle concurrent
DL tasks and meet their real-time requirements.

3.2 Design Objectives and Choices
Drawing upon the requirements derived from applications,
we distill several design objectives that are essential in shap-
ing the development and implementation of Soar , including
1) high-bandwidth data communication between infrastruc-
ture nodes as well as from infrastructure to vehicles; 2) effi-
cient inference of multiple concurrent DL models with strin-
gent realtime requirements; and 3) low installation/operation
costs, e.g., by reusing/retrofitting the existing traffic infras-
tructure, for large-scale deployment.
We now discuss several design choices based on existing

technologies and highlight the key challenges. Table 1 shows
a comparative analysis of Soar’s design choices against two
other SRI paradigms.
Ethernet+Cloud. A straightforward paradigm of SRI is to
connect all infrastructure nodes with specially laid fiber op-
tical Ethernet and offload all computing tasks to the cloud.
SRI can communicate with vehicles via 5G V2X, the most
advanced V2X technology currently available [65]. This par-
adigm can deliver robust task execution performance facil-
itated by high-speed and reliable Ethernet connections as
well as the cloud infrastructure. However, it necessitates sub-
stantial investment on fiber optical cable installation and
cloud servers, particularly in rural regions that lack such
network and computing infrastructures. In addition, existing
V2X technologies (e.g., LTE-V2X) focus on low data rates
(up to 25Mbps [23]) and hence cannot handle large data vol-
umes like LiDAR point clouds in real time. Moreover, V2X
devices on the market remain expensive. For instance, an
off-the-shelf Gohigh 5G-V2X transmitter-receiver pair costs
over 15𝑘 USD [42].
5G+Cloud/Edge. Another alternative paradigm is to offload
computation to the cloud while the nodes communicate with
the cloud via a 5G cellular network. Compared with the Eth-
ernet+Cloud paradigm, this 5G cellular approach demands
merely a low-cost 5G interface for each infrastructure node.
However, the operational expenses of such a system are no-
tably higher due to the service charges of 5G data plans. For
example, a LiDAR-equipped SRI node may need to transmit
more than a TB of data via 5G during a single day. Further-
more, in areas such as cities with densely deployed roadside
SRI nodes, transmitting large volumes of data from SRI to
the cloud through a 5G cellular network can incur significant
network overhead, thereby adversely impacting application
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Figure 1: The system architecture of Soar.

performance. Another approach within this paradigm is to
leverage the edge computing capability of 5G cellular net-
works [78]. It typically involves the deployment of dedicated
5G base stations and edge servers specifically designed to ex-
ecute computing tasks from SRI. Nevertheless, this approach
necessitates the installation of numerous additional base sta-
tions as well as high-speed network connectivity between
them to handle the large amount of data from SRI nodes,
which incurs considerably high deployment costs.
Hybrid 5G/Ethernet+Cloud. A hybrid paradigm of SRI
leverages Ethernet for high-speed connections between in-
frastructure nodes. With computing tasks still offloaded to
the cloud, it integrates 5G for the communication between
infrastructure nodes and the cloud. This paradigm features
reliable data transfer and 5G’s expansive reach. However, it
still incurs significant initial costs for fiber optical Ethernet
setup and recurring expenses for 5G data plans.
3.3 System Architecture
Soar adopts a systematic design methodology that seam-
lessly integrates I2I and I2V wireless communication, effi-
cient data/compute task management, and careful power-
efficient hardware design. Soar achieves a remarkably low
total power consumption of approximately 70W, making it
easily deployable on existing traffic lampposts without re-
quiring extensive upgrades or modifications1. We note that
the design choices made by Soar target specifically the sce-
narios where SRI needs to be deployed at scale and operated
with minimal expense. However, given the highly diverse
real-world settings, different technologies would likely co-
exist and complement each other during the adoption and
deployment of SRI.

1Most operational traffic lampposts have a power supply budget of about
100 ∼ 200W, most of which is used for lighting [3].

Fig. 1 shows the system architecture of Soar . It comprises
a series of roadside infrastructure nodes, each equipped with
various sensors, an edge computer, and communication in-
terfaces. The Soar nodes can communicate with each other
via a multi-hop wireless network and broadcast to passing
vehicles. Soar adopts a hierarchical task management frame-
work to first allocate DL tasks within a cluster of nodes and
further optimizes their concurrent execution on each node at
runtime. Moreover, we design a set of application interfaces
to support diverse autonomous driving applications.
Hardware system.We choose three sensor modalities for
Soar : millimeter-wave (mmWave) radars, LiDARs, and ther-
mal cameras. MmWave radars are used for background tasks
such as speed measurement and vehicle counting. LiDARs
capture high-resolution yet privacy-preserving 3D informa-
tion about scenes and objects on the road. Motivated by the
fact that Soar only requires a view of the road, we employ
two low-cost solid-state LiDARs with an FOV of around 90◦
facing opposite directions of the road. Compared to tradi-
tional omnidirectional LiDARs [18], our design leads to a
10× cost reduction. Thermal cameras are chosen for their
night vision capability and the preservation of user privacy,
although RGB cameras can also be easily integrated. Each
Soar node equips a single-board edge computer as the main
control and compute unit. The communication subsystem of
Soar requires fairly high processing capability to implement
reliable high-bandwidth I2V and I2I communication (see § 4).
Therefore, it is implemented using a standalone embedded
computer board. Both the sensors and communication unit
are connected to the edge computer via a PoE switch. Such
a modular design improves both the system robustness and
the cost-effectiveness of part replacement. Moreover, each
Soar node achieves a total power consumption of ∼70W.
Communication system. The communication architecture
of Soar comprises a bi-directional multi-hop I2I network and
a downlink I2V broadcast service. Specifically, we choose
to implement I2I communication using a wireless 802.11ac
network in a multi-hop manner and adopt advanced network
coding to achieve high bandwidth and reliability. 802.11ac
can leverage existing roadside infrastructure and consumer-
level equipment, lowering upfront and operational costs. The
multi-hop approach allows to extend the network’s cover-
age without needing extra infrastructure. We then adopt an
I2V communication framework based on the injector-sniffer
mode of 802.11ac that focuses on unidirectional downlink
broadcasting from Soar to vehicles. Soar focuses on passive
broadcasting to significantly ease the integration of SRI with
existing autonomous driving systems. Applications such as
perception sharing and accident warning only need vehicles
to receive and process sensor information from the infras-
tructure, making the passive broadcast model an ideal choice
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as vehicles in the vicinity of each other usually require iden-
tical information about the surroundings.
Data and task management. For data management, we
adopt a publisher-subscriber scheme where Soar creates a
data publisher for each sensor and launches subscribers to
fetch data. This design decouples the data consumption from
sensors, thus achieving the plug-and-play of multi-modal
sensors at the software level. Moreover, it prevents sensors
from direct access by downstream tasks, which enhances the
security of sensor data.
Soar adopts a collaborative edge approach [52] and pro-

poses a novel hierarchical task management architecture that
distributes data processing and tasks across local Soar nodes.
Thus, Soar can leverage the processing capabilities of local
infrastructure nodes so that tasks can be processed closer
to the data source to reduce data transmission and latency.
Soar nodes are first clustered based on their geographical
distribution (e.g., the nodes on the same road section are
grouped into the same cluster). The cluster head dispatches
tasks within the cluster by jointly considering task urgency
and resource availability of nodes. Such a cluster-level task
allocation approach achieves desirable load balancing among
nodes and enables them to collaborate efficiently to run mul-
tiple data-intensive applications. Moreover, it naturally sup-
ports location-awareness of data and compute tasks, such as
processing sensor data from nodes around busy intersections
and sharing results with vehicles ahead of time. In addition to
the cluster-level task dispatching, we design an opportunis-
tic DNN execution mechanism for local task execution on
each Soar node. Our key idea is to generate a lite DNNmodel
for each DL task, and then choose one of the versions to
execute at runtime, which can accommodate highly dynamic
communication bandwidth and computing resources.
Application interfaces.We design a set of application inter-
faces to efficiently share the sensor data or compute results
with vehicles. First, Soar supports the provision of raw or
processed sensor data based on the requirements of different
downstream autonomous driving applications. Using LiDAR
data as an example, Soar broadcasts three levels of LiDAR
results: the raw point clouds, semantic segmentation results,
and object detection results. They can be utilized by map-
ping [61], navigation [63], and decision-making [72] tasks on
the vehicle, respectively. Moreover, Soar can also broadcast
high-level traffic information such as current traffic conges-
tion level or accident warnings to surrounding vehicles.

4 COMMUNICATION SYSTEM
4.1 Multi-hop I2I Network
A key design objective of Soar is to achieve high-bandwidth
multi-hop I2I communication, i.e., about 100Mbps over up
to 10 hops within 500meters. This allows the Soar nodes

located on the same road section to achieve efficient coor-
dination and load balancing. As depicted in § 3, Soar lever-
ages a cluster-level task allocation approach to overcome the
limited compute resources on each node. Such task offload-
ing requires high-bandwidth and reliable data transmission
among Soar nodes. For instance, a typical LiDAR produces
point clouds at a rate of more than 30Mbps [18]. As discussed
in § 3.2, we opt to employ off-the-shelf 802.11ac to imple-
ment I2I communication of Soar for its wide availability and
cost-effectiveness. The left part of Fig. 2 illustrates our I2I
communication architecture.
Linear network topology and multi-hop routing. The
mesh topology is widely adopted in multi-hop wireless ad
hoc networks [53, 69]. However, it is well known that the
throughput of wireless mesh networks is low in real-word
settings due to severe interference and channel contention.
The design of Soar addresses this challenge by exploiting the
naturally linear topologies of roadside nodes. Specially, we
implement a multi-hop routing strategy where each node
has two bridged 802.11ac interfaces operating in AP and STA
modes, connecting to previous and next nodes. This design
offers greater scalability compared to Ethernet or 5G cellular
networks in terms of cost-effectiveness and deployment flex-
ibility. In case of link failures, nodes automatically attempt
to establish a connection with a further node. We adopt such
a semi-fixed routing strategy instead of fully dynamic multi-
hop routing protocols [29, 34, 70] because the link between
adjacent Soar nodes typically have a line of sight and short
distance (e.g., 30 ∼ 50m [28, 68]), resulting in good link
quality.
Network coding. Multi-hop wireless networks often suffer
from significant packet loss [22]. While various link layer
techniques, such as network coding [21, 58] and fountain
codes [62, 75], have been proposed to enhance multi-hop
reliability, the high compute and storage costs limit their ap-
plicability to resource-constrained edge platforms [84, 87]. To
tackle this challenge, we employ the Batched Sparse (BATS)
code [83], an advanced network coding approach that ad-
dresses the packet loss in linear multi-hop networks with
extremely low power and storage consumption. We exploit
it to optimize end-to-end communication throughput and
relieve heavy retransmission overhead. Specifically, BATS
code features an outer code and an inner code, with the outer
code being a matrix generalized fountain code generating
numerous batches for high capacity. During the multi-hop
transmission, an inner code derived from random linear net-
work coding [50] is applied to the batched packets at each
relay hop, realizing persistent reliability with low overhead.
Though several studies [84, 91] have demonstrated the per-
formance of BATS code in simulations or lab settings, Soar is
the first system to apply BATS codes in real-world I2I com-
munication. We implement BATS codes at the network layer
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to be compatible with the existing network stack, which is
transparent to traditional socket and transport layer pro-
tocols. We utilize Netfilter [16] to capture IP packets and
apply different coding depending on their destinations. Fig. 3
shows iperf3 [14] results of a 10-node wireless linear net-
work. With BATS codes, TCP throughput can achieve above
100Mbps over 6 hops and 90Mbps over 9 hops, an up to 5×
improvement compared to the baseline without BATS codes.

4.2 I2V Broadcast
Soar needs to transmit large volumes of data to passing ve-
hicles for downstream autonomous driving tasks, such as
providing LiDAR point clouds for 3D perception, which de-
mands ∼ 30Mbps bandwidth [47]. Soar aims to achieve a
communication bandwidth of ∼ 50Mbps between SRI and
multiple vehicles.
Injector-sniffer-based high-bandwidth broadcast. As
discussed in § 3.2, we propose an 802.11ac-based I2V commu-
nication framework for high-bandwidth, cost-effective data
broadcast from each Soar node to nearby vehicles. Our design
focuses on the unidirectional downlink broadcasting and uti-
lizes the injector-sniffer mode [80, 81] to achieve high data
rates without link establishment. Soar provides either raw
sensor data or detection results (e.g., bounding boxes), which
can support a range of autonomous driving tasks that rely
on SRI data to enhance perception and reliability. The Soar
node acts as an injector, transmitting raw wireless packets
with headers into the air, while vehicles sniff packets using
onboard 802.11ac receivers. This broadcast design without
vehicle feedback makes Soar highly scalable with respect
to the number of vehicles in the network. The right part in

Fig. 2 shows the I2V communication pipeline. Soar node first
encodes data with error correction, then modulates it using
an empirical rate selection scheme, and finally transmits on
a pre-assigned channel. Vehicles decode packets, recover
original data for applications, and determine the channel to
receive messages based on location or signal strength.
Error correction code. Without vehicle feedback, our pas-
sive data broadcast design may experience severe packet loss,
hindering goodput for downstream applications. To tackle
this challenge, we apply a systematic random linear code [40]
for error correction, which generates multiple check packets
on application layer to ensure high data delivery reliability.
Measurement-based rate selection. After applying error
correction, Soar modulates data for transmission. A chal-
lenge in designing the modulation and coding scheme (MCS)
is selecting the optimal rate for reliable high-throughput
transmission. Existing works on the multicast rate selection
rely on receiver feedback and thus are incompatible with
our passive design. Our extensive real-world experiments
show that there exists a trade-off between modulation rate
and packet loss, depending on the environmental dynam-
ics. Fig. 5 illustrates that there exists an optimal MCS that
demonstrates consistent performance under different vehicle
speeds but varies with the road environments. This is be-
cause the impact of the environment (i.e., road shape, trees,
buildings, etc.) dominates the performance of I2V communi-
cation under different MCSs, while the impact of low urban
speeds (i.e., < 70 km/h) is not significant. Motivated by this
observation, Soar adopts an empirical MCS rate selection
schemewhere each node is configured with a fixed rate based
on installation-phase measurements.
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Figure 6: The task management framework of Soar.

Lightweight channel switching. Unlike 802.11ac incur-
ring significant reassociation overhead at high vehicle speeds
(Fig. 4), our design only requires vehicles to switch sniffing
channels to receive data from Soar continuously. With 24
non-overlapping channels in the 5GHz band, each Soar node
can be assigned a different channel without inducing the
interference among the same cluster. When a strong inter-
ference level (e.g., caused by nearby Wi-Fi, 5G signals, etc.)
is detected on the assigned channel, Soar node will switch
to another free channel. Each Soar node will periodically
broadcast the channel assignments for its cluster on a pre-
fixed control channel (e.g., channel 36). Passing vehicles first
listen to the control channel for channel assignments, and
then switch channels during movement based on their own
and nearby Soar nodes’ locations 2.
Security Issues. Without association and uplink from ve-
hicles to the infrastructure, our passive I2V broadcast de-
sign may be vulnerable to security issues like malicious data
injection. To mitigate such attacks, we employ private key
encryption [36] to create a digital signature within data pack-
ets. Certified vehicles can obtain a public key, which is used
to verify the signature upon data receipt to ensure security.

5 TASK MANAGEMENT
A key challenge of Soar’s design is supporting executing mul-
tiple real-timeDL tasks concurrently on resource-constrained
edge platforms. We propose a novel task management frame-
work that can efficiently dispatch DL tasks among multiple
Soar nodes in a collaborative manner. Our design is moti-
vated by the following characteristics of roadside infrastruc-
ture nodes. First, the DL tasks on different nodes are highly
diverse, due to different road sections and heterogeneous
hardware/sensor configurations. For instance, the Soar nodes
at the crossroads are typically installed with more types of
sensors for complex tasks such as vehicle tracking and pedes-
trian detection. Second, the communication bandwidth and
2The locations of Soar nodes are easily accessible by vehicles since they are
installed on existing lamppost infrastructure. Soar nodes may also obtain
their own locations through GPS and broadcast to vehicles.

compute resource available on each Soar node are highly
dynamic. For instance, traffic spikes during rush hour may
lead to a fluctuation in communication bandwidth.
To address these challenges, as shown in Fig. 6, our task

management framework is based on a two-tier clustering
structure, where the Soar nodes can be naturally clustered
based on road sections or geographic locations. First, Soar
employs a cluster-level task dispatcher, which is responsible
for balancing task workloads in a cluster by jointly con-
sidering task priorities/deadlines, resource availability, and
geographical positions of nodes. Second, Soar includes a
local opportunistic task scheduler to control the execution
of multiple DL tasks on a single Soar node, which aims to
optimize the real-time performance of concurrent DL tasks
under runtime system dynamics.

5.1 Cluster-level DL Task Dispatching
We design a cluster-level task dispatcher for SRI based on
both overall task priorities and resource utilization of each
Soar node. Our goal is to maximize the number of total de-
ployed tasks while meeting their real-time requirements, as
shown in Eq. 1. 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑚) denotes the task priority weight
of task 𝜏𝑚 . 𝑁 (𝜏𝑚, 𝑛) equals 1 if the task 𝜏𝑚 is deployed on
the Node 𝑛, else it equals 0. 𝑇 𝐸2𝐸 (𝜏𝑚, 𝑛) denotes the end-
to-end delay of the task 𝜏𝑚 executed on Node 𝑛, which is
defined as the total delay between the launch and the com-
pletion of a task.𝑇 𝐸2𝐸 also includes the communication time,
which is estimated based on the periodically measured band-
width. 𝐷𝐷𝐿(·) is the expected completion time (i.e., dead-
line) of each task, which is not less than the trigger period
𝑃𝑒𝑟𝑖𝑜𝑑 (𝜏𝑚) of the task 𝜏𝑚 .

max
∀𝑚

∑𝑀
𝑚=1

∑𝑁
𝑛=1 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑚) × 𝑁 (𝜏𝑚, 𝑛)

s.t. 𝑇 𝐸2𝐸 (𝜏𝑚, 𝑛) ≤ 𝐷𝐷𝐿(𝜏𝑚),
∑𝑁

𝑛=1 𝑁 (𝜏𝑚, 𝑛) ≤ 1
(1)

An exhaustive search of the problem formulated in Eq. 1 has
a complexity of 𝑂 (𝑀𝑁 ). We adopt an efficient heuristic as
follows. First, we sort the task pool from high to low priority
according to the ascending order of 1/𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 . We also map
the task priorities to a sequence of power of 2. After this
mapping, the task with the longer relative deadline is priori-
tized as the lower priority 20. In this way, the priority weight
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑚) of tasks with high priorities can dominate those
with low priorities. Then, we determine the deployed node
for each task from high to low priority weight.
For each task, we search for its deployment node from

its source node to other adjacent nodes based on the phys-
ical proximity. If the time constraint in Eq. 1 is met, we
search for a Soar node that has the lowest resource utiliza-
tion to deploy the task 𝜏 . The resource utilization of a Node
𝑛 can be estimated by the sum of the task laxity of all the
tasks on this node, where the laxity for task 𝜏𝑚 is defined as
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𝑇 𝑡𝑜𝑡𝑎𝑙 (𝜏𝑚, 𝑛)/𝑃𝑒𝑟𝑖𝑜𝑑 (𝜏𝑚).𝑇 𝑡𝑜𝑡𝑎𝑙 (𝜏𝑚, 𝑛) denotes the total exe-
cution time of the task 𝜏𝑚 on Node 𝑛, which contains sensor
reading, task pre/post-processing and model inference.

5.2 Opportunistic DL Task Scheduling
Due to severe resource constraints and significant dynam-
ics in the real world, it is challenging to support multiple
real-time DL tasks concurrently on the edge platform of
the Soar node. As shown in Fig. 6, an end-to-end DL task
contains sensor reading, pre-/post-processing, blocking, and
model inference. Significant dynamics in the wild such as
power surges will cause unpredictable delays in sensor read-
ing. Moreover, resource contention between different system
processes (e.g., sensor reading, CPU/GPU processing etc.)
will cause dynamic blocking delays. To address these chal-
lenges, Soar adopts an opportunistic execution mechanism
to mitigate the impact of fluctuating system delays on the
inference of multiple concurrent tasks.

Our main idea is to generate a lite model for each DL task,
which can better adapt to unpredictable resource availability
at runtime. The lite model can be a compressed DNN model
or a small model that distillates knowledge from the origi-
nal model. However, the lite model achieves a desirable low
latency at the expense of accuracy. To mitigate the potential
accuracy loss, we design an online opportunistic scheduling
algorithm, which executes the lite models only when the time
constraints cannot be met, thus minimizing the impact on
task accuracy. By exploiting such model compressibility, Soar
can reduce the resource demand of each inference according
to the runtime condition. Soar preloads both the original
and the lite models during initialization to avoid dynamic
loading delays. Our design can also work with existing stor-
age optimization methods such as weight sharing [37, 60] to
reduce the storage overhead of lite models.

Given a task set allocated by the cluster head, we split each
task into pre-/post-processing and model inference. These
task segments are then assigned to different processes and
executed in a pipelining manner. This design enables full
utilization of both CPU and GPU resources by executing
pre/post-processing for one task alongside the inference of
other tasks in parallel. At runtime, we first determine which
model to be executed according to the urgent level of each
model inference. Specifically, Soar chooses the model infer-
ence job with the latest deadline in the queue for execution.
Soar then determines the DNNmodel (i.e., the original or lite
model) to be executed according to the remaining time of the
current and the next inferences. We estimate the completion
time of each model inference through the measurement re-
sults from offline profiling. Meanwhile, Soar checks onemore
job in the queue. If there is not enough remaining burst time
for the next urgent inference, Soar also uses the lite model

for the current inference. The jobs that miss the deadline are
dropped before execution to prevent the delay accumulation.

6 IMPLEMENTATION AND DEPLOYMENT
6.1 System Implementation
We deployed 18 Soar nodes on existing lampposts in two
clusters on our campus, as shown in Fig. 7. The first cluster
consists of 6 nodes around a parking lot, with a server inside
a building serving as the cluster head. The second cluster
has 12 nodes along the main campus road and two cluster
heads in buildings. The two clusters cover 0.3 km and 0.5
km of road, respectively. Our campus testbed has received
approval from the Institutional Review Board (IRB).

Fig. 8a shows the prototype of Soar implementation. Each
Soar node is mounted at the bottom of a lamppost, whose
components and layout are shown in Fig. 8b. The system
uses an NVIDIA Jetson TX2 computing board [66] in a wa-
terproof enclosure, and other devices such as the communi-
cation box and sensors are connected to it via a PoE switch.
We implement the communication system in a separate in-
dustrial single-board computer whose hardware is modified
to support multiple 802.11ac network cards. To support I2V
broadcast, we modified the RTL8814AU [7] driver to enable
customized packet injection. Most nodes are equipped with
a Teledyne FLIR thermal camera [39] and two Livox Horizon
LiDARs [13], and some also have a TI mmWave radar [15].
Two or three directional antennas are mounted on the top,
pointing at adjacent nodes, and a set of I2V antennas is in-
stalled below, facing the road. Each node costs 10.2𝑘 USD
approximately, with the sensors costing around 2.75𝑘 USD
and other components costing 1.95𝑘 USD. We implement
the sensor data management module based on ROS2 [64],
which offers various sensor drivers and APIs for realizing the
publisher-subscriber mode data management. The task man-
agement module is implemented in KubeEdge [71], which
allows the cluster head to efficiently dispatch task codes
and their environmental dependencies to each node through
the containerization technique. To periodically estimate the
I2I communication bandwidth between Soar nodes during
cluster-level task dispatching, we use iperf3 [14] to assess
bandwidth on each link every 10 minutes, which incurs neg-
ligible overhead.

6.2 Deployment Experience
Installation considerations. To save lighting power during
day time, the lampposts on campus are powered on/off auto-
matically by a solar timer-controlled switch on the circuit bus.
To power Soar nodes from lampposts continuously, we re-
moved the switch on the bus and modified the power supply
on each lamppost into two parts, one nonstop power supply
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for each Soar node and a solar timer-controlled one for light-
ing. Moreover, by calculating the load-bearing constraints in
extreme weather conditions, we limit the installation height
below 5m, the weight below 30 kg, and the lantern windage
area below 0.12m2. As a result, we installed the antennas
and sensors above 3 meters on the lamppost due to their
light weight (i.e., around 5 kg), which avoids any occlusion
to the view of the road.
System durability and robustness. We also optimized the
durability and robustness of Soar for in-the-wild deployment
according to more than two years of operational experi-
ence. We added a shelf to hold the box of computing devices
and store the waterproof cables at the bottom, which can
effectively avoid water accumulation over time. Moreover,
during the long-term operation of Soar , we observed that
the lamppost power supply could occasionally fall short of
the operational power requirement of Soar , causing a system
reset. This is due to either dynamic grid conditions or the
high instantaneous power draw at the startup of hardware
devices. For example, Jeston AGXXavier [12] consumes 65W
of power at startup but only up to 30W at runtime. This prob-
lem can be addressed by adding an uninterruptible power
supply, which has been validated on our system.
Edge software architecture. To realize the containerized
software deployment, we initially chose Kubernetes (K8S) [17]
due to its support for container management. However, dur-
ing our deployment, we found various issues, such as the
unstable connection between Soar nodes and the cloud server
(i.e., via TCP socket). In this case, the container deployment
from the server to the Soar nodes can be terminated or

even forcibly removed by K8S. Therefore, we switched to
KubeEdge [71] as our development framework, enabling the
autonomous edge operation even during disconnection from
the cloud. Furthermore, the KubeEdge-based implementa-
tion occupies only up to 80MB of memory, a 60% reduction
compared to the K8S-based implementation.

7 EVALUATION
7.1 Evaluation Methodology
Field studies and self-collected dataset. We conduct ex-
tensive experiments based on the two clusters of Soar nodes
on campus (see § 6). We drive a test vehicle equipped with
a LiDAR, a GPS, a four-antenna array, and a Jetson Orin
(see Fig. 9) to continuously receive data from Soar nodes. To
simulate the presence of other vehicles receiving data from
Soar , we randomly placed some fixed 802.11ac devices as
pseudo vehicles receiving data from nearby Soar nodes to
simulate different traffic conditions. Moreover, we collect
infrastructure- and vehicle-side LiDAR point cloud datasets
(4250 frames in total) and manually annotate them to train
models for evaluating application performance on Soar .
Application implementation.We implement three typical
autonomous driving applications that require executing DL
tasks on Soar , which are shown in Table 2. These applications
include LiDAR-based perception sharing, RGB camera-based
traffic monitoring, and thermal-camera-based jaywalk warn-
ing. Due to the privacy concerns of the campus testbed, we
deploy a virtual camera in our data management framework
that streams KITTI data [41]. For both traffic monitoring and
jaywalk warning, we choose YOLOv5s-based and YOLOv5n-
based models as the original and lite models. These models
are trained using the KITTI dataset and the Teledyne FLIR
ADAS dataset [39], respectively. In the perception sharing,
we compress the original PointPillars [57] with width/depth
scaling methodology [77] to generate a lite model, and train
them with our self-collected dataset. These three applica-
tions run concurrently on each node for all the experiments,
and the results are transmitted to the vehicle.

To further evaluate the benefits of Soar for AVs, we imple-
ment two typical infrastructure-assisted perception fusion
applications: point cloud registration and LiDAR perception
extension. In point cloud registration, the vehicle receives
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raw LiDAR point clouds and aligns them with its own point
clouds. The LiDAR perception fusion is the downstream ap-
plication of perception sharing, where the vehicle receives
the object detection results and fuses them into its view.
Metrics. For evaluation of the communication system of
Soar , we are interested in throughput, switching overhead,
and packet delivery ratio (PDR). The switching overhead is
measured by calculating the fraction of time spent on switch-
ing the channel during receiving data from a Soar node. To
evaluate the task management performance, we quantify
the real-time performance achieved by our framework using
the deadline missing rate, a widely-used metric for real-time
performance evaluation [27, 60]. Specifically, the deadline
missing rate contains the job drop and exceed ratios, which
indicate the ratios of jobs dropped because of overdue and
failing to meet their deadlines, respectively. We also statistic
the average end-to-end (E2E) delay (defined in § 5) of each job
to quantify the execution efficiency of the DL tasks. More-
over, to focus on the overall performance of Soar in the ap-
plications, we define a failure rate to indicate the percentage
of cases where the system failed to deliver application data
to the vehicle. The failure cases include failing to execute in
time and failing to transmit the results to the vehicle.
Baselines. We compare both our I2I and I2V communica-
tion with the traditional 802.11ac approaches. Specifically,
we evaluate the I2I communication performance w/ and w/o
BATS code. Besides, the I2V communication of Soar is com-
pared with traditional 802.11ac broadcast and unicast modes.
For comparison of our task management framework, we
implement a task execution mechanism called Local-EDF
which executes the DL tasks locally on their source nodes
and adopts the Earliest Deadline First (EDF) scheduling pol-
icy for concurrent DL task execution. For the evaluation of
the overall performance of Soar , we combine the 802.11ac uni-
cast approach and the Local-EDF task management scheme
as the baseline. We also compare Soar with three cloud-based
baselines. In addition to the settings outlined in Table 1 (re-
ferred to as Ethernet+Cloud and 5G+Cloud), we introduce
an additional baseline called 802.11ac+Cloud. This baseline
replaces the Ethernet/5G I2I method with campus Wi-Fi.
7.2 Overall Performance
Evaluation setup. We evaluate Soar with varying combina-
tions of applications across nodes of Cluster 2. Soar nodes
have varying task sets since they have different combina-
tions of sensors. Table 2 presents the distribution of tasks on
nodes. The source node is where the data required by the task
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Figure 10: Overall performance of Soar system.

is generated, which is set according to the sensors and the
covered road condition (e.g., crossings). Soar aims to extend
the field of view for AVs, enabling them to have a broader
perception. The Soar node shares application results with the
vehicle when it enters the sensing range. We set the deadline
for the delivery of results so that the vehicles can receive a
considerable portion of the SRI’s view. As an example, we
now derive the deadline setting for a vehicle entering the
sensing range of a Soar node (e.g., 50𝑚 sensing range) at a
speed of 70𝑘𝑚/ℎ. We assume that the Soar node must share
at least 90% of the sensing range (i.e., 45 out of the 50-meter
range). That is, the data from Soar must be received by the ve-
hicle when it travels no more than 5 meters into the sensing
range of Soar node, which is equivalent to a time duration
of 5𝑚

70𝑘𝑚/ℎ = 250𝑚𝑠 . In our experiments, the sensors on Soar
typically have a sensing range of 50 ∼ 70𝑚. To ensure that
vehicles traveling at speeds between 50 ∼ 70𝑘𝑚/ℎ share at
least 90% of Soar node’s sensing range, we set application
deadlines in the range of 250 ∼ 500𝑚𝑠 . Specifically, we set
three different levels of application deadlines as outlined in
Table 2, with the most urgent deadline set at 250𝑚𝑠 for per-
ception sharing and jaywalk warning, and 300𝑚𝑠 for traffic
monitoring, as the former applications typically require more
urgent attention. We note that Soar essentially functions as
an on-the-air sensor for vehicles to provide additional per-
ception beyond the short range around the vehicles. Since
most autonomous vehicles only rely on their own sensors to
perceive the short-range surroundings, Soar does not affect
the safe-critical short-range path planning.
Overall task performance. We evaluate the overall ap-
plication performance by comparing Soar with the overall
baseline described in § 7.1. We provide a comprehensive anal-
ysis under the most urgent deadline setting, and summarize
the performance improvement achieved for the other two
deadline settings. Table 3 shows the allocation strategy gen-
erated by Soar . We observe that Soar successfully offloads the
DL tasks from the heavily loaded node to the idle or lightly
loaded node. For example, a data-intensive PointPillars-based
DL task migrated from Node 11 to Node 12. Fig. 10 shows
the failure rate for each Soar node. We omit several Soar
nodes in Fig. 10 as we calculate the failure rate based on
tasks’ source node, and no task is sourced from these omit-
ted nodes. We observe that Soar can achieve a failure rate
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Table 2: Application settings and distribution. Text in italics describes the settings for lite models.
Application Source Node Model Sensor Execution Deadline (ms) Accuracy

Perception Sharing (P) 1,3,7,9,11 PointPillars LiDAR 128.0 /118.3 ms 250 / 300 / 350 85.5% / 83.0%
Traffic Monitoring (T) 1,2,5,7,10 YOLO Virtual Camera 37.2 /32.7 ms 300 / 350 / 400 87.1% / 81.0%
Jaywalk Warning (J) 3,4,5 YOLO Thermal 78.3 /43.3 ms 250 / 300 / 350 84.7% / 82.0%

Table 3: Task allocation results on smart lampposts.
Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12

Baseline P1,T1 / P2,J1,J2 J3,J4 T2,T3,J5 / P3,P4,T4 / P5 T5,T6 P6,P7 /
Soar P1,T1 J1 P2,J2 J4 J3,J5 T2,T3,T4 P3 P4 P5 T5,T6 P6 P7
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Figure 11: Performance of task management.

reduction at 41.19% on average before transmitting the appli-
cation results. After transmitting the application results, Soar
can maintain a failure rate below 14.46% (3.90% on average),
while the baseline incurs a failure rate up of 99.54%. In sum-
mary, Soar reduces the failure rate significantly (50.93% on
average) compared with the baseline. For the other two dead-
line settings, Soar demonstrates an average reduction in the
failure rate of 28.39% and 24.40%, respectively. The results
show that Soar consistently maintains a reliable application
performance for AVs among multiple Soar nodes.

We further analyze the advantages of task management in
Soar by focusing on the real-time performance of each task
on a single node. Fig. 11 shows the deadline missing rate
and average E2E delay of each task sourced from Node 11.
Soar reduces deadline missing rate efficiently by 97.67%. The
average E2E delay is decreased by 85.43𝑚𝑠 since our task
management has successfully allocated the task 𝑃7 from
heavily loaded Node 11 to the idle Node 12. We also show
the deadline missing rate and accuracy loss on Node 1. The
results show that Soar can reduce the deadline missing rate
by 47.16% on average with all tasks executed locally. This
is because our opportunistic DL task scheduler efficiently
chooses the lite model for execution when the remaining
time for the current and next inference is about to run out,
which only leads to 0.55% accuracy loss on average.
Performance comparison with cloud baselines.We eval-
uate the performance between Soar and cloud baselines (see
§ 7.1) using different network configurations. Since our out-
door testbed supports limited communication settings, we
set up an indoor testbed that supports the simulation of
diverse network conditions. Specifically, three TX2 edge
nodes transmit their sensor data to an NVIDIA GeForce
RTX 2080 Ti server for processing through a wired Ethernet
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Figure 12: Comparison with cloud baselines.
connection. We implement the baselines for cloud-based im-
plementations by applying a trace collected from a public
local AWS [11] server using CloudPing [10], in which the
result exhibits a 15𝑚𝑠 round-trip time (RTT) between Soar
nodes and the cloud on average. To emulate the 5G+Cloud
and 802.11ac+Cloud communication, we capture real-world
traces using SpeedTest [4] at each Soar node of our outdoor
testbed. These traces contain bandwidths and dynamics of
5G and campus Wi-Fi. We replicate the settings used for
Node 9, 10, 11 from Fig. 10 and show the failure rate of each
task in Fig. 12. The results indicate that Ethernet+Cloud
outperforms Soar in terms of performance but comes with
higher deployment costs, as discussed in § 3.2. However, Soar
demonstrates an average reduction in failure rate of 0.17%
and 42.85% compared to 5G+Cloud and 802.11ac+Cloud, re-
spectively. 802.11ac+Cloud performs poorly because many
tasks failed to meet the deadlines due to significant delays
caused by the transmission of large volumes of raw sensor
data. Although 5G is capable of achieving high-bandwidth
communication, our traces indicate that its uplink perfor-
mance was unsatisfactory, only reaching 80𝑀𝑏𝑝𝑠 on average.
Furthermore, we observe that the network may suffer signif-
icant bandwidth degradation (i.e., 40𝑀𝑏𝑝𝑠) due to various
blockages. Such limited bandwidth leads to significant de-
lays, resulting in a high failure rate. Besides performance
gain, Soar incurs lower operation costs (c.f., Table 1). Al-
though cloud-based alternatives reduce the maintenance
cost of computation units, the costs associated with repair-
ing or replacing faulty sensors and communication devices
are inevitable. In contrast, Soar avoids costly 5G operations,
base station installation, and cable maintenance, making it a
viable and practical solution for long-term deployment.
Performance of applications on the vehicle.We evalu-
ate the Soar can support infrastructure-assisted autonomous
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Table 4: Point cloud registration on Soar.
Methods Offline Soar Soar w/o ECC

Registration Error (m) 0.10 0.16 0.39
Success Rate (%) 85.32 77.31 52.43

Density Benefit (𝑝𝑡𝑠/𝑚2) 46 39 10

Table 5: LiDAR perception extension on Soar.
Methods Offline (Laptop) Soar (TX2) w/o Soar (TX2)

fps 10 3.67 1.73
Fusion Error (m) 0.46 0.73 1.09
Benefit Ratio (%) 42.1 37.9 15.4

driving applications on the vehicle side. Table 4 and Table 5
present the results of point cloud registration and LiDAR
perception extension, respectively. The “offline” in the ta-
bles denotes the offline execution performance of our im-
plemented applications using the original point clouds from
the vehicle and infrastructure sides. Table 4 uses “success
rate" and “density benefit" to present the performance of
point-cloud registration and beneficial sensor data for vehi-
cles, respectively. Table 5 leverages “fps" to show the frame
rate of the perception fusion. We note that these metrics are
widely adopted in various work [47, 74].

The point cloud registration requires Soar to transmit
a large volume of raw point clouds to the vehicle, so its
performance indicates the I2V communication performance.
Results in Table 4 indicate that using point clouds transmitted
by Soar with the error correction code (ECC), the vehicle can
achieve a registration performance and point cloud density
benefit similar to using original point clouds. This is because
passive data transmission can suffer from severe packet loss
without ECC. For the LiDAR perception extension, it requires
only negligible results transmission while introducing a data-
intensive task (i.e., 3D object detection with point cloud) to
Soar . Table 5 shows that Soar achieves consistent perception
fusion accuracy and the ratio of perception extension among
different hardware platforms compared with the baseline.
However, the baseline can only achieve 1.73 fps which incurs
significant perception fusion errors (over 1m) and benefit
loss. The reason that Soar can achieve an acceptable fps (i.e.,
> 3 fps) required by the application [74] is the optimal task
execution by our task management framework.

7.3 Communication Benchmark
Impact of the number of vehicles. We first investigate
the impact of the number of vehicles on I2V communication.
We employ a vehicle with different numbers of pseudo vehi-
cles. The speed of vehicles is around 10 ∼ 20 km/h. Fig. 13
shows the throughput of Soar and two baselines with differ-
ent numbers of vehicles. Soar and 802.11ac broadcast exhibit
negligible change, while the throughput of 802.11ac unicast
plummeted with more vehicles. Although 802.11ac broadcast
is resistant to the vehicle number, its low throughput can
not afford the large volume of data required by autonomous

driving applications. On the other hand, 802.11ac unicast
presents terrible scalability. In contrast, Soar demonstrates
consistent throughputs exceeding 50Mbps regardless of the
number of vehicles. To be specific, when there are six vehi-
cles, Soar achieves 3× the throughput of 802.11ac unicast.
Impact of switching overhead. We further explore the
impact of switching overhead on the performance of our
I2V communication. We utilize five consecutive Soar nodes
to transfer raw LiDAR data at 30Mbps. One vehicle drives
through the nodes at different speeds. We choose 802.11ac as
the baseline. Fig. 16 shows a data trace of channel switching
when the vehicle moves at 20 km/h. The upper and lower
lines are the throughput of 802.11ac and Soar , respectively.
802.11ac exhibits significant switching overhead because of
its prolonged reassociation. In addition, our measurement in
Fig. 4 shows that 802.11ac suffers from non-trivial switching
overhead with higher vehicle speed. Such a high overhead
prevents 802.11ac from being used in our I2V communication.
However, Soar only requires adjusting the sniff channel with
negligible performance degradation, which enables Soar to
provide seamless data transmission to vehicles.
Error correction code. We evaluate the performance of
the error correction code used in our passive downlink I2V
broadcast. Fig. 17 shows the PDR results under various appli-
cation data rates. When the data rate is low (e.g., 10Mbps),
Soar with error correction code can achieve less than 1%
packet loss. With a large amount of data (e.g., 30Mbps), we
can still maintain over 90% of PDR. Instead, without error
correction codes, the PDRs are only around 60%. The results
show that Soar with error correction codes can achieve high-
goodput and reliable transmission in different applications.

7.4 System-level Performance
We present long-term system-level performance of Soar in
this section. First, we evaluate the long-term communication
performance of our deployment by collecting throughput
from each node to the sink node between Oct. 2022 and
Dec. 2022. Fig. 14 shows that the average throughput con-
sistently achieved 100𝑀𝑏𝑝𝑠 , except a notable performance
degradation occurred on 7 Dec. 2022 due to the failure of one
node. However, with our semi-fixed routing strategy (see
§ 4.1) nearby Soar nodes performed link recovery to estab-
lish new links, which allows Soar to still maintain around
50𝑀𝑏𝑝𝑠 during the transition. The error bar in Fig. 14 shows
a percentile interval from 25% to 75%, which illustrates a
considerable level of link instability (e.g., over 50𝑀𝑏𝑝𝑠). To
investigate the performance of each link of Soar nodes, we
analyze the per-link throughput of Soar Cluster 2 in Oct.
2022. Fig. 15 shows that the throughput of links varies sub-
stantially, which is caused by the differences and dynamics
in the physical environment of each node. Nevertheless, Soar
can achieve over 100𝑀𝑏𝑝𝑠 throughput for all links.
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It is well known that the CPU/GPU performance can de-
grade considerably at high temperatures [5]. We further
tested the computing performance of the CPU and GPU on
Soar over a period of three months, with an average temper-
ature of 20 ∼ 29◦𝐶 . We use sysbench [20] and mixbench [55]
to evaluate the CPU and GPU performance, respectively.
The experimental results reveal that the average execution
time for a sysbench event on CPU ranges from 90.88𝑚𝑠 to
90.91𝑚𝑠 , indicating no significant performance degradation.
The GPU performance is measured to be 20.79𝐺𝐹𝐿𝑂𝑃𝑆 on
average, with a standard deviation of 0.005. Overall, the re-
sults demonstrate no significant performance fluctuations for
the CPU/GPU of our platforms over several months despite
varying temperatures and prolonged use.

8 DISCUSSION
Cost-effectiveness. Soar provides a reference design of
SRI using inexpensive off-the-shelf computing and sensing
components based on practical power and budget constraints
of operational lampposts. Soar’s modular hardware design
and data management framework enable cost-effective part
replacement and plug-and-play functionality with powerful
processors and multi-modal sensors. This design supports
different components (e.g., communication, computing, etc.)
to be upgraded in a cost-effective manner. In addition, Soar
nodes can be deployed with diverse densities to enable a
trade-off between the assistive services for vehicles and the
deployment cost. For example, Soar nodes can be strategically
deployed densely where they are most needed, such as busy
intersections and crosswalks.
Scalability. Soar’s cluster-based networking and task man-
agement architecture facilitates large-scale deploymentswith-
out compromising on application performance. Soar effi-
ciently broadcasts data in universal formats, such as raw
sensor samples or bounding boxes, which seamlessly sup-
ports a majority of current autonomous driving applications.

This paradigm is inherently scalable, as it simplifies the data
dissemination process and ensures that Soar can accommo-
date an expanding network of vehicles.
Security Issues. In this work, we assume that Soar functions
under secure settings and the data transmission between
infrastructure and vehicles is trusted. In real-world opera-
tions, various security measures can be integrated to enhance
the security of Soar , such as encryption of sensor data [45],
safeguarding model inference with access controls [48], and
authentication protocols for communication [25].

9 CONCLUSION
This paper presents the design and deployment of Soar , the
first end-to-end SRI system specifically designed for sup-
porting AVs. Soar consists of carefully designed components
for data and DL task management, I2I and I2V communica-
tion, and an integrated hardware platform, which addresses
a multitude set of system and physical challenges, allows to
leverage the existing operational traffic infrastructure, and
hence lowers the barrier of adoption. Based on a real-world
deployment of 18 Soar nodes on existing lampposts on cam-
pus, our evaluation shows that Soar can support a diverse set
of autonomous driving applications, and achieve desirable
real-time performance and high communication reliability.
Our experience offers key insights into the development

and deployment of next-generation SRI and autonomous
driving systems. Soar demonstrates a highly efficient yet
practical instance in a fairly large design space for SRI. In
the future, we will integrate emerging open communication
systems based on advanced V2X technologies. In particular,
an open question is how to implement high-bandwidth I2I
and I2V communication in a cost-effective manner using
5G and emerging 6G cellular technologies. Lastly, we will
investigate new cyber-physical security mechanisms that
can protect AVs, which become increasingly critical with the
prominence of smart roadside infrastructure.
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