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Abstract

Four X-ray data sets of the Soft Gamma Repeater SGR 1806−20, taken with the Gas Imaging

Spectrometer (GIS) onboad ASCA, were analyzed. Three of them were acquired over 1993

October 9–20, whereas the last one in 1995 October. Epoch-folding analysis of the 2.8–12 keV

signals confirmed the ∼ 7.6 s pulses in these data, which Kouveliotou et al. (1998) reported as

one of the earliest pulse detections from this object. In the 1995 observation, 3–12 keV pulses

were phase modulated with a period of T =16.4±0.4 ks, and an amplitude of ∼ 1 s. This makes

a fourth example of the behavior observed from magnetars. Like in the previous three sources,

the pulse-phase modulation of SGR 1806−20 disappeared at <
∼

2.5 keV, where the soft X-ray

component dominates. In the 1993 data sets, this periodic modulation was reconfirmed, and

successfully phase-connected coherently across the 11 d interval. As a result, the modulation

period was refined to T = 16.435± 0.024 ks. The implied high stability of the phenomenon

strengthens its interpretation in terms of free precession of the neutron star, which is deformed

to an asphericity of ∼ 10
−4, presumably by the stress of toroidal magnetic fields reaching ∼ 10

16

G. Toroidal fields of this level can be common among magnetars.
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1 INTRODUCTION

Consider an axisymmetric rigid body with I1 = I2 6= I3, where

Ij is the moment of inertia around the principal axes x̂j (j =

1, 2, 3), with x̂3 the body’s symmetry axis. When the body

is free from external torque, its angular momentum ~L is con-

served, and its dynamics around the center of gravity is split into

two modes (Landau and Lifshitz 1996) that degenerate when the

body is spherical. One is free precession, wherein x̂3 rotates (as

seen from the inertial frame) around ~L with a constant preces-

sion period Ppr =2πI1/L, and a constant wobbling angle α rel-

ative to ~L. (This should not be confused with forced precession

that is often observed in a spinning top.) The other is rotation

around x̂3 with a rotation period Prot = 2πI3/L= Ppr/(1+ ǫ),

where ǫ ≡ (I1 − I3)/I3 is asphericity. When α 6= 0 and the

body’s emission is symmetric around x̂3, we can detect Ppr as

the pulsation, whereas Prot is undetectable (see a discussion in

subsection 4.3.1). If α 6= 0 and the emission violates the sym-

metry around x̂3, the phase of the pulsation at Ppr becomes

© 2014. Astronomical Society of Japan.
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modulated at the beat period between Ppr and Prot, given as

T =
Ppr

ǫcosα
=

1

cosα

(

P−1
rot −Ppr

−1
)−1

(1)

(Butikov 2006). This pulse-phase modulation (PPM) provides

evidence for the free precession in an asymmetrically radiating

celestial object that is axially deformed (ǫ 6= 0) and has α 6= 0.

Although astrophysical examples of free precession re-

mained relatively limited, we have detected its evidence

from three magnetars; 4U 0142+61 (Makishima et al. 2014;

2019), 1E 1547.0−5408 (Makishima et al. 2016; 2021a), and

SGR 1900+14 (Makishima et al. 2021b). In these objects, the

hard X-ray pulses with a period P = Ppr were found to ex-

hibit the PPM effect, with a long period of T ∼ 104P which

can be identified with T in equation (1). Further assuming

cosα ∼ 1, we find that these neutron stars (NSs) are deformed

to ǫ∼ P/T ∼ 10−4, and performs free precession.

Since the centrifugal effect is much smaller (estimated to be

ǫ ∼ 10−7) in these slowly rotating NSs, the deformation must

be due to magnetic stress. Then, the inferred magnetic field

becomes B ∼ 1016 G, when combined with a theoretical pre-

diction (Ioka & Sasaki 2004) as

ǫ∼ 10−4(B/1016 G)2. (2)

Because this B is much higher than the dipole magnetic fields

of these objects, Bd = (1− 7)× 1014 G, the magnetic fields

that cause the deformation are considered to be confined inside

these NSs, in the form of toroidal magnetic fields, Bt.

To reinforce this scenario, we study SGR 1806−20, with

the primary aim to search for the PPM effect. If this phe-

nomenon is common to magnetars, it should also be detected

from SGR 1806−20, the prototypical object which has con-

nected the two apparently unrelated astrophysical concepts, Soft

Gamma Repeaters and magnetars (e.g., Mereghetti 2008).

In all the preceding three objects (e.g., Makishima et al.

2016), the PPM was observed in their spectral hard X-ray com-

ponent (HXC), but absent in their soft X-ray component (SXC).

A likely interpretation is that the SXC is emitted symmetrically

around x̂3 (which we identify with the magnetic axis), whereas

the HXC breaks that symmetry. Among the known magne-

tars, SGR 1806−20 hosts by far the brightest HXC that extends

down to ∼ 3 keV (Enoto et al. 2010). Therefore, the PPM in

SGR 1806−20, if any, should be detected down to ∼ 3 keV, and

would disappear at lower energies. To confirm this conjecture

makes our second objective.

Since the first X-ray “identification” in 1993 (subsec-

tion 2.2), SGR 1806−20 was observed repeatedly by various

X-ray missions. Considering the second objective, we may uti-

lize not only hard X-ray data, but also those below 10 keV. We

hence select archival 0.7–12 keV data from ASCA acquired in

1993 and 1995, for the following reasons. (1) These ASCA data

provide one of the earliest information on the persistent emis-

sion from SGR 1806−20, and can be regarded as a start point

of the investigation of this subject in SGR 1806−20. (2) As

detailed later (subsection 2.1), the Gas Imaging Spectrometer

(GIS) onboard ASCA is ideal to our study. (3) Because the

PPM period T is expected to appear at several tens of kilo-

seconds, we need a total data span of >∼ 50 ks. This makes

ASCA better suited than, e.g., RXTE or XMM-Newton. (4) As

well known, SGR 1806−20 produced a giant flare (hereafter

GF) on 2004 December 27 (e.g., Palmer et al. 2005), and since

then, it showed enhanced timing noise (e.g., Younes et al. 2015),

for 10 yrs or more. This could hamper our timing studies, but

the ASCA data, acquired way before the GF, is expected to be

cleaner in its timing behavior.

So far, we have attributed the PPM in the HXC to the free

precession of a deformed NS. If this view is correct, the phase

modulation, due to celestial mechanics, must have high stabil-

ity. In our previous studies, consistent values of T were in fact

measured in separate observations (each for 1–2 days typically)

of the same source, but they were so widely apart that we were

unable to coherently phase connect the PPM across them. Now,

the ASCA data in 1993 were acquired in 3 separate pointings

which span a total interval of 11 days. Therefore, if the PPM is

detected, we can for the first time attempt to coherently phase

connect the periodic modulation, across a time span which is an

order of magnitude longer than was available before. This is the

third objective of the present study.

2 OBSERVATIONS

2.1 The Gas Imaging Spectrometer (GIS)

The Gas Imaging Spectrometer (GIS; Ohashi et al. 1996;

Makishima et al. 1996) onboard ASCA consists of a pair of

identical imaging gas scintillation proportional counters, named

GIS2 and GIS3. They are placed at the focal planes of the X-

ray Telescope (XRT; Serlemitsos et al. 1995), and cover a wide

field of view (0◦.75 diameter) with a moderate angular resolu-

tion (≈ 4′). The GIS also realizes a high sensitivity and a low

background, over a broad energy band of 0.7–12 keV which

covers both the HXC and SXC of SGR 1806−20. The modest

energy resolution (8% FHHM at 7 keV) of the GIS is sufficient

for the present purpose. Being gas detectors, the GIS also has a

high time resolution (∆t= 61 or 488 µs) which is sufficient in

the present work, together with a low dead time which allows

detections of burst-like phenomena.

2.2 A brief history

We briefly review the dramatic progress of the knowledge on

SGR 1806−20 that took place in the mid 1990s. As described

in Murakami et al. (1994), the fourth Japanese X-ray satellite

ASCA (Tanaka et al. 1994) had been in orbit for 7 months when

a burst activity of SGR 1806−20 was detected, after nearly a
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Table 1. X-ray data sets from the ASCA GIS utilized in the present work.

ID Start date MJD ∗ Data span† Net exposure Total photons‡ Flux§

G93pA 1993 October 9 49269.69 27.0 ks 15.4 ks 1990 1.41+0.16
−0.15

G93pB 1993 October 10 49270.88 59.3 ks 31.7 ks 7529 1.29+0.09
−0.08

G93p (G93pA+G93pB) — 162.1 ks 47.1 ks 9519 —

G93f 1993 October 20 49280.22 90.9 ks 39.7 ks 9613 1.26+0.08
−0.07

G93T (G93p+G93f) — 1000.8 ks 86.8 ks 19132 —

G95 1995 October 16 50006.07 112.4 ks 58.9 ks 13556 0.97+0.06
−0.05

∗ The Modified Julian Date of the first photon in the data.
† Gross elapsed time of the observation, from the start to the end.
‡ The total number of 0.7–12 keV events detected with GIS2+GIS3, including background.
§ Absorption-removed 2–10 keV fluxes in 10−11 erg s−1 cm−2, summed over the SXC and the HXC. Errors are 90% confidence limits.

decade, by the CGRO/BATSE on 1993 September 29. At that

time, the object was only coarsely (∼ 1◦ × 4′) localized by the

interplanetary burst-timing triangulation.

On 1993 October 9 and 10, four short pilot pointings with

ASCA were conducted, to cover the elongated error region

with the wide field of view of the GIS. During one of them,

onto “position-A” in Murakami et al. (1994), a short burst took

place, as detected also by the CGRO/BATSE (Kouveliotou et

al. 1994). Fortunately, this burst occurred at a periphery of

the GIS field of view; ∼ 170 signal photons were detected by

GIS2+GIS3, of which about 10 were telemetered to ground with

their full information (energy, position, and time). Using these

10 photons, the source was localized to an accuracy of several

arcmin. An associated persistent source was also detected.

In the second of the four pilot pointings, which was onto

“position-B” of (Murakami et al. 1994), the source happened to

be closer to the ASCA’s optical axis. Although no bursts took

place, the persistent emission was detected again by the GIS,

and also by the co-aligned narrower-field CCD instrument, the

Solid-State Imaging Spectrometer, or SIS (Burke et al. 1991).

The source location was refined by the finer position resolution

of the SIS, and was named AX1805.7−2025. This has provided

the “X-ray identification” of SGR 1806−20.

About 10 days later, on 1993 October 20, a follow-up ASCA

pointing was made to reconfirm AX1805.7−2025. The source

was observed again with ASCA in 1995 October. These follow-

up observations lasted longer than the pilot pointings.

Kouveliotou et al. (1998), hereafter KEA98, combined five

RXTE observations of SGR 1806−20 made in 1996 November.

They discovered the source pulsation at a period of P =7.47655

s, and verified that the object is a magnetized NS. They also re-

turned to the 1993 and 1995 ASCA data, and confirmed the pul-

sation at 7.46851±0.00025 s and 7.4738±0.001 s, respectively.

Based on the implied rapid spin down rate Ṗ = 0.8× 10−10 s

s−1 from 1993 to 1996, and assuming the energy loss via mag-

netic dipole radiation, they concluded that the NS has a strong

dipole field of Bd = 8× 1014 G. This made SGR 1806−20 the

first magnetar in its genuine sense. Since then, SGR 1806−20

was observed frequently, e.g., with RXTE and XMM-Newton

(e.g., Younes et al. 2015), across the 2004 December GF.

2.3 ASCA GIS data

We utilize the ASCA GIS data, acquired in 1993 and 1995, as

described above and detailed in table 1. There, G93pA and

G93pB denote two of the four pilot-survey pointings, at posi-

tions A and B of Murakami et al. (1994), respectively. The

short burst was detected by the GIS in G93pA, whereas the

source was localized by the SIS in G93pB. We also utilize the

two follow-up observations, made in 1993 and 1995, as descried

above; they are denoted by G93f and G95, respectively. We do

not use the SIS data from any of these observations, because of

the insufficient time resolution (either 2 s or 8 s).

The remaining two pointings in 1993, at “position-C” and

“position-D” (Murakami et al. 1994), are not utilized, because

the source was outside the GIS field of view. SGR 1806−20

was within the GIS field of view also on 1996 April 2, but its

location was far from the optics axis, and the data had a short

time span of ≈ 20 ks. Therefore, this data set is not used, either.

For each observation to be used, we retrieved screened 0.7–

12 keV GIS events from the JAXA/DARTS Website. On-

source events were extracted from a circular region of radius

0◦.1 around the source, and those from GIS2 and GIS3 were

coadded. The obtained backgrond-inclusive photon number is

givenin table 1. The count rate is twice lower in G93pA than

in the others, because the source was then farther from the XRT

optical axis, where the vignetting effect is severer.

Because G93pA is short with fewer signal photons, and is

separated only by ∼1 d from G93pB, we merge together G93pA

and G93pB into a single data set denoted as G93p, and mainly

analyze it. This G93p has a similar number of photons to G93f,

whereas its total time span, S = 162.1 ks, is nearly twice as

long as that of G93f (S=90.9 ks). After G93p and G93f are

analyzed individually, they are further merged together into a

longer data set named G93T, which is utilized in more detailed
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timing studies. The total time span of G93T reaches S=1000.8

ks, although its net exposure is only 8.7% of this; the remaining

91.3% is data gaps, of which the longest one, from the end of

G93pB to the start of G93f, is 760.6 ks (8.80 d) long.

3 DATA ANALYSIS AND RESULTS

The GIS data are analyzed without subtracting the background,

which amounts to ∼ 50% of the total on-source counts. Only

when estimating approximate source fluxes listed in table 1, we

subtract a standard background. The arrival times of these X-ray

events are converted to those to be measured at the Solar-system

barycenter. The data are not corrected for aspect efficiencies

(collimator transmission and vignetting). Since the object was

burst active in 1993, we produced a 10-s binned light curve from

each data set using a broad energy range, and searched those

bins where the counts exceed 2.5 sigmas above the average.

In G93pA, we reconfirmed and removed the 10 burst photons

(bunched in a single bin) describe in Murakami et al. (1994),

whereas no bursts were detected in the other data sets.

3.1 Periodograms

In the timing studies below, we search the photon time-series

data sets for periodicities, using the standard epoch-folding

analysis, combined with the Z2
m statistics (Makishima et al.

2023). The harmonic number for Z2
m is chosen as m = 2 or 4,

depending on the condition. The analysis incorporates the spin-

down rate measured around 1993-1996, Ṗ = 0.8× 10−10 s s−1

(KEA98). Its effect is negligible for individual data sets (G93a,

G93b, and G95), because P would change by only<∼6 µs across

each observation. However, when dealing with G93T, its effect

is significant.

From G93p, G93f, and G95, we produced respective pe-

riodograms (hereater PGs) around the reported pulse periods.

A harmonic number m = 2 was chosen for Z2
m, because raw

pulse profiles of magnetars are generally double-peaked. The

energy range was set to 2.8.0–12 keV to approximately remove

the SXC contribution, because differences between the soft and

hard pulse profiles sometimes degrade the pulse significance.

The results are shown in figure 1a superposed together. The

PGs form G93p and G93f both exhibit a peak at P ≈ 7.4684

s, and that of G95 at P ≈ 7.4738 s. These periods are summa-

rize in table 2, together with their 68%-confidence errors as de-

termined in Appendix A (in particular, subsection A2 therein).

Since these results agree with those which KEA98 derived from

the same ASCA data, we reconfirm the pulse detections and P

measurements by KEA98.

The same analysis applied to the merged data G93T, em-

ploying a finer period step of 2 µs, yielded a PG shown in fig-

ure 1b. Its behavior near the peak is expanded in figure 1c.

Fig. 1. Periodograms (PGs) in 2.8–12 keV with m = 2, showing the values

of Z2

2
as a function of the assumed period P . (a) PGs from G93p (dashed

orange), G93f (magenta), and G59 (blue) are shown superposed together.

Measurements by KEA98 are indicated by downward arrows. (b) A PG from

G93T. The result by KEA98 is indicated by a green arrow. (c) Details of panel

(b) around the peak, where the fringe numbers are given in red. The result

from G93pA+G93f is superposed in black (right ordinate).

We observe a very clear fine structure, comprising a series of

peaks separated by δP ≈ 66 µs. Since this δP and the total data

span S = 1000 ks of G93T approximately satisfy the relation

S × δP ≈ P 2, or S/P − S/(P + δP ) ≈ 1, the fine structure

is undoubtedly “fringes” produced by interference between the

periodicities in G93p and G93f, across the ≈ 8.8 d data gap be-

tween them. For convenience, we number the fringes from −4

to +4 as in figure 1c, and denote the n-th fringe by fn. Table 3

summarizes the parameters of these fringes.

In figure 1c, the highest fringe f0, at P = 7.46848 s, has

Z2
2 =36.58. Since Z2

m obeys a chi-square distribution of 2m de-

grees of freedom, the probability for aZ2
2 value exceeding 36.58

to appear by chance is 2.2× 10−7 in a single trial. On the other

hand, against S =106 s, the minimum and maxim Fourier wave
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Table 2. Results of the periodogram and demodulation analyses of the ASCA GIS data.∗

Data Energy † m Condition‡ P0 (s)§ Z2
m T (ks) A‖ ψ#

G93p 2.8–12 2 Raw 7.46831(10) 29.2 — — —

3–12 4 Demod. 7.46836(7) 46.1 16.7+1.5
−1.1 0.6 270◦

G93f 2.8–12 2 Raw 7.46856(11) 12.9 — — —

3–12 4 Demod. 7.46856(7) 33.9 16.5+0.5
−0.4 1.0 255◦

G93T 2.8–12 2 Raw 7.46851(10)∗∗ 36.6 — —

2.55–12 4 Demod. 7.468484(3) 63.9 16.435± 0.024 1.0 25◦

G95 2.8–12 2 Raw 7.47380(6) 25.2 — — —

3–12 4 Demod. 7.47385(4) 54.4 16.4± 0.4 0.9 235◦

∗ All assuming a period change rate of 0.8× 10−10 s s−1. Errors refer to 68% confidence limits.
† The utilized energy range in keV.
‡ “Raw” and “Demod” mean without and with the demodulation, respectively.
§ The barycentric pulse period at the start of each observation, specified by the DeMD peak.
‖ The modulation amplitude A is in units of s, with a typical error by ±0.2 s.
# ψ has a typical error by ±20◦. It should take any value in the 0− 360◦ range.
∗∗ The error range covers four fringes from f−1 to f2.

numbers covered by figure 1b are 106/7.472 = 133,832.9 and

106/7.465 = 133,958.5, respectively, Their difference, 125.5,

represents the number of independent Fourier waves, and hence

approximates the effective number of period trials. Then, the

chance probability of the peak in figure 1b is estimated as

Pch = 2.2× 10−7 × 125.5 = 2.8× 10−5. This is tighter than

the value of 3.6× 10−4, which KEA98 derived using presum-

ably (not clearly stated in their paper) the same 1993 data sets as

ours. The difference is probably because of our selection of the

energy band. In fact, if we instead use 1–10 keV for instance,

Z2
2 = 30.2 and Pch = 5.6× 10−4 are derived.

Then, in figure 1c, which fringes other than the highest f0

should be considered as period candidates? An obvious selec-

tion criterion is the statistical significance, as implied by the Z2
2

values given in table 3. In Appendix A3, we evaluated the pos-

terior probability Qn (n=−4 to +4) for fn to represent the true

pulse period, all relative to Q0 ≡ 1, and quote the results in ta-

ble 3. Because the period could still change to some extent by

the demodulation process to be conducted later, at this stage we

crudely exclude only those with Qn < 0.01, and conservatively

retain four fringes from f−1 to f2.

As another criterion, the black curve in figure 1c represents

a PG from G93pA +G93f (equivalently, G93T minus G93pB),

computed in the same way. All the periods here refer to the

epoch of the 1st photon in the G93pA data. Although the values

of Z2
2 (right ordinate) are relatively low, we still observe the

fringe pattern, of which the pitch, ≈ 60 µs, is shorter by ∼ 10%

than in G93T. This is because the effective data span of G93T is

≈ 10 d as mainly determined by G93pB and G93f, whereas that

of G93pA+G93f is by ∼ 1 d longer. Thus, a “vernier” effect is

created, and δP in table 3 gives the period difference between

the corresponding red and black peaks. Requiring |δP | <∼ 16

s (<∼ 1/4 of the fringe pitch), we are left with the same four

Table 3. Fringe parameters in the 2.8–12 keV PG from G93T.∗

Fringe P †
n Z2

2 Q‡
n δP $

num. (s)

f−4 7.468 209 (9) 20.17 2.7× 10−4 −36

f−3 7.468 275 (8) 25.96 0.0049 −30

f−2 7.468 341 (8) 24.92 0.0029 −23

f−1 7.468 412 (7) 29.81 0.034 −10

f0 7.468 479 (7) 36.58 (1) −3

f1 7.468 542 (7) 34.54 0.36 +3

f2 7.468 607 (9) 28.37 0.017 +9

f3 7.468 673(11) 22.62 9.3× 10−4 +17

f4 7.468 737(13) 16.55 4.5× 10−5 +21

∗ Referring to the red PG in figure 1c.
† Defined at the start of the G93pA data stream.
‡ Posterior robabilities, relative to f0, for fn to be the true pulse period,

calculated with equation (9) in Appendix A3.
§ Period difference (in µs) of the red fringe peak, relative to the corre-

sponding peak in the black PG.

fringes from f−1 to f2.

Since the above two criteria give consistent selections, we

tentatively regard f−1, f0, f1, and f2 as the pulse-period candi-

dates as of 1993 October 9. In table 2, the G93T period and its

uncertainty is hence defined so as to cover them. The result is

consistent with those by KEA98 (green arrows in figure 1c).

3.2 Demodulation analysis

3.2.1 Formalism

Now that the pulsation has been reconfirmed in all data sets,

we proceed to the demodulation analysis, searching the data for

the PPM effects (Makishima et al. 2014; 2016; 2019). For this

purpose, the arrival time of each photon (including background)
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is changed from t to t− δt using

δt= A sin(2πt/T −ψ) , (3)

where T , A, and ψ denote the period, amplitude, and initial

phase of the assumed PPM, respectively. Then, T is varied from

7 ks to 100 ks, with a step of 0.1 ks to 0.5 ks. At each T , we

maximize the pulse significance, by scanning P over a ±0.2 ms

interval (with 20 µs step) centered on the peak value in figure

1, ψ over 0◦ to 360◦ with a step of 5◦, and A from 0 to 1.5 s

with 0.1 s step. This range ofA is chosen becauseA is typically

∼P/10, and ∼P/4 at most (Makishima et al. 2016). The pulse

significance is evaluated with Z2
4 , where m = 4 is selected be-

cause the demodulated profiles of magnetar pulses usually ex-

hibit three to four peaks (Makishima et al. 2021a). The PPM

is to be found only in the HXC signals, and contamination of

the SXC hampers its detection more severely than the pulse de-

tection. We hence change the energy interval from 2.8–12 keV

to 3–12 keV, to more securely eliminate the SXC contribution

which could be significant up to ∼ 3 keV.

3.2.2 Results from individual data sets

By applying the demodulation analysis to the 3–12 keV data

from G93p, we obtained figure 2a; such a graph is called a de-

modulation diagram (DeMD), which presents, against T , the

maximum Z2
4 found at each T when A, ψ, and P are optimized.

A dominant peak has appeared at T = 16− 17 ks, and a sharp

secondary one at T ≈ 10.5 ks. Table 2 summarizes the parame-

ters of the former peak; the errors (68% confidence) associated

with each quantity are determined as the points where Z2
4 falls

by 4.72 from the peak value, as explained in Appendix A2 and

Makishima et al. (2021a).

The 16–17 ks peak is reconfirmed in the 3–12 keV DeMD

from G93f, shown in figure 2b, where T is refined to ≈ 16.5

ks (table 2). A similarly strong peak, observed at T ≈ 8.2 ks,

could be a second harmonic (half in the period and twice in

the frequency). As shown in green in figure 2a and figure 2b,

the pulse period depends to some extent on T . Hereafter, the

value of P specified by the DeMD peak is denoted as P0, and

regarded as the best-estimated pulse period for each data set

(except in G93T where the fringe ambiguity still remains).

The PPM, suggested by the two 1993 data sets, becomes

compelling in figure 2c, the DeMD from G95. The peak indeed

sticks out at T ≈ 16.4 ks, and reaches Z2
4 = 54.4; this is com-

parable to the highest DeMD peaks that were observed in the

previous three magnetars (Makishima et al. 2021b). Thus, the

modulation period of T ≈ 16.4 ks ≡ T16.4 is consistently pre-

ferred by the three data sets. They also agree on A = 0.6− 1.0

s, whereas their differences in ψ do not matter, because ψ is

determined solely by the start timing of the observation.

Taking the G95 DeMD as a typical case, the significance

of the PPM was evaluated through a control study described in

Fig. 2. DeMDs of SGR 1806−20 in 3–12 keV (in red), from (a) G93p, (b)

G93f, and (c) G95, where the highest Z2

4
value (left ordinate) is shown in

red as a function of the assumed modulation period T . In (a) and (b), the

best pulse period (right ordinate) is given in green, whereas in (c), the best

modulation amplitude A in blue A vertical yellow stripe indicates a preferred

common range of T .

Makishima et al. (2021b). That is, we derive a distribution of

Z2
4 from the same G95 data, at T shorter than T16.4 but much

longer than P , and compare the derived distribution of Z2
4 with

the value at T16.4. As given in Appendix B, the probability for

the T16.4 peak to appear by chance, anywhere in the 7–100 ks

range, is estimated as < 1%. This value will further decrease

when combining the G93p and G93f results. Although T16.4

is close to three times the ASCA’s orbital period, this artifact

would appear at a discrepant period, 16.81±0.05 ks, as judging

from the data-gap recurrence in the data. We hence conclude,

at 99% confidence, that SGR 1806−20 exhibits a PPM at T ≈
16.4 ks. Our 1st objective has been fulfilled, and SGR 1806−20

becomes the fourth magnetar exhibiting this behavior.

3.2.3 Demodulated PGs

Figure 3 provides 3–12 keV Z2
4 PGs from the individual GIS

data sets, each computed under three different conditions. Black

shows a raw PG, which differs from those in figure 1a only in
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Fig. 3. PGs in 3–12 keV, derived wth m= 4 from the three data sets. Black

PGs are simple epoch-folding results, whereas blue ones are those when the

arrival times of all photons are corrected by equation (3), using a parameter

triplet (T,A,φ) given in table 2. The red PGs are derived by readjusting the

parameter triplet at each P .

the energy range and the harmonic number. The blue PG is

produced through the PPM correction, where we employ, at all

P , the triplet (T,A,ψ) that is optimized at P = P0 (table 2).

Finally, the red PGs are those in which the triplet is readjusted

at each P ; we let A and ψ vary in the same manner as in fig-

ure 2, whereas T over its common uncertain range, 16.0–17.0 ks

(table 2) with a step of 0.1 ks. These results afford the following

inferences.

1. The blue and red PGs agree well at P ∼P0, where the triplet

(T,A,ψ) converges to that given in table 2.

2. Except near P0, the red PG is higher than the black and blue

ones by δZ2
4 ∼ 10, due to an enlarged parameter space.

3. The demodulation enhances the pulse significance by δZ2
4 ≈

12, 18, and 27, in G93p, G93f, and G95, respectively. Except

in G93p, these exceed the statistical increment in 2 above.

4. The red PGs (patricularly in c) exhibit a pair of sub peaks,

spaced symmetrically from P0 by δP = ±3.4 ms. Since

T16.4δP ≈ P 2
0 holds, the sub peaks arise when the interval

T16.4 contains N ± 1 pulse cycles, with N ≡ T16.4/P0. This

provides additional evidence for the presence of double peri-

odicity in the system, at P and T . The shorter sub peak can

in fact be identified with Prot.

5. The demodulated PG from G93f gives P0 = 7.46856(7) s

(table 2), which translates to P0 = 7.46849(8) s at the start

of G93pA. This error range accommodates the fringes f0 and

f±1, even though the P0 value from G93p (table 2) favors

somewhat shorter fringes, e.g., f−3 through f0. We retain

our conservative selection made in subsection 3.1, to regard

f−1 through f2 as the pulse-period candidates.

3.2.4 Behavior of the softest signals

Now that our 1st objective was fulfilled, we move to the second

aim, i.e., examinations whether the PPM is associated with the

HXC. This is already accomplished partially, because the PPM

was detected from the three data sets in the 3–12 keV interval.

We however need to confirm its absence at lower energies.

As a simple examination, the lower bound energy EL for the

DeMD calculation was gradually decreased from 3.0 keV, with

the upper boundary fixed at 12 keV. Then, in the G93p data, the

DeMD peak at T16.4 became higher until EL hits ≈ 2.55 keV,

beyond which the peak started diminishing. In G93f and G95,

this threshold was at ≈ 2.7 keV. The inclusion of photons below

these thresholds suppresses the PPM; the 3-12 keV energy range

which we have selected is considered appropriate.

As a second attempt, we sort photons onto a pulse-phase vs.

modulation-phase plane, and color-code the number of photons.

Then, the 3–12 keV data from G95 yielded figure 4 (a1). The

pulse ridges, running vertically, wiggle through the modulation

phase, visualizing the PPM effect. The polar plot in figure 4 (b1)

shows, as a function of A and ψ, the value of Z2
4 achieved in the

demodulation that employs P ≈ P0 and T ≈ T16.4. The highest

Z2
4 is found at (A,φ) = (0.9 s, 235◦), which is significantly

displaced from the coordinate origin. In contrast, the 0.7–3 keV

photons yield panels (a2) and (b2) of figurer 4. The pulse ridges

are again clearly present, but they run straight. The highest Z2
4

is hence obtained at A∼ 0 as in figure 4 (b2). (The higher peak

at A ≈ 1.9 s should be ignored, because we employ a limit of

A≤ 1.5 s.) In a word, the PPM at T16.4 is present in 3–12 keV

of the G95 data, but undetectable in 0.7–3 keV.

For a further confirmation, we calculated G95 DeMDs,

in seven partially-overlapping energy intervals with about the

same photon numbers. The result is given in figure 5a, where

black crosses show Z2
4 at P ≈ P0 before the demodulation,

whereas red diamonds give the increment ∆Z2
4 attained by

the demodulation. In obtaining the latter, we varied P over

P0 ± 60 µs, T between 16.0 and 17.0 ks, A bewteen 0 to 1.5 s,

and ψ between 0◦ to 360◦. Even though the pulse significance

increases toward higher energies already before demodulation,

∆Z2
4 rises more sharply at ∼ 2 keV.
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Fig. 4. Top two panels are color maps of the 3–12 keV (panel a1) and 0.7–3

keV (panel a2) photons from G95, accumulated in two dimensions, where

the abscissa is the pulse phase (2 cycles) and the ordinate is the modulation

phase. Bottom two panes show, on the polar coordinate (A,ψ), the maxi-

mum Z2

4
achieved via the demodulation with equation (3). Panels (b1) and

(b2) are for the 3–12 keV and 0.7–3 keV photons from G95, respectively.

Contours in (b1) are from 10 to 50, whereas those in (b2) are from 5 to 20.

To examine the behavior of the softest signals over a wider

range of T , we produced 0.7–2.5 keV DeMDs from the individ-

ual data sets, and show them together in figure 5b. In the G93f

and G95 results, the T16.4 peak is no longer visible. Although

the G93p DeMD exhibits a broad hump over T = 16− 19 ks,

it disappears when the upper energy bound is lowered from 2.5

keV to 2.1 keV. The absence of the PPM in 0.5–2.5 keV is con-

sidered intrinsic, rather than due to insufficient statistics.

Through these multiple examinations, we consistently found

that the PPM in SGR 1806−20 is present in energies above ∼ 3

keV, whereas it is absent or much suppressed below ∼ 2.5 keV.

This means an affirmative answer to our second aim.

3.3 Demodulation analysis of the joint G93T data

3.3.1 Procedure

Our remaining task is to apply the demodulation analysis to the

merged G93T data, hoping to coherently phase-connect the 16.4

ks PPM across the 11-d time span which is dominated by the

8.8-d data gap. If the modulation period T is coherent, it will

also exhibit an interference structure, like in figure 1c, this time

with a separation of ∆T ≈ T 2/S ≈ 0.27 ks. Thus, the search

step in T is selected to be 0.005 ks. To cover the four surviving

fringes from f−1 to f2 (figure 1c), we scan P from 7.46838 s

to 7.46862 s with a step of 2 µs (the same as in figure 1c). In

Fig. 5. (a) Pulse significance in G95 as a function of energy. Black crosses

show the Z2

4
values (left ordinate) at P0 before demodulation, whereas red

diamonds represent the increments ∆Z2

4
(right ordinate) achieved via de-

modulation, of which the condition is detailed in text. (b) DeMDs in 0.7–2.5

keV, from G93p (red), G93f (green), and G95 (blue), calculated in the same

way as figure 2.

contrast, A and ψ are treated in the same way as before, because

they are free from the interference. Similarly, we retain Ṗ =

0.8× 10−10 s s−1, which is now quite essential. Based on the

examination in § 3.2.4, the energy range is changed from 3–12

keV to 2.55–12 keV to increase the signal statistics, with the

photon number increasing from 10971 to 12758.

3.3.2 Results

The 2.55–12 keV DeMD thus derived from G93T is presented

in figure 6 in red. As expected, we again observe clear inter-

ference peaks denoted as A through G, with an average pitch of

∼ 0.3 ks. Hereafter, we call these peaks “T -fringes”, to distin-

guish them from those in P . The structure is somewhat more

complex than that in figure 1c, and the pitch varies. These prop-

erties are thought to arise because we now treat double period-

icity, in P and in T . The highest T -fringe, D (Z2
4 = 63.86), oc-

curs at T =16.435 ks, in a good agreement with the peak of the

3–12 keV G95 DeMD, which is superposed by a dotted black

curve with a positive offset by 7. As shown in dotted horizontal

lines in blue, the T -fringe D is associated with P = 7.468484 s

(table 2), which coincides with f0 in figure 1c.

Over T = 16− 17 ks in figure 6, the envelope of the red

curve, encompassing several T -fringe peaks such as C, C’, D,
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Fig. 6. A 2.55–12 keV DeMD from the combined G93T data (red), compared

with the 3–12 keV DeMD from G95 (black). The latter is the same as in

figure 2c, but is given a positive offset by 7 just for presentation. Green

data points show P (right ordinate) associated with the G93T DeMD. Dotted

horizontal lines in cyan indicate the four surviving fringes from figure 1c.

Peaks denoted as A through G are discussed in text.

and E, is similar to the G95 DeMD. Furthermore, in this inter-

val, the optimum P mainly stays on f0, except several excursion

episodes. Outside this T interval, in contrast, the G93T DeMD

decreases much more slowly than that of G95, and shows sev-

eral “outlier” peaks such as A, B, F, and G. Since they all be-

long to the period fringes other than f0, they are thought to arise

when pulse-phase mismatches across the long data gap, due to

incorrect values of P , are mitigated by changing T .

Although D is highest in figure 6, the T -fringe A has nearly

the same heigh; C’ and F might also be considered. This urges

us to evaluate relative significances of these T -fringe peaks. The

procedure is similar to that for the period fringes made in sec-

tion 3.1 and Appendix A3. This time, however, we can use the

G95 DeMD (black in figure 6) as prior probability, assuming T

to be the same between 1993 and 1995. Then, the Bayes’ the-

orem tells us how our knowledge on T improves by adding the

G93T DeMD. We performed this evaluation in Appendix A4,

and derived the posterior probability for each T -fringe to rep-

resent the true value of T . As a result, the peaks other than D

were all found to have a probability which is <∼ 3.4% relative

to D (with C’ the next most likely). We can hence conclude, at

95% confidence, that D is the correct peak, and derive

T = 16.435± 0.024 ks (T−fringe D) (4)

as of the beginning of G93pA.

3.3.3 Demodulated PGs from G93T

In figure 6, the best T -fringe D specifies f0 as the best pulse

period; this combination can be expressed as (D, f0). However,

it is not yet clear whether the other combinations such as (D,

f±1) can be statistically ruled out. To answer this issue, figure 7

shows 2.55-12 keV PGs (m = 4) from G93T, calculated un-

der three different conditions like in figure 3. The dotted black

curve is the PG without demodulation, which is similar to fig-

Fig. 7. PGs from the joint G93T data, calculated in 2.55–12 keV with three

different ways as in figure 3. See text for details.

ure 1c but differs in the energy range and m. The blue one is a

demodulated PG, in which we fix T to equation (4), as well as

A=1.0 s and ψ=25◦ as specified by the T -fringe D of figure 6.

When A and ψ are left to float at each P , and T is allowed to

vary within ±0.03 ks of equation (4), the red PG is obtained.

The red PG in figure 7 gives Z2
4 =63.86 for (D, f0), whereas

Z2
4 = 58.48 for the next highest candidate, (D, f−1). According

to the consideration in Appendix A4, their height difference,

X = −δZ2
4 = 5.38, implies that the relative probability for (D,

f−1) to be the true solution is exp(−5.38/2) = 6.8% of that of

(D, f0). The candidates (D, fn) with n 6= 0 are hence excluded

at 90% or higher confidence, and the pulse period as of the start

of G93pA is determined as

P = 7.468484(3) s (fringe f0). (5)

If calculated in the same 2.55-12 keV interval as the G93T

DeMD, the G95 DeMD (thought not shown) has the maximum

of Z2
4 = 55.58. Because G93T has 1.4 times more photons than

G95 (table 1), and Z2
4 is proportional to the signal photon num-

ber if the folded profile is similar, we expect the peak D to reach

Z2
4 = 77.8. The actually observed peak D height, Z2

4 = 63.86,

is 82% of the prediction. In addition, Z2
4 is proportional to

the squared pulse fraction of the relevant periodicity, where the

pulse fraction is defined as (H+ −H−)/(H++H−), using the

peak height H+ and the bottom height H− of a folded pulse

profile. Accordingly, we infer that the PPM has been phase-

connected across the 11-d time span with a good phase coher-

ence of
√
0.82 = 0.91.

In this way, the demodulation of the merged G93T data in

2.55–12 keV enabled us to confirm the coherence of the PPM

cycle across the 11-d interval, and measure its period T with an

unprecedented accuracy of 0.15%. These are thanks to the par-

ticular observation patter in 1993, and to the shortest T among

the four magnetars exhibiting the PPM. Thus, our 3rd objec-

tive has also been fulfilled. At the same time, the demodulation

analysis successfully resolved the period ambiguity which was

identified in figure 1c.
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Fig. 8. Background-inclusive pulse profiles of SGR 1806−20 from the GIS

data sets, shown for two pulse cycles after applying the running average (see

text). (a) Results in 2.55–12 keV from G93p (red), G93f (green) multiplied

by 1.5, and G93T(black). They are all folded using a common solution (see

text). (b) The 2.55-12 keV profiles from G95, before (black) and after (red)

the demodulation. The phase origin is manually adjusted to that of (a). A

0.7–2.5 keV profile, folded without demodulation, is presented in blue.

3.3.4 The spin-down rate

From the 1993 and 1995 period measurements (table 2) across a

span of ≈ 2 yrs, the average spin-down rate is derived as 0.84×
10−10 s s−1, in agreement with KEA98. In addition, the long

time span of G93T may allows us to estimate the instantaneous

Ṗ in 1993 September. By changing it from 0 to 1.5× 10−10 s

s−1, we studied how Z2
4 of the demodulated 2.55-12 keV pulses

from G93T varies. As a result, a loose constraint as Ṗ =(0.77±
0.63)× 10−10 s−1 (68% confidence) was obtained. From these

two estimates, our assumption of Ṗ = 0.8× 10−10 s−1, which

has so far been employed, is confirmed to be appropriate.

3.4 Pulse profiles

In figure 8, we compile background-inclusive folded pulse pro-

files obtained from the GIS data. They are smoothed with a

running average as described in Makishima et al. (2021a), so

the error associated with each bin is 0.61 times the Poissonian

value. The ordinate is logarithmic, to enable a direct compar-

ison of the pulsed fraction among the profiles. Although the

2.55–12 keV photons are used here, the results are very similar

even if using the 3–12 keV interval.

Figure 8a compares 2.55–12 keV profiles from G93p, G93f,

and G93T. They are all obtained using a common solution spec-

ified by equation (5) and equation (4), together with A and ψ

for G93T in table 2, and shown against a common pulse phase.

The three profiles are reasonably similar, with the deep mini-

mum at a pulse phase 0.8, and nearly the same pulse fraction.

These demonstrate that the pulse phase has been successfully

connected through the 11-d interval. The G93p result comprises

equally-spaced four peaks, whereas two of them become domi-

nant in the G93f result.

Figure 8b compares the 2.55–12 keV profiles from G95,

before (dashed black) and after (red) the demodulation. The

demodulated profile is approximately double peaked, which is

closer to the G93f profile than to that in G93p. This kind of mild

profile variations are often seen in magnetars (Makishima et al.

2021b). Also shown is the 0.7–2.5 keV raw profile, representing

the SXC pulses, to be compared with panel (a2) of figure 4.

4 Discussion

4.1 Summary of the results

We analyzed the 0.7–12 keV X-ray data of SGR 1806−20 ac-

quired with the ASCA GIS, on three occasions in 1993 October

(G93pA, G93pB, and G93f), and once in 1995 October (G95).

The aims are threefold; to search for the PPM phenomenon, to

confirm its association with the spectral HXC, and to coherently

connect the PPM phase across the 11-d interval spanned by the

merged 1993 data (G93T=G93p+G93f).

The periodogram analysis with m=2 (figure 1a), using 2.8–

3 keV photons from G93p, G93f, and G95, individually yielded

the pulse periods as in table 2. The combined data G93T re-

vealed a clear interference pattern (figure 1c), and the prob-

ability for the highest fringe to appear by chance fluctuations

was estimated as Pch = 2.8× 10−5 taking into account “look-

elsewhere” effects. These results reconfirm the pioneering work

by KEA98 who analyzed the same GIS data.

To these data sets, we next applied the demodulation anal-

ysis using the 3–12 keV energy interval and m = 4. Then, the

G95 data gave a highly significant (>∼99%; Appendix B) DeMD

peak at T ≈16.4 ks (figure 2c). The same effect, though weaker,

was confirmed in the 3–12 keV DeMDs from G93p (figure 2a)

and G93f (figure 2b). We hence conclude that SGR 1806−20 is

the fourth magnetar exhibiting the PPM phenomenon, with the

shortest T . The effect was confirmed down to ∼ 2.5 keV, but

absent in lower energies (figure 4b, figure 5). Thus, the 1st and

second aims of the research have been accomplished.

Finally, we applied the demodulation analysis to the merged

G93T data in 2.55–12 keV, and successfully connected the PPM

phase through the entire G93T data, which is 11-d long, or about

58 modulation cycles. We thus confirmed the PPM to have high

stability, and determined T with an unprecedented accuracy of

0.15%. The demodulation resolved the period ambiguity in fig-

ure 1c, and yielded equation (5) and equation (4). In short, we

successfully achieved the third objective as well.
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Table 4. PPM parameters of the four magnetars.

Source Data ∗ Energy P T (ks) P/T B†
t B‡

d Bt/Bd τ §c Ref.‖

(keV) (s) (ks) (10−4) (kyr)

4U 0142+61 Suzaku (07) 15–40 8.6888 PPM not detected [1,2]

Suzaku (09) 15–40 8.6889 55± 4 1.6 1.3 1.3 100 68 [2]

Suzaku (13) 15–40 8.6891 54± 3 — the same as above — [3]

NuSTAR (14) 10–70 8.6892 54.8± 5.3 — the same as above — [3]

SGR 1900+14 Suzaku (09) 12–50 5.210 41.2± 1.2 1.3 1.1 7.0 16 0.90 [4]

NuSTAR (16) 6–20 5.227 40.5± 0.8 — the same as above — [4]

1E 1547.0−5408 Suzku (09) 10-30 2.072 36.0+4.5
−2.5 0.58 0.76 3.2 24 0.69 [5]

NuSTAR (16) 8–25 2.087 36.0± 2.3 — the same as above — [6]

SGR 1806-20 ASCA (93) 2.55–12 7.4685 16.435(24) 4.5 2.1 20 11 0.24 This work

ASCA (95) 3–12 7.4739 16.4± 0.4 — the same as above — This work

∗ The utilized data, and the last two digits of the observation year in parenthesis. The results from the Suzaku XIS are not shown.
† Toroidal magnetic fields in units of 1016 G, calculated with equation (2) assumig cosα∼ 1.
‡ Surface dipole magnetic fields in 1014 G, calculated as ∝ (P Ṗ )1/2 , taken from McGill Online Magnetar Catalog (http://www.physics.mcgill.ca/ pul-

sar/magnetar/main.html)
§ Characteristic age τc ≡ P/2Ṗ .
‖ References: [1] Enoto et al. (2011); [2] Makishima et al. (2014) ; [3] Makishima et al. (2019); [4] Makishima et al. (2021b); [5] Makishima et al.

(2016); [6] Makishima et al. (2021a);

4.2 Ubiquity of the phenomenon

Among about 30 magnetars known to date, SGR 1806−20 is the

prototypical object with extreme activity, showing the highest

Bd and the shortest characteristic age, τc ≡ P/2Ṗ . Therefore,

SGR 1806−20 was a sort of “touchstone” to assess whether the

PPM is generally seen among magnetars. The present result has

indeed given an affirmative answer to this anticipation.

Table 4 summarizes the basic PPM parameters of the four

magnetars (including SGR 1806−20) that exhibit this phe-

nomenon. Regarding G93T and G95 of SGR 1806−20 as two

independent data, so far the 10 data sets listed in this table have

been analyzed for the PPM effect. It was detected success-

fully from all these data, except the 2007 Suzaku observation

of 4U 0142+64. Therefore, the PPM must be ubiquitous among

magnetars. The sole exception may be explained if the PPM

amplitude then happened to be very small, e.g., A <∼ 0.05P , as

actually found with NuSTAR in 2009 (Makishima et al. 2021a)

thanks to its higher sensitivity than the Suzaku HXD.

When studying a new phenomenon like the present subject,

we must carefully exclude instrumental artifacts. In this respect,

the present result is of high value, because it means that the

PPM in the four magnetars has been confirmed by four instru-

ments; the HXD and the XIS onboard Suzaku, NuSTAR, and

the ASCA GIS. They respectively utilize non-imaging Silicon

PIN diodes, X-ray CCD devices, pixellated CdZnTe detectors,

and imaging gas scintillation proportional counters, with the lat-

ter three coupled with X-ray focusing telescopes. The detec-

tions with these distinct types of X-ray detectors, onboard three

different spacecrafts, is thought to minimize the risk of the phe-

nomenon being of some instrumental origin.

It is intriguing to examine how the PPM phenomenon in

magnetars (including SGR 1806−20) remained undetected un-

til 2014. Presumably, past timing studies of magnetars mostly

utilized SXC-dominated energies (e.g., <∼ 10 keV) which are

usually free from the PPM disturbance. Even when the uti-

lized instrument (e.g., RXTE) covers HXC-dominated energy

ranges, usually the period found in the softer band was used to

produce folded pulse profiles in harder X-rays, without exam-

ining whether the pulse is significant therein or not. Obviously,

the situation is different for SGR 1806−20 in which the HXC

dominates down to ∼ 3 keV, but probably the pulse detection

in this particular object was possible without demodulation, as

we have experienced (figure 1). The PPM perturbation might

be smeared out due to the short T .

For reference, our first detection of the PPM phenomenon,

from 4U 0142+61 (Makishima et al. 2014), was enabled by

good fortune. The 15–40 keV Suzaku HXD data of this object,

acquired in 2007, allowed the pulse detection via a standard pe-

riodogram analysis (Enoto et al. 2011). In contrast, from the

HXD data acquired in 2009, the same analysis in the same en-

ergy band failed to detect the pulsation, in spite of very simi-

lar exposures and source intensities. Presumably A changed as

mentioned above. This discrepancy between the two observa-

tions drove us to the PPM discovery.

4.3 Astrophysical implications

4.3.1 The free-precession interpretation

As describe in section 1, the PPM effect in magnetars has so

far been interpreted as a manifestation of the free precession of

an NS that is axially deformed to ǫ ≈ P/T ∼ 10−4. In table 4,

the ratio P/T = 4.5× 10−4, which we find for SGR 1806−20,

is higher than, but still of the same order as, those of the

other three magnetars. Moreover, the modulation amplitude of

SGR 1806−20, A = 0.6− 1.0 s (table 2) or (0.08− 0.13)P ,
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Table 5. Classification of rotational motions of a rigid body.∗

Case Mode of Condition† T of Pulse
rotation (i) (ii) (iii) eq.(1) detection

A1 Spherically yes yes yes ∞ no
A2 symmetric yes yes no ∞ Prot(= Ppr)

A3 rotator yes no ‡ ∞ Ppr(= Prot)

B1 “Sleeping” no yes yes finite no
B2 rotator no yes no finite Prot

C1 Free no no yes finite Ppr

C2 precession no no no finite Ppr×PPM

∗ Non-axi-symmetric deformation is not considered.
† See text for the meaning of the three conditions.
‡ The pulse behavior does not depend on this condition.

agrees with those of the others. Therefore, the free-precession

interpretation will apply also to this prototypical magnetar.

By the successful phase connection through the G93T data

spanning 1000 ks, the PPM in SGR 1806−20 was confirmed to

have good coherence for at least ∼ 60 cycles. As a result, T

was determined with an accuracy of 0.15%. These results mean

large improvements over our past knowledge, where the repro-

ducibility of T of each object was confirmed only to an accuracy

of ∼10% (table 3). We can now regard the PPM as a stable peri-

odic phenomenon, rather than some transient quasi-periodicity.

Since such high stability is likely to arise via celestial mechan-

ics, the free precession scenario is greatly reinforced.

The overall phenomenon may be understood by considering

the following three symmetry conditions, which describe an ax-

isymmetric rigid rotator emitting radiation (Butikov 2006).

(i) The object is spherically symmetric; namely, ǫ= 0.

(ii) The symmetry axis x̂3 is aligned with ~L; namely, α= 0.

(iii) The emission is axially symmetric around x̂3.

Then, the pulse detectability can be classified as in table 4, ac-

cording to whether each condition holds (denoted by “yes”) or

is violated (denoted by “no”). Among the total seven cases, A2

and A3 apply to ordinary spherical pulsars. These two are in

reality equivalent, because A3 reduces to A2 if x̂3 is redefined

as a unit vector parallel to ~L.

The remaining cases (ǫ 6= 0) can be best explained in terms

of a spinning rugby ball, which obviously violates the condition

(i). When the ball is spinning precisely around x̂3 (α= 0), and

if its appearance is symmetric around x̂3, we can never tell that

the ball is spinning (case B1). However, if the ball has a “logo

mark” pained on its side, (iii) is violated, and we can detect the

spin by the logo’s recurrence. This corresponds to B2, and the

observed pulse period P gives Prot, with Ppr undetectable.

If α 6= 0 instead, the rugby ball wobbles, in such a way

that its tips rotate around ~L with a period Ppr, which satis-

fies Ppr : Prot ≈ 5 : 3. If the ball has no logo [(iii) satisfied],

we can detect only Ppr via the tip recurrence. This is the case

C1, wherein the pulse period to be observe is Ppr rather than

Prot (secion 1). This condition accounts for the magnetar SXC,

which may be emitted isotropically from the magnetic poles

(=around x̂3) . Finally, the HXC of magnetars corresponds to

C2, wherein the basic periodicity is still Ppr, but it is coupled

with Prot to exhibit the PPM; the amplitude A depends on α,

the degree of emission asymmetry around x̂3, and our viewing

angle to the system (Makishima et al. 2021a).

Identifying the observed P of a magnetar with Ppr may con-

tradict to the common belief to identify P with Prot. However,

Ppr and Prot of a magnetar differ by ony ∼ 10−4, and both are

directly proportional to L, with their ratio kept strictly constant

(assuming ǫ and α to be constant). Hence, Ppr and Prot in-

crease together due to the same mechanism, namely, a decrease

in L through, e.g., the magnetic dipole radiation. If a rugby ball

with α 6=0 spins down, its wobbling inevitably gets slower, too.

Thus, the general framework of estimating Bd and τc, from the

observed P and Ṗ , still remains intact.

When L of the object is conserved and its kinetic energy

decreases, the wobbling angle α approaces 0 if the deforma-

tion is oblate (ǫ < 0), whereas |α| increases if prolate (ǫ > 0).

At present, the observations are unable to tell whether the de-

formation of these magnetars is oblate or prolate. Nevertheless,

we believe that the deformation is prolate, because αwould then

develop, with no external perturbation, to a finite level, even if

it was initially very small.

4.3.2 Toroidal magnetic fields of magnetars

Taking the free-precession scenario for granted, we can think

of three origins of the deformation; centrifugal force, magnetic

stress of Bd, and that of Bt. The deformation from the first

two origins will be oblate, and are too small to explain |ǫ| ∼
10−4. In contrast, the toroidal field hidden inside the NS will

cause a prolate deformation. Furthermore, if Bt ∼ 1016 G, the

deformation will be large enough to explain the observation as

in equation (2). Using this relation, we calculated Bt and give

the results for the four magnetars in table 4, together with their

Bd and τc. Thus, the four objects are all inferred to harbor ultra-

strong toroidal magnetic fields, Bt ∼ 1× 1016 G.

Importantly, table 4 comprises objects in all the three ma-

jor subclasses of magnetars: two Soft Gamma Repeaters (SGR

1900+14 and SGR 1806−20), an Anomalous X-ray Pulsar

(4U 0142+61), and one transient magnetar (1E 1547.0−5408).

When combined with the discussion in subsection 4.2, this sug-

gests that essentially all magnetars harbor Bt ∼ 1016 G, even

though the examples are still limited at present.

The four objects in table 4 are arranged in the descend-

ing order of their τc. We observe a trend of the Bt/Bd ra-

tio to increase toward older magnetars. Therefore, the toroidal

fields of magnetars possibly last longer than their dipole fields

(Makishima 2023). This evolution, if confirmed with a larger

sample, will naturally explain the presence of such NSs as
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weak-field magnetars (e.g., Rea et al. 2014). It is however not

obvious whether the activity of magnetars is powered by Bd

which is weaker but supposedly more easily dissipated, or Bt

which is stronger but could be more difficult to utilize. In any

case, we need a larger sample. In addition, a more quantitative

study is necessary, because τc of magnetars, which is calculated

assuming a constant Bd, is likely to overestimate their true age

(Nakano et al. 2015).

4.3.3 The two spectral components of magnetars

Persistent X-ray spectra of magnetars are known to consist

generally of the HXC and the SXC (section 1; Enoto et al.

2010), which are characterized respectively by a blackbody-like

spectral shape and a hard power-law form. In 4U 0142+61,

1E 1547.0−5408, and SRG 1900+14, the PPM was found to

disappear below ∼ 10 keV, ∼ 8 keV, and ∼ 6 keV, respec-

tively, which are close to their HXC vs SXC cross-over ener-

gies. Therefore, he PPM perturbation was suggested to affect

only the HXC pulses (e.g., Makishima et al. 2016).

In the present work, we utilized the very bright HXC of

SGR 1806−20, to confirm that the PPM is present down to

∼ 2.55 keV, again close to the cross-over energy of the two

components. The exclusive association of the PPM with the

HXC has been reinforced. The presence/absence of the PPM at

a given energy is likely to be determined by the relative dom-

inance of the two components at that energy, rather than the

absolute value of the energy itself.

As mentioned with respect to table 5, a likely origin of

this HXC vs SXC difference is their distinct emission pat-

terns; the SXC is probably emitted axi-symmetrically around

the star’s symmetry axis, whereas the HXC breaks that symme-

try. Possible geometries and some inference on the HXC emis-

sion process are already described previously (e.g., Makishima

et al. 2016; 19; 21a), which we do not repeat here.

4.4 Future prospects

Utilizing the earliest pulse detections from SGR 1806−20, the

present results have provided literally the starting point of the

study of non-spherical dynamics of this prototypical object. We

may point out several future prospects.

One aspect of interest with SGR 1806−20 is whether any no-

ticeable change took place in ǫ or α, across the 2004 GF which

was presumably caused by a sudden release of internal mag-

netic energies (of Bd and/or Bt). By analyzing rich X-ray data

taken after 2004 December (e.g., with XMM-Newton, Suzaku

and NuSTAR), and comparing with the present results, some

information may be obtained.

The free-precession interpretation of the PPM effects predict

T ∝ P as in equation (1), assuming ǫ and α both constant. To

verify this relation of high importance, SGR 1806−20 is indeed

ideal, because of its rapid spin down and the shortest T . This

attempt will be carried out in future, together with the above

study of the source behavior across the GF.

Putting aside SGR 1806−20, another future task is to exam-

ine the suggested time evolution of the Bt/Bd ratio (subsub-

section 4.3.2). For this purpose, we need to detect the PPM and

measure T from magnetars with intermediate ages, in between

SGR 1806−20 and the other three in table 4. Promising candi-

dates include SGR 0501+4516, 1RXS J170849.0−400910, and

1E 1841−045, which have τc = 15 kyr, 8.9 kyr, and 4.6 kyr,

respectively. In fact, some preliminary information was derived

affirmatively from some of them (Makishima 2023).

5 Conclusions

We analyzed the 0.7–12 keV ASCA GIS data of SGR 1806−20,

taken on three (effectively two) occasions in 1993 October, and

another in 1995 October. The pulses, previously detected by

KEA98 using the same data, were reconfirmed, at consistent

periods of 7.4685 s in 1993 and 7.4738 s in 1995.

In all data sets, the 3–12 keV pulses were found to suffer the

PPM effect, with a modulation period of T ≈ 16.4 ks and an

amplitude of A ≈ 1 s. Thus, SGR 1806−20 becomes a fourth

magnetar exhibiting this phenomenon, with the shortest T , after

4U 0142− 61, 1E 1547.0−5408, and SGR 1900+14. The PPM

effect must be ubiquitous among magnetars.

The PPM in SGR 1806−20 is present in energies above

∼ 2.5 keV, but absent in lower energies. As inferred from the

previous three magnetars, the PPM is thus associated exclu-

sively with their HXC, and absent in their SXC.

Using the merged 1993 data, the PPM was confirmed to

persist coherently for a 11-d interval, with a refined period of

16.453± 0.024 ks. Therefore, the PPM is a highly stable phe-

nomenon, and its interpretation in terms of the free precession

(and the associated beat effect) is much reinforced.

Including these four examples, all magnetars may be axi-

ally deformed to ǫ ∼ 10−4, which in turn is ascribed to toroidal

magnetic fields reaching Bt ∼ 1016 G. All magnetars are hence

suggested to harbor toroidal magnetic fields of this strength. In

addition, Bt of magnetars may last longer than their Bd.
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Appendix A: The Z
2

m
statistics

We explain how to estimate errors in the period determination

in a Z2
m PG, and how to distinguish among multiple period can-

didates seen there.
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A1: Z2
m and the likelihood function

Let Z2
m(P ) represents a PG calculated from an un-binned time

series, like the present case, using the Z2
m statistics. If a partic-

ular period P1 gives a high value of Z2
m(P1), we regard P1 as

having a high “likelihood” to represent the true period P ∗. In

fact, as shown by Yoneda (2020), the so-called likelihood func-

tion L(P ) (see, e.g., Appourchaux et al. 1998 for its definition),

calculated from the same time series, satisfies a relation

Z2
m(P )≈ 2logL(P ) , (6)

as long as the number of photons is sufficiently large, the data

are dominated by Poisson noise, P lies in a vicinity of P ∗, and

L around P ∗ distributes as a Gaussian. Note that L(P ) is not

a probability density, because we are using a limited amount of

data to estimate the underlying probability density function that

is unknown.

A2: Errors in the period determination

When a PG becomes highest at a period P0, it obviously

provides the most likely (maximum likelihood) candidate for

P ∗. However, we need to estimate the error associated with

P0Ḣence, using equation (6), we define an associated variable

X(P )≡ Z2
m(P0)−Z2

m(P )≈ 2log[L(P0)/L(P )]≥ 0, (7)

which is just the decrement in Z2
m(P ). Then, the process of

maximizing Z2
m(P ) turns into a process of minimizing X(P ).

Suppose that the X(P )-minimum point P0 is close to P ∗,

and X(P ) is Gaussian distributed around P0. Then, as ex-

plained in Yoneda (2020) and quoted by Makishima et al.

(2021a), X(P ) obeys a chi-square distribution of n degrees of

freedom, where n is not the harmonic number m, but the degree

of freedom involved in the X(P )-minimization process.

A simple periodogram has n=1, because P is the only vari-

able. The 68% and 90% confidence error regions are specified

by the condition that X(P ) reaches 1.0 and 2.71, respectively.

When the demodulation process is incorporated, we should in-

stead use n = 4 (regardless of m), because the four parame-

ters, P,T,A, and ψ, are optimized to find minimum point with

X(P ) = 0. Then, the 68% and 90% confidence regions are de-

termined by X(P ) = 4.72 and X(P ) = 7.78, respectively. In

table 2 and table 3, the errors associated with P and the other

parameters are determined in this way, for both the raw and de-

modulated PGs, employing the 68% convention.

A3: Identification of the most likely period fringe

When a PG contains multiple peaks like figure 1c, we must ex-

amine whether the most likely peak at P0 can immediately be

identified with P ∗, or some other peaks must also be consid-

ered for their candidacy. Since X(P ) is no longer Gaussian-

distributed, we must abandon the method used in subsection A2,

to regard X(P ) as a variable obeying a chi-square distribution.

Instead, we may invoke the Bayes’s theorem, to derive

Q(P |X) =
αL(X|P )×Q(P )

Q(X)
. (8)

Here, α ≥ 0 is a constant, Q(X) is the probability to observe

the data X ≡ X(P ) of equation (7), L(X|P ) is the likelihood

of X against an assumed P , Q(P ) is the prior probability for

P to represent the true period P ∗, and Q(P |X) is the posterior

probability for the same statement after the data X are given.

By taking the ratio of equation (8) between P0 and another

period P , and substituting equation (7) into L(P )/L(P0) =

L(X|P )/L(X|P0), α and Q(X) both cancel out to give

Q(P |X)

Q(P0|X)
=

L(X|P )Q(P )

L(X|P0)Q(P0)
= exp

{

−1

2
X(P )

}

Q(P )

Q(P0)
. (9)

This gives a posterior probability, relative to P0, for P to be the

true period.

We applied equation (9) to the period fringes seen in the PG

from G93T (figure 1c). The derived posterior probability of

the n-th fringe, denoted as Qn ≡Q(Pn|X), is given in table 3.

Here, we set Q(P )/Q(P0) ≡ 1, because we do not have any

prior information as to the pulse period in 1993; the results from

KE98, G93p or G3f should not be used because they are not in-

dependent from the G93T data, and the back extrapolation from

the 1995 result is not constraining enough. See subsection 3.1

for the subsequent discussion.

A4: Evaluation of the T -fringes

The T -fringes seen in figure 6 have parameters as summarized

in table 6. Their relative significance can be examined in the

same way as in subsection A3, by replacing P in equation (9)

with T and rewriting it as

Q(Tk|X)

Q(T0|X)
=

L(X|Tk)Q(Tk)

L(X|T0)Q(T0)
= exp

[

−1

2
X(T )

]

Q(T )

Q(T0)
. (10)

Here, T0 = 16.435 ks specifies the peak D, and Tk any other

T -fringe peak. Assuming the true value of T to be the

same between 1993 and 1995, we can utilize the G95 DeMD

(black curve in figure 6) as the prior information, and write

Q(T )/Q(T0) = exp(−X95/2), where X95 is the Z2
4 decrement

in the G95 DeMD from its peak value. The results of this calcu-

lation are summarized in the last three columns in table 6, and

are utilized in subsubsection 3.3.2.

Appendix B: Significance of the DeMD peak

Using the 3–12 keV result from G95, we evaluate the signifi-

cance of the DeMD peak at T16.4. Instead of performing Monte-

Carlo simulations, the actual G95 data themselves are used, af-

ter Makishima et al. (2021b). That is, we repeat the demodula-

ton computation in the same manner as in figure 2c, but scan-

ning T from 0.05 ks to 6 ks, which is sufficiently longer than

P but shorter than T16.4. Because T16.4 is close to three times
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Table 6. Parameters of the peaks in the 2.55–12 keV DeMD from G93T.∗

DeMD T P † Z2
4 Relative probability

peak (ks) (s) G93T G95‡ G93T§ G95‖ total#

A 17.520 (42) 7.468 140 62.92 37.22 0.63 1.8× 10−4 1.2× 10−4

B 17.187 (58) 7.468 414 57.15 40.39 0.035 8.9× 10−4 3.2× 10−5

C 16.782 (39) 7.468 482 56.64 49.23 0.027 0.074 2.0× 10−3

C’ 16.626 (16) 7.468 470 58.91 52.63 0.084 0.41 0.034

D 16.435 (24) 7.468 484 63.86 54.43 (1) (1) (1)

E 16.113 (35) 7.468 416 58.41 51.85 0.066 0.27 0.018

F 15.807 (30) 7.468 417 59.93 43.66 0.14 4.6× 10−3 6.5× 10−4

G 15.510 (27) 7.468 416 57.16 35.56 0.035 7.9× 10−5 2.8× 10−6

∗ Referring to the red DeMD in figure 6.
† Defined at the start of the G93pA data stream.
‡ The Z2

4 value of the G95 DeMD in 3–12 keV.
§ Corresponding to the factor exp(−X/2) in equation (10).
‖ Corresponding to the relative prior probability Q(T )/Q(T0) in equation (10).
# Representing the relative posterior probability Q(Tk|X)/Q(T0|X) of equation (10).

the orbital period of ASCA, Porb ≈ 5.5 ks, the selected period

range purposely covers Porb and 2Porb. To ensure Fourier in-

dependence between adjacent trials in T , its step is chosen as

δT >∼ T 2/S, where S ≈ 112.4 ks is the total data span. We

treat A and ψ in the same manner as in the actual PPM analysis,

and P is varied by ±60 µs around the best period, 7.47384 s.

The values of Z2
m thus obtained will represent its statistical plus

systematic fluctuations under the actual observing condition.

The above control study yielded about 2100 independent tri-

als in T , but in no cases Z2
4 exceeded the target value, Z2

4 =54.4

(table 2); the highest was Z2
4 = 51.0. Thus, the probability to

obtain, by chance, a DeMD peak with Z2
4 ≥ 54.4 in a single

trial in T becomes Pch < 1/2100 = 0.048%. The chance prob-

ability of the T = 16.4 ks peak is obtained by multiplying this

Pch with the actual number of independent trials conducted in

producing figure 2c over T = 7− 100 ks. This is estimated as

S/7−S/100=14.9 in terms of the Fourier wave number. These

finally yield Pch < 0.048%× 14.9 = 0.72%.

For further confirmation, we repeated the demodulation cal-

culation at T ≈Porb=16.81±0.05 ks (subsubsection 3.2.2) and

T ≈2Porb with a finer step with ∆T =0.01 ks, but Z2
4 remained

≤ 44.5. Since possible artifacts related to the ASCA’s orbital

period is thus signifiant at neither T ≈ Porb nor T ≈ 2Porb, we

reconfirm that the DeMD peak at T = T16.4 ≈ 3Porb is very

unlikely to be instrumental.

From these evaluations, we can claim, at 99% or higher con-

fidence, that the DeMD peak at T16.4 in the 3–12 keV GIS95

data is real.
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