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ABSTRACT
Cold-start item recommendation is a long-standing challenge in rec-
ommendation systems. A common remedy is to use a content-based
approach, but rich information from raw contents in various forms
has not been fully utilized. In this paper, we propose a domain/data-
agnostic item representation learning framework for cold-start
recommendations, naturally equipped with multimodal alignment
among various features by adopting a Transformer-based archi-
tecture. Our proposed model is end-to-end trainable completely
free from classification labels, not just costly to collect but subop-
timal for recommendation-purpose representation learning. From
extensive experiments on real-world movie and news recommen-
dation benchmarks, we verify that our approach better preserves
fine-grained user taste than state-of-the-art baselines, universally
applicable to multiple domains at large scale.
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1 INTRODUCTION
Recommendation systems are widely adopted for a variety of real-
world applications, e.g., online retails, video sharing platforms, and
more, as the scale of items that people may choose from has been
rapidly growing. Collaborative filtering (CF) [8, 20], recognizing
preference patterns observed in user-item interactions, has been
successfully applied to personalized recommendation systems to
provide potentially preferred items in a personalized manner.

Despite its success, CF approaches suffer from several challenges,
one of which is the cold-start problem. Since CF relies only on user
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and item interaction, it is not capable of generating personalized
recommendations for a new user without any records. Likewise, a
brand-new item with no user feedback cannot be recommended to
the right customers who are most likely to prefer that item.

Cold-start is actually a common problem in modern recommen-
dation systems. On YouTube, for example, 500 hours of contents
are being uploaded every minute [29]. With a CF recommendation
system, fresh contents can only be recommended to some random
users until sufficient interaction data is collected. Another example
is Netflix, where new movies or TV series often compete for a lim-
ited main advertisement space. It is important for the supplier to
select users who will most likely enjoy the new contents to maxi-
mize its revenue, where cold-start item recommendation plays a
key role in selecting the right set of users for each fresh content
without any user feedback. Another domain that the cold-start is
important is news articles. Unlike multimedia contents that their
value lasts for a long time, news contents are useful only for a short
period. In other words, it is more important to recommend news
articles to the right people before we collect sufficient activities on
them, and thus cold-start is the key in this domain.

To tackle the cold-start problem, side information about the
users or items has been utilized. Since content information be-
comes available at the time of release, it is possible to retrieve a
set of neighboring items that are of similar content, and it may
be recommended to users who like this kind of items. Traditional
approaches [41, 49, 59, 79] used demographic information of the
users or meta-data of the items, e.g., genre or artist, to get prior
knowledge of them. With recent advances in deep learning, extract-
ing semantics from the raw content, e.g., videos [4, 9, 61] or mu-
sic [27, 31, 51], has become pervasive. Some recent works attempt
to learn more powerful item representations for recommendation
purpose, directly from the raw contents [37, 38, 67].

Here, we pose the key question: is this rich content information
being properly and sufficiently utilized for cold-start recommenda-
tions? From two observations below, we believe it is still limited.

First, most existing methods are specifically designed for a par-
ticular dataset on a specific domain. This is probably because the
“content information”, by nature, varies depending on the domain,
service, or dataset. For instance, movie contents densely provide
visual frames, while music contents are mainly sound tracks. A
visual-signal-based movie recommendation model will not work
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for music due to the absence of visual signals. The opposite, a sound-
track-based music recommendation model may also not work well
for movies, as audio in the movies is not as dense and informative
as in music. For this reason, content-based recommendation models
have been developed independently for each domain and dataset,
without having a general, common framework like CF.

Second, in spite of the advances in deep learning, raw multime-
dia contents are still not easily utilized due to their high cost of
training and serving. Specifically, it is a common practice to learn
multimedia representations on large, human-labeled classification
data, e.g., JFT [58], HowTo100M [48] or Kinetics [9]. Setting aside
the high cost of collecting a large volume of examples and labeling
them, we claim that feature encoding learned from classification
labels is sub-optimal for recommendations. Classifying a sample to
a predefined category intrinsically forces the model to learn only
the common aspects within each class, ignoring subtle differences
among individual examples in the same class. We hypothesize that
an encoding learned from such a classifier does not sufficiently
preserve fine-grained details that are necessary and useful for a rec-
ommendation model to distinguish subtle preference of individual
users on a variety of items.

In this paper, we seek a general item content representation
learning framework which is domain and dataset-agnostic, and
preferably, which does not rely on a human-labeled classification
dataset. In order to overcome the aforementioned problems, we pro-
pose to utilize the Transformer [63] architecture, which has been
the basis of most state-of-the-art models in recent language [15, 47],
image [17, 43], video [4, 7] and audio [21] understanding. Trans-
former architecture is particularly appropriate for our use case,
since it applies in most steps a common architecture to the input
sequence regardless of its nature, once each input token is mapped
to an embedding simply by a linear mapping. In other words, its
input-type-specific part is light, making it more appropriate for a
general feature extractor. This is in contrast to a CNN-based image
model or an RNN-based text model, where the architecture-specific
representations are kept until the very last few layers. Thanks to
its nature to rely less on data modality, it also provides a natural
way of multimodal fusion [2, 45, 57]. Our proposed framework is
trained end-to-end solely on user activities, e.g., clicking or rating,
without pre-training on classification labels on a predefined set.

To verify effectiveness and generalizability of the proposed ap-
proach, we conduct extensive cold-start recommendation exper-
iments on multiple domains, where the multimodal content sig-
nals are particularly rich (movie) and where the cold-start recom-
mendation is particularly important (news). From experiments, we
demonstrate that the content representations learned by our gen-
eral framework perform significantly better recommendations than
existing methods, preserving finer subtleties about items. Note that
we focus only on the cold-start recommendations, where the con-
tent signals are required and play the key role. Combining this
with a CF-based model for warm-start cases will be an interesting
extension, but this is beyond the scope of this paper.

Our main contributions are summarized as follows:

• We propose a domain/dataset-agnostic item content represen-
tation learning framework for cold-start recommendations,
effectively fusing multimodal signals.

• Our framework is end-to-end trainable, without relying on
human-labeled large-scale classification data to trainmodality-
specific encoders. Trained solely on user activities, our item
representations better preserve fine-grained taste of users.

• From extensive experiments, we demonstrate that our pro-
posed approach achieves state-of-the-art performance on
cold-start recommendation on large-scale datasets from mul-
tiple domains.

2 RELATEDWORK
2.1 Cold-start Recommendations
Collaborative Filtering (CF) has been successful in personalized
recommendation systems with the existence of plentiful historical
data [25, 40, 52, 54, 56, 78], but the cold-start problem is its long-
standing challenge, where no historical interaction record of user
or item exists. To tackle this problem, MWUF [82] warms up cold
items with meta-scaling and shifting networks. DropoutNet [64]
randomly drops items or users to make the model better adapt to
cold-start. Heater [83] tackles the problem with a randomized train-
ing mechanism and mixture-of-experts transformation. Recently,
meta-learning approaches [16, 36, 46, 50, 77] are proposed to tackle
cold-start recommendation.

2.2 Content-based Recommendations
Auxiliary information like content features has been integrated
to CF models to alleviate the cold-start problem. CB2CF [6] con-
nects the gap between item content and their CF representations.
CWH [5] balances the quality of warm and cold items by utilizing
text-based item content. CLCRec [67] maximizes the mutual de-
pendencies between item content and collaborative signals using
contrastive learning. CLCRec shares a common theme with our
model in that it utilizes multimodal content features to tackle cold-
start recommendation. However, it trains embeddings on image
classification labels and transfers them to the recommendation task,
while our framework is completely free from human labels. More
recently, CVAR [79] adopts conditional variational autoencoders to
warm up cold item embeddings using content metadata. Recently,
graph neural networks (GNN) become increasingly prevalent in
recommender systems. PMGT [76], for example, combines GNN
with multimodal side information in item recommendation [42].
There are more examples, e.g., DUIF [19], MTPR [18], CC-CC [55],
MMGCN [68], and Movie Genome [12]. See a survey [13] for more.

CDML [38] is another model that proves usefulness of audio-
visual features in cold-start scenario. GCML [37], learns video em-
beddings from a relational graph. However, both models are not
personalized in that they learn item-item co-watch similarity ag-
gregated over all users, not at individual user level. On the other
hand, our model explicitly uses individual user feedback to learn
the item representations.

Although many content-based approaches tackle cold-start, they
are restricted to a particular domain and features specific to the
target dataset, often trained on classification labels. Our approach,
on the other hand, is applicable to arbitrary domains and features,
and is end-to-end trainable free from human-labeled data.
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2.3 News Recommendations
News recommendation models particularly exploit content features
to tackle the item cold-start problem [34, 65, 75], since news articles
are replaced with new ones in a short period of time. For instance,
NRMS [73] and NPA [71] learn article representations from news
titles. TANR [72], LSTUR [3], and NAML [70] utilize news topics
or article bodies in addition to titles to enrich the news representa-
tions. Most existing models exploit textual modality to represent
news articles [3, 70, 72–74], but recently, visual modality is also
considered [75]. Along with this trend, our framework supports
arbitrary number of content features in various forms, including
visual and textual. Recently, visual modality is also considered [75].
Along with this trend, our framework supports arbitrary content
features, including visual and textual.

2.4 Contrastive Learning
Contrastive learning is a self-supervised task, learning to discrimi-
nate which pairs of data points are similar and different from the
dataset, widely used in computer vision and NLP [10, 11, 22, 24, 26,
32]. Recent works employ contrastive learning in recommender
systems to optimize the user and item representations. For instance,
Liu et al. [44] proposes a graph contrastive learning to alleviate
the sample bias. CLRec [80] employs it to improve DCG in rec-
ommendation. SLMRec [60] incorporates contrastive learning into
multimedia recommendation with a graph neural network. Our
method also employs contrastive loss for rating prediction and
multi-modal alignment, detailed in Sec. 5.

3 PROBLEM FORMULATION AND NOTATIONS
In this paper, we presume implicit feedback from the users, so
there are only two types of ratings: preferred and unknown. Given
a binary preference matrix R ∈ {0, 1}𝑀×𝑁 with 𝑀 users and 𝑁
items, an element R𝑖 𝑗 = 1 indicates that the user 𝑖 prefers the item
𝑗 , while R𝑖 𝑗 = 0 means unknown. The matrix R can be split into
two parts: R𝑤 with warm items and R𝑐 with cold items, where all
entries within R𝑐 are zeros. The cold-start recommendation task is
predicting preferable items within R𝑐 ; in other words, retrieving a
list of items that each user 𝑖 may prefer among the cold items.

Each item is provided with a set of 𝐶 content attributes. The
content information for each attribute 𝑐 = 1, ...,𝐶 is denoted by
X(𝑐 ) ∈ R𝑁×𝐷𝑐 , where 𝐷𝑐 is the dimensionality of the content
information for the attribute 𝑐 . Depending on its nature (modality),
𝐷𝑐 may be in a structured form. For an image (e.g., a raw frame),
for instance, 𝐷𝑐 = 𝐻𝑐 ×𝑊𝑐 × 3, where𝐻𝑐 and𝑊𝑐 are the height and
width of the image. For a video, 𝐷𝑐 = 𝑇𝑐 ×𝐻𝑐 ×𝑊𝑐 × 3, where𝑇𝑐 is
the maximum number of frames in the video. For a textual modality
(e.g., synopsis), 𝐷𝑐 = {1, ..., |𝑉 |}𝑇𝑐 , where𝑇𝑐 is the maximum length
of the text for 𝑐 and𝑉 is the vocabulary set. The content information
for 𝑐 of a particular item 𝑗 is denoted by X(𝑐 )

𝑗
∈ R𝐷𝑐 .

We tackle cold-start items only, not cold-start users, since no
public dataset provides meaningful user side information due to
privacy, although cold-start users can be modeled in a similar way.

User i

User Embedding 
Layer

ℒR

Item j

Modality-specific 
Encoder

Modality-specific 
Encoder

Modality-specific 
Encoder

zj
(1) zj

(2) zj
(C)

xj
(1) xj

(2) xj
(C)

Feature Fusion 
Layer

ui vj

…

Figure 1: Overall Architecture. 𝐶 content features are ex-
tracted for each item using modality-specific encoders. (A
few examples are illustrated in Fig. 2.) Then, the Feature Fu-
sion Layer aggregates them into the final item representation
v𝑗 , and the rating R𝑖 𝑗 is predicted by taking dot product with
the target user embedding u𝑖 , learned in the manner of col-
laborative filtering.

4 PRELIMINARY
We briefly review Transformers [63], on which our general item rep-
resentation learning framework is built. Transformer is a powerful
model that achieves state-of-the-art performance on sequence-to-
sequence tasks [45] like machine translation as well as general
representation learning for images [17] and videos [4]. Taking as
input a sequence of its sub-component (e.g., words for a sentence,
smaller patches for an image, and frames for a video), it applies a
self-attention mechanism in an encoder-decoder structure to learn
context by tracking relationships among those sub-components.
We first describe the Transformer encoder in detail, followed by
how it is utilized for two important modalities: text and visual. The
decoder is not used in our framework.

4.1 Transformer Encoder
Recall that a side information 𝑐 for an item 𝑗 is denoted by X(𝑐 )

𝑗
.

To be uncluttered, we omit 𝑐 and 𝑗 whenever clear. X is split into
a sequence of 𝑇 sub-components, denoted by {x[1] , ..., x[𝑇 ] }, and
how to split varies by modalities. Some modalities like a video or
a sentence are sequential in nature. An image may be split into
multiple smaller patches [17].

Given this sequence {x[1] , ..., x[𝑇 ] } of𝑇 tokens as input, they are
first embedded into vectors, Z ≡ {z[1] , ..., z[𝑇 ] }, where z[𝑡 ] ∈ R𝑑
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Figure 2: Examples of Modality-specific Encoders. From the left, we illustrate the image, video, and text encoders.

and 𝑑 is the token embedding size. Then, Z is fed to a series of en-
coder blocks, where each block is composed of a self-attention layer
and a feed-forward network, which enrich token representations
with contextual information from other tokens in the sequence.

First, the token embeddings Z ∈ R𝑇×𝑑 are transformed to three
special representations, namely, query (Q ∈ R𝑇×𝑑 ′

), key (K ∈
R𝑇×𝑑 ′

), and value (V ∈ R𝑇×𝑑 ′
), by linear transformation, where 𝑑′

is not necessarily same as 𝑑 . Then, the self-attention is defined as
Attention(Q,K,V) = softmax

(
QK⊤/

√
𝑑′
)
V. Intuitively, the atten-

tion of each token is represented as a weighted average of other
token embeddings (usingV) in the same sequence, where the weight
is proportional to the relevance (computed using Q and K) between
them. The learnable parameters are linear mappers from token
embeddings to Q, K, and V. Multiple heads are often used to allow
each token to represent more than one semantics depending on the
context.

After the multi-head self-attention, the embeddings are fed into
a position-wise feed-forward network, allowing further transfor-
mation. These steps are repeated by 𝐿 blocks. The output of the
last encoder block is the final embedding of each token. Optionally,
we may put an additional classification token ([CLS]) to learn the
aggregated representation of the entire sequence. Without having
specific meaning, [CLS] aggregates tokens without being biased
towards itself as other regular tokens do. The Transformer is often
trained by losses arisen from a downstream task like classification,
performed based on this aggregated embedding from [CLS] token.

4.2 Transformers for the Text Modality.
Bidirectional Encoder Representations fromTransformers (BERT) [15]
is a language model that learns representations from unlabeled text
by self-supervised learning, based on the Transformer encoder. The

main training objectives are to predict masked tokens in sentences
(Masked language modeling; MLM) and to predict whether two
input sentences are consecutive (Next Sentence Prediction; NSP).
With MLM, the randomly masked tokens are classified based on
context (remaining tokens). For NSP, the embedding corresponding
to the [CLS] token is fed to a classifier determining if the two input
sentences are consecutive. For both, a classification loss (e.g., cross
entropy) is used to train the model. BERT is powerful in precisely
learning semantics of words when trained on large-scale corpus,
achieving state-of-the-art performance on various NLP tasks.

4.3 Transformers for the Visual Modality.
The Vision Transformer (ViT) [17] is a Transformer-based object
recognition or image classification model. ViT employs a Trans-
former over fixed-size (e.g., 16 × 16) patches split from the input
image. Each image patch is linearly transformed to a patch embed-
ding, added with learnable positional encoding and fed into the
Transformer encoder. Optionally, multiple blocks of Transformers
may be stacked. At the end of the last block, a learnable classification
[CLS] token is appended to aggregate the learned representation of
the entire image. It is fed into an MLP head performing the down-
stream task, e.g., image classification. Video Vision Transformer
(ViViT) [4] and TimeSFormer [7] extend this idea to the sequence
of frames, equipped with several options to reduce computational
overhead.

5 THE PROPOSED METHOD
For a user 𝑖 and an item 𝑗 , the goal of our model estimates the
preference score R𝑖 𝑗 . As illustrated in Fig. 1, the user representation
u𝑖 ∈ R𝐷 is simply learned with an embedding layer, similarly to
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the traditional collaborative filtering models. In order to treat cold-
start items, however, item representations are learned from their
content information. Given 𝐶 content information {x(1)

𝑗
, ..., x(𝐶 )

𝑗
}

for each item 𝑗 , where x(𝑐 )
𝑗

∈ R𝐷𝑐 for 𝑐 = 1, ...,𝐶 and each x(𝑐 )
𝑗

is
potentially in different forms from various modalities, our model
feeds each of them into a modality-specific encoder to embed them
into a common embedding space. This embedding is annotated by
z(𝑐 )
𝑗

∈ R𝑑 for 𝑐 = 1, ...,𝐶 . If 𝐶 > 1, all 𝐶 content embeddings are
fused into a single item representation v𝑗 ∈ R𝐷 by the Feature
Fusion Layer (See Sec. 5.2). The final preference R𝑖 𝑗 is estimated by
the dot-product of user and item embeddings; that is, R̂𝑖 𝑗 = u𝑖⊤v𝑗 .

The overall architecture might look standard in recommenda-
tion literature; however, we adopt Transformer-based architectures
universally for all Modality-specific Encoders, enabling flexible con-
textualization and fusion across different features. More details on
how to represent each modality will be described in Sec. 5.1.

5.1 Modality-specific Encoders
We elaborate our Transformer-based modality-specific encoders,
illustrating visual and text representation modules representatively.
We emphasize, however, any feature type can be applied similarly.

5.1.1 Image Encoder. The left-most box in Fig. 2 illustrates our
Image Encoder. To be uncluttered, we omit the feature index su-
perscript (𝑐) and the item index subscript 𝑗 inside each modality-
specific encoder. Given an image x ∈ R𝐻×𝑊 ×3, where𝐻 and𝑊 are
its height and width, respectively, it is divided into 𝑃 ×𝑃 smaller im-
age patches, forming a set {x[1,1] , x[1,2] , ..., x[ℎ,𝑤 ] }, whereℎ = 𝐻/𝑃 ,
𝑤 = 𝑊 /𝑃 , and x[𝑎,𝑏 ] ∈ R𝑃×𝑃 for 𝑎 = 1, ..., ℎ and 𝑏 = 1, ...,𝑤 .
Adopting ViT [17], our Image Encoder first linearly maps the input
patches {x[1,1] , x[1,2] , ..., x[ℎ,𝑤 ] } to an embedding space with the
Patch Embedding Layer, where the resulting embeddings are de-
noted by {z[1,1] , z[1,2] , ..., z[ℎ,𝑤 ] }, where z[𝑎,𝑏 ] ∈ R𝑑 for 𝑎 = 1, ..., ℎ
and 𝑏 = 1, ...,𝑤 . Then, following common practice, learnable posi-
tional encodings {p[𝑎,𝑏 ] ∈ R𝑑 } are added to the patch embeddings,
depending on the location of each patch within the image. They
are fed into 𝐿𝑐 Transformer Encoder blocks, where 𝑐 = 1, ...,𝐶
is the content attribute index, contextualizing them by repeated
multi-head self-attention and multi-layer perceptrons. During this
process, each patch embedding is updated to capture diverse seman-
tics (e.g., objects and their relations) in the image. The output is the
transformed sequence embeddings {z[1,1] , z[1,2] , ..., z[ℎ,𝑤 ] } from
the last Transformer block. Optionally, an additional [CLS] token
is appended to the sequence. The output embedding corresponding
to this [CLS], denoted by z ∈ R𝑑 , encodes semantics of the entire
image x. Either the entire sequence or this aggregated z is used
depending on the feature fusion methods (Sec. 5.2).

5.1.2 Video Encoder. The second encoder in Fig. 2 illustrates the
Video Encoder. Instead of a single image, it takes as input a video
x ∈ R𝑇×𝐻×𝑊 ×3 with𝑇 frames. Among𝑇 video frames, we first ran-
domly sample a clip of 𝐹 consecutive frames, denoted by {x[1] , x[2] ,
..., x[𝐹 ] }. Then, we adopt a two-stage architecture where we first
compute the frame-level embeddings {z[1] , z[2] , ..., z[𝐹 ] }, where
z[ 𝑓 ] ∈ R𝑑 for each frame 𝑓 = 1, ..., 𝐹 , using the Image Encoder with
[CLS] (Sec. 5.1.1). Then, a learnable temporal positional encoding

{p[1] , ..., p[𝐹 ] ∈ R𝑑 } is added. The sequence is fed into an additional
Transformer Encoder. While the Image Encoder captures the spatial
semantics of each frame, this second-level Transformer Encoder
is in charge of capturing temporal semantics in the clip. Similarly
to the image case, a classification token ([CLS]) may be appended
to the sequence to aggregate the entire clip representation z ∈ R𝑑
out of it, or the entire output sequence {z[1] , z[2] , ..., z[𝐹 ] } is kept
depending on the fusion method.

We choose this two-stage architecture in order to effectively
capture the spatio-temporal semantics of the video, including both
details at frame level and overall information flow through the tem-
poral axis. The architecture is similar to the model 2 of the Video
Vision Transformer (ViViT) [4], reported as the most efficient and
cost-effective. In order to learn complex underlying spatio-temporal
dynamics from videos, choosing a computationally efficient archi-
tecture is critically important.

5.1.3 Text Encoder. Similarly to the visual modalities, we use a
Transformer-based Text Encoder similar to BERT [15], illustrated
in the right-most box in Fig. 2.

Given a sequence {x[1] , ..., x[𝑇 ] } of 𝑇 words (or sub-words, de-
pending on the particular tokenizer used), where x[𝑡 ] ∈ {1, ..., |𝑉 |}
for 𝑡 = 1, ...,𝑇 and 𝑉 is the vocabulary set, the Word Embed-
ding Layer encodes them into a sequence of word embeddings,
{z[1] , ..., z[𝑇 ] } with z[𝑡 ] ∈ R𝑑 for each 𝑡 = 1, ...,𝑇 . Then, they are
added with the positional encoding {p[1] , ..., p[𝑇 ] ∈ R𝑑 }. Unlike
the learnable positional encodings used for visual modalities, we
follow the fixed positional encodings following BERT [15], as it is
more suitable for text. The position-aware word embeddings pass
through a Transformer Encoder which contextualizes the word em-
beddings throughout the entire text and produces another sequence
of transformed word representations.

5.2 Feature Fusion
Once𝐶 content information is represented in a common embedding
space, z(1)

𝑗
, ..., z(𝐶 )

𝑗
∈ R𝑑 for each item 𝑗 , we fuse them into a single

item embedding v𝑗 ∈ R𝐷 through the Feature Fusion Layer. This
fusion can be implemented in a variety of ways, described below.

5.2.1 Late Fusion. Different content signals are fused at the last
step, where each modality-specific encoder provides an aggregated
single embedding z(𝑐 ) ∈ R𝑑 for 𝑐 = 1, ...,𝐶 , corresponding to each
content signal. For this, an additional [CLS] token is appended to
the input sequence to each modality-specific encoder, illustrated
in Fig. 2. Without being biased to any specific token, the output
embedding z(𝑐 ) ∈ R𝑑 corresponding to this [CLS] token is used to
represent each content signal 𝑐 . Using the concatenation approach
among various fusion methods, we map {z(1) , ..., z(𝐶 ) } to the final
item representation, v ∈ R𝐷 , with a few fully-connected layers
in the Feature Fusion Layer; that is, R𝐶×𝑑 → R𝐷 . Thanks to the
flexibility of MLPs, 𝐷 is not necessarily same as 𝑑 .

Note that each feature z(𝑐 )
𝑗

may not be aligned yet even though
they are in the same embedding space. To further align multimodal
information for the same item 𝑗 , we may additionally apply Multi-
modal Alignment Loss, detailed in Sec. 5.3.2.
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5.2.2 Early Fusion. In contrast to the Late Fusion where we use
only a single output embedding from each modality-specific en-
coder, with Early Fusion, information across different content sig-
nals are fused before the token embeddings are aggregated. That is,
we fuse all output tokens {z(𝑐 )[𝑡 ] ∈ R

𝑑 } from the modality-specific
encoders for 𝑡 = 1, ...,𝑇𝑐 and 𝑐 = 1, ...,𝐶 . An additional Transformer
Encoder is adopted for this, taking all tokens {z(𝑐 )[𝑡 ] ∈ R

𝑑 } to capture
dependencies between them by cross-modal attention [45]. At the
end, all contextualized token embeddings may be averaged, or an
additional [CLS] token is appended, to aggregate the semantics of
the target item, denoted by v𝑗 ∈ R𝐷 . Note that 𝐷 = 𝑑 here due to
restriction of the Transformer architecture that token embedding
size should be always the same. To have 𝐷 ≠ 𝑑 , a fully-connected
layer may be added in the end.

With this Early Fusion, additional multimodal alignment may
not be necessary, since tokens from all different side information
are aligned within the Transformer structure described above.

5.2.3 Mixture of Late and Early Fusions. Between the two extreme
cases of Late (Sec. 5.2.1) and Early (Sec. 5.2.2) Fusions, there are
various possibility of mixing those two. For instance, only a subset
of features are fused early and fed into the fusion Transformer.

5.3 Training Objectives
The entire model is trained end-to-end using the two losses: Rating
Ranking Loss and Multimodal Alignment Loss.

5.3.1 Rating Ranking Loss. We train the model to predict higher
scores for preferred items and lower scores for the others. That is,
the model is trained to maximize {R̂𝑖 𝑗 : R𝑖 𝑗 = 1} and minimize
{R̂𝑖 𝑗 : R𝑖 𝑗 = 0}. We use contrastive loss, which has been widely
adopted for representation learning [10, 24, 35, 66].

Specifically, for each user, the item paired in the same example
(i.e., this user actually likes the item) is used as positive, while all
other items belonging to different pairs in the minibatch are consid-
ered as negatives. With contrastive loss, the encoder is trained to
maximize the dot product between the user and item embeddings
in the same pair, while minimizing that of the different pairs in the
mini-batch. The Rating Ranking Loss LR for a pair of a user 𝑖 and
an item 𝑗 is defined as

LR = − log
exp(u𝑖⊤v𝑗 )∑

𝑗 ′∈B exp(u𝑖⊤v𝑗 ′ )

− log
exp(u𝑖⊤v𝑗 )∑

𝑖′∈B exp(u𝑖′⊤v𝑗 )
, (1)

where B is the set of user-item pairs in the minibatch.
Here, one might argue that the items in the minibatch other than

the paired one with the user might not be actually negative. Unlike
classification models like SimCLR [10], the user might actually
like additional items other than the currently paired one. We thus
optionally filter out these false negatives from the denominator of
Eq. (1) for more precise training. We report empirical performance
with or without false negative filtering in Sec. 6.4.

5.3.2 Multimodal Alignment Loss. With the Late Fusion of multiple
(𝐶 > 1) content features, an additional Multimodal Alignment Loss
can be beneficial, as various content features may not be aligned yet

in the common embedding space. Specifically, we apply contrastive
loss to all item embeddings within the minibatch, maximizing the
similarity between content embeddings for the same item, while
minimizing it between all other combinations. Multimodal Align-
ment Loss LM is defined by

LM = − log
1
𝑍

𝐶∑︁
𝑐=1

∑︁
𝑐′>𝑐

𝑒
z(𝑐 )
𝑗

⊤
z(𝑐

′ )
𝑗 , (2)

with 𝑍 =
∑︁
𝑗 ′∈B

𝐶∑︁
𝑐=1

𝐶∑︁
𝑐′=1

𝑒
z(𝑐 )
𝑗

⊤
z(𝑐

′ )
𝑗 ′ ,

where B is the set of items in the minibatch. When LM is used, we
linearly combine it with LR; that is,

L = LR + 𝜆LM, (3)

where 𝜆 controls relative importance of the two losses.

5.4 Inference
For videos, recall that we randomly sample a segment with 𝐹 frames
at training. At inference, we sample 𝑆 > 1 segments and predict
preference scores with each of them. Then, we aggregate those
scores by taking the max:

R̂𝑖 𝑗 = max
𝑠=1,...,𝑆

u𝑖⊤v𝑗𝑠 , (4)

where v𝑗𝑠 is the video embedding based on the segment 𝑠 for the
item 𝑗 . In this way, we cover wider range of the video and compute
the score based on a segment that the user most likely prefers.

For the news domain, the content representation embedding is
directly generated by feeding the entire image and text without
any cropping, so we simply estimate by

R̂𝑖 𝑗 = u𝑖⊤v𝑗 . (5)

6 EXPERIMENTS
We conduct extensive experiments to verify the effectiveness of our
framework on multiple recommendation domains and datasets.

6.1 Experimental Settings
Datasets. We choose the movie and news domain for our experi-
ments. Themovie domain is chosen as it contains the richest content
signals, e.g., visual scenes, textual summary or script, metadata like
genre, director, or main actors. We choose the news domain due to
its cold-start nature; that is, recent news articles are mostly valu-
able to recommend. As listed in Table 1, we use two widely-used
standard benchmarks on the movie domain, MovieLens 25M [23]
and Yahoo Movies [53]. For the news domain, we use Chosun News
2022, containing all the articles and user activities between January
and December 2022 on chosun.com, one of the most representative
newspapers in Korea. Both MovieLens and Yahoo Movies provide
explicit ratings from 1 (least preferred) to 5 (most preferred), so
we convert them to implicit ones with 3.5 as the threshold, follow-
ing [38, 81]. Chosun News dataset considers a click from a user on
a news article as a positive feedback, and negative otherwise.

We exclude items with any missing content information from
all datasets. Also, we filter out users with less than 20 ratings from
MovieLens, following [39, 69]. We do not filter out ratings from
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Table 1: Overview of Our Datasets

Dataset Users Items Ratings Density Domain

MovieLens 25M 162,541 62,423 25,000,095 0.246% Movie
Yahoo Movies 7,642 11,915 211,231 0.232% Movie
Chosun News 2022 389,188 288,540 42,457,502 0.038% News

Yahoo Movies and Chosun News. After filtering, we randomly split
the items into training, cold validation, and cold test with the ratio of
85:7.5:7.5 for MovieLens and 70:15:15 for Yahoo Movies. For Chosun
News, we use activities from the first 6 months for training, next 3
months for validation, and the rest for testing. The cold validation
set is used to tune hyper-parameters, and the cold test set is used
to evaluate the final performance. The two movie datasets contain
only 891 overlapping movies, ∼2.77% out of 32,156 movies in total
(regarding the transfer learning experiment in Sec. 6.5).

Content Features. As all three datasets provide limited content
signals, we collect additional visual and text data.

For visual content of the movie datasets, we use movie trailers
provided by MovieLens [1] and MovieNet [28], since the full videos
are publicly unavailable for most movies due to copyright. From
each video, frames of size 224 × 224 are sampled at 2 fps. We drop
the first and last 10% of the sampled frames, since they are often age
rating screen or ending credits. The average length of the trailers is
137 seconds forMovieLens and 140 seconds for YahooMovies, so we
get around 220 frames per video on average for both datasets. For
visual content of the news dataset, we use up to 3 images collected
from the web queried by the title of each article.

For text content of the movie datasets, we use movie synopsis col-
lected from imdb.com for MovieLens. Yahoo Movies self-contains
synopsis. These synopses are 2–3 sentences that summarize the
movie overview. The sentences are first tokenized at word level
with the maximum length of 512, using uncased BERTBASE tok-
enizer [15] with |𝑉 | = 30, 522. The average number of text tokens
is 54.7 and 83.0 for MovieLens and Yahoo Movies, respectively.
For Chosun News, we use the title and the body text of the arti-
cle, following the same preprocessing above. The average number
of tokens in this dataset is 257.3. We use the KoBERTBase-V1 tok-
enizer [30] with |𝑉 | = 8, 002 for Korean language in Chosun News.

Evaluation Metrics.We measure recommendation performance
by ranking all unseen items for each user in a held-out test set and
comparing the top 𝐾 items from the ranked list with the items that
the user actually gave positive feedback to. Following CLCRec [67],
we treat all users with varied number of ratings equally by averag-
ing the score for each user. We use three widely-used metrics for
ranking tasks: {Precision, Recall, NDCG}@𝐾 with 𝐾 = {1, 5, 10, 20}.

Competing Models. We compare with 4 recent cold-start item
recommendation models using content information: CLCRec [67],
DropoutNet [64], CVAR [79], and PMGT [42]. For fair comparison,
we use the same set of multimedia features for all models, not the
categorical side information used in baseline papers (e.g., [79]); that
is, ViT [17] embeddings pretrained on ImageNet [14] and BERT [15]
embeddings for visual and text features, respectively.

Model Hyperparameters. We experiment with 𝐷 = {32, 64, 128,
256, 512, 1024, 2048} for the user (u𝑖 ) and item (v𝑗 ) embedding
size. The token embedding size 𝑑 is set to 192, following [4]. For
visual features, we spatially split each frame to 𝑃 × 𝑃 patches with
𝑃 = 16. We stack 𝐿 = 4 Transformer blocks for the Image and Video
Encoders, and 𝐿 = 12 for the Text Encoder. Positional encodings p
for visual encoders are learned from data [17]. Visual encoders are
trained from scratch to avoid use of classification labels, while the
text encoder starts from the pretrained BERT [15]. For the Feature
Fusion Layer, we try Late Fusion with a single or two-layer MLP
and Early Fusion with a single Transformer layer (Sec. 6.4). We
perform grid search for 𝜆 within the range [0, 1]. We randomly
sample 𝑆 = 10 segments for video inference.

Training Hyperparameters. We use Adam optimizer [33] with 𝛽1
= 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8. We linearly warm up the learning
rate during the first 3 epochs, and train up to 200 epochs. After
70% of training, we decay the learning rate to 20% of the initial one,
which is found by grid search among {10−6, 10−5, 10−4, 10−3, 10−2}.
We use batch size 𝐵 = 48. For the movie datasets, a single sub-clip
of length 𝐹 = 32 is randomly sampled within each trailer, allowing
the model to see various parts of the video uniformly throughout
the whole training process. All reported results are averaged over
five experiments with random initialization.

6.2 Comparison to the Baselines
Table 2 reports the performance on cold-start recommendation eval-
uated by {NDCG, Prec, Recall}@𝐾 with𝐾 = {1, 5, 10, 20}. Our model
outperforms all baselines under almost all metrics. Another notable
observation is the relationship between the models’ performance
and the value of 𝐾 . On MovieLens, the average number of positive
items in the test set is 23.1. Our approach tends to be stronger with
smaller 𝐾 , so it will be more suitable for cases like watch next,
where only the top one item will be auto-played. Baseline models
like CVAR, on the other hand, tend to be stronger with larger 𝐾 , so
they will be more suitable for homepage recommendations, where
multiple items are presented at the same time. On Yahoo Movies,
the average number of positive items is 3.5, much lower than 20.
Thus, all methods tend to show higher scores with larger 𝐾 .

6.3 General (Warm) Recommendations
Although we focus on cold-start recommendation problem in this
paper, we also evaluate on the general recommendation task, where
some test items are not necessarily cold-start. We conduct this
experiment on Yahoo Movies, where the training set is the same
but the test set consists of both warm and cold items. We compare
our model to DropoutNet and CVAR in Table 3. As seen in the table,
our method consistently outperforms the two strongest baselines
not just on the cold-start, but on the general recommendation task.
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Table 2: Comparison with the Baselines on All Datasets (%)

Dataset Method NDCG (↑) Precision (↑) Recall (↑)
@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20

MovieLens

DropoutNet [64] 7.33 4.99 4.72 5.29 7.33 4.36 4.27 4.79 7.33 4.38 4.34 5.54
CLCRec [67] 9.09 6.59 6.77 8.62 9.09 6.02 6.31 7.19 9.09 6.06 6.71 10.27
CVAR [79] 8.89 9.11 9.09 9.49 8.89 9.12 9.10 9.56 8.89 9.13 9.12 9.71
PMGT [42] 14.13 7.64 7.22 8.54 14.13 6.20 6.24 7.54 14.13 6.22 6.43 8.98
Ours 14.05 11.41 10.16 10.40 14.05 10.77 9.13 8.14 14.05 10.80 9.39 11.33

Yahoo Movies

DropoutNet [64] 1.10 1.68 2.40 3.29 1.10 1.12 1.10 1.01 1.10 2.16 4.05 6.40
CLCRec [67] 0.75 6.50 6.47 6.65 0.75 3.87 2.24 1.24 0.75 7.95 8.34 8.97
CVAR [79] 1.07 1.74 2.31 3.09 1.07 1.34 1.17 1.05 1.07 2.67 4.13 6.49
PMGT [42] 2.04 4.55 5.27 6.47 2.04 3.38 2.33 1.88 2.04 6.10 8.48 12.31
Ours 5.39 8.53 12.42 12.48 5.39 5.87 5.74 6.27 5.39 8.86 15.14 16.24

Chosun News

DropoutNet [64] 2.43 1.92 2.18 2.17 2.43 2.07 2.07 2.14 2.43 2.08 2.11 2.22
CLCRec [67] 1.52 1.36 1.29 1.23 1.52 1.40 1.28 1.19 1.52 1.40 1.30 1.23
CVAR [79] 3.34 3.11 2.75 2.63 3.34 2.92 2.61 2.34 3.34 2.93 2.66 2.41
PMGT [42] 2.80 2.50 2.19 2.20 2.80 2.30 1.93 2.00 2.80 2.30 1.93 2.10
Ours 4.13 4.06 3.52 3.68 4.13 4.13 3.49 3.47 4.13 4.14 3.50 3.53

Table 3: Evaluation on General (Warm + Cold) Recommendation Task (YM)

Modality NDCG (↑) Precision (↑) Recall (↑)
@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20

DropoutNet [64] 2.04 1.91 2.41 2.59 2.04 1.53 1.52 1.09 2.04 1.99 3.25 3.79
CVAR [79] 2.31 1.98 2.35 2.62 2.31 1.66 1.47 1.15 2.31 2.14 3.18 3.89
Ours 6.71 5.94 6.33 6.94 6.71 3.75 2.63 1.70 6.71 6.56 7.73 9.59

Table 4: Modality Ablation Study (CN)

Modality NDCG (↑) Precision (↑) Recall (↑)
@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20

Visual Only 0.61 1.06 1.02 1.01 0.61 1.22 1.07 0.93 0.61 1.22 1.07 1.27
Text Only 3.51 2.69 2.87 2.83 3.51 2.76 2.97 2.86 3.51 2.76 2.97 2.88
Visual + Text 4.13 4.06 3.52 3.68 4.13 4.13 3.49 3.47 4.13 4.14 3.50 3.53

Table 5: MLP Architecture (CN)

Modality NDCG (↑) Precision (↑) Recall (↑)
@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20

No FC layer 3.72 3.41 3.40 3.38 3.72 3.53 3.44 3.26 3.72 3.53 3.44 3.56
1 FC layer 4.32 3.72 3.52 3.66 4.32 3.84 3.50 3.59 4.32 3.84 3.52 3.62
2 FC layers 4.02 3.89 3.77 3.68 4.02 3.84 3.69 3.58 4.02 3.84 3.69 3.63

6.4 Ablation Study
Modality Ablation. To explore the effectiveness of multimodal
features and their alignment, we compare the performance of our
full model against the same model with either visual or text content
only. As seen in Table 4, using multimodal features and alignment
loss improve the performance over single-modality baselines.

Model Architecture Ablation.We compare the Late and Early
Fusions (Sec. 5.2). Table 6 reports that the Late Fusion outperforms
on YahooMovies, while the Early Fusion slightly performs better on
Chosun News.We conjecture that this difference comes from the na-
ture of each dataset. Specifically, when two modalities provide more
distinct information about the item, referring to tokens from each
other is more beneficial during self-attention. The news domain
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Table 6: Feature Fusion (YM, CN)

Data Fusion NDCG@10 Prec@10 Recall@10

YM Late 12.42 5.74 15.14
Early 10.00 4.19 14.18

CN Late 3.40 3.43 3.44
Early 3.52 3.49 3.50

Table 7: Embedding Size (YM)

𝐷 NDCG@10 Prec@10 Recall@10

32 8.87 4.10 9.72
64 10.21 4.55 11.48
128 11.37 5.59 14.17
256 11.84 5.61 14.16
512 12.02 5.79 14.46
1024 12.42 5.74 15.14
2048 12.17 5.66 14.56

Table 8: False Negative Filter (ML)

Filtering NDCG@10 Prec@10 Recall@10

Yes 9.85 9.14 9.21
No 10.16 9.13 9.39

*Datasets: ML = MovieLens, YM = Yahoo Movies, CN = Chosun News

seems more like this, where text tends to provide a chronological
outline and interpretation of an incident in abstract, while images
provide a snapshot of the event with visual details. Comparing
against baselines in Table 2, however, our method still outperforms
all baselines regardless of the fusion method.

We additionally compare the performance with various number
of MLP layers after the fusion. From the model design perspective,
having at least one FC layer is beneficial, since it allows us to arbi-
trarily set the output embedding dimensionality. Before fusion, we
have𝐶 modalities, and simply concatenating the features from each
modality results in a 𝐷′ =

∑𝐶
𝑐=1 𝑑𝑐 dimensional vector, where 𝑑𝑐 is

the feature dimensionality of modality 𝑐 . Without any FC layer on
top of this, this𝐷′ becomes the output vector size. With an FC layer,
we can map 𝐷′ to an arbitrary size 𝐷 . Having additional FC layers,
at least up to 2, is indeed beneficial, as shown in Table 5. Stacking
more layers shows marginal performance gain, indicating that the
complexity of content representations is learned well enough at
the lower-level encoders, so the MLP layers can be concise.
Embedding Size Exploration. Table 7 summarizes the perfor-
mance of our model with different embedding sizes (𝐷) on Yahoo
Movies. As expected, larger embedding size leads to better perfor-
mance in general. It peaks around 𝐷 = 1024 and saturates with
diminishing returns. We also observe that 𝐷 = 128 is a good trade-
off between the cost and performance, aligned with a previous
observation [38]. We use 𝐷 = 128 for other ablation studies for
efficient exploration.
False Negatives Filtering. To quantify the effect of false negatives
discussed in Sec. 5.3.1, we compare our models with and without
false negatives filtering in LR on MovieLens. Table 8 shows that
this filtering has minimal impact. We conjecture that false negatives
are less likely to be included in a small minibatch as the scale of the
dataset gets larger. Considering additional computational overhead,
we conduct all other experiments without it.

Table 9: Experimental Result on Content Representations

Pretraining Target N@10 P@10 R@10

From scratch MovieLens 9.50 8.80 9.09
ViT (ImageNet) 5.32 5.31 5.50

From scratch
Yahoo Movies

7.25 3.63 9.24
ViT (ImageNet) 1.59 0.79 2.66
Ours (MovieLens) 5.22 2.63 6.90

*Metrics: N = NDCG, P = Precision, R = Recall

6.5 Content Representation Evaluation
To verify if our content embeddings properly capture users’ watch
behavior in general, we conduct two studies of transfer learning.

First, we compare our full model against the same model where
the feature extractor is replaced with ViT [17] trained on ImageNet,
average-pooled over the temporal axis. Comparing the first four
rows in Table 9 reveals the difference of training directly on the user
activities vs. classification data. We observe that the performance of
our model trained from scratch outperforms the same model using
ViT pre-trained embeddings on both MovieLens and Yahoo Movies.
Our hypothesis that classification labels are not the best signal to
train on for recommendation purpose is quantitatively confirmed
from this result. From this, we confirm the importance of direct
training on recommendation signals, instead of relying on labels
for a proxy classification task.

Next, we evaluate transferability of our learned content repre-
sentation from one dataset to another, to see if the learned content
model is general enough to be competent on different set of users.
The last row in Table 9 shows reasonable performance of cold-
start recommendation on Yahoo Movies, using content embeddings
trained on MovieLens. Considering the low overlapping movies
(∼2.77%) between these two datasets, our model turns out to truly
map the raw content signals to users’ taste, successfully transferring
user behaviors from one dataset to another.
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6.6 Qualitative Analysis
We visualize the learned video embeddings in 2D for qualitative
understanding. Fig. 3 presents the t-SNE plot [62] of the video
embeddings learned by our model using visual and text content on
MovieLens. We observe that similar movies are positioned nearby
each other in the embedding space. For instance, Fig. 3 illustrates
4 clusters with highly relevant movies in different colors: heroes
(red), romantic comedies from mid-2000s (orange), science fictions
(green), and western movies from mid-1900s (blue). The full list of
colored dots is listed in Table 10.

For a deeper understanding of the improved performance of our
model, we look into actual predicted scores for a couple of users
in Table 11, comparing with the strongest baseline on MovieLens,
CLCRec [67]. User 5649 is known to like the Lion King (1994) in the
training set. Although this user likes animations, the test set indi-
cates she prefers Aladdin (1992) and Tarzan (1999) (all from Disney),
but not Sinbad (2003) from DreamWorks. Our model captures the
user’s taste precisely, estimating higher scores, 0.848 and 0.762, for
the two preferred items, while significantly lower one (-0.799) for
Sinbad. The baseline, on the other hand, predicts similar scores for
all three animations, even slightly higher (0.270) for Sinbad. This
example illustrates that the proposed method trained directly on
the user activities is better capable of capturing fine-grained tastes
of users than previous works trained on classification labels.

Another example is user 1837. This user likes Star Wars Episode
IV, V, and VI, but for some reason not the Episode I. Given the
user likes the Episode IV only in the training set, our method re-
trieves Episodes V and VI (100% correct), while the baseline model
recommends Episode I and VI (50% correct). Again, this example
indicates our approach better captures subtle difference among mul-
tiple episodes of the same series, Star Wars, than existing methods.

In addition, Table 12 presents the pairwise cosine similarities
between the clusters of select movies using the example users and
items illustrated in Fig. 4, comparing with the same baseline. We
calculate the cosine similarities between clusters based on the mean
of the embeddings belonging to each cluster.

The first example is user 39430, who watched many fantasy
movies like the Lord of the Rings, the Hobbit, and the Harry Potter
series. This user liked the two Lord of the Rings movies in 2002
and 2003, but disliked an older one released in 1978. According
to the third row of Table 12, our model successfully captures this
difference (low similarity of -0.072), while the baseline model fails
to (high similarity of 0.921). Fig. 4 indicates that the non-preferred
movies are located far from the preferred ones in the embedding
space, with the overall cosine similarity -0.0794. The baseline model,
on the other hand, positions most of these fantasy movies closely to
each other, with the cosine similarity 0.980. Interestingly, our model
even distinguishes the disliked movies into two different clusters,
clearly characterized by the release years (Fig. 4, left-most).

Another example is user 1837, also used in the Table 11, who likes
Star Wars Episodes IV, V, and VI, but not the Episode I. Our model
embeds the non-preferred series far from the preferred ones with
the cosine similarity of -0.646, while CLCRec puts them closer with
that of 0.811. (One might ask why the embedding space in Fig. 4
does not reflect this difference. This is because of the dimension
reduction to 2D for visualization. The reported cosine similarities

are computed with the original embeddings before dimension re-
duction.) Comparing the preferred clusters, one from the training
and the other from the validation set, we observe that our model
locates them closer (0.627) than CLCRec (-0.532).

These examples illustrate that our approach captures the fine-
grained difference among the movies of the same genre or even
the same series, which is underrepresented with the baseline. We
believe this difference comes from the fact that the existing models
train the content feature on classification labels, forced to unlearn
subtle differences between items belonging to the same class, while
our model is completely free from the classification labels, fully
utilizing its capacity to deeply understand the item contents.

7 SUMMARY
In this work, we propose a general item content representation
learning framework to tackle the item cold-start recommendation
problem. Our proposed framework is agnostic to a specific domain
or dataset, applicable to various real-world services with minimal
modifications. Taking advantage of the Transformer architecture,
the proposed framework fuses signals from multimodal features
in a natural way. Our framework does not rely on any human-
labeled large-scale classification datasets to train modality-specific
encoders. Relying solely on user activities, our model learns to
represent items preserving fine-grained details of user tastes. From
extensive experiments, we demonstrate the superior performance
of our proposed framework both quantitatively and qualitatively,
on movie and news domains with multiple datasets.

ETHICAL CONSIDERATIONS
The proposed approach in this paper is about how to better use raw
content signals for cold-start item recommendations. We believe
the proposed method itself does not impose any immediate positive
or negative impact on fairness, privacy, or other ethical concerns, as
long as the recommendation systems are trained on fairly collected
training data.

We do expect, however, that this line of research possesses a po-
tential to eventually promote user privacy. As the recommendation
systems rely more heavily on content signals that are publicly avail-
able rather than individual user activity logs, less private data may
need to be collected to achieve the same quality of recommenda-
tions, Although this work does not claim this line of contributions,
it will be an interesting future work to explore and measure how
content-based recommendation systems can save the privacy bur-
den from modern recommendation systems.
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Figure 3: t-SNE Visualization of Learned Video Embeddings
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