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Abstract

Multiscale mixed methods based on non-overlapping domain decompositions

can efficiently handle the solution of significant subsurface flow problems in

very heterogeneous formations of interest to the industry, especially when im-

plemented on multi-core supercomputers. Efficiency in obtaining numerical so-

lutions is dictated by the choice of interface spaces that are selected: the smaller

the dimension of these spaces, the better, in the sense that fewer multiscale basis

functions need to be computed, and smaller interface linear systems need to be

solved. Thus, in solving large computational problems, it is desirable to work

with piecewise constant or linear polynomials for interface spaces. However, for

these choices of interface spaces, it is well known that the flux accuracy is of the

order of 10−1.

This study is dedicated to advancing an efficient and accurate multiscale

mixed method aimed at addressing industry-relevant problems. A distinctive

feature of our approach involves subdomains with overlapping regions, a depar-

ture from conventional methods. We take advantage of the overlapping decom-

position to introduce a computationally highly efficient smoothing step designed

to rectify small-scale errors inherent in the multiscale solution. The effectiveness

∗Corresponding author
Email addresses: dxz200000@utdallas.edu (Dilong Zhou 1),

rafaeltrevisanuto@gmail.com (Rafael T. Guiraldello 2),
luisfelipe.pereira@utdallas.edu (Felipe Pereira 1 )

Preprint submitted to Elsevier April 23, 2024

ar
X

iv
:2

40
4.

13
81

1v
1 

 [
m

at
h.

N
A

] 
 2

2 
A

pr
 2

02
4



of the proposed solver, which maintains a computational cost very close to its

predecessors, is demonstrated through a series of numerical studies. Notably,

for scenarios involving modestly sized overlapping regions and employing just a

few smoothing steps, a substantial enhancement of two orders of magnitude in

flux accuracy is achieved with the new approach.

Keywords: Multiscale Methods, Mixed Finite Elements, Oversampling,

Porous media, Smoothing, Robin boundary conditions.

1. Introduction

Multiphase flows in subsurface formations are governed by coupled systems

of partial differential equations. In the case of two and three-phase flows of

interest to the oil industry frequently these equations are decoupled by operator

splitting methods (see [1, 2] for such methods developed, respectively, for two

and three-phase flows) and a convection-diffusion equation needs to be solved

along with a second-order elliptic equation. The focus of this work is on the

numerical solution of these elliptic problems that are challenging because the

permeability coefficient may exhibit very large contrast and classical iterative

schemes are known to converge slowly.

In this paper, we direct our attention to multiscale methods, which have

received significant attention due to their natural parallelizability on multi-core

computers. Over the past two decades, various research groups have pioneered

specific methodologies integrating domain decomposition with multiscale tech-

niques. These methods generally fall into three distinct categories: Multiscale

Finite Volume, Multiscale Finite Element, and Multiscale Mixed Finite Element

approaches.

The Multiscale Finite Volume Method was introduced in 1997 to solve ellip-

tic problems encountered in two-phase flows [3, 4]. Following this, the Multiscale

Finite Element Method was developed in 2003 [5]. In this study, we focus on

Multiscale Mixed Finite Element Methods, which encompass several variants.

Here we mention the ones that are directly relevant to our work. The Multi-
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scale Mixed Finite Element Method (MsMFEM) was first formulated in 2003

[6], followed by the development of the Multiscale Mortar Mixed Finite Element

Method (MMMFEM) in 2007 [7], and the Multiscale Hybrid-Mixed Finite El-

ement Method (MHM) in 2013 [8]. Our research focuses particularly on the

Multiscale Robin Coupled Method (MRCM), introduced in 2018 [9], which can

be considered a generalization of the Multiscale Mixed Method (MuMM) intro-

duced in 2014 [10]. This generalization allows for arbitrary and independent

interface spaces for the pressure and flux variables.

The exceptional scalability of MRCM for solving industry-relevant subsur-

face flow problems on multi-core supercomputers has been demonstrated in

previous studies [11, 12]. Recent advancements have introduced new interface

spaces utilizing the Singular Value Decomposition [13], as well as approaches

that take advantage of the underlying physics of problems [14]. While the pres-

sure and normal flux components in MRCM may have discontinuities in the

resulting fine grid solution, a post-processing method has been devised to ad-

dress this issue, ensuring continuous normal flux components [15]. With this

enhancement, MRCM becomes applicable for approximating multiphase flows in

porous media. Additionally, the approximation of two-phase flows with MRCM

has been explored in recent publications, which have introduced accurate and

computationally efficient methods based on operator splitting and implicit time-

stepping methodologies [16, 17, 18, 19].

Robin-type boundary conditions are imposed by MRCM on all local prob-

lems defined on a non-overlapping partition of the domain. Based in a domain

decomposition methodology [20], MRCM ensures compatibility across the inter-

faces of adjacent subdomains through weak continuity of pressure and normal

components of the flux. At the heart of the MRCM framework lies a critical

parameter, denoted as α, which governs the relative importance of the pressure

and the normal component of the flux in the specification of Robin boundary

conditions. This parameterization enables MRCM to replicate outcomes from

both the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and

the Multiscale Hybrid-Mixed Finite Element Method (MHM). In the case of
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MMMFEM, pressure continuity along the interface is preserved at the fine-grid

scale, while flux continuity is weakly satisfied on a larger scale, typically corre-

sponding to the size of each subdomain. By assigning a higher weight to pressure

continuity via α, MRCM converges towards MMMFEM. Conversely, in MHM,

flux continuity along the interface is achieved at the fine-grid scale. Adjusting

α to prioritize flux continuity leads MRCM to converge towards MHM [9].

However, even with the latest version of MRCM utilizing non-overlapping

partitions, a notable resonance error persists along the interface of solutions ob-

tained with multiscale mixed methods. To mitigate this error, the oversampling

method has been introduced. Initially employed in the Multiscale Finite Vol-

ume Method in 1997 [21] and subsequently substantiated in 1999 [22, 23], the

oversampling method has undergone further development in recent years. Ad-

ditional references concerning recent advancements in Multiscale Finite Volume

methods with oversampling are available in [24, 25]. Numerous references exist

for Multiscale Finite Element methods incorporating oversampling. References

dedicated to elliptic equations can be located in [26, 27, 28, 29, 30, 31, 32, 33]

and papers focusing on two-phase flow can be found in [34, 35, 36]. In the area

of Multiscale Finite Element methods with oversampling, specialized method-

ologies such as Extended Multiscale Finite Element [37, 38, 39], Generalized

Multiscale Finite Element [40], and Multiscale DG methods [41] have been also

explored.

In the realm of multiscale mixed methods, the first application of the over-

sampling technique in MsMFEM dates back to 2003 [6]. In this work the authors

considered rapidly oscillating coefficients to address significant resonance errors

along the interface. Subsequent advancements have further refined oversam-

pling techniques to enhance accuracy and performance. In 2012, an innovative

approach introduced a special term into the Multiscale Basis Function, using

Green’s function to mitigate resonance errors [42]. Expanding on these efforts, a

paper in 2017 integrated upscaling techniques into oversampling methodologies,

to approximate two-phase flow problems rather than solely focusing on elliptic

equations [43]. This approach shows the importance of considering the entire
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domain in addressing multiscale challenges. Meanwhile, oversampling for the

Mixed Generalized Multiscale Finite Element Method was introduced in 2015

[44], with further advancements in 2017 [45]. These works utilized both offline

and online stages in the numerical solution to enhance accuracy. The offline

stage involves compiling boundary conditions for each multiscale basis function

using preset spaces such as piecewise constant or piecewise linear functions.

In contrast, the online stage utilizes results from the offline stage to update

boundary values.

In our current study, our primary focus lies on enhancing the Multiscale

Robin Coupled Method (MRCM) by integrating two distinct strategies aimed

at improving the accuracy of numerical solutions while preserving the compu-

tational efficiency inherent to MRCM [11, 12]. Our first significant contribution

involves the integration of the oversampling technique into MRCM. This novel

approach necessitates non-trivial modifications to the original method, as mul-

tiscale basis functions now need to be computed in terms of novel informed

spaces. Despite these modifications, compatibility conditions are maintained

and enforced on the skeleton of an underlying non-overlapping partition of the

domain within a nonconforming multiscale approach. Our second contribution

involves the introduction of a smoothing step in the framework of multiscale

mixed methods, a concept commonly employed in the context of overlapping

Schwarz domain decomposition methods [46, 47]. This step serves as a tool to

rectify small-scale errors inherent in the multiscale solution, further enhancing

the accuracy of our numerical approach. The computational cost of these steps

is very small because a factorization computed in the first step can be reused.

Following the description of the novel procedure, we conduct testing in two

distinct examples. The first example has an analytical solution, while the second

example addresses problems relevant to the oil industry. Through comprehen-

sive studies, we evaluate various aspects including convergence rates, the signif-

icance of oversampling, the impact of smoothing steps, the combined effect of

oversampling and smoothing, and the influence of the α parameter on numerical

solutions. Our findings reveal that in scenarios characterized by modestly sized
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overlapping regions and utilizing only a few smoothing steps, our new approach

yields a remarkable enhancement in flux accuracy, with improvements reach-

ing two orders of magnitude compared to previous methods. Moreover, results

produced with the new approach with piecewise-constant interface spaces are

comparable to MRCM results obtained with piecewise linear spaces.

The paper is structured into several sections as follows. The first section

focuses on the formulation of the new MRCM with oversampling with subsec-

tions dedicated to detailing the formulation of the method along with its well-

posedness, and the definition of multiscale basis functions. Following this, the

next section describes the concept of a smoothing step, outlining its significance

and implementation within the context of the MRCM methodology. In the sub-

sequent section, we present the numerical strategy employed to maximize the

computational efficiency of the previously introduced methods. The subsequent

section is dedicated to numerical studies and is subdivided into subsections that

present the results of our numerical experiments. We consider a problem with

an analytical solution and another problem involving a permeability field de-

rived from the SPE 10 project. Through these numerical studies, we aim to

assess the effectiveness and performance of the proposed enhancements to the

MRCM in various scenarios.

2. The MRCM with Oversampling (MRCM-O)

We consider single-phase flow in porous media. The governing equations for

pressure p and Darcy velocity u are given by

u = −K∇p in Ω (1)

∇ · u = f in Ω (2)

p = g on ∂Ωp (3)

u · n = z on ∂Ωu (4)

where Ω ⊂ Rd, d = 2 or 3 is the domain of the problem, K is a symmetric,

uniformly positive definite tensor with components in L∞(Ω), f ∈ L2(Ω) is

6



the source term, g ∈ H
1
2 (∂Ωp) is the pressure condition on the boundary,

z ∈ H− 1
2 (∂Ωu) is the normal velocity condition on the boundary and n is the

outer normal to ∂Ω.

2.1. Formulation

Consider Th to be a subdivision of Ω ⊂ Rd into a Cartesian mesh of d-

dimensional rectangles. From this mesh, define partitions of Ω into non-overlapping

subdomains {Ωi}i=1,...,m, and define Γ, the skeleton of the domain decomposi-

tion, to be the union of all interfaces Γi,j = Ωi ∩ Ωj ,∀i, j = 1 . . . m. We also

define Γi = ∂Ωi \ ∂Ω. The restriction of the computational mesh to a subdo-

main ω ⊂ Ω is denoted by T ω
h . For each subdomain Ωi, define Ω̂i to be the

augmented subdomain comprising Ωi along with an adjoining region. Figure 1

illustrates the two partitions in the case of d = 2. Notice that
⋃m

i=1 Ω̂i defines

an overlapping domain decomposition of Ω. This decomposition is of particular

interest to the proposed formulation since it will be used to build the Lagrange

multiplier informed spaces [48]. Three length scales appear in the formulation

of the MRCM with oversampling: Ĥ > H ≥ h that are also illustrated in Figure

1. Ĥ refers to the size of the oversampling regions, H indicates the size of non-

overlapping subdomains and h is the size of the finest grid used in the numerical

approximation of Eqs. (1) - (4). We now define the local and interface discrete

spaces, followed by a detailed description of the constructing of the Lagrange

multiplier spaces based on the overlapping domain decomposition.

For each Ωi we define the lowest-order Raviart-Thomas [49] spaces for ve-

locity and pressure,

Vi
h = {v ∈ H(div,Ωi) , vj(x)|K = pj1(x1)pj2(x2) . . . , ∀K ∈ T Ωi

h ,

with pjk ∈ P1 if j = k , pjk ∈ P0 if j ̸= k } (5)

Qi
h = {q ∈ L2(Ωi) , q(x)|K ∈ P0} , (6)

where the space of polynomials of degree ≤ k is written as Pk.

Consider Sh to be any subset of edges/faces of Th (e.g., Γ), then define

Fh(Sh) = {f : Sh → R | f |e ∈ P0 , ∀ e ∈ Sh} . (7)

7



Denote by Eh the set of all faces/edges of Th contained in Γ. On each edge/face

e ∈ Th we introduce a unique normal ň, which is the exterior normal to ∂Ω if

e ∈ ∂Ω, and if e ∈ Eh, then it is defined as the unit normal exterior to the

adjacent subdomain with smallest index, min{i, j}. We assume that ∂Ωu and

∂Ωp coincide with subsets of Th ∩ ∂Ω and introduce

Vi
hy = {v ∈ Vi

h , v · ň = y on ∂Ωi ∩ ∂Ωu} , (8)

where we have assumed that y belongs to Fh(∂Ωu).

Before defining the new method we need to introduce coarse (global) sub-

spaces of Fh(Eh) that will be used in setting consistency conditions between

adjacent subdomains, namely, weak continuity of the pressure and the nor-

mal component of Darcy’s velocity. We refer to them as MH and VH for the

imposition of weak continuity of normal component of the flux and pressure,

respectively. In this work we take MH and VH to be either piecewise constant

or piecewise linear polynomials. Another important space in our formulation is

the space of Lagrange multipliers Λi
H ⊂ Fh(Eh ∩ Γi), which is build based on

Ω̂i, i.e., an oversampling region of Ωi. In order to build the Lagrange multiplier

spaces Λi
H , consider the following set of N Darcy problems posed on Ω̂i given

by

uk
h = −K∇h p

k
h in Ω̂i

∇h · uk
h = 0 in Ω̂i

pkh = 0 on ∂Ω̂i ∩ ∂Ωp

uk
h · ni = 0 on ∂Ω̂i ∩ ∂Ωu

−βi u
k
h · ni + pkh = λk on ∂Ω̂i \ ∂Ω

, (9)

in which ∇h· and ∇h denotes the discrete divergence and gradient operators,

respectively, and λk is a piecewise polynomial functions defined on Fh(∂Ω̂i \∂Ω)

for k = 1, . . . , N . The discrete spaces used to solve problems (9) are the lowest-

order Raviart-Thomas spaces for subdomain Ω̂i with mesh T Ω̂i

h . After solving

the N problems for each subdomain Ω̂i, retrieve the normal component of the

velocity uk
h · ni and the pressure πk on the interface Γi and write the following
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functions

ϕk
i = −βi u

k
h · ňi|Γi

+ πk|Γi
, ∀ k = 1, . . . , N, (10)

in which notation |Γi
is used to reinforce the restriction of the solution to the

interface Γi. Finally we define Λi
H = span

{
ϕ1
i , ϕ

2
i , .., ϕ

N
i

}
for each Ωi. Having

defined all necessary spaces, we are now prepared to introduce the proposed

method.

The discrete variational formulation of the Multiscale Robin Coupled Method

with Oversampling (MRCM-O) reads as: Find (ui
h, p

i
h, λ

i
h) ∈ Vi

hz ×Qi
h × Λi

H ,

for i = 1, . . . ,m, such that

(K−1ui
h,v)Ωi

− (pih,∇ · v)Ωi
+ (βi u

i
h · ňi,v · ňi)Γi

+ (λi
h,v · ňi)Γi

= −(g,v · ňi)∂Ωi∩∂Ωp , (11)

(q,∇ · ui
h)Ωi

= (f, q)Ωi
, (12)

m∑
i=1

(ui
h · ňi,M)Γi

= 0, (13)

m∑
i=1

(βi u
i
h · ňi + λi

h, V ňi · ň)Γi
= 0, (14)

hold for all (v, q) ∈ Vi
h0 and for all (M,V ) ∈ MH × VH ⊂ Fh(Eh) × Fh(Eh).

In the above equations βi > 0 are the Robin condition parameters. We remark

that in line with [9] when specifying Robin boundary conditions

−βi u
i · ňi + pi = gR (15)

where gR is a prescribed value, we write

βi (x) =
αH

KH (x)
(16)

where KH refers to the harmonic average of adjacent K values and α is a

dimensionless parameter that determines the relative importance of the normal

component of the flux and the pressure. The importance of the parameter α has

been discussed in Section 1. The MRCM-O formulation should be compared

with the Two-Lagrange-Multiplier formulation introduced in [9]. Notice that the
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functions of space Λi
H are the Robin boundary conditions to be imposed to Ωi,

such that its solution is the restriction of solutions (multiscale basis functions)

computed by solving (9). This integration enables us to seamlessly incorporate

the oversampling strategy into our non-overlapping, well-defined methodology,

as outlined below.

Proposition 1. Given spaces MH × VH ⊂ Fh(Eh) × Fh(Eh), the solution

(ui
h, p

i
h, λ

i
h) in Πm

i=1V
i
hz × Qi

h × Λi
H to the discrete formulation (11) - (14) is

unique if the following restrictions holds:

1. dim (MH) = dim (VH),

2.
∑m

i=1 dim
(
Λi
H

)
= dim (MH) + dim (VH).

Proof. Assuming the above restrictions holds will lead (11) - (14) into a square

linear system. Set g = z = f = 0 and λi
h = 0 for i = 1, . . . ,m., and take

v = ui
h, q = pih, M = M̃ := Π0,MH

(ui
h · ňi + uj

h · ňj)|Γij
, ∀ i < j and

V = Ṽ := Π0,VH
(βiui

h · ňi − βjuj
h · ňj)|Γij , ∀ i < j, in which Π0,MH

and

Π0,VH
are the L2-projection operators onto MH and VH , respectively. Adding

over all subdomains one gets

m∑
i=1

[
(K−1ui

h,u
i
h)Ωi + ∥

√
βi u

i
h · ňi∥2Γi

]
= 0, (17)∑

i<j

(M̃, M̃)Γij
= 0, (18)

∑
i<j

(Ṽ , Ṽ )Γij
= 0. (19)

The derivation involves rewriting equations (13)-(14) as a sum of jumps over in-

terfaces Γij for all i < j, and incorporating the orthogonality of the projections,

resulting in equations (18)-(19). Adding up all the resulting equations one con-

cludes that ui
h = 0 for i = 1, . . . ,m. Thus, we have

∑m
i=1(p

i
h,∇·v)Ωi

= 0, ∀v ∈

Vi
h0. From the stability of the local Raviart-Thomas spaces, we conclude that

pih = 0 for i = 1, . . . ,m.
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Remark 1. Notice that M̃ is the projection of velocity jumps on Γ onto MH

and Ṽ is the projection of pressure jumps (with λi
h = 0) on Γ onto VH .

Indeed, formulation (11)-(14) can be characterized as a domain decomposi-

tion method, as outlined in the subsequent proposition.

Proposition 2. Let (ui
h, p

i
h, λ

i
h) be the solution in Πm

i=1V
i
hz × Qi

h × Λi
H of

the discrete formulation (11)–(14) with MH × VH = Fh(Eh) × Fh(Eh) and

Λi
H = span

{
ϕ1
i , ϕ

2
i , .., ϕ

N
i

}
= Fh(Eh ∩ Γi), for i = 1, . . . ,m, and let (uh, ph) ∈

(Vhz ∩H(div,Ω))×Qh be the solution of the non-decomposed discrete problem

which satisfies

(K−1uh,v)Ω − (ph,∇ · v)Ω = −(g,v · ň)∂Ωp
, (20)

(q,∇ · uh)Ω = (f, q)Ω , (21)

for all v ∈ Vh0 ∩H(div,Ω) and all q ∈ Qh.

Then, assuming βi to be constant on each edge of Eh ∩ ∂Ωi,

ui
h = uh|Ωi , (22)

pih = ph|Ωi
, (23)

for each i = 1, . . . ,m.

Proof. The proof is given in [9] (see Proposition 2. together Remark 2.)

with the fact that Λi
H = span

{
ϕ1
i , ϕ

2
i , .., ϕ

N
i

}
= Fh(Eh ∩ Γi).

Remark 2. For Proposition 2 to hold, the number N of basis functions

should match the count of edges/faces on Eh ∩ Γi, for i = 1, . . . ,m.
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Figure 1: Decompositions of the computational domain Ω: The non-overlapping subdomains

are denoted by Ωi, and the corresponding oversampling regions are written as Ω̂i. The three

length scales that enter in the formulation of the MRCM with oversampling are also illustrated:

Ĥ > H ≥ h.

2.2. Multiscale basis functions (MBFs)

To describe an efficient method to solve the system (11)–(14) possibly taking

advantage of multiple cores we will introduce the notion of multiscale basis

functions. Assume at this stage that the Robin boundary conditions λi
h ∈ Λi

Ĥ
,

for i = 1, . . . ,m, are known. This way we can identify a family of local boundary

value problems on Ωi, i = 1, . . . ,m, given by: Find (ui
h, p

i
h) ∈ (Vi

hz×Qi
h), such

that

(K−1ui
h,v)Ωi

− (pih,∇ · v)Ωi
+ (βi u

i
h · ňi,v · ňi)Γi

= −(λi
h,v · ňi)Γi − (g,v · ňi)∂Ωi∩∂Ωp , (24)

(q,∇ · ui
h)Ωi

= (f, q)Ωi
, (25)

hold for all (v, q) ∈ Vi
h0.

Next we split the solution (ui
h, p

i
h) as

ui
h = ũi

h + ūi
h, (26)

pih = p̃ih + p̄ih, (27)

such that (ūh, p̄h) ∈ Vi
hz × Qi

h satisfies the subdomain problems with trivial

12



Robin boundary conditions and nonzero forcing terms, that is

(K−1ūi
h,v)Ωi

− (p̄ih,∇ · v)Ωi
+ (βi ū

i
h · ňi,v · ňi)Γi

= −(g,v · ňi)∂Ωi∩∂Ωp , (28)

(q,∇ · ūi
h)Ωi

= (f, q)Ωi
, (29)

hold for all (v, q) ∈ Vi
h0. Moreover, (ũi

h, p̃
i
h) ∈ Vi

h0×Qi
h satisfies local problems

with forcing terms f and g set to zero

(K−1ũi
h,v)Ωi − (p̃ih,∇ · v)Ωi + (βi ũ

i
h · ňi,v · ňi)Γi

= −(λi
h,v · ňi)Γi

, (30)

(q,∇ · ũi
h)Ωi = 0, (31)

hold for all (v, q) ∈ Vi
h0.

The local boundary value problems above, like Eqs. (28)–(29) or Eqs.

(30)–(31), can be solved using standard discrete spaces for Vi
h0 and Qi

h. In

this work, we consider two-dimensional problems along with the lowest order

Raviart-Thomas space RT0 on quadrilateral cartesian grids of uniform cell size

h (see Fig. 1). The choice of this space and a combination of the midpoint and

the trapezoidal rules for numerical integration produce a discrete linear system

which only involves pressure unknowns and that is equivalent to a cell–centered

finite difference method [1].

Considering Eqs. (13)-(14) that impose weak flux and pressure continuity

on Γ on the coarse scale H, in principle we may simultaneously solve for all un-

knowns and subdomains in the system (11)-(14). Our goal next is to eliminate

the internal subdomain degrees of freedom, thus solving a relatively small linear

system associated with the interface Γ. Multiscale basis functions that are con-

structed independently on subdomains play an essential role in such reduction

of the problem size.

First of all let us denote by {ϕj}1≤j≤ni
a basis for the coarse space Λi

Ĥ
,

i = 1, . . . ,m. For instance, in the case of piecewise constant space Λi
Ĥ
, for sub-

domains not touching the exterior boundary n = 4 (see Fig 1). The multiscale
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basis functions are defined to be solutions to local problems in Ω̂i as follows. For

each Λi
Ĥ
, i = 1, . . . ,m let (Φi

j ,Ψ
i
j) be the solution to Eqs. (30)-(31) with Robin

boundary data set to be ϕj , j = 1, . . . , ni. Next, express the local solution on

each subdomain as:

ũi
h =

ni∑
j=1

Xi
jΦ

i
j , p̃ih =

ni∑
j=1

Xi
jΨ

i
j . (32)

Taking into account Eqs. (26)-(27) along with Eqs. (13)-(14) on the H scale,

we have

m∑
i=1

(
ũi
h · ňi,M

)
Γi

= −
m∑
i=1

(
ūi
h · ňi,M

)
Γi

, (33)

m∑
i=1

(βi ũ
i
h · ňi + λi

h , V ňi · ň)Γi = −
m∑
i=1

(βi ū
i
h · ňi, V ňi · ň)Γi . (34)

Next, substitute Eq. (32) on the above equations and test with all basis func-

tions (M,V ) ∈ MH × VH to construct a global linear system for the unknowns

Xi
j , i = 1, . . . ,m, and j = 1, . . . n1. For additional details concerning the con-

struction of this linear system, we refer the reader to [9].

Remark 3. In practice, solutions to Eqs. (30)-(31) with ϕj , j = 1, . . . , ni,

have already been computed during the construction of functions ϕj for the

informed Lagrange space in Eq. (10), thereby leaving only Eqs. (28)-(29) to be

solved.

3. The Smoothing Steps

We will define the smoothing steps through local updates of a solution for

Eqs. (1 - 4) that has been obtained by the MRCM with oversampling. Let us

refer to it as (ui,0
h , pi,0h ), i = 1, . . . ,m, where the superscript 0 indicates that this

solution is the first one of a sequence that will follow. The steps that produces

the solution (ui,k
h , pi,kh ), i = 1, . . . ,m, k = 1, . . . , Ns can be described as follows:

1. Set a coloring scheme for oversampling regions within the subdomain par-

titioning process. The aim is to assign a distinct color to each subdo-

main to ensure that subdomains sharing the same color do not have any
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common boundary points. This approach is illustrated in Fig.(2) for a

two-dimensional partition (see [47]).

2. For each color, loop of all corresponding oversampling regions.

3. For all oversampling regions with the same color set the Robin boundary

conditions as λi,k−1
h = −βi u

i,k−1
h · ňi|∂Ω̂i\∂Ω + πi,k−1|∂Ω̂i\∂Ω on ∂Ω̂i \ ∂Ω

(see [50]) in terms of existing (ui,k−1
h , pi,k−1

h ), i = 1, . . . ,m with α = 1

(other values for α can be used but our numerical studies indicate that

this is a good choice).

4. For all oversampling regions with the same color simultaneously find (ûi
h, p̂

i
h)

by solving

(K−1ûi
h,v)Ω̂i

− (p̂ih,∇ · v)Ω̂i
+ (βi û

i
h · ňi,v · ňi)∂Ω̂i\∂Ω

= −(λi,k−1
h ,v · ňi)∂Ω̂i\∂Ω − (g,v · ňi)∂Ω̂i∩∂Ωp

, (35)

(q,∇ · ûi
h)Ω̂i

= (f, q)Ω̂i
, (36)

hold for all (v, q) ∈ Vi
h0.

5. For all oversampling regions with the same color update (ui,k−1
h , pi,k−1

h )

in Ωi to be the restriction of (ûi
h, p̂

i
h) computed above to Ωi.

6. After the loop over all colors is completed set (ui,k
h , pi,kh ) to be the existing

(ui,k−1
h , pi,k−1

h ), i = 1, . . . ,m.

7. Repeat the above steps Ns times.

The novel method introduced in this work, comprising MRCM-O followed

by smoothing steps, is referred to as the Multiscale Robin Coupled Method with

Oversampling and Smoothing (MRCM-OS).
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Figure 2: Partitions: non-overlapping (solid line) and oversampling (dotted line). In the

coloring scheme oversampling subdomains sharing the same color do not have any common

boundary points.

4. Computational Strategy

This section provides the numerical strategy employed within our in-house

parallel code developed in C/MPI. Algorithm (1) provides a pseudo-code de-

scribing the adopted strategy.

Algorithm 1 Algorithmic representation of the adopted numerical strategy.

1: Input: Domain decomposition, oversampling size

2: Step 1 Compute and store LDLT -factorization for problem (9)

3: Step 2 Solve N problems of (9) using Step 1’s factorization

4: Step 3 Assemble lhs of eqs. (33)-(34) using Step 2’s solutions

5: Step 4 Solve problems (28)-(29) and assemble rhs of eqs. (33)-(34)

6: Step 5 Solve interface problem and assemble MRCM-OS solution

7: Step 6 Compute and store LDLT -factorization for problem (35)-(36) with

α = 1 for the Robin parameter βi

8: Step 7 Compute smoothing using Step 6’s factorization

Efficiency within our strategy is primarily achieved through the reuse of

LDLT factorizations. Here, we compute the LDLT -factorization to solve lin-

ear problems of the form Ax = b posed on subdomain Ω̂i. It is worth noting

that while solving local problems within each subdomain, the matrix A re-

mains constant, with variations occurring solely in vector b. As a result, we can

compute the LDLT -factorization of A once and reuse it across all Ax = b calcu-
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lations. This approach dramatically reduces the computational cost associated

with computing the MBFs in Step 2 taking advantage of Step 1 and the sub-

sequent smoothing step in Step 7 taking advantage of Step 6. As previously

mentioned, our numerical experiments (not explored in this manuscript) indi-

cate that the choice of α = 1 for the smoothing leads to improved accuracy with

a reduced number of iterations. Additionally, the subsequent numerical inves-

tigations in the following section indicate that the smallest errors occur when

α is approximately 1. In practice, choosing α ∼ 1 for MBFs and smoothing

can eliminate the need to compute Step 6, allowing the use of the factoriza-

tion obtained in Step 1 to compute Step 7. This approach enhances accuracy

and reduces computational cost. It is noteworthy that the majority of steps

are computed concurrently within each MPI-process, underscoring the parallel

nature of our approach. The sole exception arises during the computation of

the solution to the interface problem in Step 5.

5. Numerical Studies

The simulations discussed were executed in an HPC cluster. We discuss

the numerical solutions of two model problems: one having a constant per-

meability coefficient K (x) with an analytical solution and the other one en-

compassing a very heterogeneous permeability field from the SPE10 project

(http://www.spe.org/web/csp).

For the problem with constant K (x), we analyze the system of Eq. (1)-

(4) subject to trivial Newmann boundary conditions. The permeability field is

set to K (x) = 1. The source term q is written as q = 8π2cos(2πx)cos(2πy).

The analytical solution for this problem is given by p = cos(2πx)cos(2πy). We

are going to discuss several partitions of the domain [0, 1] × [0, 1]. In all these

partitions, each subdomain will be discretized by a computational local grid of

size 20× 20.

For the problem with a heterogeneous permeability field, we consider a rect-

angular domain and prescribe Dirichlet-type boundary conditions by fixing the
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pressure to 1 (0) on the left (right) boundary. We set Neumann-type conditions

to zero at the top and bottom boundaries. The source term is set as q(x) = 0.

Additionally, the permeability fieldK (x) is set to be the 40th (two-dimensional)

layer of the SPE10 project, as depicted in Fig.(3). This particular field poses a

considerable challenge for numerical solvers due to its variability and the pres-

ence of a highly permeable channel. For all reported results in heterogeneous

problems, the domain is decomposed into 11 × 3 subdomains with H = 1/3,

each containing a local 20× 20 grid.

We are going to refer to the two problems described above as homogeneous

and heterogenous, respectively. Table 1 summarizes the notation to be con-

Figure 3: Permeability field: Slice 40 of the SPE 10 project.

sidered in the numerical experiments. We remark that the original MRCM is

equipped with linear polynomial interface spaces in all studies reported here.

Section 4.1 provides numerical results for both the heterogeneous and ho-

mogeneous problems, illustrating some of the advantageous aspects of the pro-

posed MRCM-OS method. First we illustrate our method’s improved accuracy

followed by a study showing that MRCM-OS employing only piecewise constant

spaces is comparable to the original MRCM with linear polynomial spaces, al-
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Notation Description

M ×M Count of subdomains in non-overlapping partition

MRCM Original Multiscale Robin Coupled Method

OC MRCM-OS with piecewise constant interface spaces for MBFs

OL MRCM-OS with piecewise linear interface spaces for MBFs

O − l Solution with oversampling size lh

O − l, kS Solution with oversampling size lh, followed by k smoothing steps

Table 1: Notation used in numerical experiments.

though with lower computational cost. We emphasize that, in some results of the

homogeneous problem, our method utilizing linear polynomial spaces demon-

strates the capability to match or even surpass the accuracy of the fine grid

solution. Section 4.2 explores the advantages brought by oversampling alone.

In Section 4.3, we focus in a detailed analysis of the error reduction achieved by

our method employing both oversampling and smoothing techniques.

5.1. The role of oversampling and smoothing

Our initial findings are presented in Fig. (4), which pertains to the hetero-

geneous problem. The relative error is computed in the L2(Ω) norm, comparing

pressure and flux variables to the fine grid solution for α = 10−8, 10−7, ..., 107, 108.

This study illustrates the improvements in accuracy achieved through our pro-

posed method. As illustrated in Fig. (4), a remarkable enhancement by two

orders of magnitude is observed in the flux error when comparing MRCM-OS

with an oversampling size of 4h and 4 smoothing steps to MRCM.
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Figure 4: α parameter study for the heterogeneous problem demonstrating significant im-

provement: Pressure relative error (left) and flux relative error (right).

To better display the differences between the solutions generated by MRCM

and MRCM-OS we provide additional results for the case α = 1. In Fig. (5)

we plot the fluxes computed with both methods in the left column where colors

refer to the magnitude of the velocity field. The right column contains two

results. The top images display the pressure fields, illustrating that our method

yields a more continuous pressure field. The bottom images show the flux jump

along the highlighted line in the pictures on the left column. Clearly, the jump is

significantly reduced in the case of MRCM-OS, indicating its ability to mitigate

flux discontinuity along the interface.
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Figure 5: Multiscale solution for the heterogeneous problem presented in colored images for the

Robin condition parameter α = 1: Original MRCM method (top) and MRCM-OS (bottom).

Next, we focus on a comparison of MRCM-OS with piecewise constant spaces

(MH , VH) and Λi
H , i = 1, ...,m built with piecewise constant functions on the

oversampling and with the original MRCM with linear polynomial spaces for

pressure and flux variables. We aim to illustrate that through the integration of

oversampling and smoothing techniques, the approximation for the flux derived

from piecewise constant spaces can not only match but potentially outperform

those obtained by the original MRCM employing linear polynomial spaces. In

Fig. (6) we present relative errors computed with respect to the fine grid solution
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in the L2(Ω) norm considering both pressure and flux variables for different

values of parameter α. We remark that the computational cost of MRCM is, in

fact, larger than that of MRCM-OS in computing the solutions: MRCM requires

twice the number of Multiscale Basis Functions (solutions of Eqs. (30) - (31))

and the interface problem is two times larger that the one in MRCM-OS.

Figure 6: Comparison of solutions of the heterogeneous problem obtained by MRCM with

linear polynomial spaces and our method with piecewise constant spaces: Pressure relative

error (left) and flux relative error (right).

An important observation emerges from our analysis: solutions obtained

with smaller values of α (resembling MMMFEM) exhibit slightly superior ac-

curacy compared to those with larger α (akin to MHM). Interestingly, when α

approximates 1, optimal outcomes are attained. Furthermore, from Fig. (6),

it becomes evident that within the proposed method, the pressure closely ap-

proximates the pressure obtained with the original MRCM. Moreover, the flux

accuracy, achieved with a mere oversampling size of 2h and two smoothing steps,

surpasses the results obtained from the original MRCM.

Next we report the L2(Ω) norm (absolute error) of MRCM-OS results rel-

ative to the homogeneous problem. Fig. (7) contains the results of a mesh

refinement study and illustrates that, in some cases, one may find that MRCM-

OS exhibits comparable or even smaller errors than the fine grid solution in

pressure (when α = 100) and flux (when α = 108) variables.
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Figure 7: Mesh refinement study for the homogenous problem wherein MRCM-OS exhibits

lower errors than the fine grid solution: Pressure absolute error (left) and flux absolute error

(right).

Note in Fig. (7) that employing 2 smoothing steps yields MRCM-OS with

pressure results with lower error rates than those of the fine grid solution when

α = 100. Moreover, comparable accuracy for MRCM-OS flux is observed for an

oversampling size of 4h when α = 108.

Remark 4. As noted earlier, the added computational burden of the smooth-

ing steps is minimal, thanks to the reuse of the factorization computed during

the initial smoothing step.

In the following subsections, we will only consider linear polynomial spaces

for MRCM-O and MRCM-OS.

5.2. MRCM-O

This section illustrates the results obtained from both homogenous and het-

erogeneous problems using only oversampling techniques.

We first consider the homogenous problem and we present the L2(Ω) norm

relative errors with respect to the homogeneous solution in Fig. (8) in a variable

α study. These results illustrate that the convergence rate of our method closely

aligns with that of the original MRCM. However the errors achieved by our

method with an oversampling size of 4h is nearly half that of the latter for both

pressure and flux variables.
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Figure 8: Convergence rate study for the homogeneous problem using only oversampling:

Pressure (top) and Flux (bottom).

Next we present the L2(Ω) norm relative error with respect to the fine grid

solution for the heterogeneous problem in Fig. (9). It is evident that for the

heterogeneous problem an oversampling size of 4h results in a reduction of error

by nearly one order of magnitude.

Figure 9: α parameter study for the heterogeneous problem with only oversampling: pressure

(left), flux (right).

In conclusion, oversampling techniques significantly enhance accuracy, with

an observed improvement of one order of magnitude. Subsequently, we will

demonstrate that additional smoothing steps lead to even higher levels of accu-
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racy in both pressure and flux variables.

5.3. MRCM-OS

In this section, we discuss the benefits derived from the application of both

oversampling and smoothing techniques.

5.3.1. Homogenous problem

Successively applying smoothing steps allows the solution derived from the

multiscale method to converge to the fine grid solution. However, an increase

in the number of smoothing steps not only incurs higher computational costs

but also results in a slower convergence rate. In Fig. (10), we employ an 8× 8

domain decomposition with an oversampling size of 2h to identify an optimal

number of smoothing steps. We present the L2(Ω) norm absolute error with

respect to the fine grid solution. Fig.(10) illustrates that the optimal number

of smoothing steps lies within the range of 2 to 4, as increasing the number of

steps beyond this range results in a diminishing slope.

Figure 10: Exploring the optimal number of smoothing steps for the homogeneous problem

with oversampling size 2h: Absolute pressure error (left) and absolute flux error (right).

Next, we consider a study of parameter α concerning the convergence rate

with oversampling size set to 2h, and the number of smoothing steps set to

2 and 4. Fig. (11) displays the L2(Ω) norm absolute error relative to the

analytical solution. Again, in line with the results reported in Fig. (8) these

results illustrate that the convergence rate of our method closely aligns with

that of the original MRCM. Particularly, our method achieves a one-order-of-
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magnitude improvement in the pressure variable and two orders-of-magnitude

improvement in the flux variable.

Figure 11: Convergence rate study for the homogeneous problem with oversampling size 2h:

Pressure (top) and Flux (bottom).

In order to better understand the improvements introduced by MRCM-OS,

next we utilize the multiscale solutions (velocity and pressure) derived from

both the original MRCM and our method across four distinct configurations to

compute the difference with the analytical solution. In Fig. (12), we set α =

10−8, to get a MMMFEM-like solution. In Figs. (13)-(14) we set intermediate

values α = 1 or 100. In Fig. (15), we set α = 108, to obtain a MHM-like

solution. In these studies the oversampling size is set to 2h and two smoothing

steps were applied.
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Figure 12: Difference in multiscale solutions for the homogeneous problem with respect to the

analytical solution, using different methods for Robin condition parameter α = 10−8: MRCM

method (top), Our method (bottom).

Figure 13: Difference in multiscale solutions for the homogeneous problem with respect to the

analytical solution, using different methods for Robin condition parameter α = 1: MRCM

method (top), Our method (bottom).
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Figure 14: Difference in multiscale solutions for the homogeneous problem with respect to the

analytical solution, using different methods for Robin condition parameter α = 100: MRCM

method (top), Our method (bottom).

Figure 15: Difference in multiscale solutions for the homogeneous problem with respect to the

analytical solution, using different methods for Robin condition parameter α = 108: MRCM

method (top), Our method (bottom).
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Figures (12) through (15) display the errors relative to the analytical solu-

tion for various values of parameter α. Note that our method consistently ex-

hibits less deviation in both pressure and flux variables compared to the original

MRCM method. This observation underscores the reason behind the improve-

ments mentioned earlier.

Despite achieving significant improvements, the computational cost of our

method is only slightly higher than the of the original MRCM method. Table

2 provides a summary of the costs associated with both the original MRCM

and our method across various settings, all under the condition of a 16 × 16

decomposition of the domain.

Method l kS NLC Size of LP Size of IP

MRCM 0 0 9 20× 20 4M(M − 1)× 4M(M − 1)

OC-2 2 0 5 24× 24 2M(M − 1)× 2M(M − 1)

OC-2,2S 2 2 7 24× 24 2M(M − 1)× 2M(M − 1)

OL-2 2 0 9 24× 24 4M(M − 1)× 4M(M − 1)

OL-2,2S 2 2 11 24× 24 4M(M − 1)× 4M(M − 1)

OL-4 4 0 9 28× 28 4M(M − 1)× 4M(M − 1)

OL-4,4S 4 4 13 28× 28 4M(M − 1)× 4M(M − 1)

Table 2: A comparison of the complexity of the algorithms: MRCM × MRCM-OS, in which

l: oversampling size; k: # smoothing steps; NLC: # of local problems per core; LP: local

problem IP: interface problem.

In Table 2, l denotes the oversampling size lh, k represents the number of

smoothing steps, NLC is the number of local problems computed for each core,

LP refers to the local problem, while IP denotes the interface problem.

Remark 5. We remark that, by reusing the LDLT -factorization, our method,

even with an oversampling size of 4h and 4 smoothing steps, our computational

costs do not significantly exceed those of the original MRCM.
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5.3.2. Heterogeneous problem

In this section, we present the results obtained for the heterogeneous problem

for different values of parameter α .

In Fig.(16), we employ an oversampling size of 4h to study the optimal

number of smoothing steps and present the L2(Ω) norm relative error with

respect to the fine grid solution. Note that from the results reported in Fig.

(16), the optimal number of smoothing steps lies also within the range of 2 to

4, as increasing the number of steps beyond this range results in a diminishing

slope.

Figure 16: Exploring the optimal number of smoothing steps for the heterogeneous problem

with oversampling size 2h: Absolute pressure error (left) and absolute flux error (right).

Next, in Fig.(17) we present a study on parameter α and set the oversam-

pling size to 2h and 4h. The number of smoothing steps is set to 2 and 4 (the

good result obtained with 4h for the oversampling size and 4 smoothing steps

has been discussed previously, and here it serves as a benchmark for compari-

son). Fig.(17) shows the L2(Ω) norm relative error with respect to the fine grid

solution.

Figure 17: α parameter study for the heterogeneous problem with oversampling sizes 2h and

4h, and 2 or 4 smoothing steps: Pressure (left) and flux (right).
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The results reported above for the heterogeneous problem show substantial

improvement of MRMC-OS over the original MRCM. Next, we discuss the dif-

ferences between the two procedures taking advantage colored pictures. Figs.

(5), (18), and (19) provide visual comparisons of the multiscale solution (ve-

locity and pressure) generated by both the original MRCM method and our

method under three distinct scenarios. In Fig. (18), we set the Robin condition

parameter to a very large value (α = 108). In this scenario, the MRCM out-

come resembles the MHM solution, with flux continuity dominating along the

interface Γ. However, the pressure continuity along Γ is notably poor, featuring

significant jumps. In Fig. (19), we set the Robin condition parameter to a very

small value (α = 10−8). Consequently, along the interface Γ, we observe im-

proved continuity in the pressure, with significant flux jumps. In this case, the

MRCM outcome resembles the MMMFEM solution. Concerning Fig. (5), we

select an intermediate value for the Robin condition parameter (α = 1). This

choice ensures that neither pressure nor flux continuity dominates along Γ. As

a result, both pressure and flux exhibit only minor jumps within the interface.

Fig. (5) depicted that when the value of α is close to 1, the method yields more

accurate results compared to cases where α is either very large or very small.
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Figure 18: Multiscale solution for heterogeneous problem produced by different methods for

Robin condition parameter α = 108 : MRCM method (top), our method (bottom).
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Figure 19: Multiscale solution for heterogeneous problem produced by different methods for

Robin condition parameter α = 10−8 : MRCM method (top), our method (bottom).

In summary, it is observed that the continuity of the pressure field in the

original MRCM is comparatively less pronounced than in our method, particu-

larly evident when α = 108. Additionally, the original MRCM exhibits a more

pronounced flux discontinuity along the interface for the velocity field. These

findings provide an indication of why our methodology achieves a two-order-of-

magnitude improvement in the flux variable.

6. Conclusions

In conclusion, our study introduces two novel methodologies, oversampling

and smoothing, tailored to augment the original MRCM [9], aimed at refining

the approximation of subsurface flows. The oversampling approach strategically

33



computes the multiscale basis function within an extended region, effectively

mitigating small-scale errors along the interface Γ in non-overlapping parti-

tions. Further refinement is achieved through smoothing techniques. Through

numerical experiments, our findings demonstrate that our proposed methodol-

ogy yield a notable improvement in accuracy. Specifically, our method exhibits

a two-orders-of-magnitude improvement in flux variables and a one-order-of-

magnitude enhancement in pressure, as compared to the original MRCM, across

both analytical and heterogeneous problems. Importantly, these improvements

are achieved without significant additional computational overhead.

In addition to the aforementioned techniques, our ongoing research has led

to the development of novel informed spaces, which shows promise in further

minimizing errors, particularly in three-dimensional scenarios. Unlike higher-

order polynomial spaces, the informed space offers simplicity in construction

while maintaining effectiveness in error reduction. Our forthcoming paper will

delve deeper into the exploration and refinement of these spaces, shedding light

on its potential contributions to the field of subsurface flow approximation.
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