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Abstract. Exchangeable random graphs, which include some of the most widely studied net-
work models, have emerged as the mainstay of statistical network analysis in recent years.
Graphons, which are the central objects in graph limit theory, provide a natural way to sample
exchangeable random graphs. It is well known that network moments (motif/subgraph counts)
identify a graphon (up to an isomorphism), hence, understanding the sampling distribution of
subgraph counts in random graphs sampled from a graphon is pivotal for nonparametric net-
work inference. Although there are a few results regarding the asymptotic normality of subgraph
counts in graphon models, for many commonly appearing graphons this distribution is degen-
erate. This degeneracy phenomenon was overlooked until very recently and its consequences in
network inference have remained unexplored. Towards this, we obtain the following results:

‚ We derive the joint asymptotic distribution of any finite collection of network moments in
random graphs sampled from a graphon, that includes both the non-degenerate case (where
the distribution is Gaussian) as well as the degenerate case (where the distribution has
both Gaussian or non-Gaussian components). This provides the higher-order fluctuation
theory for subgraph counts in the graphon model.

‚ We develop a novel multiplier bootstrap for graphons that consistently approximates the
limiting distribution of the network moments (both in the Gaussian and non-Gaussian
regimes). Using this and a procedure for testing degeneracy, we construct joint confidence
sets for any finite collection of motif densities. This provides a general framework for
statistical inference based on network moments in the graphon model.

Examples and simulations are provided to validate the general theory. To illustrate the broad
scope of our results we also consider the problem of detecting global structure (that is, testing
whether the graphon is a constant function) based on small subgraphs. We propose a consistent
test for this problem, invoking celebrated results on quasi-random graphs, and derive its limiting
distribution both under the null and the alternative.

1. Introduction

Networks provide a convenient way to represent complex relational data. The ubiquitous
presence of network data in recent years has led to the development of several probabilistic
models for random graphs that aim to capture various features of real-world networks. One of
the most extensively studied models for network data are exchangeable random graphs [1, 10, 11,
21, 24, 38, 55], where the distribution of the network, given the location of the nodes, remains
unchanged under permutations of the node labels. The celebrated Aldous-Hoover theorem
[1, 38] shows that any exchangeable random graph of infinite size can be generated by first
sampling independent node variables tUiuiě1 uniformly on r0, 1s, and then connecting each
pair of nodes pi, jq independently with probability W pUi, Ujq, for some measurable function
W : r0, 1s2 Ñ r0, 1s which is symmetric, that is, W px, yq “ W py, xq, for all x, y P r0, 1s. The
function W is commonly referred to as a graphon. Graphons arise as limits of sequences of
dense graphs and is the fundamental object in graph limit theory [14, 16, 55]. The theory of
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graph limits has been extensively studied since its inception and is the backbone of several
beautiful results in combinatorics, probability, statistics and related areas (see [55] for a book
length treatment). As mentioned before, graphons provide a natural way for sampling finite
exchangeable random graphs, a concept that has appeared independently in various contexts
(see [11–13, 23, 35, 56] among others). We describe this formally in the following definition:

Definition 1.1 (Graphon random graph model). Given a graphon W : r0, 1s2 Ñ r0, 1s, a
W -random graph on the set of vertices rns :“ t1, 2, . . . , nu, hereafter denoted by Gpn,W q, is
obtained by connecting the vertices i and j with probability W pUi, Ujq independently for all
1 ď i ă j ď n, where tUi : 1 ď i ď nu is an i.i.d. sequence of U r0, 1s random variables. An
alternative way to achieve this sampling is to generate i.i.d. sequences tUi : 1 ď i ď nu and
tYij : 1 ď i ă j ď nu of U r0, 1s random variables and then assigning the edge pi, jq whenever
tYij ď W pUi, Ujqu, for 1 ď i ă j ď n.

The model in Definition 1.1 will be referred to as the W -random model or the graphon random
graph model. This includes many well-known network models such as, the classical Erdős-Rényi
random graph model (where W “ Wp ” p P r0, 1s is the constant function), the stochastic block
model [10, 37] (and its many variations), smooth graphons [30], random dot-product graphs
[3, 73] (see also Lei [52]), and random geometric graphs [69], among others.

Network moments or motif counts are the frequencies of particular patterns (subgraphs) in
a network, such as the number/density of edges, triangles, or stars in a network [2, 62, 78].
Motif counts encode structural information about the geometry of a network and are important
summary statistics for potentially large networks. They are the building blocks of network
models, such as Exponential Random Graph Models (ERGMs) [19, 40, 64, 65, 76, 83, 84], and
many features of a network of practical interest can be derived from the motif counts, such
as clustering coefficient [81], degree distribution [70], and transitivity [36] (see [74] for others).
This has propelled the fast growing literature on counting and estimating network motifs under
various sampling models (see [6, 7, 25, 32, 48, 59] and the references therein).

In the framework of the graphon model, network method of moments, introduced in the semi-
nal papers [11, 15], is an important tool for inferring properties of the underlying graphon based
on the motif counts of the observed network. This makes understanding the asymptotic proper-
ties of subgraph counts inW -random graphs a problem of central importance in network analysis.
To this end, suppose Gn is the observed graph sampled from the W -random model Gpn,W q.
Then for a finite simple graph1 (motif) H “ pV pHq, EpHqq, with V pHq “ t1, 2, . . . , |V pHq|u

such that |V pHq| ě 2, the H-th empirical network moment is the number of copies of H in Gn.
This will be denoted by XpH,Gnq, which can be expressed more formally as:

XpH,Gnq “
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

ÿ

H 1PGHpti1,...,i|V pHq|uq

ź

pis,itqPEpH 1q

1 tYiaib ď W pUiaUibqu , (1.1)

where, for any set S Ď rns, GHpSq denotes the collection of all subgraphs of the complete graph
K|S| on the vertex set S which are isomorphic to H.2 Note that

|GHpt1, . . . , |V pHq|uq| “
|V pHq|!

|AutpHq|
,

where AutpHq is the set of all automorphisms of the graph H, that is, the collection of per-
mutations of the vertex set V pHq such that px, yq P EpHq if and only if pσpxq, σpyqq P EpHq.

1A graph is said to be simple if it has no self-loops and does not contain more than one edge between a pair
of vertices.

2Note that we count unlabelled copies of H. Several other authors count labelled copies, which multiplies
XpH,Gnq by |AutpHq|.
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Therefore, by exchangeability,

ErXpH,Gnqs “
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

ÿ

H 1PGHpti1,...,i|V pHq|uq

ź

pis,itqPEpH 1q

PpYiaib ď W pUiaUibqq

“
pnq|V pHq|

|AutpHq|
tpH,W q, (1.2)

where pnq|V pHq| :“ npn´ 1q ¨ ¨ ¨ pn´ |V pHq| ` 1q and

tpH,W q “

ż

r0,1s|V pHq|

ź

pa,bqPEpHq

W pxa, xbq

|V pHq|
ź

a“1

dxa (1.3)

is the homomorphism density of the graph H in the graphon W . The homomorphism den-
sity tpH,W q can be interpreted as the probability that a W -random graph on |V pHq| vertices
contains the graph H, that is,

tpH,W q “ P rH Ď Gp|V pHq|,W qs .

One of the fundamental results in graph limit theory is that the homomorphism densities identify
a graphon up to a measure-preserving transformation. The computation in (1.2) shows that

t̂pH,Gnq :“
|AutpHq|

pnq|V pHq|

XpH,Gnq (1.4)

is an unbiased estimate of the homomorphism density tpH,W q. To assess the uncertainty and
confidence of this estimate it is essential to understand the fluctuations (asymptotic distribution)
of t̂pH,Gnq (equivalently that of XpH,Gnq). In fact, many inferential tasks in network analysis,
such as estimating the clustering coefficient or testing for global structure, require understanding
the joint distribution of multiple (more than 1) subgraph counts. This raises following natural
questions:

(Q1) Given a collection of r graphs H “ tH1, H2, . . . ,Hru, what is limiting joint distribution
of XpH, Gnq :“ pXpH1, Gnq, XpH2, Gnq, . . . , XpHr, GnqqJ?

(Q2) How can one construct asymptotically valid joint confidence sets for the homomorphism
densities tpH,W q “ ptpH1,W q, tpH2,W q, . . . , tpHr,W qqJ based on a single realization
of the sampled graph Gn?

Despite the growing interest in the random graphon model and the network method of mo-
ments, existing results provide only a limited understanding of these questions. In this paper we
develop a framework for studying the asymptotic properties of network moments, which resolves
the questions above in its full generality and closes several gaps in the existing literature. We
summarize our results in the following sections.

1.1. Joint Distribution of Network Moments. The asymptotic distribution of subgraph
counts in the Erdős Rényi model, where W “ Wp ” p is a constant function, has been classi-
cally studied, using various tools such as U -statistics [66, 67], method of moments [75], Stein’s
method [5], and martingales [42, 43] (see also [46, Chapter 6]). In particular, when p P p0, 1q is
fixed and Gn „ Gpn,Wpq, XpH, Gnq is known to be asymptotically jointly normal for any finite
collection H of non-empty graphs (see [45, Section 9]). For general graphons W , the fluctua-
tions of XpH,Gnq (or that of the empirical homomorphism density tpH,Gnq (see (2.2) for the
definition) has received significant attention recently. This began with the work of Bickel et al.
[11], where the asymptotic Gaussian distribution for subgraph counts was established, under
certain sparsity assumptions. Later, using the framework of mod-Gaussian convergence, Féray,
Méliot, and Nikeghbali [27] derived the asymptotic normality, moderate deviations, and local
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limit theorems for the empirical homomorphism density. The joint Gaussian convergence of a
finite collection of empirical homomorphism densities was established in Delmas et al. [22]. Re-
cently, Zhang [86] derived rates of convergence to normality (Berry–Esseen type bounds), Zhang
and Xia [85] obtained Edgeworth expansions, and Austern and Orbanz [4] studied connections
to exchangeability, for XpH,Gnq (or its related variations). Other related results include central
limit theorems with rates of convergence for centered subgraph counts [47], analysis of localized
subgraph counts [60], and motif counts in bipartite exchangeable networks [50].

One interesting feature that has escaped attention is that the limiting normal distribution
of the subgraph counts obtained in the aforementioned works can be degenerate depending on
the structure of the graphon W . For instance, in a planted bisection model [63] (a stochastic
block model with two equal-sized communities and connection probabilities p and q within and
between blocks, respectively), the limiting distribution of network moments such as edges and
triangles are degenerate (see Case 4 in Example 3.1). This degeneracy phenomenon was noted in
Féray et al. [27], and first systemically studied by Hladkỳ et al. [34] when H “ KR is the R-clique
(the complete graph on R vertices), for some R ě 2. This was extended to general subgraphs
H by Bhattacharya et al. [8]. Here, it was shown that the usual Gaussian limit of XpH,Gnq

is degenerate when a certain regularity function, which encodes the homomorphism density of
H incident to a given ‘vertex’ of W , is constant almost everywhere. In this case, the graphon
H is said to be H-regular (see Definition 2.1) and the asymptotic distribution of XpH,Gnq

(with another normalization, differing by a factor n
1
2 ) can have two components: a Gaussian

component and another independent (non-Gaussian) component which is a (possibly) infinite
weighted sum of centered chi-squared random variables. This degeneracy phenomenon also
appears in the subsequent work of Chatterjee and Huang [18] on the fluctuations of the largest
eigenvalue. Very recently, Huang et al. [39] established an invariance principle for XpH,Gnq

that encompasses higher-order degeneracies.
In this paper we generalize the above results, which only considers the marginal distribution

of a single subgraph count, to joint distributions (recall (Q1)). Specifically, we derive the limit-
ing joint distribution of XpH, Gnq :“ pXpH1, Gnq, XpH2, Gnq, . . . , XpHr, GnqqJ (appropriately
centered and scaled), when W is irregular with respect to H1, ¨ ¨ ¨ , Hq for some 1 ď q ď r, and
regular with respect to Hq`1, Hq`2, . . . ,Hr. This is significantly more delicate than marginal
convergence, because of the non-Gaussian dependencies between and within the irregular and
regular marginals. Towards this, using the asymptotic theory of generalized U -statistics devel-
oped by Janson and Nowicki [45] and the framework of multiple stochastic integrals we show
the following (see Theorem 2.1 for the formal statement):

‚ The limiting distribution of ppXpHi, Gnqqq1ďiďq (the irregular marginals) is a linear sto-
chastic integral in terms of the regularity function.

‚ The limiting distribution of ppXpHi, Gnqqqq`1ďiďr (the regular marginals) is the sum of
two independent components; one of which is a multivariate Gaussian and the other is
a bivariate stochastic integral in terms of the 2-point conditional kernel of Hi in W .

The stochastic integrals are with respect to the same underlying Brownian motion on r0, 1s, which
captures the dependence between the different marginals. This result goes beyond the well-
known sampling convergence (law of large numbers) for subgraph densities (see [55, Corollary
10.4]) and also the first-order Gaussian fluctuations. Hence, our results can be thought of as the
higher-order fluctuation theory for subgraph counts in the random graphon model. The formal
statement of the results are given in Section 2. In Section 3 we illustrate the general theory in
some examples.

1.2. Joint Confidence Sets. To use the results described in the previous section for statistical
inference (recall (Q2)), one needs to estimate the quantiles of the limiting distribution of the
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subgraph counts (which depend on the unknown graphon W ). This is particularly relevant
because network moments commonly appear in inferential tasks such as goodness-of-fit and two-
sample problems (see [17, 31, 51, 53, 61, 68, 77, 79, 82] among several others), which requires one
to approximate the quantiles of the sampling distribution of the subgraph counts. Towards this
different network bootstrap and subsampling methods have been proposed (see [9, 33, 53, 54, 58,
85] and the references therein). However, most of the existing results on bootstrap consistency
are restricted to the regime where the subgraph count has a non-degenerate Gaussian distribution
(and some of them also require the network to be sparse). The literature is surprisingly silent
in the case where the Gaussian distribution is degenerate. The recent paper [77] appears to be
the only one that directly address the degeneracy issue in the context of network two-sample
testing. However, their result requires the network to be sparse (in addition to other technical
conditions) and, hence, does not directly apply to the dense regime.

In this paper we develop a multiplier bootstrap method for approximating the limiting joint
distribution of the network moments that remains valid even if the Gaussian distribution is
degenerate. On a high level, this entails replacing the graphon W in the limiting distribution
with its empirical counterpart (obtained from the observed graph Gn) and introducing random
Gaussian multipliers (which are independent of Gn). For the irregular marginals (where the
limiting distribution is Gaussian), the estimate takes the form a linear combination of Gaussians
with weights given by an empirical estimate of the regularity function. On the other hand, for
the regular marginals, the estimate is a quadratic form in Gaussians in terms of an empirical
estimate of the 2-point conditional kernel (see (4.5) for the formal definition). We show that this
estimate, interestingly, converges to the joint distribution of the network moments, conditional
on the observed network Gn, with no additional assumptions on the graphon W (Theorem 4.1).
We refer to this as the graphon multiplier bootstrap. Details are given in Section 4.

The graphon multiplier bootstrap, however, cannot be directly used for constructing confi-
dence sets for the homomorphism densities, because we do not know which of the subgraphs in
H are regular with respect to W . For this we develop a test for regularity based on a consistent
estimate of the variance of the limiting Gaussian distribution (Proposition 5.1). Combining this
with the graphon multiplier bootstrap we construct joint confidence sets for the homomorphism
densities that are asymptotically valid for any finite collection of subgraphs (Theorem 5.1). To
validate the theoretical results, we also study the finite sample performance of the proposed
method in simulations. Details are given in Section 5.

1.3. Testing for Global Structure. The framework for analyzing the asymptotic properties
network moments discussed above, readily applies to many problems in network inference. To
illustrate, here we consider the problem of detecting global structure based on small subgraphs.
Different variations of this problem have appeared in the literature. For instance, Gao and
Lafferty [29] considered testing whether a degree-corrected block model has any structure, that
is, whether it has a single community (which corresponds to no structure) versus it has more
than 1 community (see also [28] for related results). In the graphon framework, detecting global
structure corresponds to testing the null hypothesis:

H0 : W “ p almost everywhere for some p P p0, 1q, (1.5)

based on a single observed network Gn from the W -random model. For this problem, Fang
and Röllin [26] proposed a universally consistent test based on the densities of the edge and
the 4-cycle, invoking the celebrated result of Chung, Graham, and Wilson [20] about quasi-
random graphs. In this paper, using the same quasi-randomness result, we propose a simpler
test statistic which also gives a universally consistent test. Our proposal relies on the observation
that H0 in (1.5) holds if and only if fpW q :“ tpK2,W q4 ´ tpC4,W q “ 0, where K2 denotes
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the edge and C4 denotes the 4-cycle. Consequently, a test which rejects for large values of
f̂pGnq :“ t̂pK2, Gnq4 ´ t̂pC4, Gnq (recall (1.4)) will be universally consistent. In Section 6 we

derive the limiting distribution of f̂pGnq under both the null and the alternative, using the
techniques employed in Section 1.1. This allows us to obtain a test with precise asymptotic
level (unlike the test in [26] which is conservative) and also understand its fluctuations under
the alternative.

2. Asymptotic Joint Distribution of Network Moments

We begin by introducing the notion of regularity, the conditional 2-point kernel, and other re-
lated concepts in Section 2.1. In Section 2.2 we define the graph join operations. The asymptotic
joint distribution of the subgraph counts are given in Section 2.3.

2.1. Conditional Homomorphism Density. Recall the definition of homomorphism density
for a simple graph from (1.3). This extends easily to multigraphs as follows: The homomorphism
density of a fixed multigraph F “ pV pF q, EpF qq (without loops) in a graphon W is defined as:

tpF,W q “

ż

r0,1s|V pF q|

ź

pa,bqPEpF q

W pxa, xbq

|V pF q|
ź

a“1

dxa. (2.1)

Note that (2.1) is a natural continuum extension of the homomorphism density of a fixed graph
F “ pV pF q, EpF qq into finite (unweighted) graph G “ pV pGq, EpGqq defined as:

tpF,Gq :“
| hompF,Gq|

|V pGq||V pF q|
, (2.2)

where | hompF,Gq| denotes the number of homomorphisms of F into G. In fact, tpF,Gq is
the proportion of maps ϕ : V pF q Ñ V pGq which define a graph homomorphism. Defining the
empirical graphon associated with the graph G as:

WGpx, yq :“ 1tpr|V pGq|xs, r|V pGq|ysq P EpGqu, (2.3)

it can be easily verified that tpF,Gq “ tpF,WGq. (In other words, to obtain the empirical
graphon WG from the graph G, partition r0, 1s2 into |V pGq|2 squares of side length 1{|V pGq|,
and let WGpx, yq “ 1 in the pi, jq-th square if pi, jq P EpGq, and 0 otherwise.)

We now introduce the notion of conditional homomorphism densities and H-regularity of
graphons.

Definition 2.1. (1-point conditional homomorphism density and H-regularity) Fix a P V pHq

and x P r0, 1s. Then 1-point conditional homomorphism density function of H in a graphon W
given the vertex a is defined as:

tapx,H,W q :“ E

»

–

ź

pa,bqPEpHq

W pUa, Ubq
ˇ

ˇ

ˇ
Ua “ x

fi

fl .

In other words, tapx,H,W q is the homomorphism density of H in the graphon W when the
vertex a P V pHq is marked with the value x P r0, 1s. A graphon W is said to be H-regular if

tpx,H,W q :“
1

|V pHq|

|V pHq|
ÿ

a“1

tapx,H,W q “ tpH,W q, (2.4)

for almost every x P r0, 1s. We say W is H-irregular if it is not H-regular.
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To illustrate the notion of regularity, we consider the following 3 examples: (1) H “ K2 is
the edge, (2) H “ K3 is the triangle, and (3) H “ K1,2 is the 2-star. These 3 choices of H will
be the running examples throughout the paper.

‚ H “ K2 is the edge: In this case, for any a P t1, 2u, by symmetry,

tapx,K2,W q “ ErW pU1, U2q|Ua “ xs “

ż 1

0
W px, yqdy :“ dW pxq,

is the degree function of W . Hence, a graphon W is K2-regular if and only the degree
function dW is constant almost everywhere, that is, W is degree-regular.

‚ H “ K3 is the triangle: Again, by symmetry, for all 1 ď a ď 3,

tapx,K3,W q “

ż 1

0

ż 1

0
W px, yqW py, zqW px, zqdydz,

which is the homomorphism density of triangles incident at the point x P r0, 1s.
‚ H “ K1,2 is 2-star: Suppose the vertices of K1,2 are labeled t1, 2, 3u with the central

vertex labeled 1. Then we have the following:

– For a “ 1, t1px,K1,2,W q “
ş1
0

ş1
0W px, yqW px, zqdydz “ dW pxq2.

– For a P t2, 3u, tapx,K1,2,W q “
ş1
0

ş1
0W px, yqW py, zqdydz.

Hence,

t̄px,K1,2,W q “
1

3

ˆ

dW pxq2 ` 2

ż 1

0

ż 1

0
W px, yqW py, zqdydz

˙

.

Next, we define the 2-point conditional homomorphism density and the kernel derived from it.
This kernel will arise in the non-Gaussian component of the limiting distribution of XpH,Gnq

in the regular regime.

Definition 2.2. (2-point conditional homomorphism density) Fix a ‰ b P V pHq and x P r0, 1s.
Then the 2-point conditional homomorphism density function of H in a graphon W given the
vertices a and b is defined as:

ta,bpx, y,H,W q :“ E

»

–

ź

pa,bqPEpHq

W pUa, Ubq
ˇ

ˇ

ˇ
Ua “ x, Ub “ y

fi

fl .

Further, the 2-point conditional kernel of H is defined as:

WHpx, yq “
1

2|AutpHq|

ÿ

1ďa‰bď|V pHq|

ta,bpx, y,H,W q. (2.5)

For illustration, as before, we consider the following examples:

‚ H “ K2 is the edge: In this case, t1,2px, y,K2, Gnq “ t2,1px, y,K2, Gnq “ W px, yq. Hence,

WHpx, yq “
W px,yq

2 , that is, the 2-point conditional kernel is the scaled graphon W .
‚ H “ K3 is the triangle: By symmetry, ta,bpx, y,K3,W q “ t1,2px, y,K3,W q for all 1 ď

a ‰ b ď 3. Hence, the 2-point conditional kernel is given by,

WK3px, yq “
1

2
t1,2px, y,K3,W q “

1

2
W px, yq

ż 1

0
W px, zqW pz, yqdz,

since |AutpK3q| “ 3! “ 6.
‚ H “ K1,2 is 2-star: Suppose the vertices of K1,2 are labeled t1, 2, 3u with the central

vertex labeled 1. Then we have the following:
– For a “ 1 and b P t2, 3u,

ta,bpx, y,K1,2,W q “ W px, yqdW pxq and tb,apx, y,K1,2,W q “ W px, yqdW pyq.
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H1

a

H1

⊕
a,b

H2
H2

b

⊕
a,b

Figure 1. The pa, bq-vertex join of the graphs H1 and H2.

– For the remaining vertex pairs p2, 3q and p3, 2q,

t2,3px, y,K1,2,W q “ t3,2px, y,K1,2,W q “

ż 1

0
W px, zqW pz, yqdz.

Hence, the 2-point conditional kernel is given by,

WK1,2px, yq “
1

2

„
ż 1

0
W px, zqW pz, yqdz `W px, yqpdW pxq ` dW pyqq

ȷ

.

Remark 2.1. Note that a graphon W is H-regular (see Definition 2.1) if and only if the 2-point
conditional kernel WH is degree regular. This is because, for all x P r0, 1s,

ż 1

0
WHpx, yqdy “

|V pHq| ´ 1

2|AutpHq|

|V pHq|
ÿ

a“1

tapx,H,W q, (2.6)

and the RHS of (2.6) is a constant if and only if W is H-regular. In fact, if W is H-regular,

then 1
|V pHq|

ř|V pHq|

a“1 tapx,H,W q “ tpH,W q almost everywhere. Hence, the degree function of

WH becomes
ż 1

0
WHpx, yqdy “

|V pHq|p|V pHq| ´ 1q

2|AutpHq|
¨ tpH,W q :“ dWH

, (2.7)

for almost every x P r0, 1s.

Note that |WH | ď
|V pHq|p|V pHq|´1q

2|AutpHq|
:“ K. Hence, WH defines an operator TWH

: L2r0, 1s Ñ

L2r0,Ks as follows:

pTWH
fqpxq “

ż 1

0
WHpx, yqfpyqdy, (2.8)

for each f P L2r0, 1s. TWH
is a symmetric Hilbert–Schmidt operator; thus it is compact and has

a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we
denote by SpecpWHq, such that

ÿ

λPSpecpWHq

λ2 “

ĳ

WHpx, yq2dxdy ă 8.

Note that if W is H-regular, then dWH
is an eigenvalue of the operator TWH

(recall (2.8))
and ϕ ” 1 is a corresponding eigenvector. In this case, we will use Spec´pWHq to denote the
collection SpecpWHq with the multiplicity of the eigenvalue dWH

decreased by 1.
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2.2. Graph Join Operations. The variance of the subgraph count XpH,Gnq involves different
graphs obtained by joining 2 isomorphic copies of H. To describe the asymptotic variance
succinctly it is convenient to define some basic graph join operations (as in [8]). To this end,
suppose H “ pV pHq, EpHqq is a graph with vertex set V pHq “ t1, 2, . . . , |V pHq|u. Denote by
E`pHq the ordered pairs of edges in H, that is, E`pHq “ tpa, bq : 1 ď a ‰ b ď r, pa, bq or pb, aq P

EpHqu.

Definition 2.3. Suppose H1 “ pV pH1q, EpH1qq and H2 “ pV pH2q, EpH2qq be two graphs with
vertex sets V pH1q “ t1, 2, . . . , |V pH1q|u and V pH2q “ t1, 2, . . . , |V pH2q|u and edge sets EpH1q

and EpH2q, respectively.

‚ Vertex Join: For a P V pH1q and b P V pH2q, the pa, bq-vertex join of H1 and H2, denoted
by

H1

à

a,b

H2,

is the graph obtained by identifying the a-th vertex of H1 with the b-th vertex of H2

(see Figure 1).
‚ Weak Edge Join: For pa, bq P E`pH1q and pc, dq P E`pH2q, with 1 ď a ‰ b ď r and

1 ď c ‰ d ď r, the pa, bq, pc, dq-weak edge join of H1 and H2, denote by

H1

á

pa,bq,pc,dq

H2,

is the graph obtained identifying the vertices a and c and the vertices b and d and keeping
a single edge between the two identified vertices (see Figure 2).

‚ Strong Edge Join: For pa, bq P E`pH1q and pc, dq P E`pH2q, with 1 ď a ‰ b ď r and
1 ď c ‰ d ď r, the pa, bq, pc, dq-strong edge join of H1 and H2,

H1

à

pa,bq,pc,dq

H2,

is the multi-graph obtained identifying the vertices a and c and the vertices b and d and
keeping both the edges between the two identified vertices (see Figure 2).

2.3. Joint Distribution of Subgraph Counts. Suppose H “ tH1, ¨ ¨ ¨ , Hru is a collection of
finite simple graphs, whereHi “ pV pHiq, EpHiqq with vertices labeled V pHiq “ t1, 2, ¨ ¨ ¨ , |V pHiq|u

and |V pHiq| ě 2, for 1 ď i ď r. To begin with, for any finite simple graph H “ pV pHq, EpHqq,
with |V pHq| ě 2, define

ZpH,Gnq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

XpH,Gnq ´
pnq|V pHq|tpH,W q

|AutpHq|

n|V pHq|´ 1
2

if W is H-irregular,

XpH,Gnq ´
pnq|V pHq|tpH,W q

|AutpHq|

n|V pHq|´1
if W is H-regular.

(2.9)

Our goal is to derive the limiting distribution of

ZpH, Gnq “ pZpH1, Gnq, ZpH2, Gnq, . . . , ZpHr, GnqqJ. (2.10)

For this we need to define the following covariance matrix:
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H1

a

H2

c

b d

à

pa,bq,pc,dq

á

pa,bq,pc,dq

H1

à

pa,bq,pc,dq

H2

H1

á

pa,bq,pc,dq

H2

Figure 2. The weak and strong edge joins of the graphs H1 and H2.

Definition 2.4. Given a graphon W and finite collection of graphs tF1, F2, . . . , Fpu, such that
W is regular with respect to F1, F2, . . . , Fp. Then define a p ˆ p matrix Σ :“ pσijq1ďi,jďp as
follows:

σij “
1

2|AutpFiq||AutpFjq|

ÿ

pa,bqPE`pFiq

pc,dqPE`pFjq

«

t

˜

Fi
á

pa,bq,pc,dq

Fj ,W

¸

´ t

˜

Fi
à

pa,bq,pc,dq

Fj ,W

¸ff

, (2.11)

for all 1 ď i, j ď p.

We are now ready to state our result about the limiting distribution of subgraph counts.
To this end, denote by tBt : t P r0, 1su the standard Brownian motion on r0, 1s and recall the
framework of multiple Weiner-Itô stochastic integrals from Section G.

Theorem 2.1. Fix a graphonW and a finite collection of non-empty graphs H “ tH1, H2, . . . ,Hru,
such that W is irregular with respect to H1, ¨ ¨ ¨ , Hq for some 1 ď q ď r and regular with respect
to Hq`1, Hq`2, . . . ,Hr. Then

ZpH, Gnq
D
Ñ Z pH,W q :“ pZpH1,W q, ZpH2,W q, . . . , ZpHr,W qqJ, (2.12)

such that

‚ for 1 ď i ď q,

ZpHi,W q :“

ż 1

0

$

&

%

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W q ´
|V pHiq|

|AutpHiq|
tpHi,W q

,

.

-

dBx,
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‚ for q ` 1 ď i ď r,

ZpHi,W q :“ Gi `

ż 1

0

ż 1

0

"

WHipx, yq ´
|V pHiq| p|V pHiq ´ 1|q

2|AutpHiq|
tpHi,W q

*

dBxdBy,

where G “ pGq`1, ¨ ¨ ¨ , Grq „ Nr´q p0,Σq, with Σ “ ppσijqqq`1ďi,jďr as in (2.11), is
independent of tBtutPr0,1s.

The proof of Theorem 2.1 uses the asymptotic theory of generalized U -statistics developed
in Janson and Nowicki [45]. This allows us to decompose XpH, Gnq over sums of increasing
complexity using a projection method (see also [44, Chapter 11]). The terms in the expansion
are indexed by the vertices and edges subgraphs of the complete graph of increasing sizes, and
the asymptotic behavior of XpH, Gnq is determined by the joint distribution of non-zero terms
indexed by the smallest size graphs. Then the machinery of multiple stochastic integral provides
a convenient way to express the dependence among the irregular and regular marginals. The
proof is given in Section A.

Theorem 2.1 recovers as special cases a number of existing results. For instance, when H “

tHu is a singleton, we get the marginal distribution of ZpH,Gnq, which was proved for cliques
in [34] and for general subgraphs in [8]. In this case the limiting distribution can be alternately
expressed as in the following corollary, in terms of the graph join operations and the eigenvalues
of the kernel WH (recall the discussion following Remark 2.1). We show how to derive Corollary
2.1 from Theorem 2.1 in Section C.

Corollary 2.1 ([8, Theorem 2.9]). Fix a graphonW and a non-empty graph H “ pV pHq, EpHqq.
Then as n Ñ 8, the following hold:

‚ If W is H-irregular,

ZpH,Gnq
D
Ñ Np0, τ2H,W q, (2.13)

where

τ2H,W “
1

|AutpHq|2

»

–

ÿ

1ďa,bď|V pHq|

t

˜

H
à

a,b

H,W

¸

´ |V pHq|2tpH,W q2

fi

fl . (2.14)

‚ If W is H-regular, that is, τ2H,W “ 0,

ZpH,Gnq
D
Ñ σH,W ¨ Z `

ÿ

λPSpec´pWHq

λpZ2
λ ´ 1q (2.15)

where Z, tZλ : λ P Spec´pWHqu are independent Np0, 1q,

σ2H,W :“
1

2|AutpHq|2

ÿ

pa,bq,pc,dqPE`pHq

«

t

˜

H
á

pa,bq,pc,dq

H,W

¸

´ t

˜

H
à

pa,bq,pc,dq

H,W

¸ff

,

and Spec´pWHq is the multiset SpecpWHq with multiplicity of the eigenvalue dWH
de-

creased by 1.

Remark 2.2. An interesting question that arises from Corollary 2.1, is whether the distribution
in (2.15) always non-degenerate? This is known to be true when H is the clique [34] and if H
is the 2-star or the 4-cycle [8]. However, there are non-trivial cases where the limit in (2.15) is
degenerate (see [8, Example 4.6]). Instances where one (but not both) of the two components
of the distribution in (2.15) is degenerate also has interesting combinatorial properties (see [8,
Section 4]). Additional degeneracies appear in the multivariate case. For instance, the matrix Σ
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K‚‚
2 “ K2

à

p1,2q,p1,2q

K2 K˝˝
3 “ K3

á

p1,2q,p1,2q

K3 K‚‚
3 “ K3

à

p1,2q,p1,2q

K3K2 ‚ K3 “ K2

à

p1,2q,p1,2q

K3

K˝
2 “ K2

à

1,1

K2

K2 ˝ K3 “ K2

à

1,1

K3

K˝
3 “ K3

à

1,1

K3

(a) (b)

Figure 3. Graphs obtained from (a) vertex join operations and (b) edge join
operations, between a copy of K2 and a copy K3.

in Theorem 2.1 can be singular. This is the case, for example, in the Erdős-Rényi model where
the matrix Σ has rank 1 for any finite collections of graphs (see Example 3.2).

Another case which has appeared in prior work is when all the graph in H are irregular
with respect to W (see [27] for the univariate case and [22] for the multivariate case). In this
case, since a linear stochastic integral has a Gaussian distribution, the limiting distribution of
ZpH, Gnq is multivariate Gaussian (see Theorem 1.5 in [44]). The covariance matrix of this
Gaussian distribution can be expressed in terms of the graph join operations as follows:

Corollary 2.2 ([22, Corollary 7.6]). Fix a graphon W and a finite collection of non-empty
graphs H “ tH1, . . . ,Hru, such that W is Hi-irregular for all 1 ď i ď r. Then

ZpH, Gnq
D
Ñ Nrp0,Γq,

where Γ “ ppτijqq1ďi,jďr, with

τij “
1

|AutpHiq||AutpHjq|

»

–

|V pHiq|
ÿ

a“1

|V pHjq|
ÿ

b“1

t

˜

Hi

à

a,b

Hj ,W

¸

´ |V pHiq||V pHjq|tpHi,W qtpHj ,W q

fi

fl .

pNote that τii “ τ2Hi,W
, for τ2Hi,W

as defined in (2.14) with H replaced by Hi.q

3. Examples

In this section we compute the limiting distribution of ZpH, Gnq in a few examples. We begin
with the joint distribution of the counts of edges and triangles.

Example 3.1. (Edges and triangles) Fix a graphon W and suppose H “ tK2,K3u be the edge
and the triangle. There are 4-cases depending on whether or not W is K2 or K3-regular.

Case 1: W is irregular with respect to K2 and K3: In this case, Corollary 2.2 applies. To this
end, as shown in Figure 3 (a), denote by K˝

2 , K˝
3 , and K2 ˝ K3 the graphs obtained by

the vertex joins of 2 copies of K2, 2 copies of K3, and one copy K2 and one copy of K3,
respectively. Then by Corollary 2.2,

ˆ

ZpK2, Gnq

ZpK3, Gnq

˙

D
Ñ N2

ˆ

0,

ˆ

τ11 τ12
τ21 τ22

˙˙

,
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where τ11 :“ tpK˝
2 ,W q ´ tpK2,W q2, τ22 :“ 1

4 rt pK˝
3 ,W q ´ tpK3,W q2s, and

τ12 “ τ21 :“
1

2
rtpK2 ˝K3,W q ´ tpK2,W qtpK3,W qs.

For a specific example of a graphon which is irregular with respect to K2 and K3, consider

W̃1px, yq :“ 1
2px` yq, (3.1)

for x, y P r0, 1s. In this case, tapx,K2, W̃1q “ dW̃1
pxq “ 1

2px ` 1
2q, for a P t1, 2u, and

tbpx,K3, W̃1q “ 1
8px2 ` 7x

6 ` 1
3q, for b P t1, 2, 3u, are both non-constant functions, hence,

W̃1 is K2 and K3-irregular.
Case 2: W is regular with respect to K2 and irregular with respect to K3: In this case, Theorem

2.1 shows that,
ˆ

ZpK2, Gnq

ZpK3, Gnq

˙

D
Ñ

˜

G` 1
2

ş1
0

ş1
0 pW px, yq ´ tpK2,W qq dBxdBy

1
2

ş1
0

´

ş1
0

ş1
0W px, yqW py, zqW pz, xqdydz ´ tpK3,W q

¯

dBx

¸

,

where G „ Np0, σ2q is independent of the Brownian motion tBtutPr0,1s and

σ2 “
1

2
tt pK2,W q ´ t pK‚‚

2 ,W qu .

Here, K‚‚
2 is the graph obtained by the strong edge join of 2 copies of K2, as shown in

Figure 3(b). For a concrete example of a graphon which is K2-regular and K3-irregular,

consider the graphon W̃2 shown in Figure 4(a). This can be expressed more formally as:

W̃2px, yq “

$

’

&

’

%

1 if px, yq P
“

0, 13
‰

ˆ
“

2
3 , 1

‰
Ť
“

2
3 , 1

‰

ˆ
“

0, 13
‰

,

1 if px, yq P
“

1
3 ,

2
3

‰

ˆ
“

1
3 ,

2
3

‰

,

0 otherwise.

(3.2)

The ‘graph’ representation of this graphon is shown in Figure 4(b), which corresponds
to a clique and a disjoint complete bipartite graph of equal block sizes. In this case,
the degree function dW̃2

pxq “ 1
3 , for all x P r0, 1s, hence, W̃2 is K2-regular. Further, for

b P t1, 2, 3u,

tbpx,K3, W̃ q “

#

0 if px, yq P
“

0, 13
‰
Ť
“

2
3 , 1

‰

,
1
9 if px, yq P

“

1
3 ,

2
3

‰

,

which means W̃2 is K3-irregular.
Case 3: W is irregular with respect to K2 and regular with respect to K3: In this case, from

Theorem 2.1 we have,

ˆ

ZpK2, Gnq

ZpK3, Gnq

˙

D
Ñ

¨

˝

ş1
0

´

ş1
0W px, yqdy ´ tpK2,W q

¯

dBx

G` 1
2

ş1
0

ş1
0

´

ş1
0W px, yqW py, zqW pz, xqdz ´ tpK3,W q

¯

dBxdBy

˛

‚,

where G „ Np0, σ2q is independent of the Brownian motion tBtutPr0,1s and

σ2 “
1

2
tt pK˝˝

3 ,W q ´ t pK‚‚
3 ,W qu .

Here, K˝˝
3 and K‚‚

3 are the graphs obtained by the weak and strong edge joins of 2
copies of K3, as shown in Figure 3(b), respectively. For an example of a graphon which

is K2-irregular and K3-regular, consider the graphon W̃3 in Figure 5(a). This is a 6 ˆ 6
block graphon taking values 1, 1

2 , and 0 in the gray, green, and white blocks, respectively.
The ‘graph’ representation of this graphon is shown in Figure 5(b), which corresponds
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(0, 0)

(1, 1)(0, 1)

(1, 0)

W̃2

(a)

(b)

Figure 4. (a) A K2-regular and K3-irregular graphon W̃2 and (b) its ‘graph’
representation.

to 2 disjoint complete tri-partite graphs with equal block sizes and a random bipartite
graph with edge probability 1

2 between 2 blocks of the tri-partite graphs. The bipartite
connections change the degrees of the corresponding vertices, but do not change their
1-point triangle densities, hence, W̃3 is K2-irregular but K3-regular.

(0, 0)

(1, 1)(0, 1)

(1, 0)

(0, 12)

(12 , 0)

W̃3

(a)

0.5

1 1

1

1

1

1

(b)

Figure 5. (a) A K2-irregular and K3-regular graphon W̃3 and (b) its ‘graph’
representation.

Case 4: W is regular with respect to K2 and K3: Once again, an application of Theorem 2.1
gives,

ˆ

ZpK2, Gnq

ZpK3, Gnq

˙

D
Ñ

˜

G1 ` 1
2

ş1
0

ş1
0 pW px, yq ´ tpK2,W qq dBxdBy

G2 ` 1
2

ş1
0

ş1
0

´

ş1
0W px, yqW py, zqW pz, xqdz ´ tpK3,W q

¯

dBxdBy

¸

.
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Here, tBtutPr0,1s is the standard Brownian motion and independently
ˆ

G1

G2

˙

„ N2

ˆ

0,

ˆ

σ11 σ12
σ21 σ22

˙˙

,

where σ11 :“ 1
2tt pK2,W q ´ t pK‚‚

2 ,W qu, σ22 :“ 1
2 tt pK˝˝

3 ,W q ´ t pK‚‚
3 ,W qu, and

σ12 “ σ21 :“
1

2
tt pK2 ˝K3q ´ t pK2 ‚K3qu ,

with K‚‚
2 , K˝˝

3 , K‚‚
3 , K2˝K3, and K2‚K3 as shown in Figure 3(b). A simple example of a

graphon which is K2 and K3 regular is the constant graphon Wp ” p, which, incidentally,
is H-regular, for all finite graphs H. More generally, consider the R-block graphon, for
some R ě 1, with equal block sizes, taking values a P r0, 1s in the diagonal blocks and
b P r0, 1s in the off-diagonal blocks. This graphon is also K2 and K3 regular.

Next, we consider the case when Wp ” p is the constant function p P p0, 1q, that is, Gn „

Gpn, pq is the Erdős-Rényi random graph. In this case, it is well-known that the joint asymptotic
distribution of the subgraph counts is a multivariate Gaussian (see [45, Section 9]). In the
following example we show how to obtain this classical result from our general theorem.

Example 3.2. (Erdős-Rényi random graph) Suppose W “ Wp ” p, that is, Gn „ Gpn, pq is
an Erdős-Rényi random graph with edge probability p. In this case, for any collection of finite
subgraphs H “ tH1, H2, ¨ ¨ ¨ , Hru, the limiting joint distribution of ZpH, Gnq is known to be a
multivariate Gaussian. Moreover, the covariance matrix of the Gaussian has rank 1 [45, Section
9]. Here, we show how to derive this result from Theorem 2.1. Note that Wp is regular with
respect to Hi, for all 1 ď i ď r (recall (2.4)). Also,

WHipx, yq “
|V pHiq|p|V pHiq| ´ 1q

2|AutpHiq|
p|EpHiq| “

|V pHiq|p|V pHiq| ´ 1q

2|AutpHiq|
tpHi,W q,

for 1 ď i ď r. Hence, the bivariate stochastic integral in Theorem 2.1 vanishes, and the limiting
distribution is given by,

ZpH, Gnq
D
Ñ Nrp0,Σq, (3.3)

where Σ “ pσijq1ďi,jďr with

σij “
2|EpHiq||EpHjq|

|AutpHiq||AutpHjq|
p|EpHiq|`|EpHjq|´1p1 ´ pq. (3.4)

Now, for every 2 ď i ď r and 1 ď j ď r observe that

σ1j
σij

“
|EpH1q|

|EpHiq|

|AutpHiq|

|AutpH1q|
p|EpH1q|´|EpHiq|.

Hence, the i-th column of Σ is a multiple of the first column of Σ, for 2 ď i ď r, that is, the
matrix Σ has rank 1.

In the next example we discuss the global clustering coefficient, which can be expressed in
terms of the counts of 2-stars and triangles.

Example 3.3. (Global clustering coefficient/transitivity) The global clustering coefficient of a
graph G is defined as (see [57]):

ηpGq :“
3 ˆ number of triangles in G

the number of 2-stars in G
“

3XpK3, Gq

XpK1,2, Gq
“

t̂pK3, Gq

t̂pK1,2, Gq
, (3.5)



16 CHATTERJEE, DAN, AND BHATTACHARYA

where t̂p¨, Gq is defined in (1.4). This is a measure of clustering in the graph G and is also known
as the transitivity ratio (see [80, Page 243]). Extending (3.5), one can define the global clustering
coefficient of a graphon W as follows:

ηpW q :“
tpK3,W q

tpK1,2,W q
“ P pthe nodes (1, 2, 3) are connected | (1, 2) and (1, 3) are connectedq ,

assuming tpK1,2,W q ą 0. Clearly, when Gn „ Gpn,W q, then ηpGnq is a consistent estimate of
ηpW q. Using the asymptotic joint distribution of pXpK1,2, Gnq, XpK3, Gnqq from Theorem 2.1
and the delta method, we can derive the asymptotic distribution of ηpGnq. The limit depends
on whether or not the graphon W is K1,2 and K3 regular, hence, 4 cases can arise, similar to
Example 3.1. We can also quantify the uncertainty of ηpGnq in estimating ηpW q, using the
results on joint confidence sets in Section 4.

4. Graphon Multiplier Bootstrap

Note that the asymptotic distribution of the subgraph counts obtained in Theorem 2.1 depends
on the graphon W . Hence, to use this result for statistical inference of the homomorphism densi-
ties, one needs to estimate quantiles of the asymptotic distribution. When the limit is Gaussian,
that is, W is H-irregular, this entails estimating the asymptotic variance consistently. How-
ever, if the limit is non-Gaussian, which is the case when W is H-regular, this is more delicate.
This becomes even more challenging in the multivariate regime, when there is a combination of
irregular and regular components.

In this section, we introduce the graphon multiplier bootstrap, a method for estimating the
quantiles of the limiting distribution ZpH, Gnq (recall (2.9)), based on the observed network
Gn itself and additional external randomness. To begin with, denote by AGn “ ppwstqqns,t“1 the

adjacency matrix of Gn and, as before, let WGn be the empirical graphon corresponding to Gn
(recall (2.3)). Then the empirical homomorphism density of a graph H “ pV pHq, EpHqq in Gn
can be expressed as (recall (2.1)):

tpH,WGnq “
1

n|V pHq|

ÿ

sPrns|V pHq|

ź

pi,jqPEpHq

wsisj . (4.1)

Moreover, the number of copies of H in the observed in Gn as defined in (1.1) can be alternatively
expressed as:

XpH,Gnq :“
1

|AutpHq|

ÿ

sPprnsq|V pHq|

ź

pi,jqPEpHq

wsisj , (4.2)

where prnsq|V pHq| is the set of all |V pHq|-tuples s “ ps1, . . . , s|V pHq|q P rns|V pHq| with distinct

indices.3 Note that the cardinality of pnq|V pHq| is n!
pn´|V pHq|q! “ pnq|V pHq|. To obtain the bootstrap

estimate of the asymptotic distribution of XpH,Gnq we need to define the empirical counterparts
of the 1-point and 2-point conditional homomorphism densities (recall (2.1)). (Hereafter, for
simplicity, we will assume H has no isolated vertex.)

Definition 4.1. (Empirical 1-point subgraph density)
Fix a P V pHq and v P V pGnq. Denote by Xapv,H,Gnq the number of injective homomorphism

ϕ : V pHq Ñ V pGnq such that ϕpaq “ v. More formally,

Xapv,H,Gnq “
ÿ

stauc

ź

yPNHpaq

wvsypGnq
ź

px,yqPEpHztauq

wsxsypGnq,

3For a set S, the set SN denotes the N -fold cartesian product S ˆ S ˆ . . . ˆ S.
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where the sum is over tuples stauc :“ psxqxPV pHqztau P prnsztvuq|V pHq|´1 and NHpaq denotes the
neighbors of a in the graph H. Then the empirical 1-point subgraph density function is defined
as:

t̂pv,H,Gnq :“
1

|AutpHq|

|V pHq|
ÿ

a“1

Xapv,H,Gnq

n|V pHq|´1
. (4.3)

Note that (4.3) counts (up to constant factors depending on the automorphisms of H) the
fraction of copies of H in Gn passing through the vertex v P V pGnq. To illustrate we consider
the following examples:

‚ H “ K2 is the edge: In this case, t̂pv,H,Gnq “ dv
n , where dv is the degree of the vertex

v in Gn.
‚ H “ K3 is the triangle: Suppose the vertices of K3 are labeled t1, 2, 3u. By symmetry,

for all 1 ď a ď 3,

Xapv,K3, Gnq “
ÿ

1ďs1‰s2ďn

wvs1wvs2ws1s2 ,

which is twice the number of triangles in Gn with v as one of the vertex. Therefore,

t̂pv,K3, Gnq “
1

2n2

ÿ

1ďs1‰s2ďn

wvs1wvs2ws1s2 .

‚ H “ K1,2 is the 2-star: Suppose the vertices of K1,2 are labeled t1, 2, 3u with the central
vertex labeled 1. Then we have the following:

– For a “ 1, X1pv,K1,2, Gnq “
ř

1ďs1‰s2ďnwvs1wvs2 , is twice the number of 2-stars
in Gn with v as the central vertex.

– For a P t2, 3u, Xapv,K1,2, Gnq “
řn
s1“1wvs1pds1 ´ 1q, is the number of 2-star in Gn

where v is a leaf vertex.
Hence,

t̂pv,K1,2, Gnq “
1

2n2

˜

ÿ

1ďs1‰s2ďn

wvs1wvs2 ` 2
n
ÿ

s1“1

wvs1pds1 ´ 1q

¸

.

Next, we define the 2-point subgraph density of Gn, which is the empirical analogue of 2-point
conditional kernel (2.5).

Definition 4.2. (Empirical 2-point subgraph density) Fix a ‰ b P V pHq and u, v P V pGnq.
Denote by Xa,bpu, v,H,Gnq the number of injective homomorphism ϕ : V pHq Ñ V pGnq such
that ϕpaq “ u and ϕpbq “ v. More formally,

Xa,bpu, v,H,Gnq “ w`
uv

ÿ

sta,buc

ź

yPNHpaqztbu

wusypGnq
ź

yPNHpbqztau

wvsypGnq
ź

px,yqPEpHzta,buq

wsxsypGnq,

where the sum is over tuples sta,buc :“ psxqxPV pHqzta,bu P prnsztu, vuq|V pHq|´2 and w`
uv “ wuv if

pa, bq P EpHq and wuv “ 1 otherwise. The 2-point subgraph density is then defined as:

ŴGn
H pu, vq “

1

2|AutpHq|

ÿ

1ďa‰bď|V pHq|

Xa,bpu, v,H,Gnq

n|V pHq|´2
. (4.4)

By convention we define ŴGn
H pu, uq “ 0 for all 1 ď u ď n.

Note that ppŴGn
H pu, vqqq1ďu,vďn is a n ˆ n matrix which counts (up to constant factors de-

pending on the automorphisms of H) the fraction of copies of H in Gn passing through the
vertices u, v P V pGnq. To illustrate we consider the following examples:
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‚ H “ K2 is the edge: In this case, ŴGn
H pu, vq “ 1

2wuv, is the scaled adjacency matrix of
Gn.

‚ H “ K3 is the triangle: Suppose the vertices of K3 are labeled t1, 2, 3u. By symmetry,
for all 1 ď a, b ď 3,

Xa,bpu, v,K3, Gnq “

n
ÿ

s1“1

wuvwus1wvs1 ,

which is the number of triangles in Gn with u and v as vertices. Therefore,

ŴGn
K3

pu, vq “
1

2n

ÿ

1ďs1ďn

wuvwus1wvs1 .

‚ H “ K1,2 is the 2-star: Suppose the vertices of K1,2 are labeled t1, 2, 3u with the central
vertex labeled 1. Then we have the following for 1 ď u ‰ v ď n:

– For a “ 1 and b P t2, 3u, X1,bpu, v,K1,2, Gnq “ wuv
řn
s1“1wus1 ´wuv “ wuvpdu ´ 1q,

is the number of 2-stars in Gn with u as the central vertex and v as the leaf vertex.
Similarly, X1,bpv, u,K1,2, Gnq “ wvu

řn
s1“1wvs1 ´wvu “ wvupdv ´ 1q, is the number

of 2-stars in Gn with v as the central vertex and u as the leaf vertex. Also, note
that Xb,1pu, v,K1,2, Gnq “ X1,bpv, u,K1,2, Gnq.

– For a, b P t2, 3u, Xa,bpu, v,K1,2, Gnq “
řn
s1“1wus1wvs1 , is the number of 2-star in

Gn with u, v as leaf vertices.
Hence,

ŴGn
K1,2

pu, vq “
1

2n

«

wuv pdu ` dv ´ 2q `

n
ÿ

s1“1

wus1wvs1

ff

.

With the above definitions we can now describe multiplier bootstrap estimates of the limiting
distribution ZpH,W q. For this, recall that H “ tH1, H2, . . . ,Hru is such that W is irregular with
respect to H1, H2, . . . ,Hq and W is regular with respect to Hq`1, . . . ,Hr. Suppose Z1, Z2, . . . , Zn
are i.i.d. Np0, 1q independent of the graph Gn. Then define

ẐpHi, Gnq “

$

’

&

’

%

1?
n

řn
v“1pt̂pv,Hi, Gnq ´ t̄pHi, GnqqZv if 1 ď i ď q,

1
n

ř

1ďu,vďnpŴGn
Hi

pu, vq ´ W̄Gn
Hi

q pZuZv ´ δu,vq if q ` 1 ď i ď r,

(4.5)

where δu,v “ 1tu “ vu, t̄pHi, Gnq “ 1
n

řn
v“1 t̂pv,Hi, Gnq, and

W̄Gn
Hi

“
1

n2

ÿ

1ďu,vďn

ŴGn
Hi

pu, vq. (4.6)

Denote

ẐpH, Gnq “ pẐpH1, Gnq, ẐpH2, Gnq, . . . , ẐpHr, GnqqJ. (4.7)

Note that ẐpH, Gnq depends only on the observed graph Gn and the Gaussian multipliers

Z1, Z2, . . . , Zn, but not on the graphon W . In the following theorem we show that ẐpH, Gnq,
conditional on the graph Gn, converges to ZpH,W q as in Theorem 2.1.

Theorem 4.1. Fix a graphonW and a finite collection of non-empty graphs H “ tH1, H2, . . . ,Hru

such that W is irregular with respect to H1, ¨ ¨ ¨ , Hq, for some 1 ď q ď r, and regular with respect

to Hq`1, Hq`2, . . . ,Hr. Suppose Gn is a realization from Gpn,W q and ẐnpH, Gnq be as defined
in (4.7). Then, almost surely as n Ñ 8,

ẐnpH, Gnq|Gn
D
Ñ ZpH,W q, (4.8)



HIGHER-ORDER GRAPHON THEORY 19

where ZpH,W q is as in (2.12).

The proof of Theorem 4.1 is given in Section D. It shows the asymptotic distribution of
ẐnpH, Gnq|Gn is the same as that of the subgraph counts ZpH,Gnq (recall (2.9)). Hence,

we can use the distribution ẐnpH, Gnq|Gn, which depends only on the observed graph Gn, to
approximate the quantiles of the limiting distribution ZpH,W q. This allow us to construct joint
confidence sets for the homomorphism densities as described in Section 5.

Remark 4.1. Recently, Lin et al. [54] proposed a bootstrap method for approximating the
sampling distribution of a network moment in the sparse regime (where the networks have opn2q

edges), which bears some similarity to our approach. Specifically, the authors use a multiplier
bootstrap to estimate the terms in the Hoeffding decomposition of a network moment and also
approximates the local subgraph counts based on sampling for fast computation. However, as in
most prior work, the bootstrap consistency essentially requires the network moment to be have
a non-degenerate Gaussian limit. Moreover, the result only applies in the sparse regime and for
the marginal distribution a single network moment that is either acyclic or a cycle.

5. Joint Confidence Sets

Suppose H “ tH1, H2, . . . ,Hru is a collection of non-empty graphs, with Hi “ pV pHiq, EpHiqq

and |V pHiq| ě 2, for 1 ď i ď r. In this section, we construct a joint confidence set for the
collection of homomorphism densities

tpH,W q “ ptpH1,W q, tpH2,W q, . . . , tpHr,W qqJ,

given a sample Gn from Gpn,W q. Note that, although Theorem 4.1 provides a way to estimate
the quantiles of the limiting distribution ZpH,W q, this result cannot be directly applied for
constructing a confidence set, because it is a-priori unknown whether or not W is Hi-regular for
some 1 ď i ď r. For this, we propose a testimation strategy for constructing joint confidence
sets, which first tests for Hi-regularity based on the observed graph Gn, for 1 ď i ď r, and then
uses Theorem 4.1 to estimate the appropriate quantiles. The rest of this section is organized as
follows: In Section 5.1 we discuss the test for regularity. Using this and the graphon multiplier
bootstrap from the previous section we provide an algorithm for constructing confidence sets in
Section 5.2. We illustrate the performance of the algorithm in simulations in Section 5.3.

5.1. Testing for Regularity. Given a graphon W and finite simple graph H “ pV pHq, EpHqq,
with |V pHq| ě 2, the regularity testing problem for the pair pH,W q can be formulated as follows:

H0 : W is H-regular versus H1 : W is not H-regular. (5.1)

Recall that W is H-regular if and only if the asymptotic variance τH,W “ 0 (recall (2.14)). For
notational convinience define,

RpH,W q “ |AutpHq|2τ2H,W “
ÿ

1ďa,bď|V pHq|

t

˜

H
à

a,b

H,W

¸

´ |V pHq|2tpH,W q2. (5.2)

Clearly, W is H-regular if and only if RpH,W q “ 0. Note that, since the vertex joins to 2 simple
graphs is another simple graph, RpH,W q is a function of homomorphism densities of simple
graphs. Hence, RpH,W q can be consistently estimated from Gn based on the following simple
estimate:

RpH,Gnq “
ÿ

1ďa,bď|V pHq|

t̂

˜

H
à

a,b

H,Gn

¸

´ |V pHq|2t̂pH,Gnq2. (5.3)
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The following lemma shows that RpH,Gnq converges to zero at rate faster than
?
n when W is

H-regular.

Proposition 5.1. Suppose RpH,Gnq be as defined in (5.3). Then the following hold:

p1q When W is H-regular,
?
nRpH,Gnq

P
Ñ 0.

p2q When W is not H-regular,
?
nRpH,Gnq

P
Ñ 8.

The proof of Proposition 5.1 is given in Section E.1. Now, consider the test function

ϕpH,Gnq “ 1
␣?

nRpH,Gnq ą 1
(

. (5.4)

Proposition 5.1 implies that under H0 as in (5.1), PpϕpH,Gnqq Ñ 0, and under H1, PpϕnpH,Gnqq Ñ

1. Hence, the test (5.4) is consistent for the regularity testing problem (5.1).

5.2. Constructing Confidence Sets. Using the test for regularity, we can now describe our
algorithm for constructing a joint confidence set for tpH,W q as follows:

‚ For each 1 ď i ď r, consider the hypothesis testing problem:

H0,i : W is Hi-regular versus H1,i : W is not Hi-regular.

Let SpH, Gnq :“ t1 ď i ď r :
?
nRpHi, Gnq ą 1u, be the set of indices where the

hypothesis of Hi-regularity is rejected.
‚ Define

QpH, Gnq “ pQpH1, Gnq, ¨ ¨ ¨ , QpHr, Gnqq, (5.5)

where (recall (4.5))

QpHi, Gnq “

$

’

&

’

%

1?
n

řn
v“1pt̂pv,Hi, Gnq ´ t̄pHi, GnqqZv if i P SpH, Gnq,

1
n

ř

1ďu,vďnpŴGn
Hi

pu, vq ´ W̄Gn
Hi

q pZuZv ´ δu,vq if i R SpH, Gnq,

with Z1, Z2, . . . , Zn are i.i.d. Np0, 1q independent of the graph Gn. Denote by q̂1´α,H,Gn

the p1 ´ αq-th quantile of distribution of }QpH, Gnq}2|Gn. (Note that the distribution
of QpH, Gnq given Gn does not depend on the graphon W , it only depends on the
randomness of the Gaussian multipliers tZuu1ďuďn, Hence, in practice, q̂1´α,H,Gn will
be computed from the empirical quantiles of }QpH, Gnq}2|Gn obtained by repeatedly
sampling the Gaussian multipliers.)

‚ Define

Z̃pH, Gnq “ pZ̃pH1, Gnq, Z̃pH2, Gnq, . . . , Z̃pHr, GnqqJ, (5.6)

with

Z̃pHi, Gnq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

XpHi, Gnq ´
pnq|V pHiq|tpHi,W q

|AutpHiq|

n|V pHiq|´ 1
2

if i P SpH, Gnq,

XpHi, Gnq ´
pnq|V pHiq|tpHi,W q

|AutpHiq|

n|V pHiq|´1
if i P SpH, Gnq.

(5.7)

Report the confidence set

CpH, Gnq “ ttpH,W q : }Z̃pH, Gnq}2 ď q̂1´α,H,Gnu, (5.8)

where tpH,W q “ ptpH1,W q, tpH2,W q, . . . , tpHr,W qqJ.
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The following theorem shows that the set CpH, Gnq is a confidence set for the vector of
homomorphism densities tpH,W q with asymptotically α coverage probability.

Theorem 5.1. Let CpH, Gnq be as defined in (5.8). Then limnÑ8 PpCpH, Gnqq “ 1 ´ α.

The proof of Theorem 5.1 is given in Section E.2. The proof involves showing that QpH, Gnq|Gn
and Z̃pH, Gnq (recall (5.5) and (5.6), respectively), both converge to the distribution of ZpH,W q

asymptotically.

Remark 5.1. (Marginal Confidence Intervals) The algorithm for constructing joint confidence
sets described above takes a simpler form when H “ tHu is a singleton. In other words, suppose,
we want to construct a (marginal) confidence interval for tpH,W q. Then, recalling Corollary
2.1, we proceed as follows:

‚ If
?
nRpH,Gnq ą 1 (that is, H0 in (5.1) is rejected), then define

LpH,Gnq “

„

t̂pH,Gnq ´ zα{2
|AutpHq|τ̂H,Gn?

n
, t̂pH,Gnq ` zα{2

|AutpHq|τ̂H,Gn?
n

ȷ

,

where t̂pH,Gnq “
|AutpHq|

pnq|V pHq|
XpH,Gnq (as defined in (1.4)),

τ̂2H,Gn
“

1

n

n
ÿ

v“1

`

t̂pv,H,Gnq ´ t̄pH,Gnq
˘2
,

and zα is the p1 ´ αq-th quantile of standard Gaussian distribution.
‚ If

?
nRpH,Gnq ď 1 (that is, H0 in (5.1) is accepted), then define

LpH,Gnq “

„

t̂pH,Gnq ´ q̂α{2,H,Gn

|AutpHq|

n
, t̂pH,Gnq ´ q̂1´α{2,H,Gn

|AutpHq|

n

ȷ

.

Here, q̂1´α,H,Gn is the α-th quantile of the random variable 1
n

řn
i“1 λipH,GnqpZ2

i ´1q|Gn,

where tλipH,Gnqu1ďiďn are the eigenvalues of the matrix ppŴGn
H pu, vq ´ W̄Gn

H qq1ďu,vďn

(recall (4.4) and (4.6)) and tZiu1ďiďn are i.i.d. Np0, 1q.

From Corollary 2.1 and the proof of Theorem 5.1, it easily follows that limnÑ8 P pLpH,Gnqq “

1 ´ α, that is, LpH,Gnq is an asymptotically valid confidence interval for tpH,W q.

5.3. Simulations. In this section we evaluate the performance of the algorithm for constructing
joint confidence sets in simulations.

5.3.1. Confidence Interval for the Edge Density. For the confidence interval of the edge density
tpK2,W q we consider the following 2 choices of W :

‚ W “ W´px, yq :“ xy, for x, y P r0, 1s. This graphon is K2-irregular (the degree function
dW´

pxq “ x
2 ) and tpK2,W´q “ 1

4 .
‚ Next, we consider the K2-regular graphon

W “ W`px, yq :“

#

1
2 if px, yq P

“

0, 12
‰

ˆ
“

1
2 , 1

‰
Ť
“

1
2 , 1

‰

ˆ
“

0, 12
‰

,

0 otherwise.

Note that this graphon corresponds to the random bipartite graph with equal block sizes
and edge probability 1

2 . Note that tpK2,W`q “ 1
4 .

Using the method described in Remark 5.1 we construct 100 instances of the 95% confidence
interval for tpK2,W q, when W “ W´ (Figure 6(a)) and W “ W` (Figure 6(b)). Each interval is
computed based on a graph of size n “ 400 sampled from the modelGpn,W q, forW P tW´,W`u,
and the quantiles are estimated using 1000 resamples from the conditional distribution. The
black horizontal line represents the population edge density tpK2,W q “ 1

4 (in both cases) and
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Figure 6. 100 instances of the 95% confidence interval for edge density tpK2,W q

with (a) W “ W´ and (b) W “ W`.

the intervals not containing 1
4 are shown in red. Observe that in both cases the fraction of

intervals containing 1
4 (the empirical coverage probability) is very close to 0.95, as predicted by

the asymptotic theory.

5.3.2. Joint Confidence Sets for Edge and Triangle Densities. We now use our algorithm to
construct the joint confidence set for the edge and the triangle densities ptpK2,W q, tpK3,W qq.
Here, 4 possible cases can arise depending on whether or not W is K2 or K3-regular (recall
Example 3.1). For each of the 4 graphons considered in Example 3.1, we show below the
heatmap of 100 instances of the 95% confidence ellipsoid (recall (5.8)). In all the simulations,
the confidence sets are computed based on graphs of size n “ 400 and the quantiles are estimated
using 1000 resamples from the conditional distribution. The empirical coverage is given by the
fraction of confidence ellipsoids that contain the true homomorphism densities (which is marked
by the black point).

‚ Figure 7(a) shows the joint confidence sets for ptpK2,W q, tpK3,W qq whenW “ W̃1px, yq “
1
2px`yq (recall (3.1)). This graphon is both K2 and K3-irregular. Also, for this graphon

ptpK2, W̃1q, tpK3, W̃1qq “ p12 ,
5
32q. In this case, the empirical coverage is 94%.

‚ Figure 7(b) shows the joint confidence sets for ptpK2,W q, tpK3,W qq when W “ W̃2px, yq

is the graphon in (3.2). This graphon is K2-regular and K3-irregular. Furthermore,
ptpK2,W3q, tpK3,W3qq “ p13 ,

1
27q. In this case, the empirical coverage is 96%.

‚ Figure 8(a) shows the joint confidence sets for ptpK2,W q, tpK3,W qq when W “ W̃3px, yq

is the graphon shown in Figure 5. This graphon is K2-irregular and K3-regular. Fur-
thermore, a direct computation shows that ptpK2, W̃3q, tpK3, W̃3qq “ p1336 ,

1
18q. In this

case, the empirical coverage is 95%.
‚ Figure 8(b) shows the joint confidence sets for ptpK2,W q, tpK3,W qq when W “ W 1

2
” 1

2

is the constant function 1
2 (which corresponds to the Erdős-Rényi graph Gpn, 12q. This

graphon is both K2 and K3-regular. Also, ptpK2,W q, tpK3,W qq “ p12 ,
1
8q. In this case,

the empirical coverage is 94%.
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Figure 7. 100 instances of the 95% confidence sets for ptpK2,W q, tpK3,W qq with (a)

W “ W̃1 and (b) W “ W̃2.
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Figure 8. 100 instances of the 95% confidence sets for ptpK2,W q, tpK3,W qq with (a)

W “ W̃3 the graphon in Figure 5 and (b) W “ W 1
2

” 1
2 the constant graphon 1

2 .

The results above show that the proposed method achieves the desired coverage in different
simulation settings. It is worth recalling our method does have any prior knowledge about
whether or not W is K2 or K3-regular. We first test for the presence of regularity and construct
the confidence sets depending on the outcome of the tests as described in Section 5.2.
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6. Testing for Global Structure

Testing global network properties based on counts of subgraphs is a central theme in many
statistical network analysis problems. A basic problem in this direction is to test whether
the network is generated completely at random or whether it has some additional structure.
In the context of stochastic models this entails testing whether or not the network has any
community structure [28, 29]. For graphon models, global structure testing can be formulated
as the following hypothesis (recall (1.5)):

H0 : W “ p almost everywhere for some p P p0, 1q versus H1 : W is non-constant. (6.1)

To find a consistent test for this hypothesis, we need to find a functional f : W Ñ R which
has the property that fpW q “ 0 if and only if W is a constant function almost everywhere. A
classical result of Chung, Graham, and Wilson about quasi-random graphs [20] implies that the
function fpW q “ tpK2,W q4 ´ tpC4,W q satisfies this property (see [55, Claim 11.53]). Hence,
one can construct a consistent test for (6.1) by estimating this functional based on the observed
graph Gn. To this end, define,

f̂pGnq “ t̂pK2, Gnq4 ´ t̂pC4, Gnq, (6.2)

where, for any graph H, t̂pH,Gnq “
|AutpHq|

pnq|V pHq|
XpH,Gnq (as defined in (1.4)).

In the following theorem we derive the asymptotic distribution of f̂pGnq under the null hy-
pothesis.

Proposition 6.1. Under H0 as in (1.5),

n
3
2 f̂pGnq

D
Ñ N

`

0, ϑ2
˘

. (6.3)

where ϑ2 :“ 32tpK2,W q6p1 ´ tpK2,W qq2.

The proof is given in Section F.1. As in the proof of Theorem 2.1, it uses the method of orthog-
onal projections. One interesting feature of the statistic f̂pGnq is that it has fluctuations of order

Opn´ 3
2 q under H0, even though we know from Example 3.2 that both t̂pK2, Gnq and t̂pC4, Gnq

have fluctuations of Op1{nq. This means f̂pGnq cancels the contributions from t̂pK2, Gnq and

t̂pC4, Gnq in the Op1{nq scale and the leading asymptotic contribution of f̂pGnq is determined
from the third-order projection. The same scaling appears in the Erdős-Zuckerberg (EZ) statis-
tic considered in [29], for testing the presence of community structure in degree-corrected block
models.

To apply Proposition 6.1 to test the hypothesis (6.1), we need to consistently estimate the

asymptotic variance in (6.3). Towards this, note that, since t̂pK2, Gnq
P
Ñ tpK2,W q (follows from

(E.1) and Corollary 10.4 from [55]), by Slutsky’s lemma:

Tn :“ n
3
2

f̂pGnq

4
?

2 t̂pK2, Gnq3p1 ´ t̂pK2, Gnqq

D
Ñ Np0, 1q, (6.4)

under H0. Hence, the test which rejects when |Tn| ą zα{2 is asymptotically level α. In the
following proposition we show that this test consistent, that is, it can detect any non-constant
graphon with probability going to 1 (see Section F.2 for the proof).

Proposition 6.2. For any graphon W such that |tpK2,W q4 ´ tpC4,W q| ą 0 we have,

P
`

|Tn| ą zα{2

˘

Ñ 1.
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Proposition 6.2 provides a test for (6.1) that has precise asymptotic level and is consistent
in detecting all non-constant graphons. In comparison, the asymptotic null distribution of the
test statistic in Fang and Röllin [26] is unknown and the resulting test is conservative (see [26,
Remark 3.3]). The framework of orthogonal projections and the results obtained in Section 2

allow us derive the asymptotic distribution of f̂pGnq both under the null (as in Proposition 6.1)
and the alternative (see Proposition F.1 in Section F.3). This will allow us to approximate the
asymptotic power of the test based on Tn (recall (6.4)), and also obtain a confidence interval for
fpW q using the method in Section 5.
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Appendix A. Proof of Theorem 2.1

For a graphon W and a non-empty simple graph H “ pV pHq, EpHqq, the number of copies
XpH,Gnq (recall (1.1)) can be expressed as a generalized U -statistic as follows:

XpH,Gnq ´
pnq|V pHq|

|AutpHq|
tpH,W q

“
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

f pHqpUi1 , ¨ ¨ ¨ , Ui|V pHq|
, Yi1i2 ¨ ¨ ¨ , Yi|V pHq|´1i|V pHq|

q, (A.1)

where

f pHqpU1, ¨ ¨ ¨ , U|V pHq|,Y12, ¨ ¨ ¨ , Y|V pHq|´1 |V pHq|q

“
ÿ

H 1PGH

ź

pa,bqPEpH 1q

1 tYab ď W pUa, Ubqu ´ |GH | tpH,W q (A.2)

and GH :“ GHpt1, 2, . . . , |V pHq|uq. In this section, using the representation in (A.1), we will
derive the joint distribution of

XpH, Gnq :“ pXpH1, Gnq, XpH,Gnq, . . . , XpHr, Gnqq,

for a collection non-empty simple graphs H :“ tH1, H2, . . . ,Hru, where Hi “ pV pHiq, EpHiq

and V pHiq “ t1, 2, . . . , |V pHiq|u, for 1 ď i ď r.
We begin recalling the framework of generalized U -statistics developed in [45] in the following

section.
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A.1. Orthogonal Decomposition of Generalized U-Statistics. Suppose tUi : 1 ď i ď nu

and tYij : 1 ď i ă j ď nu are i.i.d. sequences of U r0, 1s random variables. Fix R ě 1 and
denote by KR the complete graph on the set of vertices t1, 2, . . . , Ru and let G “ pV pGq, EpGqq

be a subgraph of KR. Let FG be the σ-algebra generated by the collections tUiuiPV pGq and

tYijuijPEpGq, and let L2pGq “ L2pFGq be the space of all square integrable random variables
that are functions of tUi : i P V pGqu and tYij : pi, jq P EpGqu. Now, consider the following
subspace of L2pGq:

MG :“ tZ P L2pGq : ErZV s “ 0 for every V P L2pF q such that F Ă Gu. (A.3)

(For the empty graph, MH is the space of all constants.) Equivalently, Z P MG if and only if
Z P L2pGq and

E rZ | Xi, Yij : i P V pF q, pi, jq P EpF qs “ 0, for all F Ă G.

Then, one has the following orthogonal decomposition (see [45, Lemma 1])

L2pGq “
à

FĎG

MF , (A.4)

that is, L2pGq is the orthogonal direct sum of MF for all subgraphs F Ď G. This allows us to
decompose any function in L2pGq as the sum of its projections onto MF for F Ď G. For any
closed subspace M of L2pKRq, denote the orthogonal projection onto M by PM .

Now, consider a symmetric function f defined on L2pKRq, that is,

f “ fpU1, U2, ¨ ¨ ¨ , UR, Y12, ¨ ¨ ¨ , YR´1 Rq

“ fpUσp1q, Uσp2q, ¨ ¨ ¨ , UσpRq, Yσp1qσp2q, ¨ ¨ ¨ , YσpR´1q σpRqq. (A.5)

for any permutation σ of t1, 2, . . . , Ru.
Then f can be decomposed as

f “
ÿ

GĎKR

fG, (A.6)

where fG “ PMG
f is the orthogonal projection of f onto MG. Further, for 1 ď s ď R, define

fpsq :“
ÿ

GĎKR:|V pGq|“s

fG. (A.7)

The smallest positive d such that fpdq ‰ 0 almost surely is called the principal degree of f . It is
easy to observe that for any G Ď KR,

PL2pGq “ E r¨|FGs . (A.8)

Moreover, by (A.4) we have,

PL2pGq “
ÿ

FĎG

PMF
. (A.9)

For f P L2pKRq define

Sn,Rpfq “
ÿ

1ďi1ăi2ă¨¨¨ăiRďn

fpUi1 , Ui2 , ¨ ¨ ¨ , UiR , Yi1i2 , ¨ ¨ ¨ , YiR´1 iRq, (A.10)

and the symmetrized version

S̃n,Rpfq “
ÿ

1ďi1‰i2‰iRďn

fpUi1 , Ui2 , ¨ ¨ ¨ , UiR , Yi1i2 , ¨ ¨ ¨ , YiR´1 iRq, (A.11)
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where Yji :“ Yij for 1 ď i ă j ď n. The symmetry of f , the decomposition (A.6), and the
linearity of S‹

np¨q implies that

Sn,Rpfq “
1

R!
S̃n,Rpfq “

1

R!

ÿ

GĎKR

S̃n,RpfGq. (A.12)

The symmetry of f also implies that if G1 and G2 are isomorphic subgraphs of KR, then
S̃n,RpfG1q “ S̃n,RpfG2q. Hence, from (A.12),

Sn,Rpfq “

R
ÿ

s“0

ÿ

GPΓs

S̃n,RpfGq

pR ´ sq!|AutpGq|
, (A.13)

where Γs is the collection of non-isomorphic graphs with s vertices.
The following result from [45] gives the leading order in the expansion (A.13) for symmetric

functions f with principal degree d. We include the proof for the sake of completeness:

Proposition A.1 ([45]). Suppose f P L2pKRq is symmetric and has principal degree d. Then

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

Sn,Rpfq ´
ÿ

GPΓd

S̃n,RpfGq

pR ´ dq!|AutpGq|

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “ Opn2R´d´1q. (A.14)

Proof. Since f has principal degree d, by (A.13) and (A.7),

Sn,Rpfq “

R
ÿ

s“d

ÿ

GPΓs

S̃n,RpfGq

pR ´ sq!|AutpGq|
.

Hence,

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

Sn,Rpfq ´
ÿ

GPΓd

S̃n,RpfGq

pR ´ dq!|AutpGq|

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ÀR

R
ÿ

s“d`1

ÿ

GPΓs

Er|S̃n,RpfGq|2s

pR ´ sq!2|AutpGq|2
. (A.15)

By [45, Lemma 4], for G P Γs,

Er|S̃n,RpfGq|2s “
n!pn´ sq!

pn´Rq!2
Erf2Gs ÀR n

2R´sErf2s,

where the second inequality uses Erf2Gs ď Erf2s (recall the orthogonal decomposition (A.6)).
Applying the above bound in (A.15), the result in (A.17) follows.

□

Using the above framework, we now proceed with the proof of Theorem 2.1. The proof is
organized as follows:

‚ In Section A.2 we show that the asymptotic distribution of ZpH, Gnq can be expressed
as infinite linear or quadratic forms in i.i.d. Gaussian variables depending on whether
H is W -irregular or W -regular, respectively (see Proposition A.2).

‚ In Section A.3 we identify the limit obtained in Proposition A.2 with limit in Theorem
2.1 (see Proposition A.3 and Proposition A.4).

A.2. Asymptotic Expansion of Z pH, Gnq. Recall that H “ tH1, H2, . . . ,Hru is a collection
of non-empty subgraphs such that W is Hi-irregular for 1 ď i ď q and W is Hi-regular for
q ` 1 ď i ď r. Let fi :“ f pHiq denote the function defined in (A.2) with H replaced by Hi, for
1 ď i ď r. It follows from [8, Lemma 5.4], that

Varrpfiqp1qs “ 0 if and only if W is Hi-regular.
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Since Erpfiqp1qs “ 0, this implies, pfiqp1q “ 0 almost surely if and only if W is Hi-regular. Hence,
the principal degree of fi is 1 for 1 ď i ď q and the principal degree of fi is 2 for q ` 1 ď i ď r.
(Technically, it is possible that the principal degree of fi, for some q` 1 ď i ď r, is greater than
2 (see [8, Section 4.3] for an example). Here, we will assume that the principal degree of fi is
equal to 2 for all q ` 1 ď i ď r, with the understanding that the limit given by Theorem 2.1 in
this case can be degenerate if the principal degree is larger.)

Note that, for 1 ď i ď r, fi P L2
`

K|V pHiq|

˘

, is symmetric and has 0 mean. In particular,

Sn,|V pHiq|pfiq “ XpHi, Gnq ´
pnq|V pHiq|

|AutpHiq|
tpHi,W q, (A.16)

for 1 ď i ď r. Now, to apply Proposition A.1 note that

Γ1 “ tKt1uu and Γ2 “ tEt1,2u,Kt1,2uu,

where

‚ Kt1u is the graph with a single vertex 1,
‚ Et1,2u “ pt1, 2u,Hq is the graph with two vertices t1, 2u and no edge between them,
‚ Kt1,2u “ pt1, 2u, tp1, 2quq is the complete graph on two vertices t1, 2u.

Then by Proposition A.1 and Markov’s inequality the following hold:

‚ For 1 ď i ď q,
ˇ

ˇ

ˇ

ˇ

ˇ

Sn,|V pHiq|pfiq ´
S̃n,|V pHiq|ppfiqKt1u

q

p|V pHiq| ´ 1q!|

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pn|V pHiq|´1q. (A.17)

‚ For q ` 1 ď i ď r,
ˇ

ˇ

ˇ

ˇ

ˇ

Sn,|V pHiq|pfiq ´
S̃n,|V pHiq|ppfiqEt1,2u

q ` S̃n,|V pHiq|ppfiqKt1,2u
q

2p|V pHiq| ´ 2q!

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pn|V pHiq|´ 3
2 q. (A.18)

Now, define

T pHi, Gnq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

S̃n,|V pHiq|ppfiqKt1u
q

p|V pHiq| ´ 1q!|n|V pHiq|´ 1
2

for 1 ď i ď q,

S̃n,|V pHiq|ppfiqEt1,2u
q ` S̃n,|V pHiq|ppfiqKt1,2u

q

2p|V pHiq| ´ 2q!|n|V pHiq|´1
for q ` 1 ď i ď r.

(A.19)

Then recalling the definition of ZpHi, Gnq from (2.9) and using from (A.16), (A.17), and (A.18),
it follows that

ZpHi, Gnq “ T pHi, Gnq ` oP p1q.

Hence, recalling (2.10)

ZpH, Gnq “ T pH, Gnq ` oP p1q, (A.20)

where

T pH, Gnq “ pT pH1, Gnq, T pH2, Gnq, . . . , T pHr, GnqqJ. (A.21)

The result in (A.20) shows that to obtain the asymptotic joint distribution of ZpH, Gnq it
suffices to obtain the joint distribution of T pH, Gnq. The first step towards this is to compute
the projections pfiqKt1u

, pfiqEt1,2u
, and pfiqKt1,2u

. We begin with a few definitions: A function

f P L2pGq is said to be G-symmetric if (A.5) holds whenever σ is an automorphism of G. Also,
for two functions h1, h2 we define,

h1 b h2px, yq :“ h1pxqh2pyq.
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Now, let tϕsusě1 be a orthonormal basis of MKt1u
Then tϕsbϕtus,tě1 is a orthonormal set whose

span contains the Et1,2u-symmetric functions in MEt1,2u
. Also, let tψsusě1 be a orthonormal basis

of the subspace of Kt1,2u-symmetric functions in MKt1,2u
. Then using results in [8, 45] we the

following lemma:

Lemma A.1. For 1 ď i ď q, the projection of fpiq on Kt1u is given by:

pfiqKt1u
“ Erfi|U1s “

ÿ

sě1

E rfiϕssϕs. (A.22)

Moreover, for q ` 1 ď i ď r, the following hold:

‚ The projection of fpiq on Et1,2u is given by:

pfiqEt1,2u
“ Erfi|U1, U2s “

ÿ

s,tě1

E rfipϕs b ϕtqsϕs b ϕt, (A.23)

‚ The projection of fpiq on Kt1,2u is given by:

pfiqKt1,2u
“ E rfi|U1, U2, Y12s ´ E rfi|U1, U2s “

ÿ

sě1

E rfiψssψs. (A.24)

Proof. For 1 ď i ď q, by (A.8) and (A.9),

pfiqKt1u
:“ PMKt1u

pfiqKt1u
“ PL2pKt1uqfi ´ PMH

fi “ Erfi|U1s ´ Erfis “ Erfi|U1s.

This proves the first equality in (A.22). To establish the second equality, expand pfiqKt1u
in the

basis tϕsusě1 as follows (see [49, Chapter 6]):

pfiqKt1u
“

ÿ

sě1

ErpfiqKt1u
ϕssϕs. (A.25)

By the first equality in (A.22),

ErpfiqKt1u
ϕss “ ErpfiqKt1u

pU1qϕspU1qs “ ErErfi|U1sϕspU1qs “ Erfiϕs.

Applying the above identity in (A.25) the second equality in (A.22) follows.
Next, we will prove (A.23). By (A.8) and (A.9),

pfiqEt1,2u
“ PMEt1,2u

fi “ PL2pEt1,2uqfi ´ PMKt1u
fi ´ PMKt2u

fi ´ PMH
fi

“ PL2pEt1,2uqfi ´ PL2pKt1uqfi ´ PL2pKt2uqfi ` PMH
fi

“ Erfi|U1, U2s ´ Erfi|U1s ´ Erfi|U2s ` Erfis

“ Erfi|U1, U2s, (A.26)

where the last step follows by noting that Erfis “ 0 and Erfi|Ujs “ 0, for j P t1, 2u, since W is
Hi-regular, for q ` 1 ď i ď r. This proves the first equality in (A.23). To establish the second
equality in (A.23), note that

ErpfiqEt1,2u
pϕs b ϕtqs “ ErErfi|U1, U2sϕspU1qϕtpU2s “ Erfipϕs b ϕtqs.

Hence,

pfiqEt1,2u
“

ÿ

s,tě1

ErpfiqEt1,2u
pϕs b ϕtqspϕs b ϕtq “

ÿ

s,tě1

Erfipϕs b ϕtqspϕs b ϕtq.

Finally, we prove (A.24). For this note that

pfiqKt1,2u
“ PMKt1,2u

fi “ PL2pKt1,2uqfi ´ PMEt1,2u
fi ´ PMKt1u

fi ´ PMKt2u
fi ´ PMH

fi

“ PL2pKt1,2uqfi ´ PL2pEt1,2uqfi

“ E rfi|U1, U2, Y12s ´ E rfi|U1, U2s . (A.27)
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This proves the first equality in (A.24). For the second inequality note that ErErfi|U1, U2sψss “

0, since Erfi|U1, U2s P MEt1,2u
and MEt1,2u

is orthogonal to MKt1,2u
. This implies,

ErpfiqKt1,2u
ψss “ ErE rfi|U1, U2, Y12sψss “ Erfiψss

and, hence,

pfiqKt1,2u
“

ÿ

sě1

ErpfiqKt1,2u
ψssψs “

ÿ

sě1

Erfiψssψs. (A.28)

This completes the proof of (A.24). □

Lemma A.1 and [49, Chapter 6, Lemma 8] we now can compute the L2 norms of the projec-
tions, denoted by } ¨ }2, as follows: For 1 ď i ď q,

›

›

›
pfiqKt1u

›

›

›

2

2
“

ÿ

sě1

E rfiϕss
2

ď }fi}
2
2, (A.29)

where the last step follows by Bessel’s Inequality. Similarly, for q ` 1 ď i ď r,
›

›

›
pfiqEt1,2u

›

›

›

2

2
“

ÿ

s,tě1

E rfipϕs b ϕtqs
2

ď }fi}
2
2 and

›

›

›
pfiqKt1,2u

›

›

›

2

2
“

ÿ

sě1

E rfiψss
2

ď }fi}
2
2. (A.30)

Next, using Lemma A.1, the linearity of S̃n,p¨q, and a standard truncation argument we obtain

the expansions of S̃n,|V pHiq|ppfiqKt1u
q, S̃n,|V pHiq|ppfiqEt1,2u

q, and S̃n,|V pHiq|ppfiqKt1,2u
q. Specifically,

for 1 ď i ď q, from (A.22) we have

S̃n,|V pHiq|ppfiqKt1u
q “

ÿ

sě1

E rfiϕss S̃n,|V pHiq| pϕsq , (A.31)

for 1 ď i ď q, where the equality hold almost surely. Similarly, for q ` 1 ď i ď r, by (A.23) and
(A.24) we have the following:

S̃n,|V pHiq|ppfiqEt1,2u
q “

ÿ

sě1

E rfipϕs b ϕsqs S̃n,|V pHiq| pϕs b ϕsq

` 2
ÿ

săt

E rfipϕs b ϕtqs S̃n,|V pHiq| pϕs b ϕtq , (A.32)

S̃n,|V pHiq|ppfiqKt1,2u
q “

ÿ

sě1

E rfiψss S̃n,|V pHiq|pψsq. (A.33)

Using the above expansions we can now derive the asymptotic distribution of T pH, Gnq and
hence, that of ZpH, Gnq.

Proposition A.2. For T pH, Gnq as defined in (A.21) and (A.19), the following hold as n Ñ 8:

T pH, Gnq
D
Ñ T pH,W q,

where T pH,W q “ pT1, T2, . . . , Trq
J with

Ti “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1

p|V pHiq| ´ 1q!

ÿ

sě1

E rfiϕss ηs for 1 ď i ď q,

1

2p|V pHiq| ´ 2q!

#

ÿ

sě1

E rfipϕs b ϕsqs
`

η2s ´ 1
˘

` 2
ÿ

săt

E rfipϕs b ϕtqs ηsηt

`
ÿ

sě1

E rfiψss η̃s

+

for q ` 1 ď i ď r,
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and tηsusě1 and tη̃susě1 are independent collections of Np0, 1q and Np0, 2q random variables,
defined on some probability space pΩ,F ,Pq, respectively. This implies, from (A.20),

ZpH, Gnq
D
Ñ T pH,W q.

A.2.1. Proof of Proposition A.2. Fix L ě 1 and define the truncated version of S̃n,|V pHiq|ppfiqKt1u
q

(recall (A.31)) as follows:

S̃
pLq

n,|V pHiq|
ppfiqKt1u

q “

L
ÿ

s“1

E rfiϕss S̃n,|V pHiq| pϕsq ,

for 1 ď i ď q. Similarly, for q ` 1 ď i ď r, recalling (A.32) and (A.33) define the truncated
versions:

S̃
pLq

n,|V pHiq|
ppfiqEt1,2u

q “

L
ÿ

s“1

E rfipϕs b ϕsqs S̃n,|V pHiq| pϕs b ϕsq

` 2
ÿ

1ďsătďL

E rfipϕs b ϕtqs S̃n,|V pHiq| pϕs b ϕtq ,

S̃
pLq

n,|V pHiq|
ppfiqKt1,2u

q “

L
ÿ

s“1

E rfiψss S̃n,|V pHiq|pψsq.

and for q ` 1 ď i ď r. Now, recalling (A.19), define the truncated version of T pHi, Gnq as
follows:

T pLqpHi, Gnq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

S̃
pLq

n,|V pHiq|
ppfiqKt1u

q

p|V pHiq| ´ 1q!|n|V pHiq|´ 1
2

for 1 ď i ď q,

S̃
pLq

n,|V pHiq|
ppfiqEt1,2u

q ` S̃
pLq

n,|V pHiq|
ppfiqKt1,2u

q

2p|V pHiq| ´ 2q!|n|V pHiq|´1
for q ` 1 ď i ď r,

(A.34)

and

T pLqpH, Gnq “ pT pLqpH1, Gnq, T pLqpH2, Gnq, . . . , T pLqpHr, GnqqJ. (A.35)

The following lemma shows that T pLqpH, Gnq converges to a truncated version of T pH,W q.

Lemma A.2. Fix L ě 1 and let T pLqpH, Gnq be as defined in (A.35). Then the following hold
as n Ñ 8:

T pLqpH, Gnq
D
Ñ T pLqpH,W q,

where T pLqpH,W q “ pT
pLq

1 , T
pLq

2 , . . . , T
pLq
r qJ with

T
pLq

i “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1

p|V pHiq| ´ 1q!

L
ÿ

s“1

E rfiϕss ηs for 1 ď i ď q,

1

2p|V pHiq| ´ 2q!

#

L
ÿ

s“1

E rfipϕs b ϕsqs
`

η2s ´ 1
˘

` 2
ÿ

1ďsătďL

E rfipϕs b ϕtqs ηsηt

`

L
ÿ

s“1

E rfiψss η̃s

+

for q ` 1 ď i ď r,

where tηsusě1 and tη̃susě1 are independent collections of Np0, 1q and Np0, 2q random variables,
respectively.
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Proof. Recalling the definition of S̃n,¨p¨q from (A.11) we get

1

n|V pHiq|´ 1
2

S̃n,|V pHiq|pϕsq “
1 ` op1q

?
n

n
ÿ

i“1

ϕspUiq, (A.36)

for s ě 1 and 1 ď i ď q. Similarly, for s, t ě 1 and q ` 1 ď i ď r,

1

n|V pHiq|´1
S̃n,|V pHiq|pϕs b ϕtq “

1 ` op1q

n

ÿ

1ďi‰jďn

ϕspUiqϕtpUjq, (A.37)

and

1

n|V pHiq|´1
S̃n,|V pHiq|pψsq “

1 ` op1q

n

ÿ

1ďi‰jďn

ψspUi, Uj , Yijq. (A.38)

Now, by [45, Lemma 8] the collection,
$

&

%

#

1
?
n

n
ÿ

i“1

ϕspUiq

+L

s“1

,

#

1

n

ÿ

1ďi‰jďn

ϕspUiqϕtpUjq

+L

s“1

,

#

1

n

ÿ

1ďi‰jďn

ψspUi, Uj , Yijq

+L

s“1

,

.

-

converges jointly to
!

tηsu1ďsďL , tηsηt ´ Erηsηtsu1ďs,tďL , tη̃su1ďsďL

)

.

The result in Lemma A.2 then follows by recalling the definition of T pLqpH, Gnq from (A.35)
and (A.34) and the decompositions from (A.36), (A.37) and (A.38).

□

Now, to complete the proof of Proposition A.2 it suffices to show the following:

p1q T pLqpH, Gnq and T pH, Gnq are asymptotically close and

p2q T pLqpH,W q converges to T pH,W q, as L Ñ 8.

These are established in the following 2 lemmas, respectively.

Lemma A.3. Let T pH, Gnq and T pLqpH, Gnq be defined in (A.21) and (A.35), respectively.
Then

lim
LÑ8

sup
ně1

E
„

›

›

›
T pH, Gnq ´ T pLqpH, Gnq

›

›

›

2

2

ȷ

“ 0.

Proof. Note that for 1 ď i ď q,

E
”

|T pHi, Gnq ´ T pLqpHi, Gnq|2
ı

“
1

n2|V pHiq|´2
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

s“L`1

E rfiϕss S̃n,|V pHiq| pϕsq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl . (A.39)

By the orthogonality of the basis tϕsusě1, it is easy to verify that ErS̃n,¨pϕsqS̃n,¨pϕtqs “ 0, for

s ‰ t. Moreover, from (A.36), it follows that 1
n2|V pHiq|´2ErS̃n,|V pHiq|pϕsq

2s “ 1 ` op1q, for s ě 1.

Hence, from (A.39) and (A.29),

lim
LÑ8

sup
ně1

E
”

|T pHi, Gnq ´ T pLqpHi, Gnq|2
ı

ÀHi lim
LÑ8

8
ÿ

m“L`1

E rfiϕss
2

“ 0. (A.40)

Similarly, for q ` 1 ď i ď r it can be shown that

lim
LÑ8

sup
ně1

E
”

|T pHi, Gnq ´ T pLqpHi, Gnq|2
ı
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ÀHi lim
LÑ8

#

8
ÿ

s“L`1

E rfipϕs b ϕsqs
2

`

8
ÿ

t“L`1

ÿ

1ďsăt

E rfipϕs b ϕtqs
2

`

8
ÿ

s“L`1

E rfiψss
2

+

“ 0, (A.41)

by (A.30).
Combining (A.40) and (A.41) the proof of Lemma A.3 follows. □

Lemma A.4. Let T pH,W q “ pT1, T2, . . . , Trq
J and T pLqpH,W q “ pT

pLq

1 , T
pLq

2 , . . . , T
pLq
r qJ be as

defined in Proposition A.2 and Lemma A.2, respectively. Then

lim
LÑ8

E
”

}T pLqpH,W q ´ T pH,W q}22

ı

“ 0.

Proof. For 1 ď i ď q, by [49, Lemma 8] we get,

E|T
pLq

i ´ Ti| ÀHi E

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“L`1

E rfiψss ηs

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

8
ÿ

s“L`1

E rfiψss
2

Ñ 0, (A.42)

as L Ñ 8, by (A.29). Similarly, for q ` 1 ď i ď r,

E

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“L`1

E rfiϕss η̃s

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ñ 0, (A.43)

as L Ñ 8, by (A.30). Also, since tη2s ´ 1 : s ě 1u are orthogonal and Epη2s ´ 1q2 “ 2,

E

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“L`1

E rfipϕs b ϕsqs
`

η2s ´ 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď 2
8
ÿ

s“L`1

E rfipϕs b ϕsqs
2

Ñ 0. (A.44)

Once again by definition tηsηt : s ă tu are orthogonal and Eη2sη2t “ 1. Hence, as above,

E

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

t“1

ÿ

1ďsăt

E rfipϕs b ϕtqs ηsηt ´

8
ÿ

t“L`1

ÿ

1ďsăt

E rfipϕs b ϕtqs ηsηt

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, (A.45)

as L Ñ 8. Combining (A.43), (A.44), and (A.45), we get E|T
pLq

i ´ Ti|
2 Ñ 0, as L Ñ 8, for

q ` 1 ď i ď r. This together with (A.42) completes the proof of Lemma A.4. □

Combining Lemma A.2, Lemma A.3, and Lemma A.4 along with [45, Lemma 6] the result in
Proposition A.2 follows. l

A.3. Equivalence of T pH,W q and ZpH,W q. For 1 ď i ď q, define

Qi “
1

p|V pHiq| ´ 1q!

ÿ

sě1

E rfiϕss ηs. (A.46)

Also, for q ` 1 ď i ď r, define

Ri “
1

2p|V pHiq| ´ 2q!

#

ÿ

sě1

E rfipϕs b ϕsqs
`

η2s ´ 1
˘

` 2
ÿ

săt

E rfipϕs b ϕtqs ηsηt

+

, (A.47)

R̃i “
1

2p|V pHiq| ´ 2q!

ÿ

sě1

E rfiψss η̃s, (A.48)

where tηsusě1 and tη̃susě1 are independent collections of Np0, 1q and Np0, 2q random variables,
respectively. Then recalling the definition of Ti from Proposition A.2, note that

Ti “

"

Qi for 1 ď i ď q,

Ri ` R̃i for q ` 1 ď i ď r.
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Denote Q “ pQ1, Q2, . . . , Qqq
J, R “ pRq`1, Rq`2, . . . , Rrq

J and R̃ “ pR̃q`1, R̃q`2, . . . , R̃rq
J.

In the following 2 propositions we identify Q, R, R̃ with their corresponding components in
ZpH,W q (as defined in Theorem 2.1).

Proposition A.3. Let R̃ “ pR̃q`1, R̃q`2, . . . , R̃rq
J be as defined in (A.48). Then the following

hold:

R̃ „ Nr´q p0,Σq ,

where Σ is as defined in Theorem 2.1.

Proposition A.4. Let Q “ pQ1, Q2, . . . , Qqq
J and R “ pRq`1, Rq`2, . . . , Rrq

J be as defined in
(A.46) and (A.48), respectively. Suppose tBtutPr0,1s be the standard Brownian motion in r0, 1s.
Then the following hold:

Q
D
“

¨

˝

1

|AutpHiq|

ż 1

0

$

&

%

|V pHiq|
ÿ

a“1

ptapx,Hi,W q ´ tpHi,W qq

,

.

-

dBx

˛

‚

1ďiďq

, (A.49)

and

R
D
“

ˆ
ż 1

0

ż 1

0

"

WHipx, yq ´
|V pHiq| p|V pHiq ´ 1|q

2|AutpHiq|
tpHi,W q

*

dBxdBy

˙

q`1ďiďr

. (A.50)

The proofs of Proposition A.3 and Proposition A.4 are given in Section A.3.1 and Sec-
tion A.3.2, respectively. These 2 results combined establishes the equivalence of T pH,W q and
ZpH,W q.

A.3.1. Proof of Proposition A.3. Fix L ě 1 and define the truncated version of R̃i as follows:

R̃
pLq

i “
1

2p|V pHiq| ´ 2q!

L
ÿ

s“1

E rfiψss η̃s,

for q ` 1 ď i ď r. Denote R̃pLq “ pR̃
pLq

q`1, R̃
pLq

q`2, . . . , R̃
pLq
r qJ. Then from (A.30) it is follows that

lim
LÑ8

E
›

›

›
R̃ ´ R̃pLq

›

›

›

2

2
“ 0. (A.51)

Since the collection tηsusě1 are independent Np0, 2q,

R̃pLq D
“ Nr´qp0,Γ

pLqq,

where ΓpLq “ ppγ
pLq

ij qqq`1ďi,jďr is given by

γ
pLq

ij “

$

’

&

’

%

1

2p|V pHiq| ´ 2q!2
řL
s“1 E rfiψss

2 for q ` 1 ď i “ j ď r,

1

2p|V pHiq| ´ 2q!p|V pHjq| ´ 2q!

řL
s“1 E rfiψssE rfjψss for q ` 1 ď i ‰ j ď r.

By computing characteristic functions and recalling (A.30) one has R̃pLq D
Ñ Nr´qp0,Γq, as

L Ñ 8, where Γ “ ppγijqqq`1ďi,jďr is given by

γij “

$

’

&

’

%

1

2p|V pHiq| ´ 2q!2
Erpfiq

2
Kt1,2u

s for q ` 1 ď i “ j ď r,

1

2p|V pHiq| ´ 2q!p|V pHjq| ´ 2q!
ErpfiqKt1,2u

pfjqKt1,2u
s for q ` 1 ď i ‰ j ď r.
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Here, we use the identity
ř8
s“1 E rfiψss

2
“ Erpfiq

2
Kt1,2u

s (recall (A.30)) and

8
ÿ

s“1

E rfiψssE rfjψss “ ErpfiqKt1,2u
pfjqKt1,2u

s,

which follows from the expansion (A.28) and the orthogonality of the functions tψsusě1.
The proof of Proposition now follows from Lemma A.5, which shows that the matrix Γ is

same as the matrix Σ in Theorem 2.1. l

Lemma A.5. For all q ` 1 ď i, j ď r,

E
”

pfiqKt1,2u
fj,Kt1,2u

ı

“
p|V pHiq| ´ 2q!p|V pHjq| ´ 2q!

|AutpHiq| |AutpHjq|

ÿ

pa,bqPE`pHiq

pc,dqPE`pHjq

˜

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

´ t

˜

Hi

à

pa,bq,pc,dq

Hj ,W

¸¸

.

Proof. For q ` 1 ď i ď r, from Lemma A.1 we have

pfiqKt1,2u
“ E rfi|U1, U2, Y12s ´ E rfi|U1, U2s

“
ÿ

H 1PGHi,t1,2u

t´1,2pU1, U2, H
1,W q, p1tY12 ď W pU1, U2qu ´W pU1, U2qq .

where GHi,t1,2u :“ tH 1 P GHi : p1, 2q P EpH 1qu for all q ` 1 ď i ď r and,

t´1,2
`

U1, U2, H
1,W

˘

“ E

»

–

ź

pi,jqPEpH 1qztp1,2qu

W pUi, Ujq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

U1, U2

fi

fl for all H 1 P GHi,t1,2u.

Then for q ` 1 ď i, j ď r,

E
”

pfiqKt1,2u
fj,Kt1,2u

ı

“
ÿ

H1PGHi,t1,2u

H2PGHj,t1,2u

E
„

t´1,2pU1, U2, H1,W qt´1,2pU1, U2, H2,W q p1tY12 ď W pU1, U2qu ´W pU1, U2qq
2

ȷ

“
ÿ

H1PGHi,t1,2u

H2PGHj,t1,2u

E
„

t´1,2pU1, U2, H1,W qt´1,2pU1, U2, H2,W qW pU1, U2qp1 ´W pU1, U2qq

ȷ

“
ÿ

H1PGHi,t1,2u

H2PGHj,t1,2u

˜

t

˜

H1

á

p1,2q,p1,2q

H2,W

¸

´ t

˜

H1

à

p1,2q,p1,2q

H2,W

¸¸

, (A.52)

recalling the join operations from Definition 2.3. Now, considering V 2
Hℓ

“ tpa, bq P V pHℓq : a ‰ bu

for ℓ P ti, ju define,

t

˜

H1

á

pa,bq,pc,dq

H2,W

¸

“ t

˜

H1

á

pa,bq,pc,dq

H2,W

¸

1tpa, bq P E`pH1q and pc, dq P E`pH2qu
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and similarly,

t

˜

H1

à

pa,bq,pc,dq

H2,W

¸

“ t

˜

H1

à

pa,bq,pc,dq

H2,W

¸

1tpa, bq P E`pH1q and pc, dq P E`pH2qu.

where pa, bq P V 2
Hi
, pc, dq P V 2

Hj
and H1 P GHi and H2 P GHj . Then we can rewrite (A.52) as,

E
”

pfiqKt1,2u
fj,Kt1,2u

ı

“
ÿ

H1PGHi
H2PGHj

˜

t

˜

H1

á

p1,2q,p1,2q

H2,W

¸

´ t

˜

H1

à

p1,2q,p1,2q

H2,W

¸¸

(A.53)

Now consider the permutations πpa,bq : V pHiq Ñ V pHiq and π1
pc,dq

: V pHjq Ñ V pHjq such that

πpa,bqpaq “ π1
pc,dq

pcq “ 1 and πpa,bqpbq “ π1
pc,dq

pdq “ 2. Then

ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

ÿ

H1PGHi
H2PGHj,

t

˜

H1

á

pa,bq,pc,dq

H2,W

¸

“
ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

ÿ

H1PGHi
H2PGHj,

t

˜

πpa,bqpH1q
á

p1,2q,p1,2q

π1
pc,dqpH2q,W

¸

“ |V 2
Hi

||V 2
Hj

|
ÿ

H1PGHi
H2PGHj,

t

˜

H1

á

p1,2q,p1,2q

H2,W

¸

(A.54)

where the last equality follows by observing that

pH1, H2q Ñ

´

πpa,bqpH1q, π1
pc,dqpH2q

¯

is a bijection from GHi ˆ GHj to itself for all pa, bq P V 2
Hi

and pc, dq P V 2
Hj

. By considering

isomorphisms τH1 and τ 1
H1

for H1 P GHi and H2 P GHj such that τH1pH1q “ Hi and τ 1
H1

pH2q “ Hj

a similar argument as above shows that,

ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

ÿ

H1PGHi
H2PGHj

t

˜

H1

á

pa,bq,pc,dq

H2,W

¸

“ |GHi ||GHj |
ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

. (A.55)

Thus, combining (A.54) and (A.55) we find,

ÿ

H1PGHi
H2PGHj,

t

˜

H1

á

p1,2q,p1,2q

H2,W

¸

“
|GHi ||GHj |

|V 2
Hi

||V 2
Hj

|

ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

. (A.56)

Similarly,

ÿ

H1PGHi
H2PGHj,

t

˜

H1

à

p1,2q,p1,2q

H2,W

¸

“
|GHi ||GHj |

|V 2
Hi

||V 2
Hj

|

ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

t

˜

Hi

à

pa,bq,pc,dq

Hj ,W

¸

. (A.57)
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Notice that by definition,

ÿ

pa,bqPV 2
Hi

pc,dqPV 2
Hj

˜

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

´ t

˜

Hi

à

pa,bq,pc,dq

Hj ,W

¸¸

“
ÿ

pa,bqPE`pHiq

pc,dqPE`pHjq

˜

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

´ t

˜

Hi

à

pa,bq,pc,dq

Hj ,W

¸¸

. (A.58)

Recall that |GHℓ
| “

|V pHℓq|!
|AutpHℓq|

, for ℓ P ti, ju. Then observing that |V 2
Hℓ

| “ |V pHℓq|p|V pHℓq| ´ 1q,

for ℓ P ti, ju, and using (A.56), (A.57) in combination with (A.53) and (A.58) completes the
proof of Lemma A.5. □

A.3.2. Proof of Proposition A.4. For 1 ď i ď q, using the expansion of pfiqKt1u
in (A.22) and

Proposition G.1 it follows that

I1ppfiqKt1u
q
a.s.
“

ÿ

sě1

E rfiϕss I1pϕsq, (A.59)

where I1p¨q is the 1-dimensional stochastic integral as defined in Section G. Note that tI1pϕsqusě1

is a collection of independent Np0, 1q random variables. Hence,

1

p|V pHiq| ´ 1q!
I1ppfiqKt1u

q
D
“

1

p|V pHiq| ´ 1q!

ÿ

sě1

E rfiϕss ηs “ Qi,

for Qi as defined in (A.46). Now, recalling (A.22) and Definition 2.1 note that

pfiqKt1u
pxq “ E rfi|U1 “ xs

“
ÿ

H 1PGHi

t1px,H 1,W q ´ |GHi |tpHi,W q

“
|GHi |

|V pHiq|

ÿ

aPV pHiq

pta px,Hi,W q ´ tpHi,W qq , (A.60)

where the last equality follows by arguments similar to proof of (A.56). Hence, using (A.60) in

(A.59) and recalling that |GHi | “
|V pHiq|!

|AutpHiq|
gives,

Qi
D
“

1

|AutpHiq|

ż 1

0

$

&

%

|V pHiq|
ÿ

a“1

ptapx,Hi,W q ´ tpHi,W qq

,

.

-

dBx,

for 1 ď i ď q. This shows (A.49).
Now, suppose q ` 1 ď i ď r. Then from the expansion of pfiqEt1,2u

in (A.23) and Proposition
G.1,

I2

´

pfiqEt1,2u

¯

a.s.
“

ÿ

sě1

E rfipϕs b ϕsqs I2pϕs b ϕsq ` 2
ÿ

săt

E rfipϕs b ϕtqs I2pϕs b ϕtq

“
ÿ

sě1

E rfipϕs b ϕsqs
`

I1pϕsq
2 ´ 1

˘

` 2
ÿ

săt

E rfipϕs b ϕtqs I1pϕsqI1pϕtq,
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by (G.3), since ErI1pϕsqs “ 0 and ErI1pϕsq
2s “ 1. As before, noting that tI1pϕsqusě1 is a

collection of independent Np0, 1q random variables and recalling (A.47) gives,

1

2p|V pHiq| ´ 2q!
I2

´

pfiqEt1,2u

¯

D
“

1

2p|V pHiq| ´ 2q!

#

ÿ

sě1

E rfipϕs b ϕsqs
`

η2s ´ 1
˘

` 2
ÿ

săt

E rfipϕs b ϕtqs ηsηt

+

“ Ri. (A.61)

Recalling Definition 2.2 and Lemma A.6 we have for all q ` 1 ď i ď r,

pfiqEt1,2u
px, yq “ 2p|V pHiq| ´ 2q!WHipx, yq ´

|V pHiq|!

|AutpHiq|
tpHi,W q

for almost every px, yq P r0, 1s2. Thus, for q ` 1 ď i ď r,

I2

´

pfiqEt1,2u

¯

“ 2p|V pHiq| ´ 2q!

ż

r0,1s2

"

WHipx, yq ´
|V pHiq| p|V pHiq ´ 1|q

2|AutpHiq|
tpHi,W q

*

dBxdBy. (A.62)

Combining (A.61) and (A.62), the result in (A.50) follows. This completes the proof of Propo-
sition A.4. l

Lemma A.6. For q ` 1 ď i ď r,

pfiqEt1,2u
px, yq “

p|V pHiq| ´ 2q!

|AutpHiq|

ÿ

1ďa‰bď|V pHq|

ptabpx, y,Hi,W q ´ tpHi,W qq ,

for almost every px, yq P r0, 1s2.

Proof. From (A.23) and Definition 2.2 we have,

pfiqEt1,2u
px, yq “ E rfi|U1 “ x, U2 “ ys

“
ÿ

H 1PGHi

t1,2
`

x, y,H 1,W
˘

´ |GHi |tpHi,W q, (A.63)

for almost every px, yq P r0, 1s2. Denote by S|V pHiq| the set of all |V pHiq|! permutations of V pHiq.
Then it is easy to observe that

ÿ

ξPS|V pHiq|

t12px, y, ξpHiq,W q “ |AutpHq|
ÿ

H 1PGHi

t12px, y,H 1,W q. (A.64)

where ξpHq is the graph obtained by permuting the vertex labels of H according to the permu-
tation ξ. Also,

ÿ

ξPS|V pHiq|

t12px, y, ξpHiq,W q “
ÿ

1ďa‰bď|V pHiq|

ÿ

ξPS|V pHiq|

ξpaq“1,ξpbq“2

t12px, y, ξpHiq,W q

“
ÿ

1ďa‰bď|V pHiq|

ÿ

ξPS|V pHiq|

ξpaq“1,ξpbq“2

tξ´1p1qξ´1p2qpx, y,Hi,W q

“
ÿ

1ďa‰bď|V pHiq|

ÿ

ξPS|V pHiq|

ξpaq“1,ξpbq“2

ta,bpx, y,Hi,W q
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“ p|V pHiq| ´ 2q!
ÿ

1ďa‰bď|V pHiq|

ta,bpx, y,Hi,W q (A.65)

Combining (A.64) and (A.65), we have,

ÿ

H 1PGHi

t12px, y,H 1,W q “
p|V pHiq| ´ 2q!

|AutpHiq|

ÿ

1ďa‰bď|V pHiq|

ta,bpx, y,Hi,W q. (A.66)

Thus combining (A.63) and (A.66) gives,

pfiqEt1,2u
px, yq “

p|V pHiq| ´ 2q!

|AutpHiq|

ÿ

1ďa‰bď|V pHiq|

ta,bpx, y,Hi,W q ´ |GHi |tpHi,W q

“
p|V pHiq| ´ 2q!

|AutpHiq|

ÿ

a‰b

ptabpx, y,Hi,W q ´ tpHi,W qq

where the last equality follows by recalling that |GHi | “
|V pHiq|!

|AutpHiq|
, for all q ` 1 ď i ď r. □

A.4. Completing the Proof of Theorem 2.1. The result in Theorem 2.1 follows by com-
bining Proposition A.2, Proposition A.3, Proposition A.4, and by noting that T pH,W q “

pQJ, pR ` R̃qJqJ.

Appendix B. Moment Generating Function of the Limiting Distribution

In this section we derive the moment generating function (MGF) of the limiting distribution
ZpH,W q obtained in Theorem 2.1. We begin by introducing some notation: For any symmetric
function U : r0, 1s2 Ñ R, for L ě 2 define its L-th path composition as follows: For x, y P r0, 1s,

U pLqpx, yq “

ż

r0,1sL´1

Upx,w1qUpw1, w2q ¨ ¨ ¨UpwL´1, yqdw1dw2 ¨ ¨ ¨ dwL´1. (B.1)

α “ pα1, α2, . . . , αrq
J P Rr, define the functions Vα : r0, 1s Ñ R and Uα : r0, 1s2 Ñ R as:

Vαpxq :“

q
ÿ

i“1

αi

»

–

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W q ´
|V pHiq|

|AutpHiq|
tpHi,W q

fi

fl , (B.2)

and

Uαpx, yq :“
r
ÿ

i“q`1

αi pWHipx, yq ´ cHipW qq , (B.3)

where cHipW q “
|V pHiq|p|V pHiq|´1q

2|AutpHiq|
tpHi,W q and WHi is as in Definition 2.2. We can now express

the MGF of ZpH,W q, for H “ tH1, H2, . . . ,Hru as in Theorem 2.1, as follows:

Proposition B.1. Fix α “ pα1, α2, . . . , αrq
J P Rr and let C :“

řr
i“q`1 |αi|

|V pHiq|V pHi´1q|

|AutpHiq|
. Then

for |θ| ă 1
32C ,

log E
”

eθα
JZpH,W q

ı

“ pηα ` η̃αq
θ2

2
`

8
ÿ

L“1

2L´1θL`2

ż

r0,1s2
VαpxqVαpyqU

pLq
α px, yqdxdy `

1

2

8
ÿ

L“3

p2θqL

L

ż 1

0
U

pLq
α px, xqdx,
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where U
pLq
α is the L-th path composition of U pLq as defined in (B.1) and

ηα “
ÿ

1ďi,jďq

αiαj
|AutpHiq| |AutpHjq|

ÿ

aPV pHiq

bPV pHjq

˜

t

˜

Hi

à

a,b

Hj ,W

¸

´ tpHi,W qtpHj ,W q

¸

,

η̃α “
ÿ

q`1ďi,jďr

αiαj
2 |AutpHiq| |AutpHjq|

ÿ

a‰bPV pHiq

c‰dPV pHjq

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

´ 2

˜

r
ÿ

i“q`1

αicHipW q

¸2

.

B.1. Proof of Proposition B.1. Recalling the definition of ZpH,W q from Theorem 2.1 note
that

αJZpH,W q “

r
ÿ

i“q`1

αiGi `

ż ż

UαdBxdBy `

ż

VαdBx, (B.4)

where tGi : q` 1 ď i ď ru „ Nr´qp0,Σq with Σ as Definition 2.4 is independent of the standard
Brownian motion tBt : t P r0, 1su. Now, observe that Uα P L2pr0, 1s2q is symmetric and hence,
the operator,

TUαfpxq “

ż

Uαpx, yqfpyqdy, (B.5)

where f P L2r0, 1s, is a self-adjoint Hilbert-Schmidt integral operator. Then by the spectral
theorem (see [72, Theorem 8.94 and Theorem 8.83]) we can find a set of orthonormal eigenfunc-
tions tϕsusě1 corresponding to eigenvalues (with repetition) tλsusě1 of TUα which forms a basis
of L2r0, 1s and

Uαpx, yq “

8
ÿ

s“1

λsϕspxqϕspyq, (B.6)

where the above sum converges in L2. Further, we assume that tλsusě1 are arranged according
to non-increasing order of magnitude and limsÑ8 λs “ 0. Moreover, by the orthonormality of
the eigenvectors (see, for example, [49, Lemma 8, Chapter 6]),

8
ÿ

s“1

λ2s “ }Uα}22 ă 8. (B.7)

Also, since Vα P L2r0, 1s, expanding Vα using the basis tϕsusě1 we have the following,

Vαpxq “

8
ÿ

s“1

γsϕspxq, (B.8)

where once again the above sum converges in L2 and

8
ÿ

s“1

γ2s “ }Vα}22 ă 8. (B.9)

Hence, recalling the expression of αJZpH,W q from (B.4) along with Proposition G.1 and the
expansions of Uα and Vα from (B.6) and from (B.8) respectively gives,

αJZpH,W q
a.s.
“

r
ÿ

i“q`1

αiGi `

8
ÿ

s“1

λsI2pϕs ˆ ϕsq `

8
ÿ

s“1

γsI1pϕsq



44 CHATTERJEE, DAN, AND BHATTACHARYA

a.s.
“

r
ÿ

i“q`1

αiGi `

8
ÿ

s“1

λspI1pϕsq
2 ´ 1q `

8
ÿ

s“1

γsI1pϕsq (by (G.3))

D
“

r
ÿ

i“q`1

αiGi `

8
ÿ

s“1

λspη
2
s ´ 1q `

8
ÿ

s“1

γsηs,

where tηsusě1 is an independent collection of standard Gaussian random variables which is also
independent of tGiuq`1ďiďr. Now, for K ě 1, define the truncated version of αJZpH,W q as
follows:

Yα,K :“
r
ÿ

i“q`1

αiGi `

K
ÿ

s“1

λspη
2
s ´ 1q `

K
ÿ

s“1

γsηs. (B.10)

We begin by computing the MGF of Yα,K in the following lemma:

Lemma B.1. Let Yα,K be as defined above. Then for |θ| ă 1
16C , where C as in Proposition B.1,

the MGF of Yα,K is given by

logE
”

eθYα,K

ı

“ αJ
`Σα`

θ2

2
`

K
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθq
L

L
,

where α` “ pαq`1, ¨ ¨ ¨ , αrq
J.

Proof. For all K ě 1 define,

Y
p1q
α :“

r
ÿ

i“q`1

αiGi, Y
p2q

α,K :“
K
ÿ

s“1

λspη
2
s ´ 1q, and Y

p3q

α,K :“
K
ÿ

s“1

γsηs. (B.11)

by the independence of Y
p1q
α and pY

p2q

α,K , Y
p3q

α,Kq and the Cauchy-Schwartz inequality we have,

E
”

eθYα,K

ı

ď E
”

eθY
p1q
α

ı

ˆ

E
„

e2θY
p2q

α,K

ȷ

E
„

e2θY
p3q

α,K

ȷ˙
1
2

.

Note that the MGFs of Y
p1q
α and Y

p3q

α,K exist for all θ. Also, by [34, Theorem 2.2],

E
„

e2θY
p2q

α,K

ȷ

ă 8, for |θ| ă min

$

&

%

1

16
b

řK
s“1 λ

2
s

,
1

16C

,

.

-

.

Recalling (B.3) and (B.7) observe that,

K
ÿ

s“1

λ2s ď }Uα}2 ď

r
ÿ

i“q`1

|αi|
|V pHiq|p|V pHiq| ´ 1q

|AutpHiq|
“ C,

since |WHi | ď
|V pHiq|p|V pHiq|´1q

2|AutpHiq|
, for q ` 1 ď i ď r. This implies,

E
”

eθYα,K

ı

ă 8, for |θ| ă
1

16C
.

Now, we proceed to compute the MGF of Yα,K . Observe that by independence,

E
”

eθYα,K

ı

“ E
”

eθY
p1q
α

ı

E
„

eθpY
p2q

α,K`Y
p3q

α,Kq

ȷ

. (B.12)

We will consider the following 2 cases:
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Case 1: First, assume that λs ‰ 0, for all 1 ď s ď K. Then recalling (B.19) and completing the
square,

Y
p2q

α,K ` Y
p3q

α,K “

K
ÿ

s“1

λs

ˆ

η2s `
γsηs
λs

˙

´

K
ÿ

s“1

λs

“

K
ÿ

s“1

λs

ˆ

ηs `
γs

2λs

˙2

´

K
ÿ

s“1

γ2s
4λs

´

K
ÿ

s“1

λs (B.13)

Recall that tηsusě1 are i.i.d. Np0, 1q. Hence, from the MGF of non-central chi-squared
distribution and (B.7) we have,

E
”

eθ
řK

s“1 λspηs`
γs
2λs

q2
ı

“

K
ź

s“1

e
θγ2s

4λsp1´2λsθq

?
1 ´ 2λsθ

for all |θ| ă
1

16C
ď

1

2 max1ďsďK |λs|
.

This implies, for all |θ| ă 1
16C ,

logE
”

eθ
řK

s“1 λspηs`
γs
2λs

q2
ı

“

K
ÿ

s“1

sγ2s
4λs

p1 ´ 2λsθq´1 ´
1

2

K
ÿ

s“1

log p1 ´ 2λsθq

“

K
ÿ

s“1

sγ2s
4λs

8
ÿ

L“0

p2λsθqL `
1

2

K
ÿ

s“1

8
ÿ

L“1

p2λsθqL

L

“

K
ÿ

s“1

8
ÿ

L“0

2L´2θL`1γ2sλ
L´1
s `

K
ÿ

s“1

λsθ `
1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
.

Recalling (B.13), this implies that

logE
„

e
θ
´

Y
p2q

α,K`Y
p3q

α,K

¯ȷ

“

K
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
. (B.14)

Case 2: There exists 1 ď t ď K such that λt “ 0. Recall that tλsusě1 are arranged according to
non-increasing order of magnitude. Hence, λs “ 0 for all t ď s ď K. In this case,

Y
p2q

α,K ` Y
p3q

α,K “ Y
p2q

α,t´1 ` Y
p3q

α,t´1 `

K
ÿ

s“t

γsηs.

Clearly, Y
p2q

α,t´1 ` Y
p3q

α,t´1 is independent of
řK
s“t γsηs. Moreover, note that

řK
s“t γsηs „

Np0,
řK
s“t γ

2
s q. Hence, using (B.14) we have,

logE
„

eθpY
p2q

α,K`Y
p3q

α,Kq

ȷ

“

t´1
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

t´1
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
`
θ2

2

K
ÿ

s“t

γ2s

“

K
ÿ

s“1

1

2
θ2γ2s `

t´1
ÿ

s“1

8
ÿ

L“2

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L

“

K
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
. (B.15)

Combining (B.14) and (B.15) we can conclude that for all K ě 1,

logE
„

eθpY
p2q

α,K`Y
p3q

α,Kq

ȷ

“

K
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
. (B.16)
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Finally, recall that G “ pGq`1, ¨ ¨ ¨ , Grq
J „ Nr´qp0,Σq. This implies,

logE
”

eθY
p1q
α

ı

“ logE
”

eθα
J
`G

ı

“
θ2

2
αJ

`Σα`. (B.17)

Now by (B.12), (B.16), and (B.17) we conclude that,

logE
”

eθYα,K

ı

“
θ2

2
αJ

`Σα` `

K
ÿ

s“1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

K
ÿ

s“1

8
ÿ

L“2

p2λsθqL

L
,

for all |θ| ă 1
16C . □

Now, we compute the MGF of αJZpH,W qq.

Lemma B.2. The moment generating function of αJZpH,W qq exists for all |θ| ă 1
32C and is

given by,

logE
”

eθα
JZpH,W q

ı

“
θ2c2

2
`

8
ÿ

L“1

2L´1θL`2
8
ÿ

s“1

γ2sλ
L
s `

1

2

8
ÿ

L“3

p2θq
L

L

8
ÿ

s“1

λLs , (B.18)

where c2 :“ αJ
`Σα` ` }Vα}22 ` 2}Uα}22.

Proof. Define,

Y
p1q
α :“

r
ÿ

i“q`1

αiGi, Y
p2q
α :“

8
ÿ

s“1

λspη
2
s ´ 1q, and Y

p3q
α :“

8
ÿ

s“1

γsηs. (B.19)

Observe that t
η2s´1

?
2

usě1 and tηsusě1 are orthonormal. Hence, for Yα,K as defined in (B.10) we

have,

ErpαJZpH,W q ´ Yα,Kq2s ď E

«

8
ÿ

s“K`1

λspη
2
s ´ 1q

ff

` E

«

8
ÿ

s“K`1

γsηs

ff

ď 2
8
ÿ

s“K`1

λ2i `

8
ÿ

s“K`1

γ2s Ñ 0,

as K Ñ 8, by (B.7) and (B.9).Thus,

eθYα,K P
Ñ eθα

JZpH,W q, for all |θ| ă
1

32C
.

From the proof of Lemma B.1 it follows that Ere2θYα,K s ă 8 for |θ| ă 1
32C . Hence, teθYα,K :

K ě 1u is uniformly integral for |θ| ă 1
32C and

lim
KÑ8

logE
”

eθYα,K

ı

“ logE
”

eθα
JZpH,W q

ı

, for all |θ| ă
1

32C
. (B.20)

Now, note that
ˇ

ˇ

ˇ

ˇ

αJ
`Σα`

θ2

2
`

8
ÿ

L“1

8
ÿ

s“1

2L´2θL`1γ2sλ
L´1
s `

1

2

8
ÿ

L“2

8
ÿ

s“1

p2λsθq
L

L
´ logE

”

eθYα,K

ı

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“K`1

8
ÿ

L“1

2L´2θL`1γ2sλ
L´1
s `

1

2

8
ÿ

s“K`1

8
ÿ

L“2

p2λsθq
L

L

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

s“K`1

8
ÿ

L“1

2L´2|θ|L`1γ2s |λs|
L´1 `

1

2

8
ÿ

s“K`1

8
ÿ

L“2

|2λsθ|
L

L
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ď
1

8

8
ÿ

s“K`1

8
ÿ

L“1

2L`1

32L`1CL`1
γ2s |λs|

L´1 `
1

322

8
ÿ

s“K`1

λ2s
C2

`
1

2

8
ÿ

s“K`1

8
ÿ

L“3

2LCL

LsL{232LCL

ď
1

8

8
ÿ

s“K`1

γ2s

8
ÿ

L“1

1

16L`1C2
`

8
ÿ

s“K`1

λ2s
C2

`
1

2

8
ÿ

s“K`1

1

s
3
2

8
ÿ

L“3

1

L16L
Ñ 0, (B.21)

as K Ñ 8. Thus, combining (B.20) and (B.21), for |θ| ă 1
32C ,

logE
”

eθα
JZpH,W q

ı

“ αJ
`Σα`

θ2

2
`

8
ÿ

L“1

8
ÿ

s“1

2L´2θL`1γ2sλ
L´1
s `

1

2

8
ÿ

L“2

8
ÿ

s“1

p2λsθq
L

L

“
θ2

2

˜

αJ
`Σα` `

8
ÿ

s“1

γ2s ` 2
8
ÿ

s“1

λ2s

¸

`

8
ÿ

L“2

8
ÿ

s“1

2L´2θL`1γ2sλ
L´1
s `

1

2

8
ÿ

L“3

8
ÿ

s“1

p2λsθq
L

L

“
θ2

2

˜

αJ
`Σα` `

8
ÿ

s“1

γ2s ` 2
8
ÿ

s“1

λ2s

¸

`

8
ÿ

L“1

2L´1θL`2
8
ÿ

s“1

γ2sλ
L
s `

1

2

8
ÿ

L“3

p2θq
L

L

8
ÿ

s“1

λLs .

Now, observing that
ř8
s“1 γ

2
s “ }Vα}22 and

ř8
s“1 λ

2
s “ }Uα}22, the result in Lemma B.2 follows.

□

Now we relate the terms in (B.18) with those in Proposition B.1. To begin with note that
ş1
0 U

pLq
α px, xqdx can be interpreted as the density of the L-cycle for the function Uα. Since

Uα : r0, 1s2 Ñ R, is a symmetric and bounded function, it follows from arguments in [55,
Section 7.5] that, for L ě 3,

8
ÿ

s“1

λLs “

ż 1

0
U

pLq
α px, xqdx, (B.22)

where tλsusě1 are the eigenvalues, with eigenfunctions tϕsusě1, for the operator TUα as defined
in (B.5). This implies, by the spectral theorem,

U
pLq
α px, yq “

8
ÿ

s“1

λLs ϕspxqϕspyq, (B.23)

Using this we relate
ř8
s“1 γ

2
sλ

L
s in terms of the functions Uα and Vα.

Lemma B.3. For all L ě 1,
8
ÿ

s“1

γ2sλ
L
s “

ż

r0,1s2
VαpxqVαpyqU

pLq
α px, yqdxdy.

Proof. Since Vαpxq “
ř8
s“1 γsϕspxq (recall (B.8)), we have γs “

ş1
0 Vαpxqϕspxqdx, for s ě 1, by

the orthonormality of the eigenvectors. Hence,

8
ÿ

s“1

γ2sλ
L
s “

ż

r0,1s2

˜

8
ÿ

s“1

λLs ϕspxqϕspyq

¸

VαpxqVαpyqdxdy “

ż

r0,1s2
VαpxqVαpyqU

pLq
α px, yqdxdy,

by (B.23). □

Combining Lemma B.2, (B.22), and Lemma B.3 gives,

logE
”

eθα
JZpH,W q

ı



48 CHATTERJEE, DAN, AND BHATTACHARYA

“
θ2c2

2
`

8
ÿ

L“1

2L´1θL`2

ż

r0,1s2
VαpxqVαpyqU

pLq
α px, yqdxdy `

1

2

8
ÿ

L“3

p2θq
L

L

ż 1

0
U

pLq
α px, xqdx,

where c2 “ αJ
`Σα` ` }Vα}22 ` 2}Uα}22. The result in Proposition B.1 now follows from the next

lemma.

Lemma B.4. ηα, η̃α as defined in Proposition B.1 the following hold:

}Vα}22 “ ηα and 2}Uα}22 ` αJ
`Σα` “ η̃α.

Proof. Recalling the definition of Vα from (B.2) we have,
ż 1

0
V 2
αpxqdx

“
ÿ

1ďi,jďq

κiκj

ż 1

0

ÿ

aPV pHiq

bPV pHjq

ptapx,Hi,W q ´ tpHi,W qq ptapx,Hj ,W q ´ tpHj ,W qq dx, (B.24)

where κi :“ αi
|AutpHiq|

. Observe that,

ż 1

0
ptapx,Hi,W q ´ tpHi,W qq ptapx,Hj ,W q ´ tpHj ,W qq dx

“

ż 1

0
tapx,Hi,W qtbpx,Hj ,W q ´ tpHi,W qtbpx,Hj ,W q ´ tpHj ,W qtapx,Hj ,W q ` tpHi,W qtpHj ,W qdx

“ t

˜

Hi

à

a,b

Hj ,W

¸

´ tpHi,W qtpHj ,W q. (B.25)

Combining (B.24) and (B.25) gives }Vα}22 “ ηα.
Next, recalling the definition of Uα from (B.3) we have,

ż

r0,1s2
U2
αdxdy “

ż

r0,1s2

˜

r
ÿ

i“q`1

αiWHipx, yq

¸2

dxdy ´

˜

r
ÿ

i“q`1

αicpHi,W q

¸2

, (B.26)

since
ş

r0,1s2
WHipx, yqdxdy “ cpHi,W q. By definition,

ż

r0,1s2

˜

r
ÿ

i“q`1

αiWHipx, yq

¸2

dxdy “
ÿ

q`1ďi,jďr

αiαj

ż

r0,1s2
WHipx, yqWHj px, yqdxdy, (B.27)

and
ż

r0,1s2
WHipx, yqWHj px, yqdxdy

“
1

4 |AutpHiq| |AutpHjq|

ÿ

a‰bPV pHiq

c‰dPV pHjq

ż

r0,1s2
ta,bpx, y,Hi,W qtc,dpx, y,Hj ,W qdxdy

“
1

4 |AutpHiq| |AutpHjq|

ÿ

a‰bPV pHiq

c‰dPV pHjq

t

˜

Hi

à

pa,bq,pc,dq

Hj ,W

¸

. (B.28)

Finally, recalling the definition of Σ from Definition 2.4 note that

αJ
`Σα`
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“
ÿ

q`1ďi,jďr

κiκj
2

ÿ

pa,bqPE`pHiq

pc,dqPE`pHjq

˜

tpHi

á

pa,bq,pc,dq

Hj ,W q ´ tpHi

à

pa,bq,pc,dq

Hj ,W q

¸

“
ÿ

q`1ďi,jďr

κiκj
2

ÿ

a‰bPV pHiq

c‰dPV pHjq

˜

tpHi

á

pa,bq,pc,dq

Hj ,W q ´ tpHi

à

pa,bq,pc,dq

Hj ,W q

¸

. (B.29)

where the last equality follows from Remark B.1. Combining (B.26), (B.27), (B.28), and (B.29)
we have 2}Uα}22 ` αJ

`Σα` “ η̃α. □

Remark B.1. Note that both the weak and strong edge join operations can be extended to
arbitrary pa, bq P V pH1q2 and pc, dq P V pH2q2, with a ‰ b and c ‰ d as follows: For the strong
join we keep all edges, while for the weak join we keep the joined graph simple by merging any
resulting double edge. In particular, if either pa, bq R E`pH1q or pc, dq R E`pH2q, then the weak
and strong edge joins are the same graph. This implies,

tpH1

á

pa,bq,pc,dq

H2,W q “ tpH1

à

pa,bq,pc,dq

H2,W q,

which explains the step in (B.29).

Appendix C. Proof of Corollary 2.2 and Corollary 2.1

C.1. Proof of Corollary 2.2. Since W is H-irregular for all H P H, by Theorem 2.1,

ZpH, Gnq
D
Ñ ZpH,W q “ pZpH1,W q, ¨ ¨ ¨ , ZpHr,W qq

where

ZpHi,W q “

ż 1

0

$

&

%

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W q ´
|V pHiq|

|AutpHiq|
tpHi,W q

,

.

-

dBx,

for 1 ď i ď r. Since a linear stochastic integral has a centered Gaussian distribution,

ZpH,W q
D
“ Nrp0,Γq,

where Γ “ ppτijqq1ďi,jďr, with

τij “ CovpZpHi,W q, ZpHj ,W qq

“
1

|AutpHiq||AutpHjq|

#

|V pHiq|
ÿ

a“1

|V pHjq|
ÿ

b“1

ż 1

0
tapx,Hi,W qtbpx,Hj ,W qdx

´ |V pHiq|tpHi,W q|V pHjq|tpHj ,W q

+

.

A direct computation shows that, for all 1 ď i, j ď r,

ż 1

0
tapx,Hi,W qtbpx,Hj ,W qdx “ t

˜

Hi

à

a,b

Hj ,W

¸

.

This shows, τij “ CovpZpHi,W q, ZpHj ,W qq equals to the expression in the statement of Corol-
lary 2.2.
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C.2. Proof of Corollary 2.1. Note that when W is H-irregular, the result is immediate from
Corollary 2.2. Hence, suppose W is H-regular. In this case, from Theorem 2.1 we know that,

ZpH,Gnq
D
Ñ G`

ż 1

0

ż 1

0

"

WHpx, yq ´
|V pHq| p|V pHq ´ 1|q

2|AutpHq|
tpH,W q

*

dBxdBy
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

ZpH,W q

, (C.1)

where G „ Np0, η2H,W q, with

η2H,W “
1

2|AutpHq|2

ÿ

pa,bq,pc,dqPE`pHq

«

t

˜

H
á

pa,bq,pc,dq

H,W

¸

´ t

˜

H
à

pa,bq,pc,dq

H,W

¸ff

, (C.2)

and G is independent of the Brownian motion tBt : 0 ď t ď 1u. Note that the expression of
ηH,W follows from Theorem 2.1 and (2.11). From (2.7) recall that,

dWH
“

|V pHq| p|V pHq ´ 1|q

2|AutpHq|
tpH,W q,

is an eigenvalue of the kernel WH with corresponding eigenfunction 1. Now, considering the
spectral decomposition of WH notice,

WHpx, yq ´
|V pHq| p|V pHq ´ 1|q

2|AutpHq|
tpH,W q “

ÿ

λPSpec´pWHq

λϕλpxqϕλpyq,

almost everywhere. Then,

ZpH,W q “

ż 1

0

ż 1

0

ÿ

λPSpec´pWHq

λϕλpxqϕλpyqdBxdBy “
ÿ

λPSpec´pWHq

ż 1

0

ż 1

0
λϕλpxqϕλpyqdBxdBy,

where the last equality follows by Proposition G.1. Now, using (G.3) and
ş1
0 ϕλpxq2dx “ 1, we

get
ż 1

0

ż 1

0
λϕλpxqϕλpyqdBxdBy “ λ

«

ˆ
ż 1

0
ϕλpxqdBx

˙2

´ 1

ff

, for all λ P Spec´pWHq.

The orthonormality of the eigenvectors tϕλuλPSpec´pWHq implies,

ZpH,W q “
ÿ

λPSpec´pWHq

λ

«

ˆ
ż 1

0
ϕpxqdBx

˙2

´ 1

ff

D
“

ÿ

λPSpec´pWHq

λpZ2
λ ´ 1q, (C.3)

where tZλ : λ P Spec´pWHqu are i.i.d. Np0, 1q which are independent from G. The proof of
Corollary 2.1 is now complete by collecting (C.1), (C.2), and (C.3).

Appendix D. Proof of Theorem 4.1

We begin by expressing the estimated distributions ẐpH, Gnq (recall (4.7)) in terms of sto-
chastic integrals. For this, suppose I1, I2, . . . , In be a partition of r0, 1s into intervals of length
1{n, that is, Is “ r s´1

n , snq, for 1 ď s ď n. Let ηs “
ş

Is
dBs, where pBtqtPr0,1s is a standard

Brownian motion on r0, 1s independent of tGnuně1. Then tη1, η2, . . . , ηnu is a collection of i.i.d.
Np0, 1{nq random variables. With notations as in (4.5), define

Ẑ 1pHi, Gnq :“

$

’

&

’

%

řn
v“1pt̂pv,Hi, Gnq ´ t̄pHi, Gnqqηv if 1 ď i ď q,

ř

1ďu,vďnpŴGn
Hi

pu, vq ´ W̄Gn
Hi

q

´

ηuηv ´
δu,v
n

¯

if q ` 1 ď i ď r,

(D.1)



HIGHER-ORDER GRAPHON THEORY 51

where, recall that, δu,v “ 1tu “ vu, t̄pHi, Gnq “ 1
n

řn
v“1 t̂pv,Hi, Gnq, and W̄Gn

Hi
“ 1

n2

ř

1ďu,vďn Ŵ
Gn
Hi

pu, vq.
Denote,

Ẑ 1pH, Gnq “ pẐ 1pH1, Gnq, Ẑ 1pH2, Gnq, . . . , Ẑ 1pHr, GnqqJ. (D.2)

Note that Ẑ 1pH, Gnq has the same distribution as ẐpH, Gnq and Ẑ 1pH, Gnq is defined on the
same probability space as tBtutPr0,1s. Now, recalling (4.3), for x P r0, 1s, define

t̂px,Hi, Gnq “ t̂prnxs, H,Gnq. (D.3)

Note that
ş1
0 t̂px,Hi, Gnqdx “ t̄pHi, Gnq. Also, recalling (4.4), for x, y P r0, 1s, define

ŴGn
Hi

px, yq “ ŴGn
Hi

prnxs, rnysq. (D.4)

Observe that
ş

r0,1s2
ŴGn
Hi

px, yqdxdy “ W̄Gn
Hi

. Hence, (D.1) can be expressed as:

Ẑ 1pHi, Gnq :“

$

’

’

&

’

’

%

ş1
0

´

t̂px,Hi, Gnq ´
ş1
0 t̂px,Hi, Gnqdx

¯

dBx if 1 ď i ď q,

ş

r0,1s2

´

ŴGn
Hi

px, yq ´
ş

r0,1s2
ŴGn
Hi

px, yqdxdy
¯

dBxdBy if q ` 1 ď i ď r.

In the next lemma we show that distribution of Ẑ 1pHi, Gnq remains unchanged in the limit

when t̂px,Hi, Gnq is replaced by tpx,H,WGnq (recall (2.4)) and ŴGn
Hi

px, yq (recall (D.4)) is re-

placed by WGn
Hi

, the 2-point conditional homomorphism kernel of the empirical graphon WGn

(recall (2.5)). This is because the difference between all homomorphisms and injective homo-
morphisms is negligible in the limit.

Lemma D.1. For 1 ď i ď r, as n Ñ 8,

E
„

ˇ

ˇ

ˇ
Ẑ 1pHi, Gnq ´ Y pHi,W

Gnq

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

Gn

ȷ

a.s.
Ñ 0, (D.5)

where Y pHi,W
Gnq is defined as follows:

‚ for 1 ď i ď q,

Y pHi,W
Gnq :“

ż 1

0

$

&

%

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W
Gnq ´

|V pHiq|

|AutpHiq|
tpHi,W

Gnq

,

.

-

dBx,

‚ for q ` 1 ď i ď r,

Y pHi,W
Gnq :“

ż 1

0

ż 1

0

"

WGn
Hi

px, yq ´
|V pHiq| p|V pHiq ´ 1|q

2|AutpHiq|
tpHi,W

Gnq

*

dBxdBy.

Proof. We start the proof by showing (D.5) for 1 ď i ď q, that is, when W is Hi-irregular.
Towards this, notice that tpHi,W

Gnq “
ş

tapx,Hi,W
Gnqdx, for all 1 ď a ď |V pHiq|, and

hence,

E
„

ˇ

ˇ

ˇ
Ẑ 1pHi, Gnq ´ Y pHi,W

Gnq

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

Gn

ȷ

À

ż 1

0

¨

˝t̂px,Hi, Gnq ´
1

|AutpHiq|

|V pHiq|
ÿ

a“1

ta
`

x,Hi,W
Gn

˘

˛

‚

2

dx

“

n
ÿ

v“1

ż

Iv

¨

˝t̂pv,Hi, Gnq ´
1

|AutpHiq|

|V pHiq|
ÿ

a“1

ta
`

x,Hi,W
Gn

˘

˛

‚

2

dx, (D.6)



52 CHATTERJEE, DAN, AND BHATTACHARYA

almost surely, where Iv “ rv´1
n , vnq, for 1 ď v ď n. Note that the first inequality follows by

the boundedness property of stochastic integrals (see Section G) and the second equality follows
from the definition of t̂p¨, Hi, Gnq in (D.3). From (4.3) recall that,

t̂pv,Hi, Gnq “
1

|AutpHiq|

|V pHiq|
ÿ

a“1

Xapv,Hi, Gnq

n|V pHiq|´1
,

for 1 ď v ď n. Then from (D.6) we get,

E
„

ˇ

ˇ

ˇ
Ẑ 1pHi, Gnq ´ Y pHi,W

Gnq

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

Gn

ȷ

ÀHi

n
ÿ

v“1

|V pHiq|
ÿ

a“1

ż

Iv

ˆ

Xapv,Hi, Gnq

n|V pHiq|´1
´ ta

`

x,Hi,W
Gn

˘

˙2

dx, (D.7)

almost surely. Now, recall Definition 2.1 to write,

tapx,Hi,W
Gnq “

ż

r0,1s|V pHiq|´1

ź

uPNHi
paq

WGnpx, xuq
ź

pu,vqPEpHiztauq

WGnpxu, xvq
ź

vPV pHiztauq

dxv.

Recalling the construction of empirical graphon WGn from (2.3), tapx,Hi,W
Gnq can be equiva-

lently written as follows:

tapx,Hi,W
Gnq “

1

n|V pHiq|´1

ÿ

s̃tauc

ź

yPNHi
paq

wvsypGnq
ź

px,yqPEpHiztauq

wsxsypGnq,

for all x P Iv and 1 ď v ď n, where the sum is over tuples s̃tauc “ psxqxPV pHiqztau P trnsztvuu|V pHiq|´1.
From Definition 4.1 recall that Xapv,Hi, Gnq is sum over tuples stauc “ psxqxPV pHiqztau where
the elements are all distinct. Thus, for all x P Iv and 1 ď v ď n,

ˇ

ˇ

ˇ

ˇ

Xapv,Hi, Gnq

n|V pHiq|´1
´ ta

`

x,Hi,W
Gn

˘

ˇ

ˇ

ˇ

ˇ

ÀHi

1

n
, (D.8)

since the difference in the LHS above counts the number of non-injective homomorphisms ϕ :
V pHiq Ñ V pGnq such that ϕpaq “ v, up to a constant depending on Hi. Substituting the bound
from (D.8) in (D.7) gives,

E
„

ˇ

ˇ

ˇ
Ẑ 1pHi, Gnq ´ Y pHi,W

Gnq

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

Gn

ȷ

ÀHi

1

n2
,

almost surely. This proves (D.5), for 1 ď i ď q.
Next, consider q ` 1 ď i ď r, that is, W is Hi-regular. Note that

tpHi,W
Gnq “

ż 1

0

ż 1

0
WGn
Hi

px, yqdxdy.

Then once again by the boundedness property of stochastic integrals we get,

E
„
ˇ

ˇ

ˇ

ˇ

Ẑ 1pHi, Gnq ´ Y pHi,W
Gnq

ˇ

ˇ

ˇ

ˇ

2ˇ
ˇ

ˇ

ˇ

Gn

ȷ

À

ż 1

0

ż 1

0

´

ŴGn
Hi

px, yq ´WGn
Hi

px, yq

¯2
dxdy

ÀHi

ÿ

1ďu‰vďn

ż

IuˆIv

´

ŴGn
Hi

px, yq ´WGn
Hi

px, yq

¯2
`

1

n
(D.9)
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ÀHi

ÿ

1ďu‰vďn
1ďa‰bď|V pHiq|

ż

IuˆIv

ˆ

Xa,bpu, v,Hi, Gnq

n|V pHiq|´2
´WGn

Hi
px, yq

˙2

`
1

n
, (D.10)

almost surely. Note that the inequality in (D.9) follows since ŴGn
Hi

“ 0 on Iu ˆ Iu, for all

1 ď u ď n, and WGn
Hi

is bounded. Furthermore, (D.10) follows from the definition of ŴGn
Hi

in

(4.4).
Now, recalling Xa,b from Definition 4.2 and by counting arguments similar to (D.8) gives,

E
„ˇ

ˇ

ˇ

ˇ

Ẑ 1pHi, Gnq ´ Y pHi,W
Gnq

ˇ

ˇ

ˇ

ˇ

2ˇ
ˇ

ˇ

ˇ

Gn

ȷ

ÀHi

1

n2
,

almost surely. This completes the proof of Lemma D.1. □

Now, define

Y pH,WGnq :“
`

Y pH1,W
Gnq, ¨ ¨ ¨ , Y pHr,W

Gnq
˘J
. (D.11)

Note that although Y pH,WGnq resembles the empirical analogue of ZpH,W q (recall (2.12)),
with W replaced with WGn , one important difference is that in the regular regime, that is, when
q ` 1 ď i ď r, Y pHi,W

Gnq does not have the Gaussian component Gi, unlike in its population
counterpart ZpHi,W

Gnq.

Since Ẑ 1pH, Gnq has the same distribution as ẐpH, Gnq (recall (D.2)), Lemma D.1 implies
that to prove Theorem 4.1 it suffices to show that Y pH,WGnq|Gn converges in distribution
(almost surely) to ZpH,W q. We will establish this by showing that the MGF of αJY pH,WGnq

conditioned on the graph Gn will converge the MGF of αJZpH,W q almost surely in a neigh-
borhood of zero, for all α P Rr. This is formalized in the following Proposition D.1, which is
proved in Section D.1.

Proposition D.1. For any α P Rr and |θ| ă 1
32C , where C is defined in Proposition B.1, the

following hold:

lim
nÑ8

logE
”

eθα
JY pH,WGn q

ˇ

ˇ

ˇ
Gn

ı

“ logE
”

eθα
JZpH,W q

ı

,

on a set A (not depending on α) such that PpAq “ 1.

Proposition D.1 implies that

Y pH,WGnq|Gn
D
Ñ ZpH,W q,

for all α P Rr, on the set A. Since the above convergence holds for all α P Rr, the result in
Theorem 4.1 follows from the Cramér-Wold device, Lemma D.1, and recalling that Ẑ 1pH, Gnq

has the same limiting distribution as ẐpH, Gnq.

D.1. Proof of Proposition D.1. Let α “ pα1, α2, ¨ ¨ ¨ , αrq
J P Rr. Similar to (B.2) we define,

Vα,Gnpxq :“

q
ÿ

i“1

αi

»

–

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W
Gnq ´

|V pHiq|

|AutpHiq|
tpHi,W

Gnq

fi

fl , (D.12)

and, similar to (B.3), let us define,

Uα,Gnpx, yq :“
r
ÿ

i“q`1

αi

´

WGn
Hi

px, yq ´ cpHi,W
Gnq

¯

, (D.13)

where cpHi,W
Gnq :“ |V pHiq|p|V pHiq|´1q

2|AutpHiq|
tpHi,W

Gnq.
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Lemma D.2. There exists a set A such that PpAq “ 1 on which the following hold:

p1q For L ě 3,

lim
nÑ8

ż

U
pLq

α,Gn
px, xqdx “

ż

U
pLq
α px, xqdx,

where U
pLq

α,Gn
and U

pLq
α are the L-th path composition of Uα,Gn and Uα, respectively.

p2q For L ě 1,

lim
nÑ8

ż

Vα,GnpxqU
pLq

α,Gn
px, yqVα,Gnpyqdxdy “

ż

VαpxqU
pLq
α px, yqVαpyqdxdy.

The proof of Lemma D.2 is given in Section D.2. Here, we apply this lemma to complete the
proof of Proposition D.1.

To begin with note that the Proposition B.1 holds for any graphon, in particular, it holds
for the emprical graphon WGn . Hence, using this expression, with W replaced by WGn and Σ
replaced by zero (recalling the definition of Y pH,WGnq from (D.11)) we get,

logE
”

eθα
JY pH,WGn q|Gn

ı

“
θ2c2,n

2
`

8
ÿ

L“1

2L´1θL`2

ż

r0,1s2
Vα,GnpxqVα,GnpyqU

pLq

α,Gn
px, yqdxdy `

1

2

8
ÿ

L“3

p2θq
L

L

ż 1

0
U

pLq

α,Gn
px, xqdx,

where

c2,n “ }Vα,Gn}22 ` 2}Uα,Gn}22. (D.14)

Note that |Uα,Gn | ď C, where C is defined in Proposition B.1. Then, for all |θ| ă 1
32C and L ě 3

we get,

2L|θ|L

L

ˇ

ˇ

ˇ

ˇ

ż

U
pLq

α,Gn
px, xqdx

ˇ

ˇ

ˇ

ˇ

ď
2L

CL32LL
CL ď

1

16LL
.

Observe that
ř8
L“3

1
16LL

ă 8. Hence, using the Dominated Convergence Theorem and Lemma
D.2 we conclude,

lim
nÑ8

1

2

8
ÿ

L“3

p2θqL

L

ż

U
pLq

α,Gn
px, xqdx “

1

2

8
ÿ

L“3

p2θqL

L

ż 1

0
U

pLq
α px, xqdx (D.15)

on the set A. Next, note that

2L´1|θ|L`2

ˇ

ˇ

ˇ

ˇ

ż

Vα,GnpxqVα,GnpyqU
pLq

α,Gn
px, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď 2L´1 1

32L`2CL`2
C̃2CL ď

1

16L´1C2
C̃2,

where C̃ “ 2
řq
i“1 |αi|

|V pHiq|

|AutpHiq|
. Now, observe that C̃2

C2

ř8
L“1

1
16L´1 ă 8. Hence, using DCT and

Lemma D.2 we conclude,

lim
nÑ8

8
ÿ

L“1

2L´1sL`2

ż

Vα,GnpxqVα,GnpyqU
pLq

α,Gn
px, yqdxdy

“

8
ÿ

L“1

2L´1sL`2

ż

VαpxqVαpyqU
pLq
α px, yqdxdy, (D.16)
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on A. Now, denote κi “
αi

|AutpHiq|
. Then from the proof of Lemma B.4 we get, as n Ñ 8

}Vα,Gn}22 “
ÿ

1ďi,jďq

κiκj
ÿ

aPV pHiq

bPV pHjq

«

t

˜

Hi

à

a,b

Hj ,W
Gn

¸

´ tpHi,W
GnqtpHj ,W

Gnq

ff

Ñ
ÿ

1ďi,jďq

κiκj
ÿ

aPV pHiq

bPV pHjq

«

t

˜

Hi

à

a,b

Hj ,W

¸

´ tpHi,W qtpHj ,W q

ff

“ ηα, (D.17)

on the set A, since the vertex-join of 2 simple graphs produces another simple graph. Also, from
the proof of Lemma B.4, with WGn in place of W (see in (B.26) and (B.28))

}Uα,Gn}22 “
ÿ

q`1ďi,jďr

κiκj
4

ÿ

a‰bPV pHiq

c‰dPV pHjq

t

˜

Hi

à

pa,bq,pc,dq

Hj ,W
Gn

¸

´

˜

q
ÿ

i“1

αicpHi,W
Gnq

¸2

Now, since WGn is the empirical graphon corresponding to the graph Gn, WGn is t0, 1u-valued.
Thus, WGnpx, yq2 “ WGnpx, yq, for all x, y P r0, 1s, hence,

t

˜

Hi

à

pa,bq,pc,dq

Hj ,W
Gn

¸

“ t

˜

Hi

á

pa,bq,pc,dq

Hj ,W
Gn

¸

,

for a ‰ b P V pHiq, c ‰ d P V pHjq, and q ` 1 ď i, j ď r. Thus, on the set A,

2}Uα,Gn}22 “
ÿ

q`1ďi,jďr

κiκj
2

ÿ

a‰bPV pHiq

c‰dPV pHjq

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W
Gn

¸

´

˜

q
ÿ

i“1

αicpHi,W
Gnq

¸2

Ñ
ÿ

q`1ďi,jďr

κiκj
2

ÿ

a‰bPV pHiq

c‰dPV pHjq

t

˜

Hi

á

pa,bq,pc,dq

Hj ,W

¸

´

˜

q
ÿ

i“1

αicpHi,W q

¸2

“ η̃α,

(D.18)

as the weak edge-join of 2 simple graphs produces a simple graph. Hence, recalling (D.14),
(D.17), and (D.18) gives, c2,n Ñ ηα ` η̃α. Combining this with (D.15), (D.16), and Proposition
B.1, the result in Proposition D.1 follows.

D.2. Proof of Lemma D.2. We begin by recalling the definitions of cut-distance and cut-
metric.

Definition D.1. [55, Chapter 8] The cut-distance between two bounded functions W1,W2 :
r0, 1s2 Ñ R is

||W1 ´W2||˝ :“ sup
f,g:r0,1sÑr0,1s

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,1s2
pW1px, yq ´W2px, yqq fpxqgpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

.

The cut-metric between W1,W2 is defined as,

δ˝pW1,W2q :“ inf
ψ

||Wψ
1 ´W2||˝,

with the infimum taken over all measure-preserving bijections ψ : r0, 1s Ñ r0, 1s, andWψ
1 px, yq :“

W1pψpxq, ψpyqq, for x, y P r0, 1s.

By [55, Lemma 10.16] we known that δ˝pWGn ,W q Ñ 0 almost surely.



56 CHATTERJEE, DAN, AND BHATTACHARYA

D.2.1. Proof of Lemma D.2 (1). Recall from (D.13),

Uα,Gnpx, yq :“
r
ÿ

i“q`1

αi

´

WGn
Hi

px, yq ´ cpHi,W
Gnq

¯

,

where cpHi,W q “
|V pHiq|p|V pHiq|´1q

2|AutpHiq|
tpHi,W

Gnq. Denote ν :“ max1ďiďr |V pHiqp|V pHiq| ´ 1q.

Then, by the counting lemma (see [14, Theorem 3.7]), for 1 ď i ď r,

|cpHi,W
Gnq ´ cpHi,W q| “

|V pHiqp|V pHiq| ´ 1q

2|AutpHiq|
|tpHi,W

Gnq ´ tpHi,W q| Àν }WGn ´W }˝.

Hence, given f, g : r0, 1s Ñ r0, 1s, by the triangle inequality,
ˇ

ˇ

ˇ

ˇ

ż

fpxqpUα,Gnpx, yq ´ Uαpx, yqqgpyqdxdy

ˇ

ˇ

ˇ

ˇ

Àν

r
ÿ

i“q`1

|αi|

ˆˇ

ˇ

ˇ

ˇ

ż

fpxqpWGn
Hi

px, yq ´WHipx, yqqgpyqdxdy

ˇ

ˇ

ˇ

ˇ

` }WGn ´W }˝

˙

. (D.19)

Now, by a telescoping argument, replacing WGn with W one at a time, as in the proof of the
counting lemma [14, Theorem 3.7], it can be shown that

ˇ

ˇ

ˇ

ˇ

ż

fpxqpWGn
Hi

px, yq ´WHipx, yqqgpyqdxdy

ˇ

ˇ

ˇ

ˇ

Àν }WGn ´W }˝.

Hence, from (D.19),

}Uα,Gn ´ Uα}˝ Àν }WGn ´W }˝ (D.20)

Again, by the counting lemma (adapted to general bounded functions) we have, for L ě 3,
ˇ

ˇ

ˇ

ˇ

ż

U
pLq

α,Gn
px, xqdx´

ż

U
pLq
α px, xqdx

ˇ

ˇ

ˇ

ˇ

ÀL }Uα,Gn ´ Uα}˝ À }WGn ´W }˝, (D.21)

where the last inequality uses (D.20). Since
ş

U
pLq
α px, xqdx is invariant to measure preserving

transformations of W and δ˝pWGn ,W q Ñ 0 almost surely, as n Ñ 8, from (D.21) the result in
Lemma D.2 (1) follows.

D.2.2. Proof of Lemma D.2 (2). Recall from (D.12),

Vα,Gnpxq :“

q
ÿ

i“1

αi

»

–

1

|AutpHiq|

|V pHiq|
ÿ

a“1

tapx,Hi,W
Gnq ´

|V pHiq|

|AutpHiq|
tpHi,W

Gnq

fi

fl .

Note that tpHi,W
Gnq Ñ tpHi,W q, for all 1 ď i ď r, and

lim
nÑ8

ż

U
pLq

α,Gn
px, yqdxdy “

ż

U
pLq
α px, yqdxdy,

by (D.20), almost surely. Hence, to establish Lemma D.2 (2) it suffices to show the following
for 1 ď i, j ď q,

lim
nÑ8

ż

tapx,Hi,W
GnqU

pLq

α,Gn
px, yqtbpy,Hj ,W

Gnqdxdy

“

ż

tapx,Hi,W qU
pLq
α px, yqtbpy,Hj ,W qdxdy, (D.22)

and

lim
nÑ8

ż

tapx,Hi,W
GnqU

pLq

α,Gn
px, yqdxdy “

ż

tapx,Hi,W qU
pLq
α px, yqdxdy. (D.23)
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where a P V pHiq and b P V pHjq.
We will prove (D.22). The proof of (D.23) follows similarly. For this, note that by a telescoping

argument,
ż

tapx,Hi,W
GnqpU

pLq

α,Gn
px, yq ´ U

pLq
α px, yqqtbpy,Hj ,W

Gnqdxdy À }Uα,Gn ´ Uα}˝

À }WGn ´W }˝,

where the last step uses (D.20). Hence, to prove (D.22) it suffices to show that

lim
nÑ8

ż

tapx,Hi,W
GnqU

pLq
α px, yqtbpy,Hj ,W

Gnqdxdy. (D.24)

Consider the functions (not necessarily symmetric) Bnpx, yq :“ tapx,Hi,W
Gnqtbpy,Hj ,W

Gnq

and Bpx, yq :“ tapx,Hi,W qtbpy,Hj ,W q. By a telescoping argument it can shown that

}Bn ´B}˝ À }WGn ´W }˝.

The result in (D.24) then follows from [55, Lemma 8.22].

Appendix E. Proofs from Section 5

E.1. Proof of Proposition 5.1. To prove Proposition 5.1 we first replace with RpH,Gnq by

R
`

H,WGn
˘

“
ÿ

1ďa,bď|V pHq|

t

˜

H
à

a,b

H,WGn

¸

´ |V pHq|2tpH,WGnq2,

where tp¨,WGnq is defined in (4.1). For a finite subgraph F “ pV pF q, EpF qq, recalling (4.1) and
(4.2) notice,

ˇ

ˇt̂pF,Gnq ´ tpF,WGnq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n|V pF q|

ÿ

sPrns|V pF q|

ź

pi,jqPEpF q

wsisj ´
1

pnq|V pF q|

ÿ

sPprnsq|V pF q|

ź

pi,jqPEpF q

wsisj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

n|V pF q|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

sPrns|V pF q|zprnsq|V pF q|

ź

pi,jqPEpF q

wsisj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`O

ˆ

1

n

˙

“ O

ˆ

1

n

˙

.

(E.1)

This implies,

ˇ

ˇRpH,Gnq ´RpH,WGnq
ˇ

ˇ “ O

ˆ

1

n

˙

. (E.2)

Notice that, by definition, RpH,W q ě 0 (see (5.2)) for any graphon W and in particular for
the empirical graphon WGn . Now, we consider the following 2 cases:

‚ W is H-regular: Recalling that RpH,WGnq ě 0 it is now enough to show that

ERpH,WGnq “ Op1{nq. (E.3)

Towards that, recalling (5.3) note that,

E
“

RpH,WGnq
‰

“
ÿ

1ďa,bď|V pHq|

E

«

t

˜

H
à

a,b

H,WGn

¸ff

´ |V pHq|2E
”

tpH
ğ

H,WGnq

ı

, (E.4)
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where H
Ů

H is the disjoint union of two copies of H. Lemma 2.1 and Lemma 2.4 in
[56] implies that

E
”

tpH
ğ

H,WGnq

ı

ě tpH
ğ

H,W q ´
1

n

ˆ

2|V pHq|

2

˙

“ tpH,W q2 ´
1

n

ˆ

2|V pHq|

2

˙

and

ÿ

1ďa,bď|V pHq|

E

«

t

˜

H
à

a,b

H,WGn

¸ff

ď
ÿ

1ďa,bď|V pHq|

«

t

˜

H
à

a,b

H,W

¸

`
1

n

ˆ

2|V pHq| ´ 1

2

˙

ff

.

Substituting these bounds in (E.4) give,

ERpH,WGnq ď

|V pHq|
ÿ

a,b“1

t

˜

H
à

a,b

H,W

¸

´ |V pHq|2tpH,W q2 `Op1{nq

“ RpH,W q `Op1{nq,

where the last equality follows by recalling the definition of RpH,W q from (5.2). The
proof of Proposition 5.1 (1) is now complete by noticing that RpH,W q “ 0 when W is
H-regular.

‚ W is H-irregular: From Corollary 10.4 in [55] we know that RpH,WGnq
P
Ñ RpH,W q.

Since RpH,W q ą 0 whenever W is H-irregular, this implies
?
nRpH,WGnq

P
Ñ 8. This

completes the proof Proposition 5.1 (2).

Remark E.1. Note that (E.3) and (E.2) implies RpH,Gnq “ OP pnq, when W is H-regular.

Hence, anRpH,Gnq
P
Ñ 0, for any sequence tanuně1 such that an Ñ 8 and an{n Ñ 0. While

choosing an “
?
n shows Proposition 5.1 (1), the results in Section 5 would continue to hold

whenever an{n Ñ 0.

E.2. Proof of Theorem 5.1. Without loss of generality assume that W is irregular with
respect to H1, H2, . . . ,Hq and regular with respect to Hq`1, Hq`2, . . . ,Hr. To proceed with the

proof we first show that the distribution of Z̃pH, Gnq (recall (5.7)) converges to ZpH,W q.

Lemma E.1. Let Z̃pH, Gnq and ZpH,W q be as defined in (5.7) and (2.12), respectively. Then,
as n Ñ 8,

Z̃pH, Gnq
D
Ñ ZpH,W q. (E.5)

Proof. Recall that SpH, Gnq “ t1 ď i ď r :
?
nRpH,Gnq ą 1u is the set of indices where the

hypothesis of Hi-regularity is rejected. Define the event

Dn :“ tSpH, Gnq “ t1, 2, . . . , quu. (E.6)

Now, by Proposition 5.1 notice that,

PpDc
nq ď

q
ÿ

i“1

P pi R SpH, Gnqq `

r
ÿ

i“q`1

P pi P SpH, Gnqq
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“

q
ÿ

i“1

P
`?
nRpH,Gnq ď 1

˘

`

r
ÿ

i“q`1

P
`?
nRpH,Gnq ą 1

˘

“ op1q, (E.7)

sinceW is irregular with respect toH1, H2, . . . ,Hq and regular with respect toHq`1, Hq`2, . . . ,Hr.
Hence, to prove (E.5) it is enough to show that the characteristic functions converge. For this,
note that for any t P Rr,

E
”

eιt
JZ̃pH,Gnq

ı

“ E
”

eιt
JZ̃pH,Gnq1 tDnu

ı

` op1q.

Note that on the event Dn, Z̃npH, Gnq “ ZpH, Gnq (recall (2.10)). Therefore, (E.7) and Theorem
2.1 gives,

E
”

eιt
JZ̃pH,Gnq

ı

“ E
”

eιt
JZpH,Gnq1 tDnu

ı

` op1q “ E
”

eιt
JZpH,Gnq

ı

` op1q

Ñ E
”

eιt
JZpH,W q

ı

.

This completes the proof of Lemma E.1.
□

Now, we show that conditional on Gn the distribution of QpH, Gnq converges to ZpH,W q as
well.

Lemma E.2. Let QpH, Gnq and ZpH,W q be as defined in (5.5) and (2.12), respectively. Then,
as n Ñ 8,

QpH, Gnq | Gn
D
Ñ ZpH,W q,

in probability.

Proof. Recall the event Dn from (E.6). It follows from (E.7) that,

1 tDc
nu “ oP p1q. (E.8)

Then for any t P Rr,

E
”

eιt
JQpH,Gnq

ˇ

ˇ

ˇ
Gn

ı

“ E
”

eιt
JQpH,Gnq

ˇ

ˇ

ˇ
Gn

ı

1 tDnu ` oP p1q.

As before, on the event Dn, we have QpH, Gnq “ ẐpH, Gnq, where ẐpH, Gnq is defined in (4.7).
Hence, by (E.8) and Theorem 4.1,

E
”

eιt
JQpH,Gnq

ˇ

ˇ

ˇ
Gn

ı

“ E
”

eιt
JẐpH,Gnq

ˇ

ˇ

ˇ
Gn

ı

1 tDnu ` oP p1q “ E
”

eιt
JẐpH,Gnq

ˇ

ˇ

ˇ
Gn

ı

` oP p1q

P
Ñ E

”

eιt
JZpH,W q

ı

.

This completes the proof of Lemma E.2.
□

We now proceed to complete the proof of Theorem 5.1. To this end, using the continuous
mapping theorem along with Lemma E.1 and Lemma E.2 gives,

›

›

›
Z̃pH, Gnq

›

›

›

2

D
Ñ }ZpH,W q}2 and }QpH, Gnq}2 | Gn

D
Ñ }ZpH,W q}2 in probability.

Hence, recalling (5.8) and by Polya’s Theorem,

PpCpH, Gnqq “ P
´›

›

›
Z̃pH, Gnq

›

›

›

2
ď q̂1´α,H,Gn

¯

Ñ 1 ´ α,

where q̂1´α,H,Gn is the p1 ´ αq-quantile of the distribution of }QpH, Gnq}2 | Gn. l
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Appendix F. Proofs from Section 6

This section is organized as follows: In Section F.1 we prove Proposition 6.1. Proposition 6.2
is proved in Section F.2. In Section F.3 we derive the distribution of f̂pGnq under the alternative.

F.1. Proof of Proposition 6.1. For notational convenience define

TK2
n :“ 1

2 t̂pK2, Gnq and TC4
n :“ 1

8 t̂pC4, Gnq,

where t̂pH,Gnq is defined in (1.4). Recalling (6.2), note that

f̂pGnq “ hpTK2
n , TC4

n q, (F.1)

where hpx, yq “ 16x4 ´ 8y.
We begin by deriving the joint distribution of pTK2

n , TC4
n q underH0 as in (6.1). Note that under

H0, the Gn is distributed as an Erdős-Rényi random graph Gpn, pq, for p “ tpK2,W q P p0, 1q.
Hence, recalling Example 3.2, in particular from (3.3) and (3.4) we get,

n

ˆ

TK2
n ´ 1

2p
TC4
n ´ 1

8p
4

˙

D
Ñ N2p0,Σq, where Σ “ 1

2pp1 ´ pq

ˆ

1 p3

p3 p6

˙

. (F.2)

Now, a Taylor expansion of the function h around the point p12p,
1
8p

4q gives,

hpTK2
n , TC4

n q ´ hp12p,
1
8p

4q “ ∇hp12p,
1
8p

4qJTn ` TJ
n ∇2hp12p,

1
8p

4qTn ` oP
`

}Tn}2
˘

,

where

Tn :“
`

TK2
n ´ 1

2p, T
C4
n ´ 1

8p
4
˘J
, (F.3)

and ∇h,∇2h denote the gradient and hessian of h evaluated at the corresponding points. By def-
inition, hp12p,

1
8p

4q “ 0. Hence, a direct computation of ∇2hp12p,
1
8p

4q along with the convergence
in (F.2) gives,

hpTK2
n , TC4

n q “ ∇hp12p,
1
8p

4qJTn `OP

ˆ

1

n2

˙

. (F.4)

Since by definition f̂pGnq “ hpTK2
n , TC4

n q (recall (F.1)), the result in Proposition 6.1 follows from
(F.4) and the following lemma:

Lemma F.1. Under H0 as in (6.1),

n
3
2∇hp12p,

1
8p

4qJTn
D
Ñ N

`

0, 32p6p1 ´ pq2
˘

,

where Tn is defined in (F.3).

F.1.1. Proof of Lemma F.1. Notice that ∇hp12p,
1
8p

4qJ “ p8p3,´8q. Hence, recalling the defini-

tions of t̂pK2, Gnq and t̂pC4, Gnq from (1.4) gives,

∇hp12p,
1
8p

4qJTn “
8p3

pnq2

ˆ

XpK2, Gnq ´
pnq2

2
p

˙

´
8

pnq4

ˆ

XpC4, Gnq ´
pnq4

8
p4
˙

, (F.5)

where pnq2 “ npn´ 1q and pnq4 “ npn´ 1qpn´ 2qpn´ 3q. We will now compute the orthogonal
decomposition of (F.5) using the framework described in Section A.1.

To this end, recall the definition of Sn,¨p¨q from (A.10). Then using (A.16) we can rewrite
(F.5) as,

∇hp12p,
1
8p

4qJTn “
8p3

pnq2
Sn,2pfq ´

8

pnq4
Sn,4pgq, (F.6)

where the functions f and g are defined as follows:

‚ fpY12q “ 1 tY12 ď pu ´ p.
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‚ gptYij : pi, jq P EpK4quq “
ř3
i“1

ś

ePEpGiq
1 tYe ď pu´3p4, where G1, G2, G3 are cycles of

length four with edges EpG1q “ tp1, 2q, p2, 3q, p3, 4q, p4, 1qu, EpG2q “ tp1, 2q, p2, 4q, p4, 3q, p3, 1qu

and EpG3q “ tp1, 3q, p3, 2q, p2, 4q, p4, 1qu, respectively, and tYij “ Yji : 1 ď i ă j ď 4u are
independently generated from U r0, 1s.

Now, recalling (A.13) and following [45, Example 2] we get,

Sn,2pfq “
1

2
S̃n,2pfK2q, (F.7)

and

Sn,4pgq “
1

4
S̃n,4pgK2q `

1

6
S̃n,4pgK3q `

1

2
S̃n,4pgK1,2q `

ÿ

GPΓ4

S̃n,4pgGq

|AutpGq|
. (F.8)

where fG and gG are the projections of f and g on the subspace MG (recall (A.3)). A direct

counting argument gives, S̃n,2pfK2q “
pn´4q!
pn´2q! S̃n,4pfK2q. Hence, from (F.7) and (F.8), the RHS of

(F.6) can be rewritten as,

∇hp12p,
1
8p

4qJTn

“
8

pnq4

˜

S̃n,4

ˆ

1

2
p3fK2 ´

1

4
gK2

˙

´
1

6
S̃n,4pgK3q ´

1

2
S̃n,4pgK1,2q ´

ÿ

GPΓ4

S̃n,4pgGq

|AutpGq|

¸

. (F.9)

Using (A.9) we now compute the differents projections. To begin with, note that

fK2 “ p1 tY12 ď pu ´ pq and gK2 “ 2p3p1 tY12 ď pu ´ pq.

This shows that 1
2p

3fK2 ´ 1
4gK2 “ 0. Also, by computations similar to those in (A.26) and

(A.27), it can shown that gK3 “ 0. Further, by [45, Lemma 4],

8

pnq4

ÿ

GPΓ4

S̃n,4pgGq

|AutpGq|
“ oP pn´ 3

2 q.

Hence, (F.9) can be simplified as follows,

∇hp12p,
1
8p

4qJTn “
4

pnq4
S̃n,4pgK1,2q ` oP pn´ 3

2 q. (F.10)

Once again, computing the projection of g on MK1,2 using (A.9) we get,

gK1,2 “ p2p1 tY12 ď pu ´ pqp1 tY13 ď pu ´ pq. (F.11)

Using (F.10) and (F.11) together with the distributional convergence result in [45, Lemma 7],
we have

n
3
2∇hp12p,

1
8p

4qJTn “ n
3
2

4

pnq4
S̃n,4pgK1,2q ` oP p1q

D
Ñ N

`

0, 32p6p1 ´ pq2
˘

.

This completes the proof of Lemma F.1. l

F.2. Proof of Proposition 6.2. Recall the definition of f̂pGnq from (6.2). Then, since t̂pH,Gnq
P
Ñ

tpH,W q for every fixed graph H, it follows that

f̂pGnq “ t̂pK2, Gnq4 ´ t̂pC4, Gnq
P
Ñ fpW q “ tpK2,W q4 ´ tpC4,W q.
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The quasi-randomness result of Chung, Graham, and Wilson [20, Theorem 1], formulated in
terms of graphons (see [55, Section 11.8]), implies that fpW q ‰ 0, for any graphon W that is
not constant almost everywhere. Hence, under H1,

f̂pGnq

4
?

2 t̂pK2, Gnq3p1 ´ t̂pK2, Gnqq

P
Ñ

fpW q

4
?

2tpK2,W q3p1 ´ tpK2,W qq
ą 0.

Hence, recalling (6.4), Tn
P
Ñ 8, which now completes the proof.

F.3. Distribution of f̂pGnq under the Alternative. In this section we apply Theorem 2.1

to derive the limiting of f̂pGnq under the alternative.

Proposition F.1. Suppose |tpK2,W q4 ´ tpC4,W q| ą 0. Then the following hold:

‚ If W is irregular with respect to K2 and C4, then

?
npf̂pGnq ´ fpW qq

D
Ñ Np0, τ21 q,

where τ21 is defined in (F.12).
‚ If W is irregular with respect to K2 and regular with respect to C4, then

?
npf̂pGnq ´ fpW qq

D
Ñ Np0, τ22 q,

where τ22 is defined in (F.13).
‚ If W is regular with respect to K2 and irregular with respect to C4, then

?
npf̂pGnq ´ fpW qq

D
Ñ Np0, τ23 q,

where τ23 is defined in (F.14).
‚ If W is regular with respect to K2 and C4, then

npf̂pGnq ´ fpW qq
D
Ñ Z,

where the random variable Z is defined in (F.16).

K2 ˝ C4 “ C4

à

1,1

K2 C˝4 “ C4

à

1,1

C4 K2 ‚ C4 “ C4

à

p1,2q,p1,2q

K2 C‚‚4 “ C4

à

p1,2q,p1,2q

C4C˝˝4 “ C4

á

p1,2q,p1,2q

C4

(a) (b)

Figure 9. Graphs obtained from (a) vertex join operations and (b) edge join
operations, between a copy of K2 and a copy of C4.

Proof. Fix a graphonW such that |tpK2,W q4´tpC4,W q| ą 0. We consider the 4 cases separately,
depending on whether or not W is K2 or C4-regular.
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Case 1: W is irregular with respect to K2 and C4. In this case, Corollary 2.2 gives,

Zn “
?
n

ˆ

t̂pK2, Gnq ´ tpK2,W q

t̂pC4, Gnq ´ tpC4,W q

˙

D
Ñ N2

ˆ

0,

ˆ

τ11 τ12
τ21 τ22

˙˙

,

where
– τ11 “ tpK1,2,W q ´ tpK2,W q2,
– τ22 “ 1

4

“

t pC˝
4 ,W q ´ tpC4,W q2

‰

, where C˝
4 is the graph obtained by the vertex join

of 2 copies of C4 (as shown in Figure 9(a)).
– τ12 “ τ21 “ 1

2 ptpC4 ˝K2q ´ tpC4,W qtpK2,W qq, where C4˝K2 is the graph obtained
the vertex join of C4 and K2 (as shown in Figure 9(a)) .

Note that
?
npf̂pGnq ´ fpW qq “ 1JZn. Hence, by the continuous mapping theorem,

?
npf̂pGnq ´ fpW qq

D
Ñ N

`

0, σ21
˘

,

with

τ21 :“ τ11 ` τ22 ´ 2τ12. (F.12)

Case 2: W is irregular with respect to K2 and regular with respect to C4. In this case,
?
npt̂pK2,W

Gnq´

tpK2,W qq has a non-degenerate Gaussian limit, but
?
npt̂pC4, Gnq ´ tpC4,W qq has a de-

generate limit. In particular, from Theorem 2.1 we know that

Zn “
?
n

ˆ

t̂pK2, Gnq ´ tpK2,W q

t̂pC4, Gnq ´ tpC4,W q

˙

D
Ñ

ˆ

G1

0

˙

,

where G1 „ Np0, tpK1,2,W q ´ tpK2,W q2q. Since
?
npf̂pGnq ´ fpW qq “ 1JZn, this

implies,

?
npf̂pGnq ´ fpW qq

D
Ñ Np0, τ22 q,

where

τ22 :“ tpK1,2,W q ´ tpK2,W q2. (F.13)

Case 3: W is regular with respect to K2 and irregular with respect to C4. In this case,
?
npt̂pK2, Gnq´

tpK2,W qq has a degenerate limit, but
?
npt̂pC4, Gnq ´ tpC4,W qq has a non-degenerate

Gaussian limit. Hence, applying Theorem 2.1 we have,

Zn “
?
n

ˆ

t̂pK2, Gnq ´ tpK2,W q

t̂pC4, Gnq ´ tpC4,W q

˙

D
Ñ

ˆ

0
G2

˙

,

where G2 „ N
`

0, 14
`

tpC˝
4 ,W q ´ tpC4,W q2

˘˘

. Taking inner product of Zn with 1, then
gives

?
npf̂pGnq ´ fpW qq

D
Ñ Np0, τ23 q,

where

τ23 :“
1

4

`

tpC˝
4 ,W q ´ tpC4,W q2

˘

. (F.14)

Case 4: W is regular with respect to both K2 and C4. Then from Theorem 2.1,

Zn “ n

ˆ

t̂pK2, Gnq ´ tpK2,W q

t̂pC4, Gnq ´ tpC4,W q

˙

D
Ñ Z :“

ˆ

G1

G2

˙

`

ˆ ş ş `

W px, yq ´ 1
2 tpK2,W q

˘

dBxdBy
ş ş `

WC4px, yq ´ 3
4 tpC4,W q

˘

dBxdBy

˙

,

(F.15)
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where the Brownian motion tBtutPr0,1s and pG1, G2qJ „ N2p0,Σq are independent, and
the matrix Σ is given by:

Σ “
1

2

ˆ

tpK2,W q ´ tpC2,W q tpC4,W q ´ tpK2 ‚ C4,W q

tpC4,W q ´ tpK2 ‚ C4,W q tpC˝˝
4 ,W q ´ tpC‚‚

4 ,W q

˙

In this case, as shown in Figure 9(b), K2 ‚ C4 is the graph obtained by the strong edge
join of K2 and C4, C

˝˝
4 is the graph obtained by the weak edge join of 2 copies of C4,

and C‚‚
4 is the graph obtained by the strong edge join of 2 copies of C4.

Therefore,
?
npf̂pGnq ´ fpW qq “ 1JZn

D
Ñ 1JZ :“ Z, (F.16)

where Z as defined in (F.15).

□

Appendix G. Multiple Weiner-Itô Stochastic Integrals

In this section we recall the basic properties of multiple Weiner-Itô stochastic integrals as
presented in [41]. To begin with, let tBtutPr0,1s be the standard Brownian motion in r0, 1s. We
interpret the Brownian motion as a stochastic measure on pr0, 1s,Bpr0, 1sq, where Bpr0, 1sq is
the sigma-algebra generated by open sets of r0, 1s. Specifically, suppose tBpAq : A P Bpr0, 1squ

is a collection of random variables defined on a common probability space pΩ,F , µq such that

‚ BpAq „ Np0, λpAqq, for all A P Bpr0, 1sq, where λpAq is the Lebesgue measure of A.
‚ For any finite collection of disjoint sets A1, ¨ ¨ ¨ , At P BpX q, the random variables

tBpA1q, BpA2q, . . . ,BpAtqu are independent and

B

˜

t
ď

s“1

As

¸

“

t
ÿ

s“1

BpAsq.

For d ě 1, denote by L2pr0, 1sdq the space of measurable functions f : X d Ñ R such that

}f}22 :“

ż

r0,1sd
|fpx1, x2, . . . , xdq|2dx1dx2 . . . ,dxd ă 8.

Define Ed Ď L2pr0, 1sdq as the set of all elementary functions having the form

fpt1, t2, . . . , tdq “
ÿ

1ďi1,i2,...,idďm

ai1,i2,...,id1tpt1, t2, . . . , tdq P Ai1 ˆ ¨ ¨ ¨ ˆAidu, (G.1)

where A1, A2, . . . , Am P r0, 1s are measurable sets which are pairwise disjoint and ai1,i2,...,id is
zero if two indices are equal. The multiple Weiner-Itô integral for functions in Ed is defined as
follows:

Definition G.1. (Multiple Weiner-Itô integral for elementary functions) The d-dimensional
Weiner-Itô stochastic integral, with respect to the standard Brownian motion tBtutPr0,1s, for the
function f P Ed in (G.1) is defined as

Idpfq :“

ż

r0,1sd
fpx1, x2, . . . , xdq

d
ź

a“1

dBpxaq :“
ÿ

1ďi1,i2,...,idďm

ai1,i2,...,idBpAi1q ˆ ¨ ¨ ¨ ˆBpAidq.

The multiple Weiner-Itô integral for elementary functions satisfies the following two properties
[41]:

‚ (Boundedness) For f P Ed, ErIdpfq2s ď d!}f}2 ă 8.

‚ (Linearity) For f, g P Ed, Idpf ` gq
a.s.
“ Idpfq ` Idpgq.



HIGHER-ORDER GRAPHON THEORY 65

This shows that Id is a bounded linear operator from Ed to L2pΩ,F , µq, the collection of square-
integrable random variables defined on pΩ,F , µq. Since Ed is dense in L2pr0, 1sd,Bpr0, 1sdq, λdq

(by [41, Theorem 2.1]), using the BLT theorem (see [71, Theorem I.7]) Id can be uniquely
extended to L2pr0, 1sd,Bpr0, 1sdq, λdq by taking limits. (Here, λd denotes the Lebesgue measure
on r0, 1sd.) This leads to the following definition:

Definition G.2. (Multiple Weiner-Itô integral for general L2-functions) The d-dimensional
Weiner-Itô stochastic integral, with respect to the standard Brownian motion tBtutPr0,1s, for a

function f P L2pr0, 1sdq is defined as the L2 limit of the sequence tIdpfnquně1, where tfnuně1 is
a sequence such that fn P Ed with limnÑ8 }fn ´ f}2 “ 0. This is denoted by:

Idpfq :“

ż

r0,1sd
fpx1, x2, . . . , xdq

d
ź

a“1

dBpxaq. (G.2)

As in the case of elementary functions, it can be easily checked that Idpfq satisfies the following
properties:

‚ (Boundedness) For f P L2pr0, 1sdq, ErIdpfq2s ď d!}f}22 ă 8.

‚ (Linearity) For f, g P L2pr0, 1sdq, Idpf ` gq
a.s.
“ Idpfq ` Idpgq.

It is also important to note that multiple Weiner-Itô integrals do not behave like classical (non-
stochastic) integrals with respect to product measures, since by definition diagonal sets do
not contribute to the stochastic integral. Nevertheless, one can express the multiple Weiner-Itô
integral for a product function in terms of univariate stochastic integrals using the Wick product
(cf. [44, Theorem 7.26]). In the bivariate case, with 2 functions f, g P L2pr0, 1s2q, this simplifies
to
ż

r0,1s

ż

r0,1s

fpxqgpyqdBpxqdBpyq “

ż

r0,1s

fpxqdBpxq

ż

r0,1s

gpyqdBpyq ´

ż

r0,1s

fpxqgpxqdx. (G.3)

Another important property is that one can interchange stochastic integrals with infinite sums
over an orthonormal and symmetric set of functions, as shown in the following result:

Proposition G.1. Let f P L2pr0, 1sdq and tφsusě1 is an orthonormal and symmetric set of
functions in L2pr0, 1sdq. Suppose there exists constants tαsusě1 such that

f “
ÿ

sě1

αsφs,

is well-defined. Then

Idpfq
a.s.
“

ÿ

sě1

αsIdpφsq. (G.4)

Proof. For N ě 1, define the truncated the truncated version of f :

fN :“
N
ÿ

s“1

αsφs.

By Bessel’s inequality,
ř

sě1 α
2
s ď }f}22 ă 8. Then by [49, Lemma 6.8] along with the orthonor-

mality of tφsusě1 gives,

}f ´ fN}
2
2 “ op1q.

By the linearity of stochastic integrals we know that IdpfN q “
řN
s“1 αsIdpφsq. To complete the

proof it is now enough to show that both RHS and LHS of (G.4) are L2 limits of IdpfN q, as
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N Ñ 8. For this, using the boundedness property of stochastic integrals note that,

E
”

pIdpfq ´ IdpfN qq
2
ı

“ E
“

Idpf ´ fN q2
‰

ď d! }f ´ fN}
2
2 “ op1q.

This shows that the LHS of (G.4) is the L2 limit of IdpfN q, as N Ñ 8. For the RHS note that
by definition the functions tφsusě1 are symmetric in their arguments. Hence, by [44, Theorem
7.29], for all s ě 1, Idpφsq “ d!Jdpφsq, where the operator Jdp¨q is defined as,

Jdpgq :“

ż

Dd

gpx1, x2, . . . , xdqdBx1 ¨ ¨ ¨ dBxd ,

for g P L2pDdq, with

Dd :“
!

px1, . . . , xdq P r0, 1sd : 0 ă x1 ă x2 ă ¨ ¨ ¨ ă xd ă 1
)

.

By Theorem 7.6 and Theorem 7.3 from [44] we know that Jd is an isometry. Hence,

E

»

–

˜

ÿ

sě1

αsIdpφsq ´

N
ÿ

sě1

αsIdpφsq

¸2
fi

fl “ d!2E

»

–

˜

ÿ

sě1

αsJdpφsq ´

N
ÿ

sě1

αsJdpφsq

¸2
fi

fl “ op1q,

where the last equality follows by noticing that tφsusě1 are orthonromal and Jd is an isometry.
This shows, recalling the linearity of stochastic integrals, that the RHS of (G.4) is the L2 limit
of IdpfN q, which completes the proof. □
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