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HIGHER-ORDER GRAPHON THEORY: FLUCTUATIONS,
DEGENERACIES, AND INFERENCE

ANIRBAN CHATTERJEE, SOHAM DAN, AND BHASWAR B. BHATTACHARYA

ABSTRACT. Exchangeable random graphs, which include some of the most widely studied net-
work models, have emerged as the mainstay of statistical network analysis in recent years.
Graphons, which are the central objects in graph limit theory, provide a natural way to sample
exchangeable random graphs. It is well known that network moments (motif/subgraph counts)
identify a graphon (up to an isomorphism), hence, understanding the sampling distribution of
subgraph counts in random graphs sampled from a graphon is pivotal for nonparametric net-
work inference. Although there are a few results regarding the asymptotic normality of subgraph
counts in graphon models, for many commonly appearing graphons this distribution is degen-
erate. This degeneracy phenomenon was overlooked until very recently and its consequences in
network inference have remained unexplored. Towards this, we obtain the following results:

e We derive the joint asymptotic distribution of any finite collection of network moments in
random graphs sampled from a graphon, that includes both the non-degenerate case (where
the distribution is Gaussian) as well as the degenerate case (where the distribution has
both Gaussian or non-Gaussian components). This provides the higher-order fluctuation
theory for subgraph counts in the graphon model.

e We develop a novel multiplier bootstrap for graphons that consistently approximates the
limiting distribution of the network moments (both in the Gaussian and non-Gaussian
regimes). Using this and a procedure for testing degeneracy, we construct joint confidence
sets for any finite collection of motif densities. This provides a general framework for
statistical inference based on network moments in the graphon model.

Examples and simulations are provided to validate the general theory. To illustrate the broad
scope of our results we also consider the problem of detecting global structure (that is, testing
whether the graphon is a constant function) based on small subgraphs. We propose a consistent
test for this problem, invoking celebrated results on quasi-random graphs, and derive its limiting
distribution both under the null and the alternative.

1. INTRODUCTION

Networks provide a convenient way to represent complex relational data. The ubiquitous
presence of network data in recent years has led to the development of several probabilistic
models for random graphs that aim to capture various features of real-world networks. One of
the most extensively studied models for network data are exchangeable random graphs [1, 10, 11,
21, 24, 38, 55|, where the distribution of the network, given the location of the nodes, remains
unchanged under permutations of the node labels. The celebrated Aldous-Hoover theorem
[1, 38] shows that any exchangeable random graph of infinite size can be generated by first
sampling independent node variables {U;};>1 uniformly on [0,1], and then connecting each
pair of nodes (7,j) independently with probability W (U;,Uj), for some measurable function
W : [0,1]> — [0, 1] which is symmetric, that is, W(z,y) = W(y,z), for all z,5 € [0,1]. The
function W is commonly referred to as a graphon. Graphons arise as limits of sequences of
dense graphs and is the fundamental object in graph limit theory [14, 16, 55]. The theory of
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graph limits has been extensively studied since its inception and is the backbone of several
beautiful results in combinatorics, probability, statistics and related areas (see [55] for a book
length treatment). As mentioned before, graphons provide a natural way for sampling finite
exchangeable random graphs, a concept that has appeared independently in various contexts
(see [11-13, 23, 35, 56] among others). We describe this formally in the following definition:

Definition 1.1 (Graphon random graph model). Given a graphon W : [0,1]> — [0,1], a
W-random graph on the set of vertices [n] := {1,2,...,n}, hereafter denoted by G(n,W), is
obtained by connecting the vertices i and j with probability W (U;, U;) independently for all
1 <i<j<n,where {U; : 1 <i < n}isan iid. sequence of U[0,1] random variables. An
alternative way to achieve this sampling is to generate i.i.d. sequences {U; : 1 < i < n} and
{Yi; 1 1 <i < j <n} of U[0,1] random variables and then assigning the edge (7, ) whenever
{Y;j < W(UZ’,UJ‘)}, for 1 < 7 < j <n.

The model in Definition 1.1 will be referred to as the W-random model or the graphon random
graph model. This includes many well-known network models such as, the classical Erdés-Rényi
random graph model (where W = W, = p € [0, 1] is the constant function), the stochastic block
model [10, 37] (and its many variations), smooth graphons [30], random dot-product graphs
[3, 73] (see also Lei [52]), and random geometric graphs [69], among others.

Network moments or motif counts are the frequencies of particular patterns (subgraphs) in
a network, such as the number/density of edges, triangles, or stars in a network [2, 62, 78].
Motif counts encode structural information about the geometry of a network and are important
summary statistics for potentially large networks. They are the building blocks of network
models, such as Exponential Random Graph Models (ERGMs) [19, 40, 64, 65, 76, 83, 84], and
many features of a network of practical interest can be derived from the motif counts, such
as clustering coefficient [81], degree distribution [70], and transitivity [36] (see [74] for others).
This has propelled the fast growing literature on counting and estimating network motifs under
various sampling models (see [6, 7, 25, 32, 48, 59] and the references therein).

In the framework of the graphon model, network method of moments, introduced in the semi-
nal papers [11, 15], is an important tool for inferring properties of the underlying graphon based
on the motif counts of the observed network. This makes understanding the asymptotic proper-
ties of subgraph counts in W-random graphs a problem of central importance in network analysis.
To this end, suppose G,, is the observed graph sampled from the W-random model G(n, W).
Then for a finite simple graph! (motif) H = (V(H), E(H)), with V(H) = {1,2,...,|V(H)|}
such that |V (H)| = 2, the H-th empirical network moment is the number of copies of H in G,,.
This will be denoted by X (H, G,), which can be expressed more formally as:

X(H,Gp) = D > [T 1V, <WULT,)}, (1)

Iii <<ty )| <n H'e9y ({iv,..,5)v ()| }) (is,5¢)€E(H)

where, for any set S < [n], 95 (S) denotes the collection of all subgraphs of the complete graph
K| on the vertex set S which are isomorphic to H 2 Note that
[V(H)!
Gy ({1,...,|V(H = —
(L VD] = O
where Aut(H) is the set of all automorphisms of the graph H, that is, the collection of per-
mutations of the vertex set V(H) such that (z,y) € E(H) if and only if (o(x),0(y)) € E(H).

1A graph is said to be simple if it has no self-loops and does not contain more than one edge between a pair
of vertices.

2Note that we count unlabelled copies of H. Several other authors count labelled copies, which multiplies
X(H,Gr) by |Aut(H)]|.
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Therefore, by exchangeability,

E[X(H,Gyn)] = > > [ P <W(U,UL))
I<iy <<ty ()| <n H'e9y ({i1,.-ijv ()| }) (is,ie)eE(H')
_ (M)
 |Aut(H)

MEW% (1.2)
where (n)y () :=n(n—1)---(n— [V(H)| + 1) and

|V (H
t(H,W) = W(xg,x dz, 1.3
= [ JT W T] 1)

is the homomorphism density of the graph H in the graphon W. The homomorphism den-
sity t(H,W) can be interpreted as the probability that a W-random graph on |V (H)| vertices
contains the graph H, that is,

t(H, W) = P[H < G(V(H)|,W)].

One of the fundamental results in graph limit theory is that the homomorphism densities identify
a graphon up to a measure-preserving transformation. The computation in (1.2) shows that

|Aut(H)| )\
(v

is an unbiased estimate of the homomorphism density ¢t(H, W). To assess the uncertainty and
confidence of this estimate it is essential to understand the fluctuations (asymptotic distribution)
of t(H,G,,) (equivalently that of X (H,G,,)). In fact, many inferential tasks in network analysis,
such as estimating the clustering coefficient or testing for global structure, require understanding
the joint distribution of multiple (more than 1) subgraph counts. This raises following natural
questions:

H(H,Gn) = X(H,Gn) (1.4)

(Q1) Given a collection of r graphs H = {H1, Ha, ..., H,}, what is limiting joint distribution

of X('H, Gn) = (X(Hh Gn)a X(H% Gn)7 T 7X(Hra Gn))—r?

(Q2) How can one construct asymptotically valid joint confidence sets for the homomorphism

densities ¢(H, W) = (t(Hy, W), t(Hy, W),...,t(H,,W))" based on a single realization
of the sampled graph G,,?

Despite the growing interest in the random graphon model and the network method of mo-
ments, existing results provide only a limited understanding of these questions. In this paper we
develop a framework for studying the asymptotic properties of network moments, which resolves
the questions above in its full generality and closes several gaps in the existing literature. We
summarize our results in the following sections.

1.1. Joint Distribution of Network Moments. The asymptotic distribution of subgraph
counts in the Erdds Rényi model, where W = W), = p is a constant function, has been classi-
cally studied, using various tools such as U-statistics [66, 67], method of moments [75], Stein’s
method [5], and martingales [42, 43] (see also [46, Chapter 6]). In particular, when p € (0,1) is
fixed and Gy, ~ G(n,W)), X(H,G,) is known to be asymptotically jointly normal for any finite
collection H of non-empty graphs (see [45, Section 9]). For general graphons W, the fluctua-
tions of X(H,G),) (or that of the empirical homomorphism density t(H,G),) (see (2.2) for the
definition) has received significant attention recently. This began with the work of Bickel et al.
[11], where the asymptotic Gaussian distribution for subgraph counts was established, under
certain sparsity assumptions. Later, using the framework of mod-Gaussian convergence, Féray,
Méliot, and Nikeghbali [27] derived the asymptotic normality, moderate deviations, and local
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limit theorems for the empirical homomorphism density. The joint Gaussian convergence of a
finite collection of empirical homomorphism densities was established in Delmas et al. [22]. Re-
cently, Zhang [86] derived rates of convergence to normality (Berry—Esseen type bounds), Zhang
and Xia [85] obtained Edgeworth expansions, and Austern and Orbanz [4] studied connections
to exchangeability, for X (H, G,,) (or its related variations). Other related results include central
limit theorems with rates of convergence for centered subgraph counts [47], analysis of localized
subgraph counts [60], and motif counts in bipartite exchangeable networks [50].

One interesting feature that has escaped attention is that the limiting normal distribution
of the subgraph counts obtained in the aforementioned works can be degenerate depending on
the structure of the graphon W. For instance, in a planted bisection model [63] (a stochastic
block model with two equal-sized communities and connection probabilities p and ¢ within and
between blocks, respectively), the limiting distribution of network moments such as edges and
triangles are degenerate (see Case 4 in Example 3.1). This degeneracy phenomenon was noted in
Féray et al. [27], and first systemically studied by Hladky et al. [34] when H = Ky, is the R-clique
(the complete graph on R vertices), for some R > 2. This was extended to general subgraphs
H by Bhattacharya et al. [8]. Here, it was shown that the usual Gaussian limit of X (H,G,,)
is degenerate when a certain regularity function, which encodes the homomorphism density of
H incident to a given ‘vertex’ of W, is constant almost everywhere. In this case, the graphon
H is said to be H-regular (see Definition 2.1) and the asymptotic distribution of X (H,G,,)

(with another normalization, differing by a factor n%) can have two components: a Gaussian
component and another independent (non-Gaussian) component which is a (possibly) infinite
weighted sum of centered chi-squared random variables. This degeneracy phenomenon also
appears in the subsequent work of Chatterjee and Huang [18] on the fluctuations of the largest
eigenvalue. Very recently, Huang et al. [39] established an invariance principle for X (H,Gy)
that encompasses higher-order degeneracies.

In this paper we generalize the above results, which only considers the marginal distribution
of a single subgraph count, to joint distributions (recall (Q1)). Specifically, we derive the limit-
ing joint distribution of X (H,G,) := (X (H1,Gy), X (Ha,Gy), ..., X (H,.,G,))" (appropriately
centered and scaled), when W is irregular with respect to Hy,--- , H, for some 1 < ¢ < r, and
regular with respect to Hyy1, Hyy2,...,H,. This is significantly more delicate than marginal
convergence, because of the non-Gaussian dependencies between and within the irregular and
regular marginals. Towards this, using the asymptotic theory of generalized U-statistics devel-
oped by Janson and Nowicki [45] and the framework of multiple stochastic integrals we show
the following (see Theorem 2.1 for the formal statement):

e The limiting distribution of ((X(H;, Gy)))1<i<q (the irregular marginals) is a linear sto-
chastic integral in terms of the regularity function.

e The limiting distribution of ((X(H;,Gn)))g+1<i<r (the regular marginals) is the sum of
two independent components; one of which is a multivariate Gaussian and the other is
a bivariate stochastic integral in terms of the 2-point conditional kernel of H; in W.

The stochastic integrals are with respect to the same underlying Brownian motion on [0, 1], which
captures the dependence between the different marginals. This result goes beyond the well-
known sampling convergence (law of large numbers) for subgraph densities (see [55, Corollary
10.4]) and also the first-order Gaussian fluctuations. Hence, our results can be thought of as the
higher-order fluctuation theory for subgraph counts in the random graphon model. The formal
statement of the results are given in Section 2. In Section 3 we illustrate the general theory in
some examples.

1.2. Joint Confidence Sets. To use the results described in the previous section for statistical
inference (recall (QQ2)), one needs to estimate the quantiles of the limiting distribution of the
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subgraph counts (which depend on the unknown graphon W). This is particularly relevant
because network moments commonly appear in inferential tasks such as goodness-of-fit and two-
sample problems (see [17, 31, 51, 53, 61, 68, 77, 79, 82] among several others), which requires one
to approximate the quantiles of the sampling distribution of the subgraph counts. Towards this
different network bootstrap and subsampling methods have been proposed (see [9, 33, 53, 54, 58,
85] and the references therein). However, most of the existing results on bootstrap consistency
are restricted to the regime where the subgraph count has a non-degenerate Gaussian distribution
(and some of them also require the network to be sparse). The literature is surprisingly silent
in the case where the Gaussian distribution is degenerate. The recent paper [77] appears to be
the only one that directly address the degeneracy issue in the context of network two-sample
testing. However, their result requires the network to be sparse (in addition to other technical
conditions) and, hence, does not directly apply to the dense regime.

In this paper we develop a multiplier bootstrap method for approximating the limiting joint
distribution of the network moments that remains valid even if the Gaussian distribution is
degenerate. On a high level, this entails replacing the graphon W in the limiting distribution
with its empirical counterpart (obtained from the observed graph G, ) and introducing random
Gaussian multipliers (which are independent of G,). For the irregular marginals (where the
limiting distribution is Gaussian), the estimate takes the form a linear combination of Gaussians
with weights given by an empirical estimate of the regularity function. On the other hand, for
the regular marginals, the estimate is a quadratic form in Gaussians in terms of an empirical
estimate of the 2-point conditional kernel (see (4.5) for the formal definition). We show that this
estimate, interestingly, converges to the joint distribution of the network moments, conditional
on the observed network G, with no additional assumptions on the graphon W (Theorem 4.1).
We refer to this as the graphon multiplier bootstrap. Details are given in Section 4.

The graphon multiplier bootstrap, however, cannot be directly used for constructing confi-
dence sets for the homomorphism densities, because we do not know which of the subgraphs in
‘H are regular with respect to W. For this we develop a test for regularity based on a consistent
estimate of the variance of the limiting Gaussian distribution (Proposition 5.1). Combining this
with the graphon multiplier bootstrap we construct joint confidence sets for the homomorphism
densities that are asymptotically valid for any finite collection of subgraphs (Theorem 5.1). To
validate the theoretical results, we also study the finite sample performance of the proposed
method in simulations. Details are given in Section 5.

1.3. Testing for Global Structure. The framework for analyzing the asymptotic properties
network moments discussed above, readily applies to many problems in network inference. To
illustrate, here we consider the problem of detecting global structure based on small subgraphs.
Different variations of this problem have appeared in the literature. For instance, Gao and
Lafferty [29] considered testing whether a degree-corrected block model has any structure, that
is, whether it has a single community (which corresponds to no structure) versus it has more
than 1 community (see also [28] for related results). In the graphon framework, detecting global
structure corresponds to testing the null hypothesis:

Hy : W = p almost everywhere for some p € (0,1), (1.5)

based on a single observed network G, from the W-random model. For this problem, Fang
and Rollin [26] proposed a universally consistent test based on the densities of the edge and
the 4-cycle, invoking the celebrated result of Chung, Graham, and Wilson [20] about quasi-
random graphs. In this paper, using the same quasi-randomness result, we propose a simpler
test statistic which also gives a universally consistent test. Our proposal relies on the observation
that Ho in (1.5) holds if and only if f(W) := t(Ka, W)* — t(C4, W) = 0, where Ko denotes
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the edge and Cy denotes the 4-cycle. Consequently, a test which rejects for large values of
f(Gy) = t(Ka, Gp)* — #(Cy, Gy) (recall (1.4)) will be universally consistent. In Section 6 we
derive the limiting distribution of f (G,,) under both the null and the alternative, using the
techniques employed in Section 1.1. This allows us to obtain a test with precise asymptotic
level (unlike the test in [26] which is conservative) and also understand its fluctuations under
the alternative.

2. ASYMPTOTIC JOINT DISTRIBUTION OF NETWORK MOMENTS

We begin by introducing the notion of regularity, the conditional 2-point kernel, and other re-
lated concepts in Section 2.1. In Section 2.2 we define the graph join operations. The asymptotic
joint distribution of the subgraph counts are given in Section 2.3.

2.1. Conditional Homomorphism Density. Recall the definition of homomorphism density
for a simple graph from (1.3). This extends easily to multigraphs as follows: The homomorphism
density of a fixed multigraph F' = (V(F), E(F')) (without loops) in a graphon W is defined as:

HE, W) J

[V (F)|
W(zq, dzg. 2.1
[0,1]IV () (abg(f,) (2a, 7) }:[1 ! 1)

Note that (2.1) is a natural continuum extension of the homomorphism density of a fixed graph
F = (V(F), E(F)) into finite (unweighted) graph G = (V(G), E(G)) defined as:
_ |hom(F,G)|
V@)V

where |hom(F,G)| denotes the number of homomorphisms of F into G. In fact, ¢(F,G) is
the proportion of maps ¢ : V(F) — V(G) which define a graph homomorphism. Defining the
empirical graphon associated with the graph G as:

Wz, y) = H(IV(G)z], [[V(G)ly]) € E(G)}, (2.3)

it can be easily verified that t(F,G) = t(F,W%). (In other words, to obtain the empirical
graphon W¢ from the graph G, partition [0,1]? into |V (G)|? squares of side length 1/|V(G)|,
and let WY (z,y) = 1 in the (4, j)-th square if (i, j) € F(G), and 0 otherwise.)

We now introduce the notion of conditional homomorphism densities and H-regularity of
graphons.

t(F,G): (2:2)

Definition 2.1. (1-point conditional homomorphism density and H-regularity) Fix a € V(H)
and z € [0,1]. Then 1-point conditional homomorphism density function of H in a graphon W
given the vertex a is defined as:

ta(e, HW) :=E | [][ WU |Us=2
(a,b)eE(H)

In other words, t,(xz, H, W) is the homomorphism density of H in the graphon W when the
vertex a € V(H) is marked with the value x € [0,1]. A graphon W is said to be H-regular if

) L van)
t(x, HW) := V) D talz, HW) = t(H,W), (2.4)
a=1

for almost every x € [0, 1]. We say W is H-irregular if it is not H-regular.
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To illustrate the notion of regularity, we consider the following 3 examples: (1) H = K3 is
the edge, (2) H = K3 is the triangle, and (3) H = K 2 is the 2-star. These 3 choices of H will
be the running examples throughout the paper.

e H = K is the edge: In this case, for any a € {1,2}, by symmetry,
1
to(z, Ko, W) = E[W (U1,U2)|U, = z] = f W(z,y)dy := dw(z),
0

is the degree function of W. Hence, a graphon W is Ks-regular if and only the degree
function dyy is constant almost everywhere, that is, W is degree-regular.
e H = K3 is the triangle: Again, by symmetry, for all 1 < a < 3,

11
to(z, K3, W) =L fo W (x,y)W (y, 2)W (z, z)dydz,

which is the homomorphism density of triangles incident at the point x € [0, 1].
o H = K3 is 2-star: Suppose the vertices of Ko are labeled {1,2,3} with the central
vertex labeled 1. Then we have the following;:
—Fora=1, t1(z, K12, W) = Sé Sé W (z,y)W (z, 2)dydz = dy (x)>.
— For a e {2,3}, to(z, K12, W) = Sé Sé W(z,y)W(y, z)dydz.
Hence,

H, Ky, W) = % <dW(m)2 49 L 1 L W)W . z)dydz) .

Next, we define the 2-point conditional homomorphism density and the kernel derived from it.
This kernel will arise in the non-Gaussian component of the limiting distribution of X (H, Gy,)
in the regular regime.

Definition 2.2. (2-point conditional homomorphism density) Fix a # b€ V(H) and z € [0, 1].
Then the 2-point conditional homomorphism density function of H in a graphon W given the
vertices a and b is defined as:

ta,b(wvvaa W) =K H W(U(lvUb> ‘ Ua =7, Ub =Y
(a,b)eE(H)
Further, the 2-point conditional kernel of H is defined as:
1
%% = — t HW). 2.5
H(nyy) 2|Aut(H)] Z a,b(x73/7 ) ) ( )
1<a#b<|V (H)|
For illustration, as before, we consider the following examples:
o H = Ky is the edge: In this case, t12(z,y, K2, Gp) = ta1(x,y, K2, Gr) = W(z,y). Hence,
Wr(x,y) = M, that is, the 2-point conditional kernel is the scaled graphon W.
o H = K3 is the triangle: By symmetry, tq(z,y, K3, W) = t12(x,y, K3, W) for all 1 <
a # b < 3. Hence, the 2-point conditional kernel is given by,

2

since |[Aut(K3)| = 3! = 6.
o H = K3 is 2-star: Suppose the vertices of Ko are labeled {1,2,3} with the central
vertex labeled 1. Then we have the following:
— For a =1 and b € {2,3},

ta,b(:l:a y7K1,27 W) = W($7y)dW(:E) and tb,a($7y7K1,27 W) = W($7 y)dW(y)

1 1 !
Wicy(:9) = 5tuaey Ko, W) = 5Wlay) | W(e )W (2. 0)ds,
0
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H Hy H\@PH,
a,b

FIGURE 1. The (a,b)-vertez join of the graphs H; and Hs.

— For the remaining vertex pairs (2, 3) and (3,2),

1
tos(x,y, K12, W) = t32(x,y, K12, W) = J Wz, z)W(z,y)dz.
0

Hence, the 2-point conditional kernel is given by,

Wi, () = [vaxawuymZ+W@yxw4>+wm>ﬂ

Remark 2.1. Note that a graphon W is H-regular (see Definition 2.1) if and only if the 2-point
conditional kernel Wy is degree regular. This is because, for all x € [0, 1],

WH(QT,y)dy = Ol Ar I ta(l‘aHa W)? (26)
L 2|Aut(H)| a;

and the RHS of (2.6) is a constant if and only if W is H-regular. In fact, if W is H-regular,
then |V(H)| ZlV(H)lt (x, H,W) = t(H,W) almost everywhere. Hence, the degree function of
Wy becomes

' VDIV H) - 1)
4 dy = t(H,W):=d 2.7
for almost every z € [0, 1].
Note that [Wg| < % := K. Hence, Wg defines an operator Tyy,, : L?[0,1] —
L?[0, K] as follows:
T 1)) = [ Wate) S, 2:)

for each f e L2[0,1]. T Wy is a symmetric Hilbert—Schmidt operator; thus it is compact and has
a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we
denote by Spec(Wp), such that

2 M= J Wy (x,y)?dady < o0.
AeSpec(Wr)

Note that if W is H-regular, then dy,, is an eigenvalue of the operator Ty, (recall (2.8))
and ¢ = 1 is a corresponding eigenvector. In this case, we will use Spec™ (Wp) to denote the
collection Spec(Wp) with the multiplicity of the eigenvalue dyy,, decreased by 1.
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2.2. Graph Join Operations. The variance of the subgraph count X (H, G,,) involves different
graphs obtained by joining 2 isomorphic copies of H. To describe the asymptotic variance
succinctly it is convenient to define some basic graph join operations (as in [8]). To this end,
suppose H = (V(H),E(H)) is a graph with vertex set V(H) = {1,2,...,|V(H)|}. Denote by
E*(H) the ordered pairs of edges in H, that is, ET(H) = {(a,b) : 1 <a #b<r,(a,b) or (b,a) €

Definition 2.3. Suppose H; = (V(H1), E(H1)) and Hy = (V(Hz), E(H2)) be two graphs with
vertex sets V(Hy) = {1,2,...,|V(H))|} and V(H2) = {1,2,...,|V(H2)|} and edge sets E(H;)
and E(Hs), respectively.

o Vertex Join: For a € V(H;) and b € V(Hz), the (a,b)-vertex join of Hy and Ha, denoted
by

HI@H27
a,b

is the graph obtained by identifying the a-th vertex of H; with the b-th vertex of Hs
(see Figure 1).

e Weak Edge Join: For (a,b) € ET(Hy) and (¢,d) € ET(H;y), with 1 < a # b < r and
1 <e#d<r, the (a,b),(c,d)-weak edge join of Hy and Hs, denote by

H © H,
(a,b),(c,d)

is the graph obtained identifying the vertices a and ¢ and the vertices b and d and keeping
a single edge between the two identified vertices (see Figure 2).

e Strong Edge Join: For (a,b) € ET(Hy) and (¢,d) € ET(Hs), with 1 < a # b < r and
1 <c#d<r, the (a,b),(c,d)-strong edge join of H; and Ha,

Hl @ H27

(a,b),(c,d)

is the multi-graph obtained identifying the vertices a and ¢ and the vertices b and d and
keeping both the edges between the two identified vertices (see Figure 2).

2.3. Joint Distribution of Subgraph Counts. Suppose H = {Hq,--- , H,} is a collection of

finite simple graphs, where H; = (V(H;), E(H;)) with vertices labeled V (H;) = {1,2,--- , |V (H;)|}
and |V (H;)| = 2, for 1 <i < r. To begin with, for any finite simple graph H = (V(H), E(H)),

with |V (H)| > 2, define

( xH.G,) — PwuntEW)
|AIUt(H)| if W is H-irregular,
nlVH)=35
2(H.GL) — (2.9)
() (o) E(H, W)
[Aut(H)]
nlV(H)|-1

X(H,Gy) —

if W is H-regular.

Our goal is to derive the limiting distribution of
Z(H,Gp) = (Z(Hy,Gp), Z(Hy,Gr), ..., Z(H,,Gy))". (2.10)

For this we need to define the following covariance matrix:
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H © H
(a;b),(c.d)
a C
b d 1
H, Hy
H @ H
(a,b),(c.d)

FIGURE 2. The weak and strong edge joins of the graphs H; and Hs.

Definition 2.4. Given a graphon W and finite collection of graphs {Fy, Fy, ..., F)}, such that
W is regular with respect to Fy, Fy,...,F,. Then define a p x p matrix ¥ := (0yj)1<i j<p as
follows:

t(ﬂ ) Fj,W>—t<F,- P Fj,W>], (2.11)
(a ,d) )

: >
o = , )
2|Aut(F;)|[Aut(Fy)| ) (a,b),(c,d

(a,b)eE* (F;)
(c;d)eE*(Fy)

forall 1 <4, <p.

We are now ready to state our result about the limiting distribution of subgraph counts.
To this end, denote by {B; : t € [0,1]} the standard Brownian motion on [0, 1] and recall the
framework of multiple Weiner-It6 stochastic integrals from Section G.

Theorem 2.1. Fiz a graphon W and a finite collection of non-empty graphs H = {Hy, Ha, ..., H,},
such that W is irreqular with respect to Hy,--- , Hy for some 1 < q < r and regular with respect
to Hyp1,Hgqo,..., H,. Then

ZH,Gy) B Z(H W) = (Z(H\,W), Z(Hs,W),..., Z(H,, W))T, (2.12)
such that
e for 1 <i<gq,

|V (H;)|
> tala, Hi, W) —

a=1

[V (Hi)|

mt(ﬂu W) ¢ dBg,

! 1
2= |3
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o forgq+1<i<r,
1 p1 . ) —
Z(H;, W) :=G; +L L {WHi(:C,y) - |V(H;)"[£u‘tf((g>)‘ 1Dt(HZ-, W)} dB,dB,,

where G = (Ggy1, - ,Gr) ~ Np—g(0,%), with ¥ = ((045))g+1<ij<r as in (2.11), is
independent of { Bt}e[0,1]-

The proof of Theorem 2.1 uses the asymptotic theory of generalized U-statistics developed
in Janson and Nowicki [45]. This allows us to decompose X (H,G,) over sums of increasing
complexity using a projection method (see also [44, Chapter 11]). The terms in the expansion
are indexed by the vertices and edges subgraphs of the complete graph of increasing sizes, and
the asymptotic behavior of X (H,G),) is determined by the joint distribution of non-zero terms
indexed by the smallest size graphs. Then the machinery of multiple stochastic integral provides
a convenient way to express the dependence among the irregular and regular marginals. The
proof is given in Section A.

Theorem 2.1 recovers as special cases a number of existing results. For instance, when H =
{H} is a singleton, we get the marginal distribution of Z(H, G,,), which was proved for cliques
in [34] and for general subgraphs in [8]. In this case the limiting distribution can be alternately
expressed as in the following corollary, in terms of the graph join operations and the eigenvalues
of the kernel Wy (recall the discussion following Remark 2.1). We show how to derive Corollary
2.1 from Theorem 2.1 in Section C.

Corollary 2.1 ([8, Theorem 2.9]). Fiz a graphon W and a non-empty graph H = (V(H), E(H)).
Then as n — o0, the following hold:

o If W is H-irregular,

Z(H, Gp) 2 N(0, 77 ), (2.13)
where
1
THw = iy Y t|HOHEW | —|V(H)PPHHW)|. (2.14)
’ | Aut(H)] 1<a,b<|V (H)| a,b
o IfW is H-regular, that is, TI?LW =0,
Z(H,Gp) Bogw-Z+ Y, MNZ-1) (2.15)

AeSpec™ (W)

where Z,{Zy : A € Spec” (W)} are independent N(0,1),

2 . 1 .
7w = SRE (mlt(H = H’W> t<H i HW)‘

(a,b),(c,d)eE+ (a,b),(c,d) (a,b),(c,d)

and Spec™ (W) is the multiset Spec(Wp) with multiplicity of the eigenvalue dyy,, de-
creased by 1.

Remark 2.2. An interesting question that arises from Corollary 2.1, is whether the distribution
in (2.15) always non-degenerate? This is known to be true when H is the clique [34] and if H
is the 2-star or the 4-cycle [8]. However, there are non-trivial cases where the limit in (2.15) is
degenerate (see [8, Example 4.6]). Instances where one (but not both) of the two components
of the distribution in (2.15) is degenerate also has interesting combinatorial properties (see [8,
Section 4]). Additional degeneracies appear in the multivariate case. For instance, the matrix %
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Kzo = ]\b@Kg
1,1
i E / KzoKs=K:(PKs
1,1
K2..7[\2 K> Ky o K3 = K> K3 K; = K3 Ks K3 = K3 K3
D<I KS = Ks@Kg a, 2> (1,2) a, 2) (1,2) «a, 2) (1,2) (1,2),(1,2)
1,1
(a) (b)

FIGURE 3. Graphs obtained from (a) vertex join operations and (b) edge join
operations, between a copy of Ko and a copy Kj.

in Theorem 2.1 can be singular. This is the case, for example, in the Erdés-Rényi model where
the matrix ¥ has rank 1 for any finite collections of graphs (see Example 3.2).

Another case which has appeared in prior work is when all the graph in H are irregular
with respect to W (see [27] for the univariate case and [22] for the multivariate case). In this
case, since a linear stochastic integral has a Gaussian distribution, the limiting distribution of
Z(H,G,) is multivariate Gaussian (see Theorem 1.5 in [44]). The covariance matrix of this
Gaussian distribution can be expressed in terms of the graph join operations as follows:

Corollary 2.2 ([22 Corollary 7.6]). Fiz a graphon W and a finite collection of non-empty
graphs H = {Hy, ..., H,}, such that W is H; M’r@gulm“ forall1 <i<r. Then

(HG) N, (0,1,

where I' = ((735))1<i.j<r, with

1 [V (H:)| [V (H;)
" (R A ()] | 2 Z (H@%W) [V (H)|V (H) e (i, W)t (H;, W)

a=1 b=1 a,b

(Note that 1;; = T%Ii w for T%Ii w as defined in (2.14) with H replaced by H;.)

3. EXAMPLES

In this section we compute the limiting distribution of Z(H, G,,) in a few examples. We begin
with the joint distribution of the counts of edges and triangles.

Example 3.1. (Edges and triangles) Fix a graphon W and suppose H = { K3, K3} be the edge
and the triangle. There are 4-cases depending on whether or not W is Ky or Kj3-regular.

Case 1: W is irreqular with respect to Ko and Ks: In this case, Corollary 2.2 applies. To this
end, as shown in Figure 3 (a), denote by K3, K3, and Ky o K3 the graphs obtained by

the vertex joins of 2 copies of K3, 2 copies of K3, and one copy Ko and one copy of K3,
respectively. Then by Corollary 2.2,

Z(K2,Gp)\ D i1 Ti2
- No (O
<Z(K3,Gn)> 2 < ’ <T21 722>> ’
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where T11 ‘= t(KS, W) — t(KQ, W)2, 799 1= i[t (Kg,W) - t(Kg,W)Q], and
1
Ti2 = To1 i= §[t(K2 o K3, W) — t(Ka, W)t(K3, W)].
For a specific example of a graphon which is irregular with respect to K5 and K3, consider
Wl(xay) = %(%’ + y)) (31)
for z,y € [0,1]. In this case, t,(x, Ko, W}) = dyy, (z) = H(x +3), for a € {1,2}, and
ty(z, K3, Wy) = %(x2 + %” + %), for b e {1,2,3}, are both non-constant functions, hence,
Wl is K9 and Ks-irregular.

Case 2: W is reqular with respect to Ko and irregular with respect to Ks: In this case, Theorem
2.1 shows that,

<Z<K2,Gn>> P G+ 555 5o (W (a,y) — t(K2, W) dB,dB,
Z(Ks3,Gh) 1l (gg W (@, y)W (y, 2)W (2, 2)dydz — t(Ks, W)) dB, )’

where G ~ N(0,0?) is independent of the Brownian motion {B;}[,1] and

o2 — %{t (Ko, W) — £ (K3*, W)} .

Here, K3° is the graph obtained by the strong edge join of 2 copies of K5, as shown in
Figure 3(b). For a concrete example of a graphon which is Kj-regular and Ks-irregular,
consider the graphon Wy shown in Figure 4(a). This can be expressed more formally as:

~ Uit e [0.4] % UL ] 0.4],
Wolz,y) =<1 if (z,y) €[5, 2] x [3, 3], (3.2)
0 otherwise.

The ‘graph’ representation of this graphon is shown in Figure 4(b), which corresponds
to a clique and a disjoint complete bipartite graph of equal block sizes. In this case,
the degree function dWQ(:c) = %, for all z € [0,1], hence, Wy is Ky-regular. Further, for
be{1,2,3},

) - 0 if(x,y)e[
ty(w, K3, W) {é if (%y)e[

which means W is Ks-irregular.
Case 3: W s irreqular with respect to Ko and regqular with respect to Ks: In this case, from
Theorem 2.1 we have,

(Z(KQ, Gn)> D o (Sé W(z,y)dy — t(Ka, W)) dB,
Z (K3, Gn) G+ 3555 (5 W (@)W (y, )W (2,2)dz — t(Ks, W) ) dB,dB,

where G ~ N(0,0?) is independent of the Brownian motion {B;}[o,1] and
1 (e]e) LX)
o = U W) — 1 (50 W)

Here, K35° and K3* are the graphs obtained by the weak and strong edge joins of 2
copies of K3, as shown in Figure 3(b), respectively. For an example of a graphon which
is Ko-irregular and K3s-regular, consider the graphon W3 in Figure 5(a). Thisis a 6 x 6
block graphon taking values 1, %, and 0 in the gray, green, and white blocks, respectively.
The ‘graph’ representation of this graphon is shown in Figure 5(b), which corresponds
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(b)
(0,0) (1,0)
(a)
FIGURE 4. (a) A Ky-regular and Ks-irregular graphon Wy and (b) its ‘graph’
representation.

to 2 disjoint complete tri-partite graphs with equal block sizes and a random bipartite
graph with edge probability % between 2 blocks of the tri-partite graphs. The bipartite
connections change the degrees of the corresponding vertices, but do not change their
1-point triangle densities, hence, Wiy is Ko-irregular but Ks-regular.

FIGURE 5. (a) A Ky-irregular and Ks-regular graphon W3 and (b) its ‘graph’
representation.

Case 4: W is reqular with respect to Ko and Kj3: Once again, an application of Theorem 2.1

gives,
(Z(KQ, Gn)> D Gy + 555 §o W(a,y) — t(K2,W)) dB.dB,
Z(K3,Gy) Ga+ 55055 (80 W )W (y, )W (2, 2)dz — t(K5, W) ) dB,dB, |
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Here, {Bt}te[o,l] is the standard Brownian motion and independently

Gy o111 012
~No (O
where o011 1= %{t (Ko, W) —t (K3*, W)}, 022 := %{t (K5°, W) —t(K3*, W)}, and

1
012 = 091 := 5 {t (Kz OKg) —t(KQ ng)},

with K3°, K3°, K3°, K20K3, and Kpe K3 as shown in Figure 3(b). A simple example of a
graphon which is K9 and K3 regular is the constant graphon W,, = p, which, incidentally,
is H-regular, for all finite graphs H. More generally, consider the R-block graphon, for
some R > 1, with equal block sizes, taking values a € [0,1] in the diagonal blocks and
b e [0,1] in the off-diagonal blocks. This graphon is also K3 and K3 regular.

Next, we consider the case when W, = p is the constant function p € (0,1), that is, G,, ~
G(n,p) is the Erd6s-Rényi random graph. In this case, it is well-known that the joint asymptotic
distribution of the subgraph counts is a multivariate Gaussian (see [45, Section 9]). In the
following example we show how to obtain this classical result from our general theorem.

Example 3.2. (Erdés-Rényi random graph) Suppose W = W), = p, that is, G,, ~ G(n,p) is
an Erdos-Rényi random graph with edge probability p. In this case, for any collection of finite
subgraphs ‘H = {Hy, Ha,--- , H,}, the limiting joint distribution of Z(H,G,,) is known to be a
multivariate Gaussian. Moreover, the covariance matrix of the Gaussian has rank 1 [45, Section
9]. Here, we show how to derive this result from Theorem 2.1. Note that W), is regular with
respect to H;, for all 1 <4 < r (recall (2.4)). Also,

_VEH)I(VEH) = 1) ey _ [V H)(VH:)| - 1)t(H< W)

T 2Aut(Hy)] 7 T 2JAut(H)| bW,

for 1 < < r. Hence, the bivariate stochastic integral in Theorem 2.1 vanishes, and the limiting
distribution is given by,

Z(H,Gn) B N:(0,%), (3.3)

where ¥ = (Jij)lgi,jST with

L 21EMH)EH))| B HEE) -1
Oij = p (1
|Aut(H;)||Aut(H;)|

Now, for every 2 < i < r and 1 < j < r observe that
oy |EH)| [Aw(H)| pw) -1,

p)- (3-4)

oij  |E(H;)| [Aut(H)]

Hence, the i-th column of ¥ is a multiple of the first column of ¥, for 2 < 7 < r, that is, the
matrix 3 has rank 1.

In the next example we discuss the global clustering coefficient, which can be expressed in
terms of the counts of 2-stars and triangles.

Example 3.3. (Global clustering coefficient /transitivity) The global clustering coefficient of a
graph G is defined as (see [57]):

() = 3 x number of triangles in G 3X(K3,G)  #(K3,G)
)7 “the number of 2stars in G X(Ki12,G)  i(K19,G)’

(3.5)
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where £(-, G) is defined in (1.4). This is a measure of clustering in the graph G and is also known
as the transitivity ratio (see [80, Page 243]). Extending (3.5), one can define the global clustering
coefficient of a graphon W as follows:

t(Ks3, W)
t(K12, W)
assuming t(Ki 2, W) > 0. Clearly, when G,, ~ G(n,W), then n(G,,) is a consistent estimate of
n(W). Using the asymptotic joint distribution of (X (K12, G,), X (K3,Gy)) from Theorem 2.1
and the delta method, we can derive the asymptotic distribution of 7(G,,). The limit depends
on whether or not the graphon W is K; 2 and K3 regular, hence, 4 cases can arise, similar to

Example 3.1. We can also quantify the uncertainty of n(G,) in estimating n(W), using the
results on joint confidence sets in Section 4.

n(W) := = IP(the nodes (1, 2, 3) are connected | (1, 2) and (1, 3) are connected),

4. GRAPHON MULTIPLIER BOOTSTRAP

Note that the asymptotic distribution of the subgraph counts obtained in Theorem 2.1 depends
on the graphon W. Hence, to use this result for statistical inference of the homomorphism densi-
ties, one needs to estimate quantiles of the asymptotic distribution. When the limit is Gaussian,
that is, W is H-irregular, this entails estimating the asymptotic variance consistently. How-
ever, if the limit is non-Gaussian, which is the case when W is H-regular, this is more delicate.
This becomes even more challenging in the multivariate regime, when there is a combination of
irregular and regular components.

In this section, we introduce the graphon multiplier bootstrap, a method for estimating the
quantiles of the limiting distribution Z(H,Gy,) (recall (2.9)), based on the observed network
G, itself and additional external randomness. To begin with, denote by Ag, = ((wst))s,—1 the

adjacency matrix of G,, and, as before, let W& be the empirical graphon corresponding to G,,
(recall (2.3)). Then the empirical homomorphism density of a graph H = (V(H), E(H)) in G,
can be expressed as (recall (2.1)):

1
Gny _
ﬂmW)_mmm > [T wes, (4.1)

se[n]‘V(H)‘ (Z,])EE(H)

Moreover, the number of copies of H in the observed in Gy, as defined in (1.1) can be alternatively
expressed as:

1
X(H,Gp) = ——— o 4.2
se([n])vm) (4,5)eE(H)
where ([n])vq) is the set of all [V/(H)|-tuples s = (s1,...,8v)|) € [n]IVUDI with distinct
indices.® Note that the cardinality of (n)jv ) is WEH)I)' = (n)v(m)- To obtain the bootstrap
estimate of the asymptotic distribution of X (H, G,,) we need to define the empirical counterparts

of the 1-point and 2-point conditional homomorphism densities (recall (2.1)). (Hereafter, for
simplicity, we will assume H has no isolated vertex.)

Definition 4.1. (Empirical 1-point subgraph density)
Fixa e V(H) and v € V(G,,). Denote by X,(v, H, G,,) the number of injective homomorphism
¢:V(H)— V(G,) such that ¢(a) = v. More formally,

X U H, G Z 1—[ wvsy H wszsy(Gn)a

S{a}¢ yeNp(a) (m,y)eE(H\{a})

3For a set S, the set SV denotes the N-fold cartesian product S x S x ... x S.
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where the sum is over tuples s,y = (82)zev(m)\fa} € ([P]\{V}) v (m) -1 and Ny (a) denotes the
neighbors of ¢ in the graph H. Then the empirical 1-point subgraph density function is defined
as:

V()
) 1 Xo(v, H,Gy)
t(?), H, Gn) Dl m a;l W- (4.3)

Note that (4.3) counts (up to constant factors depending on the automorphisms of H) the
fraction of copies of H in G,, passing through the vertex v € V(G,,). To illustrate we consider
the following examples:

e H = K5 is the edge: In this case, f(v,H, Gn) = dﬁ, where d,, is the degree of the vertex
vin G,,.

e H = K3 is the triangle: Suppose the vertices of K3 are labeled {1,2,3}. By symmetry,
forall 1 <a <3,

Xa(U,K3,Gn) = Z Wys) WysyWs g5
1<si#sa2<n

which is twice the number of triangles in G,, with v as one of the vertex. Therefore,

t(v, K3,Gy) = # Z Wysy WyseWsy -
1<si1#s2<n
o H = K 5 is the 2-star: Suppose the vertices of K o are labeled {1, 2,3} with the central
vertex labeled 1. Then we have the following;:
— For a =1, X1(v, K12,Gn) = X1y, 2sy<n Wos, Wsy, 18 twice the number of 2-stars
in GG, with v as the central vertex.
— For a € {2,3}, Xo(v, K12,Gn) = 27 _| Wes, (ds, — 1), is the number of 2-star in G,
where v is a leaf vertex.
Hence,

. 1 &
t(’U, K1,27 Gn) ) Wys, Wysy T 2 Wysy (d31 - 1) .
2n2

1<s1#s2<n s1=1
Next, we define the 2-point subgraph density of GG,,, which is the empirical analogue of 2-point
conditional kernel (2.5).

Definition 4.2. (Empirical 2-point subgraph density) Fix a # b € V(H) and u,v € V(G,).
Denote by X, 4(u,v, H,Gp) the number of injective homomorphism ¢ : V(H) — V(G,) such
that ¢(a) = v and ¢(b) = v. More formally,

Xa,b(u7 v, H, Gn) = w;rv Z H Wys,, (Gn) H Wys, (Gn) H Wsy sy (Gn)7
8{a,b}¢ yeNp (a)\{b} yeN (b)\{a} (z.y)eE(H\{a,b})

where the sum is over tuples s, ppe := (82)zev () fap} € ([PI\{w, V}) v (a)—2 and wy, = wy, if

(a,b) € E(H) and w,, = 1 otherwise. The 2-point subgraph density is then defined as:

Wi (u,v)

1 Z Xap(u,v, H,Gp) (4.4)

= 9l Aut(H)| V(H)|—2
2|Aut(H)| ItV () nlVH)|
By convention we define Wg" (u,u) =0 for all 1 <u < n.

Note that ((Wg" (u,v)))1<upv<n IS @ n x n matrix which counts (up to constant factors de-
pending on the automorphisms of H) the fraction of copies of H in G,, passing through the
vertices u,v € V(Gy). To illustrate we consider the following examples:
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e H = K5 is the edge: In this case, Wg" (u,v) = %wm}, is the scaled adjacency matrix of

G-
e H = K3 is the triangle: Suppose the vertices of K3 are labeled {1,2,3}. By symmetry,

forall 1 <a,b<3,

n
Xzz,b(u7 v, K3, Gn) = Z Wryp Wy sq Wysy
s1=1
which is the number of triangles in G,, with u and v as vertices. Therefore,

e 1
WK: (u,v) =5 Wy Wy sy Wysy -

1<s1<n
o H = K3 is the 2-star: Suppose the vertices of K o are labeled {1,2, 3} with the central
vertex labeled 1. Then we have the following for 1 < u # v < n:

— Fora=1andbe {2,3}, X14(u, v, K12,Gn) = W 25, 1 Wus; — Wup = Wy (dy — 1),
is the number of 2-stars in G,, with u as the central vertex and v as the leaf vertex.
Similarly, X1 (v, u, K12, Gr) = Wyy 221:1 Wys, — Wyy = Wyy(dy — 1), is the number
of 2-stars in (G,, with v as the central vertex and u as the leaf vertex. Also, note
that Xp1(u, v, K12,Gn) = X1p(v,u, K12, Gr).

— For a,b € {2,3}, Xp(u,v, K12,Gpn) = D17 _| Wys; Wys,, is the number of 2-star in
G, with u,v as leaf vertices.

Hence,

. 1 L
VVI%"2 (u,v) = o Wy (dy + dy — 2) + 321 Wysy Wos,
=
With the above definitions we can now describe multiplier bootstrap estimates of the limiting
distribution Z(#H, W). For this, recall that H = {H;, Ha, ..., H,} is such that W is irregular with
respect to Hy, Ha, ..., Hy and W is regular with respect to Hy41,. .., H,. Suppose Z1, Z, ..., Zy,
are i.i.d. N(0, 1) independent of the graph G,,. Then define
T 1 (i(v, Hi, G) — U(H;, Gn) Zo if1<i<gq,
Z(H;,G,) = (4.5)
%Zl$u,v$n(WH¢n (u,v) — WHZH) (ZuZy — 5u,v) ifg+l<i<r,

where 0y, = 1{u = v}, t{(H;,Gy) = %Zgzl t(v, H;, Gy,), and

_ 1 ~
Wgzj”zﬁ Z ng”(u,v). (4.6)
1<u,v<n
Denote
Z(MH,Gpn) = (Z(H1,Gp), Z(Hy,Gp), ..., Z(H., G)) " (4.7)

Note that Z (H,Gy) depends only on the observed graph G, and the Gaussian multipliers
Z1,Za,...,Zy, but not on the graphon W. In the following theorem we show that Z(#,Gy,),
conditional on the graph G, converges to Z(H, W) as in Theorem 2.1.

Theorem 4.1. Fix a graphon W and a finite collection of non-empty graphs H = {Hy, Ha, ..., H,}
such that W is irreqular with respect to Hy,--- , Hy, for some 1 < g <r, and reqular with respect
to Hyp1,Hyqo, ..., Hy. Suppose Gy, is a realization from G(n, W) and Zn(H,Gp) be as defined
in (4.7). Then, almost surely as n — 0,

Zn(H,G)|Gn B Z(H, W), (4.8)
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where Z(H, W) is as in (2.12).

The proof of Theorem 4.1 is given in Section D. It shows the asymptotic distribution of
Z,(H,G,)|G, is the same as that of the subgraph counts Z(H,G,) (recall (2.9)). Hence,
we can use the distribution Zn(H, G1)|Gp, which depends only on the observed graph G, to
approximate the quantiles of the limiting distribution Z(#,W'). This allow us to construct joint
confidence sets for the homomorphism densities as described in Section 5.

Remark 4.1. Recently, Lin et al. [54] proposed a bootstrap method for approximating the
sampling distribution of a network moment in the sparse regime (where the networks have o(n?)
edges), which bears some similarity to our approach. Specifically, the authors use a multiplier
bootstrap to estimate the terms in the Hoeffding decomposition of a network moment and also
approximates the local subgraph counts based on sampling for fast computation. However, as in
most prior work, the bootstrap consistency essentially requires the network moment to be have
a non-degenerate Gaussian limit. Moreover, the result only applies in the sparse regime and for
the marginal distribution a single network moment that is either acyclic or a cycle.

5. JOINT CONFIDENCE SETS

Suppose H = {H1, Ha, ..., H,} is a collection of non-empty graphs, with H; = (V(H;), E(H;))
and |V(H;)| = 2, for 1 < i < r. In this section, we construct a joint confidence set for the
collection of homomorphism densities

t(H, W) = (t(Hy, W), t(Ho, W),... t(H,, W))T,

given a sample Gy, from G(n,W). Note that, although Theorem 4.1 provides a way to estimate
the quantiles of the limiting distribution Z(#, W), this result cannot be directly applied for
constructing a confidence set, because it is a-priori unknown whether or not W' is H;-regular for
some 1 < ¢ < r. For this, we propose a testimation strategy for constructing joint confidence
sets, which first tests for H;-regularity based on the observed graph G,,, for 1 < i < r, and then
uses Theorem 4.1 to estimate the appropriate quantiles. The rest of this section is organized as
follows: In Section 5.1 we discuss the test for regularity. Using this and the graphon multiplier
bootstrap from the previous section we provide an algorithm for constructing confidence sets in
Section 5.2. We illustrate the performance of the algorithm in simulations in Section 5.3.

5.1. Testing for Regularity. Given a graphon W and finite simple graph H = (V(H), E(H)),
with |V (H)| = 2, the regularity testing problem for the pair (H, W) can be formulated as follows:

Ho : W is H-regular versus Hj: W is not H-regular. (5.1)

Recall that W is H-regular if and only if the asymptotic variance 7gw = 0 (recall (2.14)). For
notational convinience define,

R(H,W) = |[Awt(H) P17y = >, ¢ (H@H, W) — |V(H)|*t(H, W) (5.2)
1<a,b<|V(H)| a,b

Clearly, W is H-regular if and only if R(H, W) = 0. Note that, since the vertex joins to 2 simple
graphs is another simple graph, R(H,W) is a function of homomorphism densities of simple
graphs. Hence, R(H, W) can be consistently estimated from G,, based on the following simple
estimate:

R(H,Gp) = ), £<H@H,Gn>—|V(H)|2£(H,Gn)2. (5.3)
(H)|

1<a,b<|V a,b
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The following lemma shows that R(H, G,,) converges to zero at rate faster than /n when W is
H-regular.

Proposition 5.1. Suppose R(H,Gy,) be as defined in (5.3). Then the following hold:

(1) When W is H-regular, /nR(H,G,,) £o.

(2) When W is not H-regular, \/nR(H, Gy) £ .

The proof of Proposition 5.1 is given in Section E.1. Now, consider the test function
¢(H,Gy) = 1{y/nR(H,G,) > 1}. (5.4)
Proposition 5.1 implies that under Hp as in (5.1), P(¢(H, G,)) — 0, and under Hy, P(¢,(H, Gr)) —
1. Hence, the test (5.4) is consistent for the regularity testing problem (5.1).
5.2. Constructing Confidence Sets. Using the test for regularity, we can now describe our
algorithm for constructing a joint confidence set for ¢(H, W) as follows:
e For each 1 < < r, consider the hypothesis testing problem:

Ho; : Wis H;-regular  versus  Hj; : W is not H;-regular.

Let S(H,Gp) = {1 < i < r :/nR(H;,G,) > 1}, be the set of indices where the
hypothesis of H;-regularity is rejected.

o Define
QH,Gn) = (QUH1,Gn), -, Q(H;, Gn)), (5:5)
where (recall (4.5))
T D1 (t(v, Hi, Gy) — H(H;, Gn)) Z if i € S(H,Gn),
Q(Hi,Gn) =

%ZKW@(WH; (u,0) = W§™) (ZuZy — bup)  if i ¢ S(H,Gy),

with Z1,25,...,Zy, areiid. N(0,1) independent of the graph G,,. Denote by ¢i—q .G,
the (1 — a)-th quantile of distribution of |Q(H, Gy)|2|Gr. (Note that the distribution
of Q(H,Gy) given G,, does not depend on the graphon W, it only depends on the
randomness of the Gaussian multipliers {Z,}1<u<n, Hence, in practice, §i—a,c, will
be computed from the empirical quantiles of |Q(H,Gr)l|2|G, obtained by repeatedly
sampling the Gaussian multipliers.)
e Define
Z(H,Gy) = (Z(Hy,Gr), Z(Hs, Gr), ..., Z(H:,Gp)) ", (5.6)
with
(1) v ()t (Hi, W)
Aut(H;
| 1“< i)l if i e S(H,Gn),
N nlVH)l—3
Z(H;i, Gp) = 5 (5.7)
(n) vt (Hi, W)
X(Hi, Gy) — i
(s, Go) = ()|
nlV (Hi)|-1

X(H;,Gy) —

ifie S(H,Gy).
Report the confidence set

C(H,Gn) = {(H(H,W) : | Z(H,Gn)l2 < G1-a,1,6 ) (5.8)
where t(H, W) = (t(Hy, W), t(Hy, W), ..., t(H,, W))T.
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The following theorem shows that the set C(H,G,) is a confidence set for the vector of
homomorphism densities t(#, W) with asymptotically a coverage probability.

Theorem 5.1. Let C(H,G,) be as defined in (5.8). Then lim, o P(C(H,G,)) =1 — a.

The proof of Theorem 5.1 is given in Section E.2. The proof involves showing that Q(H, G,)|G,,
and Z(H,G,) (recall (5.5) and (5.6), respectively), both converge to the distribution of Z(H, W)
asymptotically.

Remark 5.1. (Marginal Confidence Intervals) The algorithm for constructing joint confidence
sets described above takes a simpler form when H = {H} is a singleton. In other words, suppose,
we want to construct a (marginal) confidence interval for ¢t(H,W). Then, recalling Corollary
2.1, we proceed as follows:

e If \/nR(H,G,) > 1 (that is, Hy in (5.1) is rejected), then define

|Aut(H)|Ta,q, |Aut(H)|7aq,,
T,t(Han)+2a/2T )

where {(H,Gp) = 2L x ([ G, (as defined in (1.4)),

(n)\V(H)|

L(H7 Gn) = |:£(H, Gn) — Za/2

S|

=~ > ({0, H,Gy) — 1(H,Gn))?,
v=1

— a)-th quantile of standard Gaussian distribution.
<1 (that is, Ho in (5.1) is accepted), then define

|[Aut(H)|

and z, is the (1
o If \/nR(H,Gy)

L<H7 Gn) = [tA(H7 GTL) - qAa/Z,H,Gn 7£(H7 GTL) - (jl—a/Z,H,Gn

n

LG

Here, §1—a,1,G, is the a-th quantile of the random variable £ > | X;(H, G,,)(Z? —1)|Gh,
where {\;(H, G,)}1<i<n are the eigenvalues of the matrix ((Wg" (u,v) — Wgn))lgumgn
(recall (4.4) and (4.6)) and {Z;}1<i<n are i.i.d. N(0,1).
From Corollary 2.1 and the proof of Theorem 5.1, it easily follows that lim,, P (L(H,G,)) =
1 — «, that is, L(H,G,,) is an asymptotically valid confidence interval for ¢t(H,W).

5.3. Simulations. In this section we evaluate the performance of the algorithm for constructing
joint confidence sets in simulations.

5.3.1. Confidence Interval for the Edge Density. For the confidence interval of the edge density
t(K2, W) we consider the following 2 choices of W:

o W =W_(z,y) := zy, for x,y € [0,1]. This graphon is K-irregular (the degree function

dw_(z) =% ) and t(Ka, W_) = 1.

e Next, we consider the Ks-regular graphon

W:W+($,y) = % lf (CU,y)eI:O’ %:l X [%71]U[%71] X [07%]7
0 otherwise.

Note that this graphon corresponds to the random bipartite graph with equal block sizes
and edge probability % Note that ¢(Kq, W,) = %.

Using the method described in Remark 5.1 we construct 100 instances of the 95% confidence
interval for ¢(Ks, W), when W = W_ (Figure 6(a)) and W = W, (Figure 6(b)). Each interval is
computed based on a graph of size n = 400 sampled from the model G(n, W), for W e {W_, W},
and the quantiles are estimated using 1000 resamples from the conditional distribution. The

black horizontal line represents the population edge density t(Ky, W) = i (in both cases) and
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FIGURE 6. 100 instances of the 95% confidence interval for edge density t(Ks, W)
with (a) W = W_ and (b) W =W,.

the intervals not containing i are shown in red. Observe that in both cases the fraction of
intervals containing }1 (the empirical coverage probability) is very close to 0.95, as predicted by
the asymptotic theory.

5.3.2. Joint Confidence Sets for Edge and Triangle Densities. We now use our algorithm to
construct the joint confidence set for the edge and the triangle densities (¢(K2, W), t(K3, W)).
Here, 4 possible cases can arise depending on whether or not W is Ky or Kj-regular (recall
Example 3.1). For each of the 4 graphons considered in Example 3.1, we show below the
heatmap of 100 instances of the 95% confidence ellipsoid (recall (5.8)). In all the simulations,
the confidence sets are computed based on graphs of size n = 400 and the quantiles are estimated
using 1000 resamples from the conditional distribution. The empirical coverage is given by the
fraction of confidence ellipsoids that contain the true homomorphism densities (which is marked
by the black point).

e Figure 7(a) shows the joint confidence sets for (t(Ka, W), t(K3, W)) when W = W (z,y) =
%(as +19) (recall (3.1)). This graphon is both K9 and Kjs-irregular. Also, for this graphon
(t(Ko, Wh), t(K3, 1)) = (3, ). In this case, the empirical coverage is 94%.

e Figure 7(b) shows the joint confidence sets for (t(Ko, W), t(Ks, W)) when W = Wa(z, y)
is the graphon in (3.2). This graphon is Ky-regular and Ks-irregular. Furthermore,
(t(K2, W3),t(K3,W3)) = (3, 5-). In this case, the empirical coverage is 96%.

e Figure 8(a) shows the joint confidence sets for (t(Ko, W), t(K3, W)) when W = Ws(z, y)
is the graphon shown in Figure 5. This graphon is Ks-irregular and Ks-regular. Fur-
thermore, a direct computation shows that (t(Ky, W3),t(K3, W3)) = (32, %). In this
case, the empirical coverage is 95%.

e Figure 8(b) shows the joint confidence sets for (t(Kq, W), t(K3, W)) when W = W% =1

is the constant function % (which corresponds to the Erdés-Rényi graph G(n, %) This

graphon is both Ky and Kj-regular. Also, (t(Ka, W), t(K3, W)) = (3, %) In this case,
the empirical coverage is 94%.
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FIGURE 7. 100 instances of the 95% confidence sets for (t(K2, W), ¢(K3, W)) with (a)
W =Wy and (b) W = Wh.
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1

The results above show that the proposed method achieves the desired coverage in different

simulation settings.

It is worth recalling our method does have any prior knowledge about

whether or not W is Ky or Ks-regular. We first test for the presence of regularity and construct
the confidence sets depending on the outcome of the tests as described in Section 5.2.
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6. TESTING FOR GLOBAL STRUCTURE

Testing global network properties based on counts of subgraphs is a central theme in many
statistical network analysis problems. A basic problem in this direction is to test whether
the network is generated completely at random or whether it has some additional structure.
In the context of stochastic models this entails testing whether or not the network has any
community structure [28, 29]. For graphon models, global structure testing can be formulated
as the following hypothesis (recall (1.5)):

Hy : W = p almost everywhere for some p € (0,1) versus H; : W is non-constant. (6.1)

To find a consistent test for this hypothesis, we need to find a functional f : W — R which
has the property that f(WW) = 0 if and only if W is a constant function almost everywhere. A
classical result of Chung, Graham, and Wilson about quasi-random graphs [20] implies that the
function f(W) = t(Ko, W)* — t(Cy, W) satisfies this property (see [55, Claim 11.53]). Hence,
one can construct a consistent test for (6.1) by estimating this functional based on the observed
graph G,. To this end, define,

F(Gr) = (K2, Gn)* — £(Cy, Gy), (6.2)
where, for any graph H, t(H,G,) = %X(H, G,) (as defined in (1.4)).

In the following theorem we derive the asymptotic distribution of f (Gy) under the null hy-
pothesis.

Proposition 6.1. Under Hy as in (1.5),
n2 f(Gn) B N (0,0%). (6.3)
where ¥? 1= 32t(Ka, W)5(1 — t(Ky, W))2.

The proof is given in Section F.1. As in the proof of Theorem 2.1, it uses the method of orthog-
onal projections. One interesting feature of the statistic f (G,,) is that it has fluctuations of order
O(n_%) under Hy, even though we know from Example 3.2 that both #(Ks, G,) and #(Cy, G,)
have fluctuations of O(1/n). This means f(G,) cancels the contributions from #(Ks, G,) and
£(Cy,Gp) in the O(1/n) scale and the leading asymptotic contribution of f(G,,) is determined
from the third-order projection. The same scaling appears in the Erdds-Zuckerberg (EZ) statis-
tic considered in [29], for testing the presence of community structure in degree-corrected block
models.

To apply Proposition 6.1 to test the hypothesis (6.1), we need to consistently estimate the
asymptotic variance in (6.3). Towards this, note that, since (K, Gy,) 5 t(Ka, W) (follows from
(E.1) and Corollary 10.4 from [55]), by Slutsky’s lemma:

f(Gn)
4V2 1(K2, Gp)3(1 — 1(Ka, Gr))

Njw

T, :=n B N(0,1), (6.4)

under Hy. Hence, the test which rejects when |7,,| > Zo/2 1s asymptotically level . In the
following proposition we show that this test consistent, that is, it can detect any non-constant
graphon with probability going to 1 (see Section F.2 for the proof).

Proposition 6.2. For any graphon W such that [t(Ko, W)* —t(Cy, W)| > 0 we have,
P (|T0| > zaj2) — 1.
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Proposition 6.2 provides a test for (6.1) that has precise asymptotic level and is consistent
in detecting all non-constant graphons. In comparison, the asymptotic null distribution of the
test statistic in Fang and Ro6llin [26] is unknown and the resulting test is conservative (see [26,
Remark 3.3]). The framework of orthogonal projections and the results obtained in Section 2

allow us derive the asymptotic distribution of f (Gy,) both under the null (as in Proposition 6.1)
and the alternative (see Proposition F.1 in Section F.3). This will allow us to approximate the
asymptotic power of the test based on T, (recall (6.4)), and also obtain a confidence interval for
f(W) using the method in Section 5.
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APPENDIX A. PROOF OF THEOREM 2.1

For a graphon W and a non-empty simple graph H = (V(H), E(H)), the number of copies
X(H,G,) (recall (1.1)) can be expressed as a generalized U-statistic as follows:

X(H,Gy) — m“m W)

= Z f(H) (Ui17 e 7Ui|V(H)|7}/ji1i2 e ’E\V(H)\flilv(H)\)’ (Al)
1<i1<"'<i\V(H)\<n
where
FE UL, Uiy Yaz, - Yy -1 (vn))
= >[I 1Ye<wW@.U)} - 19ultHW)  (A2)
H'e%y (a,b)eE(H')
and Yy = 95({1,2,...,|V(H)|}). In this section, using the representation in (A.1l), we will
derive the joint distribution of
X(H,Gp) = (X(H1,Gn), X(H,Gy),...,X(H,,Gp)),

for a collection non-empty simple graphs H := {Hi, Hs,..., H,}, where H; = (V(H;), E(H;)
and V(H;) ={1,2,...,|V(H;)|}, for 1 <i <.

We begin recalling the framework of generalized U-statistics developed in [45] in the following
section.
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A.1. Orthogonal Decomposition of Generalized U-Statistics. Suppose {U; : 1 < i < n}
and {Y;; : 1 < i < j < n} are i.i.d. sequences of UJ[0, 1] random variables. Fix R > 1 and
denote by Kp the complete graph on the set of vertices {1,2,..., R} and let G = (V(G), E(Q))
be a subgraph of Kr. Let Fg be the o-algebra generated by the collections {Ui}iev(G) and
{Yij}ijer(q), and let L?(G) = L%*(Fg) be the space of all square integrable random variables

that are functions of {U; : i € V(G)} and {Y}; : (4,7) € E(G)}. Now, consider the following
subspace of L?(G):

Mg :={Z e L*(G) : E[ZV] = 0 for every V € L?(F) such that F c G}. (A.3)
(For the empty graph, Mg is the space of all constants.) Equivalently, Z € Mg if and only if
Z € L*(@Q) and

E[Z | X,;,Y;; i€ V(F),(i,j) e E(F)] =0, foral FcG.
Then, one has the following orthogonal decomposition (see [45, Lemma 1])
L*(G)= P Mp, (A4)
FcG

that is, L?(G) is the orthogonal direct sum of My for all subgraphs F < G. This allows us to
decompose any function in L?(G) as the sum of its projections onto Mg for F < G. For any
closed subspace M of L?(Kg), denote the orthogonal projection onto M by Py;.

Now, consider a symmetric function f defined on L?(Kg), that is,

f=fU,Us-- ,Ug, Y12, -+ ,Yr_1 R)
= f(Us1), Us2), s Us(r)s Yo(1)o(2)s " > Yo(R=1) o(R))- (A.5)

for any permutation o of {1,2,..., R}.
Then f can be decomposed as

f= Z fa, (A.6)

GSKpr
where fq = P, f is the orthogonal projection of f onto Mg. Further, for 1 < s < R, define
fis) == > fac- (A7)
GSKpR:|V(G)|=s

The smallest positive d such that f(q) # 0 almost surely is called the principal degree of f. It is
easy to observe that for any G € Kp,

Pra) = E[|Fa]. (A.8)
Moreover, by (A.4) we have,
Pragy = Y, Pup (A.9)
FcG

For f e L?(KpR) define
Sn,R(f) = Z f(UiuUiza"' 7UiR’Yi12'27"' 7}/;1-2—1 iR)a (A.lO)
1<i1<io<-<ip<n
and the symmetrized version

gn,R(f) = Z f(UipUizv'” 7Ui37}/i1i27"' 7Y;R,1 iR)y (All)

1<iy #ia#igr<n
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where Yj; := Yj; for 1 < i < j < n. The symmetry of f, the decomposition (A.6), and the
linearity of S} (-) implies that

Sn,R(f) = %Sn, ( R' Z SnR fG) (A'12)
’ GCSKpr

The symmetry of f also implies that if G; and Gg are isomorphic subgraphs of Kpg, then
Sn.r(fci) = Sn.r(fa,). Hence, from (A.12)

-3 2 e (a9

s=0 Gel'g

where I'; is the collection of non-isomorphic graphs with s vertices.
The following result from [45] gives the leading order in the expansion (A.13) for symmetric
functions f with principal degree d. We include the proof for the sake of completeness:

Proposition A.1 ([45]). Suppose f € L>(KR) is symmetric and has principal degree d. Then

- Sn.r(fc)
Sur(f) G;d (R = d)|Aut(G)

Proof. Since f has principal degree d, by (A.13) and (A.7),

E

— O(n2B-d=1y, (A.14)

s=d Gel'g
Hence,
Snr(fc) R E[|Snr(f)|%]
E Sn,R(f)_G;d (R—d)'|Aut(G) $R Szzd;_lcers (R—S)'ZyAut(G)‘Q (A15)
By [45, Lemma 4], for G € T,
~ | — q)!
IS0 0(fe) ] = 1y BLAA] SmntUEL2),

where the second inequality uses E[fZ] < E[f?] (recall the orthogonal decomposition (A.6)).
Applying the above bound in (A.15), the result in (A.17) follows.
U

Using the above framework, we now proceed with the proof of Theorem 2.1. The proof is
organized as follows:

e In Section A.2 we show that the asymptotic distribution of Z(H,G,,) can be expressed
as infinite linear or quadratic forms in i.i.d. Gaussian variables depending on whether
H is W-irregular or W-regular, respectively (see Proposition A.2).

e In Section A.3 we identify the limit obtained in Proposition A.2 with limit in Theorem
2.1 (see Proposition A.3 and Proposition A.4).

A.2. Asymptotic Expansion of Z(#,G),). Recall that H = {H;, Ha, ..., H,} is a collection
of non-empty subgraphs such that W is H;-irregular for 1 < ¢ < ¢ and W is H;-regular for
q+1<i<r. Let f;:= fi) denote the function defined in (A 2) with H replaced by H;, for
1 <i<r. It follows from [8, Lemma 5.4], that

Var|[(fi)(1)] = 0 if and only if W is H;-regular.
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Since E[(fi)1)] = 0, this implies, (f;)1) = 0 almost surely if and only if W is H;-regular. Hence,
the prmmpal degree of fiis 1 for 1 < z q and the principal degree of f; is 2 for ¢+ 1 <i < r.
(Technically, it is possible that the principal degree of f;, for some g+ 1 < i < r, is greater than
2 (see [8, Section 4.3] for an example). Here, we will assume that the principal degree of f; is
equal to 2 for all ¢ + 1 < ¢ < r, with the understanding that the limit given by Theorem 2.1 in
this case can be degenerate if the principal degree is larger.)

Note that, for 1 <i <7, f; € L? (K‘V(Hi)‘), is symmetric and has 0 mean. In particular,

for 1 < i < r. Now, to apply Proposition A.1 note that
[y = {K,} and Iy = {E 2y, K{1.9}},

t(H;, W), (A.16)

where
e Ky is the graph with a single vertex 1,
o Eq 9 = ({1,2}, ) is the graph with two vertices {1,2} and no edge between them,
o K9y = ({1,2},{(1,2)}) is the complete graph on two vertices {1, 2}.
Then by Proposition A.1 and Markov’s inequality the following hold:
e For 1 <1 <gq,

Sn v (fi) k)

w9 = =gy =y | = O, (A17)
e Forg+1<i<m,
Sl (F)Bpuy) + Sveny (F) )
v - S = op(alV ).
Now, define

S v (F)x )

iV E)
T(H;, Gp) := (V(E) =1 (A.19)

S IVH)I((fz)E{12}>+S IV (H ((fZ)K{lz})
ARG

(
Then recalling the definition of Z(H;, Gy,) from (2.9) and using from (A.16), (A.17), and (A.18),
it follows that

Z(H;, G

for 1 <i<gq,

forg+1<i<nr

n) =T(Hi, Gy) +op(1).
Hence, recalling (2.10)
Z(H,Gpn) =T(H,Gy) + op(1), (A.20)
where
T(H,Gy) = (T(Hy,G,), T(Ha, Gp), ..., T(H.,Gp))". (A.21)

The result in (A.20) shows that to obtain the asymptotic joint distribution of Z(H,G),) it
suffices to obtain the joint distribution of T'(H,G,). The first step towards this is to compute
the projections (fi)K{l}, (fz‘)E{LQ}, and (fz‘)K{l,Q}- We begin with a few definitions: A function
f € L*(G) is said to be G-symmetric if (A.5) holds whenever ¢ is an automorphism of G. Also,
for two functions hi, hy we define,

h1 ® ha(z,y) := hi(z)ha(y).
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Now, let {¢s}s>1 be a orthonormal basis of Mp,, Then {ds®pt}s4>1 is a orthonormal set whose
span contains the Eyy oy-symmetric functions in Mg, ,,. Also, let {1s}s=1 be a orthonormal basis
of the subspace of K{j y-symmetric functions in M, ,,. Then using results in [8, 45] we the
following lemma:s:

Lemma A.1. For 1 <i < g, the projection of f;) on Ky is given by:
(fi) kg, = ELAIUL] = D E[figs] ¢s. (A.22)
s>1
Moreover, for ¢+ 1 <1 < r, the following hold:
e The projection of f;) on Eyy 2y is given by:
(fi)Bp 2 = ELfi|UL, Us] = Zl E[fi(¢s ® ¢1)] 65 ® o1, (A.23)
s,t>
e The projection of f(;) on K2y is given by:
(fi)K 0 = ELfilU1, Uz, Yi2] = E[fi|U1, Uz] = ZIE[JWS] Ps. (A.24)
5>
Proof. For 1 <i < ¢, by (A.8) and (A.9),
(fi)rny = Pue,, ()i, = Pregy) fi = Pug fi = ELfi|U] = ELfi] = E[fi]U1].

This proves the first equality in (A.22). To establish the second equality, expand (f;) Ky in the
basis {¢s}s>1 as follows (see [49, Chapter 6]):

fz Kpy = Z E fz K{1}¢s]¢s (A25)

s=>1
By the first equality in (A.22),
E[(fi) i, @] = E[(fi) ko, (U1)ds(Ur)] = E[E[f;|U1]¢s(Ur)] = E[fi6]-
Applying the above identity in (A.25) the second equality in (A.22) follows.
Next, we will prove (A.23). By (A.8) and (A.9),
(fi)Eu,g} :PME{l,z}f PL2 (B, 2))f2_ MK{l}fz_ MK{ }fz PMgfz

_PL2 E{l’g})fl PLQ(K{I})JC PL2 K{Q} fl+PMgfl
= E[fi|Uy, Ua] = E[fi|U1] = E[fi|U2] + E[fi]
= E[fi|U1, U2, (A.26)

where the last step follows by noting that E[f;] = 0 and E[f;|U;] = 0, for j € {1, 2}, since W is
Hj-regular, for ¢ + 1 < i < r. This proves the first equality in (A.23). To establish the second
equality in (A.23), note that

E[(fi) By (05 @ ¢1)] = E[E[fi|U1, U2]ds(U1) e (Uz] = E[fi(ds ® ¢1)].

Hence,

() Bug = O, Bl B (05 ®60)1(6: @ ¢1) = D) Elfilds ® ¢1)](¢5 ® ).

s,t=1 s,t=1
Finally, we prove (A.24). For this note that
(fi)K(LQ} :PMK{12}f’L (K{12})f PME{12}f7, MK{l}fl_ MK{2}fZ_PM®fi

= PLQ(K{LQ} fZ PLQ(EUQ} fZ
=E[fi|lU1, Uz, Yi2] = E[fi|U1, U] . (A.27)
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This proves the first equality in (A.24). For the second inequality note that E[E[f;|U1, Us]vs] =
0, since E[f;|U1, Us] € Mg, ,, and Mg, ,, is orthogonal to M, ,,. This implies,
E[(fi) iy 0y %s] = E[E[fi|U1, U2, Yi2] 95| = E[ fihs]

and, hence,

(fz K9y Z E fz Ky, 2}77[)3 s = Z E[fz"bs]d}s (A28)

s=>1 s=1

This completes the proof of (A.24). O

Lemma A.1 and [49, Chapter 6, Lemma 8] we now can compute the L? norms of the projec-
tions, denoted by || - |2, as follows: For 1 < i < g,

(x|, = S B0 < 173, (A.29)

s=>1

where the last step follows by Bessel’s Inequality. Similarly, for ¢ + 1 <¢ < r,

Wm%m}=2Emm®@n 15113 and | (£ ZEﬂ% <|fl3. (A.30)

s,t>=1

Next, using Lemma A.1, the linearity of S (), and a standard truncation argument we obtain
B

the expansions of S, ) ((fi) gy, S, W) ([ B ) and S, ) ((fi) Ky ). Specifically,

for 1 <i < ¢, from (A.22) we have
Svi) (k) = DL ELfids] Sp i) (05) (A.31)
s=1

for 1 < i < g, where the equality hold almost surely. Similarly, for ¢ + 1 < i < r, by (A.23) and
(A.24) we have the following:

S IV (H, ((fz By, 2} Z E fz ¢s®¢s)]8 JVI(H (¢s®¢s)

s=1
+2 2 E [£i(¢s @ ¢0)] S v (a1 (05 ® 1) (A.32)
s<t
S’n,‘V(H ((fl K{l 2} Z ]E flws Hz)|(¢s) (A33)
s=1

Using the above expansions we can now derive the asymptotic distribution of T'(H, G,,) and
hence, that of Z(H,G,).

Proposition A.2. For T(H,G,) as defined in (A.21) and (A.19), the following hold as n — co:
T(H,Gp) 5 T(H,W),
where T(H, W) = (Ty, Ty, ..., T,)" with
1

r .
W;E fids] ns forl1<i<uy,
1
=3 vy —an) & ELli(é® 0 —1) +2 ) E[fi(¢s .
B v - »{§ [1i(65 @ 00)] (0 = 1) +2 D, B Ll ® du)] o
+Z]E[fz¢s]ﬁs} forq+1<i<m,

s=1
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and {ns}s=1 and {Ns}s=1 are independent collections of N(0,1) and N(0,2) random variables,
defined on some probability space (0, F,P), respectively. This implies, from (A.20),

Z(H,Gy) B T(H,W).
A.2.1. Proof of Proposition A.2. Fix L > 1 and define the truncated version of S’n7|V(H,-)\ ((fi)K(l})
(recall (A.31)) as follows:

L
&(L)
Svi (Fi) k) Z [fi0s) S v (8s)

for 1 < i < ¢. Similarly, for ¢ + 1 < @ < r, recalling (A.32) and (A.33) define the truncated
versions:

SgﬁL(Hm((fi)E{l,z}) E[£i(6s ® 65)] S v (i) (65 ® 65)

2 E [fi(¢s ® ¢6)] Suyv (i) (85 ® bt)

s<t

[\D w
//\ th

L
7(L7|%/(Hi)|((fi)K{1,2}) Z [fﬂ/)s] S’TL,|V(H2‘)‘(¢5)'
s=1

and for ¢ +1 < i < r. Now, recalling (A.19), define the truncated version of T'(H;,G,,) as
follows:

S0 oy (i)
|V (H, (1} : for1<i<q
(|V (H;)| = 1) |nlV HOl=3
T (H;, Gy) = 4 s
Sn"V(Hi)‘((fi)E“’”) +5 n,|V (H; ((fi)Ku,z}) forg+1<i<r
. 2(|V (H;)| — 2)!|nlVUE >| 1 g+1<i<m

and
T (H,G,) = (TV(H,G,), TV (Ha, G, ..., TV (H,, Gp)) T (A.35)
The following lemma shows that TX) (%, G,,) converges to a truncated version of T'(H, W).

Lemma A.2. Fiz L > 1 and let T'Y(H,G,,) be as defined in (A.35). Then the following hold
as n — oo:

T, G,) B TE (1, W),

where T (1, W) = (17, 13", T)T with
( 1 L
WZEM%]% fori<i<aq
s=1
1

T’Z(L) = < WM{ Z E [fl(qbs ® d)s)] (T]g — 1) + 2 Z E [fz(¢s ® Qst)] T)sT)t

s=1 1<s<t<L

+ZE[fz¢s]ﬁs} forg+1<i<r,

\ s=1

where {ns}s=1 and {Ns}s>1 are independent collections of N(0,1) and N(0,2) random variables,
respectively.
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Proof. Recalling the definition of S,_.(-) from (A.11) we get

1 & 1 —I— o(
VL omlv ) (9s) = Z ¢s(U;) (A.36)

for s > 1and 1 <1i < q. Similarly, for s,t >1and ¢+ 1<i<r,
1 ~ 1+o0(1)

AT V)| (@5 ® ¢1) = S e U)e(Uy), (A.37)
1<i#j<n
and
1 & 1+ o(1
AoV () (Vs) = W > s(UL UG, Yy). (A.38)
" " 1<i#j<n

Now, by [45, Lemma 8] the collection,

L L L
1 < 1
= ¢S(Uz)} { ¢s )} a{ wS(UhU'in')}
{\/ﬁzzzl s=1 1<z§]<n 1 n 1{7;§n ’ ’

converges jointly to

{nhcoer 0o = Elngnlh <y rer  lishicyer |-

The result in Lemma A.2 then follows by recalling the definition of T (%, G,,) from (A.35)
and (A.34) and the decompositions from (A.36), (A.37) and (A.38).
O

Now, to complete the proof of Proposition A.2 it suffices to show the following:
(1) TH(H,G,) and T(H,G,,) are asymptotically close and
(2) T (H, W) converges to T(H,W), as L — 0.
These are established in the following 2 lemmas, respectively.

Lemma A.3. Let T(H,Gy) and T (H,G,) be defined in (A.21) and (A.35), respectively.

Then
2
lim supE “T(’H, Gr) — L) (H,G,) 2] 0.

L—0 pn>1

Proof. Note that for 1 < < g,

2

1 N N
s=L+1

By the orthogonality of the basis {¢s}s>1, it is easy to Verlfy that E[S,,..(¢s)Sn..(6:)] = 0, for
s # t. Moreover, from (A.36), it follows that WE[S 1y (05)?] = 1+ 0(1), for s > 1.
Hence, from (A.39) and (A.29),

0
lim supE [|T(Hi,Gn) —T(L)(Hl-,Gn)F] <m lim ) E[figs]? = 0. (A.40)
L—0 pn>1 L—w L1

Similarly, for ¢ + 1 < i < r it can be shown that
lim supE [|T(H;, Go) — T3 (Hi, G2

L—o0 p>1
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sHith;O{Z [ 060+ D) Y B, 000 + ZE[fmsF}

=L t=L+11<s<t s=L+1
— 0, (A.41)

by (A.30).
Combining (A.40) and (A.41) the proof of Lemma A.3 follows. O

Lemma A.4. Let T(H,W) = (T1, Ty, ..., T,)" and TV (H, W) = (Tl(L),TQ(L), . ,TT(L))T be as
defined in Proposition A.2 and Lemma A.2, respectively. Then

lim E [HT(L)(H,W) —T(’H,W)Hg] =
L—0

Proof. For 1 <i < ¢, by [49, Lemma 8] we get,

o0 2 a0
ET" T <p E| Y Elfibsln| < Y. E[fw]? -0, (A.42)
s=L+1 s=L+1
as L — oo, by (A.29). Similarly, for ¢ +1 <i <,
- 2
E| Y E[figs]is| — 0, (A.43)
s=L+1
as L — o0, by (A.30). Also, since {72 —1:5> 1} are orthogonal and E(n? — 1)? = 2,
a0
E Z E [fz(¢s ®¢s)] (773 - 1 Z fz st ® ¢s)] : (A‘44)
s=L+1 s=L+1

Once again by definition {nsn; : s <t} are orthogonal and En?n? = 1. Hence, as above,

Z > E[filés ® é)] nsm — Z > Elfiles ® )] nsme| — 0, (A.45)

t=11<s<t t=L+11<s<t
as L — o0. Combining (A.43), (A.44), and (A.45), we get IE|T;L> ~Ti|*> - 0, as L — o, for
g+ 1 < i <r. This together with (A.42) completes the proof of Lemma A 4. O
Combining Lemma A.2, Lemma A.3, and Lemma A.4 along with [45, Lemma 6] the result in
Proposition A.2 follows. O
A.3. Equivalence of T'(H,W) and Z(H, W) For 1 <i < ¢, define

Also, for ¢+ 1 < i < r, define

Ri = 2(“/(1_[1”_2)‘ {Z E [fz(¢s ®¢s)] (775 - 1) + 22 E[fz(¢s ®¢t)] nsnt} ) (A47)
s>l s<t
Rz’ (’V ‘ — 2 ! Z flqujs Ns; (A'48)

where {ns}s>1 and {7s}s>1 are independent collections of N (0, 1) and N (0,2) random variables,
respectively. Then recalling the definition of T; from Proposition A.2, note that

T _ Qi for 1 <i<gq,
|l Ri+ Ry forq+1 1< T
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Denote Q = (QlaQ%--qu)T’ R = (Rq+1aRq+27'~'-,RT)T and R = (Rqul’RquQa"'aRT)T-

In the following 2 propositions we identify @, R, R with their corresponding components in
Z(H,W) (as defined in Theorem 2.1).

Proposition A.3. Let R = (Rq+1,Rq+2, ... R.)T be as defined in (A.48). Then the following
hold:

R~ N,_4(0,%),
where ¥ is as defined in Theorem 2.1.

Proposition A.4. Let Q = (Q1,Q2,...,Q,)" and R = (Ryi1, Ryy2,..., R)T be as defined in
(A.46) and (A.48), respectively. Suppose {Bi}c[o,1] be the standard Brownian motion in [0,1].
Then the following hold:

D 1 1 | V(H)]
@= mm(HmL a; (ta(z, Hi, W) = t(Hy, W) » dB, , (A.49)
1<i<q
and
D (" i (o VEAVEHE) ~1), o
R= (L L {WHi( Y) A t(Hz,W)}dedBy>q+1<i<r. (A.50)

The proofs of Proposition A.3 and Proposition A.4 are given in Section A.3.1 and Sec-
tion A.3.2, respectively. These 2 results combined establishes the equivalence of T'(H, W) and
Z(H,W).

A.3.1. Proof of Proposition A.3. Fix L > 1 and define the truncated version of R; as follows:

L
R(L) = ! E iYs Nsa
Z 2(]V(HZ~)|—2)!SZ:1 e ]

for ¢ +1 < i < r. Denote R(") = (R(L) R R,(,L))T. Then from (A.30) it is follows that

0 RL, .
~ ~ 2

lim E HR— R® H - 0. (A.51)

L—o0 2

Since the collection {ns}s>1 are independent N (0, 2),
~(L) D
RD = N, (0,71,
where T(5) = (( ,L»(jL)))q+1<i7j<T is given by
1

(L) 2(|V(H;)| —2
o (V{H] -2

5 Deet E[fis]? forg+1<i=j<r,

'Z£=1E[fzws]E[fjws] forg+1<i#j5<r.

2(|V(Hy)| = 2NV (H;)| - 2)

By computing characteristic functions and recalling (A.30) one has RL & N,_4(0,I), as
L — o, where I' = ((7ij))g+1<i,j<r 1S given by

1
AV (H:)| -2)

!QE[(fi)%({LQ}] forg+1<i=j<r,
Yij =

VIE)] — DV )] — D K Uik | orav b <izj<r
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Here, we use the identity Y% E[fibs]* = IE[(]”Z)%({1 2}] (recall (A.30)) and

Z E [fzws] E [fg%] = E[(fi)Ku,z}(fj)Ku,g}]a
s=1

which follows from the expansion (A.28) and the orthogonality of the functions {¥s}s>1.
The proof of Proposition now follows from Lemma A.5, which shows that the matrix T is
same as the matrix X in Theorem 2.1. ]

Lemma A.5. Forallg+1<1,j <

(|V(H. )I—2)‘(IV(H)!—2)
B[00 it | = Rt Auntiy)
> (t(H O Hj,W>—t<Hi D Hj,W>).
(a,b)eET (H;) (a,b),(c,d) (a;b),(c,d)
(c.d)eE* (Hj)

Proof. For ¢ +1 < i < r, from Lemma A.1 we have

(fi) k0 = EL[filU1, Uz, Yi2] — E[fi|U1, Us]
= D, (UL Us, H' W), (1{Yis < W(Uy,Uz)} = W(U1, Ua)) .
H'eYp,,(1,2)

where Gy, 19y 1= {H' € 9p, : (1,2) € E(H')} for all ¢ +1 <4 <r and,

try (U1, Us, H\W) =& I1 W (U, Uj)|U, Uy | for all H' € Gy, (1 9.
(i) B(H)\(1,2)}

Then for ¢ +1 < 14,5 <,
E [(fi)K{l,z} szK{l,Q}:l

= 51 B[00 U H Wt (U1, U Ha W) (Yiz < W (0, U2)) = W01, U
Hleth{lyg) -
HQE%Hj7{172}

= >, Elt1y(U1, Us, Hy, W)ty o(Un, Us, Ha, W)W (Uy, Up) (1 — W (U, Uz))}
H1€9p,,(1,2)
Mo, 1,2

- > (t <H1 e Hg,W)—lﬁ(Hl @ HQ,W>>, (A.52)
HlEgHi,{LQ) (1,2),(1,2) (1,2),(1,2)
HQE%ij{l,Q}

recalling the join operations from Definition 2.3. Now, considering VI%;_; = {(a,b) e V(Hy) : a # b}
for £ € {i,7} define,

t <H1 @ HQ, W) =1 (Hl @ HQ,W> 1{(@, b) € E+(H1) and (C, d) € E+(H2)}
( (

a,b),(c,d) a,b),(c,d)
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and similarly,

t (Hl EI—) HQ,W) =1 (Hl @ HQ, W) 1{(0,, b) € E+(H1) and (C, d) € E+(H2)}
( (

a,b),(c,d) a,b),(c,d)

where (a,b) € th, (c,d) € Vflj and Hy € 9y, and Ha € 9y,. Then we can rewrite (A.52) as,

HlegHi (172)7(172) (172)7(172)

HQEgHj
Now consider the permutations 7, : V(H;) — V(H;) and ch,d) : V(H;) — V(Hj) such that
T(ap)(a) = qud) (¢) =1 and T(a,b) (b) = Wéqd) (d) = 2. Then

S

(a,b)GVI_QI. HlegHi (avb)v(czd)
i
(cd)evh H2eom;,

- > ) t(ﬁ(mb)(Hl) © WEc,d)(thVV)
(a,b)EVEIi HlegHi (172)7(172)
(cdeVE, H2€F

ALY t<H1 S HQ,W> (A.54)
Hie%y, (1,2),(1,2)
HngHL

where the last equality follows by observing that
(Hi, Hz) — (W(a,b)(Hl)vﬂzc,d)(Hﬁ)

is a bijection from ¥y, x 9y, to itself for all (a,b) € VI%- and (c,d) € VI_QI],. By considering
isomorphisms 7z, and T}Il for Hy € 9y, and Hy € 9y, such that 7g, (H1) = H; and Tj{l (H2) = H;
a similar argument as above shows that,

oo t(m S Hz,W>=|%HiII%Hj| > t<Hi © Hj,W>. (A.55)
((l,b)EVIgi HlegHi (a,b),(c,d) (a,b)EVI_QIi (a,b),(c,d)
(cdeVi, Hye9n; (cdeVE,

Thus, combining (A.54) and (A.55) we find,

G, ||
3 t<H1 ) HQ,W> — W 3 t(Hl- ) Hj,W). (A.56)
Hleg]—[i (172)7(172) | Hl|| H.7| (a,b)erIi (avb)r(cvd)
H2&9m;, (cdeVE,
Similarly,

|G, |G, |

> t<H1 D HQ,W>=|V2HV2J| Yo otlH D HW. (A.57)
HlegH,L' (172)7(172) H; Hj (a‘7b)€VI-21i (a7

H2€€¢H]-, (Cvd)EVI-QIj
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Notice that by definition,

Z (t(H & Hj,W>—t<Hi P Hj,W)>
(a7b)€VI-21i (a,b),(c,d) (a,b),(c,d)

(c,d)eV}QIj

= ) (t(H ) Hj,W>—t<H,- @D Hj,W>>. (A.58)
(a,b)EEJ“(Hi) (avb)v(c7d) (avb)a(cvd)

(c.d)eE* (Hj)

Recall that |¥g,| = % for £ € {i,7}. Then observing that [V | = [V(Hy)|(|V(He)| - 1),

for ¢ € {i,j}, and using (A.56), (A.57) in combination with (A.53) and (A.58) completes the
proof of Lemma A.5. O

A.3.2. Proof of Proposition A.J. For 1 < i < ¢, using the expansion of (fz’)Km in (A.22) and
Proposition G.1 it follows that

L((f)rpy) = Y ELfigs] In(0s), (A.59)

s=1

where [;(+) is the 1-dimensional stochastic integral as defined in Section G. Note that {I1(¢s)}s>1
is a collection of independent N(0, 1) random variables. Hence,

1 D
Wy = ((fi)K{:l}): !;1 [fibs] ms = Qi

for @); as defined in (A.46). Now, recalling (A.22) and Definition 2.1 note that

(fi)k, (2) = E[filUr = ]
= > ti(z, H W) — |y, [t(H;, W)

H’EWHZ,
= e > (ta (2, Hi, W) — t(Hi, W), (A.60)
VH)| 7

where the last equality follows by arguments similar to proof of (A.56). Hence, using (A.60) in

(A.59) and recalling that |9y, = |Aut1({ )i|)!| gives,

Mm

0 2 ‘Aut ‘f tale,W)—t(Hz,W)) B,

for 1 < i < g. This shows (A.49).
Now, suppose ¢ + 1 < ¢ < r. Then from the expansion of (f;)
G.1,

B 1D (A.23) and Proposition

L ((F)m ) = D B L6 ® 00)] B(0s @ 65) +2 3, B[fi(6, ® 60)] 1265 ® )

s=>1 s<t

= S E[fi(¢s ®,)] (1(65)> = 1) +2 Y E[fi(ds ® 60)] 11 ()1 (1),

s=>1 s<t
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by (G.3), since E[I1(¢s)] = 0 and E[I;(¢s)?] = 1. As before, noting that {I1(¢s)}s>1 is a
collection of independent N (0, 1) random variables and recalling (A.47) gives,

1
SV (H) —2)1 (50
D 1 2
= S TN oV Efz(z)s@d)s 775—1 +2 Efz ¢s®¢ N)sT}
= R;. (A.61)
Recalling Definition 2.2 and Lemma A.6 we have for all ¢ +1 < i < r,

()i o) = 2V ()] = 2)!Wi, o) = bt )

for almost every (x,y) € [0,1]%. Thus, for ¢ + 1 <i <,
I ((fz')EU,Q})
\V(H:)| ([V(H:) — 1))
=2(|V(H;)| —2)! {Wiw,y—
(IV(Hi)| —2) o LT (2,9) SAut(H)|

Combining (A.61) and (A.62), the result in (A.50) follows. This completes the proof of Propo-
sition A.4. ]

t(H;, W)} dB,dB,.  (A.62)

Lemma A.6. Forg+1<i<r,

(fi)E{lyg} (xvy) = W Z (tab(xuya H;, W) - t(Hiv W)) )
| Aut(Hy)| 1<a#b<|V (H)|

for almost every (x,y) € [0,1]?.
Proof. From (A.23) and Definition 2.2 we have,
(fi) By (@, y) = E[filUr = 2,Uz = y]

= Z t1,2 (Ia Y, Hla W) - |gHz |t(‘HZ7 W)’ (A63)
H’E%Hi

for almost every (z,y) € [0,1]%. Denote by S|y (m,)| the set of all [V (H;)|! permutations of V (H;).
Then it is easy to observe that

D1ty E(H), W) = [Aut(H)| Y, tio(w,y, H,W). (A.64)
§ES|v(m,)| H'eYy,

where (H) is the graph obtained by permuting the vertex labels of H according to the permu-
tation £. Also,

Z t12(x7y7§(Hi)7W) = Z Z t12($,y,§(HZ‘),W)
§ES|v (1)) 1<a#b<|V(H;)| €€S|v(m,)
§(a)=1,£(b)=2
B Z Z t£71(1)§71(2)(x7yaHiaW)

1<a#b<|V(H;)| §€S|v(m,))

= Z 2 ta,b(xvyaH’iaW)

1<a#b<|V (H;)| €€S|v(m,)|
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= (|[V(H;)| - 2)! > tap(z,y, Hy, W) (A.65)
1<a#b<|V (H;)|

Combining (A.64) and (A.65), we have,

V(H;)| —2)!
(IV(Hi)| - 2) 3

Z t12<$7y7H/7W) = |Aut(H)|

H’E.@Hi

tmb(IL’,y,Hi,W). (A66)
1<a#b<|V (Hy)|

Thus combining (A.63) and (A.66) gives,

(fi)Eu,z}(x?y) = W Z tap(z,y, Hi, W) — |G, [t(Hi, W)

| Aut(Hy)| 1<ab<|V (H;)|
(IV (Hi)| —2)!
= VT 2NN (g, Hy, W) — H(H;, W
|Aut(H1)| a;b( b(‘r Yy ) ( ))
where the last equality follows by recalling that |¥y,| = %, forall g +1<i<r. O

A.4. Completing the Proof of Theorem 2.1. The result in Theorem 2.1 follows by com-
bining Proposition A.2, Proposition A.3, Proposition A.4, and by noting that T'(H,W) =
Q7. (R+R)")".

APPENDIX B. MOMENT GENERATING FUNCTION OF THE LIMITING DISTRIBUTION

In this section we derive the moment generating function (MGF) of the limiting distribution
Z(H, W) obtained in Theorem 2.1. We begin by introducing some notation: For any symmetric
function U : [0,1]?> — R, for L > 2 define its L-th path composition as follows: For z,y € [0,1],

U(L)(:L',y) = f Uz, w1)U(wy,ws) - U(wr—1,y)dwidws - - - dwp,—1. (B.1)
[0’1]L—1

o= (a1,09,...,0,)" € R", define the functions Vy : [0,1] — R and Uy : [0,1]?> — R as:

Va(z) = Zla EYTIEAT ; ta(z, Hy, W) — Mt(ﬂi,m , (B.2)
and
Ua(%?f) = Z Q; (WHZ <$,y) - CHz(W)) ) (B3)
i=q+1

where cg, (W) = |V(I§|1(l&gs)‘|_l)t(Hi, W) and Wy, is as in Definition 2.2. We can now express

the MGF of Z(H,W), for H = {Hy, Ha, ..., H,} as in Theorem 2.1, as follows:

Proposition B.1. Fira = (a1, a9, ...,0;)" € R and let C := Dicqi1 \ai\%. Then
for 16] < 3¢

log E [eao‘Tz(H’W)]

2 0

_ .0 L—1pL+2 (L) L @O)F (1 w
=( +a) g+ B2 | Vel VeV sy + 5 3 B | 0 ja,
L=1 0,1
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where U&L) is the L-th path composition of UF) as defined in (B.1) and

— Q5 ' ' B ‘ ‘
o= ) | Aut(H;)| | Aut(Hj)l Z)<t<Hz@HJ,W> t(HZ,W)t(HJ,W)>,

1<i,j<q aeV (H; a,b
beV (Hj)

r 2
- Q05
o= . ‘ ‘ > t(Hi ) Hj,W>—2< > aicHZ.(W)) :
g+1<i,j<r 2| Aut(H;)| | Aut(H;)| a#beV (H;) (a,b),(c,d) i=q+1
C?édEV(HJ)

B.1. Proof of Proposition B.1. Recalling the definition of Z(#, W) from Theorem 2.1 note
that

Q" Z(H,W) = )] aiGiJrJfUadedBerJVadBm, (B.4)
i=q+1

where {G; : ¢+ 1 <i <71} ~ N;_4(0,%) with ¥ as Definition 2.4 is independent of the standard
Brownian motion {B; : t € [0,1]}. Now, observe that U, € L?([0,1]?) is symmetric and hence,
the operator,

Ty, f5) = | Valo.) )y, (55
where f € L?[0,1], is a self-adjoint Hilbert-Schmidt integral operator. Then by the spectral
theorem (see [72, Theorem 8.94 and Theorem 8.83]) we can find a set of orthonormal eigenfunc-

tions {¢s}s>1 corresponding to eigenvalues (with repetition) {As}s>1 of Ty, which forms a basis
of L?[0,1] and

Ua(z,y) = D Asths(2)0s(y), (B.6)
s=1

where the above sum converges in L2. Further, we assume that {\s}s>1 are arranged according
to non-increasing order of magnitude and limg_,o, As = 0. Moreover, by the orthonormality of
the eigenvectors (see, for example, [49, Lemma 8, Chapter 6]),

o0
DAL= |Uall < . (B.7)
s=1
Also, since Vg € L?[0, 1], expanding V, using the basis {¢s}s>1 we have the following,
o0
Va(lj) = Z ’Ysﬁi)s(x)) (BS)
s=1
where once again the above sum converges in L? and
a0
2 _ 2
D78 = [Vals < . (B.9)
s=1

Hence, recalling the expression of a' Z(H, W) from (B.4) along with Proposition G.1 and the
expansions of Uy and Vg from (B.6) and from (B.8) respectively gives,

OéTZ(H, W) = Z ;G + 2 )\312(¢s x ¢s) + 2 Ys1 (¢s)

i=q+1 s=1 s=1
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s Z OtiGi + 2 As(Il((ﬁs)Q - 1) + 2 73[1(¢3) (by (G3))
i=q+1 s=1 s=1
Z o;G; —I—Z/\ —1)+ Z'sts,
i=q+1 s=1

where {n;}s>1 is an independent collection of standard Gaussian random variables which is also
independent of {G;}4+1<i<r- Now, for K > 1, define the truncated version of o' Z(H, W) as
follows:

K
Z o;Gi + Z As(2 = 1) + ) el (B.10)
s=1

i=q+1

We begin by computing the MGF of Y, g in the following lemma:

Lemma B.1. Let Yo i be as defined above. Then for [0] < ﬁ, where C as in Proposition B.1,
the MGF of Yo i s given by

K o 2)\0L
yyd

92 K o
logE [eey"‘vK] = aIEaJrE + Z Z ob=2glr1 2)\L-1 o
s=1L=1 s=1L=2

| =

where ay = (agy1, -+ o).

Proof. For all K > 1 define,

K K
v = 2 a;G;, Y, a2 = 2 As(n? — 1), and Y;:% = Z VsMs- (B.11)

)

i=q+1 s=1 s=1

by the independence of ch ) and (Y 0(2(, Yg;{) and the Cauchy-Schwartz inequality we have,

1
E [eGYa,K] <E [eayﬁ)] (]E [ 20Y ) ] E {GQGYS}{D .
Note that the MGFs of VA" and Y( ;( exist for all #. Also, by [34, Theorem 2.2],

1 1
16y/SL a2 19
Recalling (B.3) and (B.7) observe that,

K r

V(H;)|(|V(H;)| — 1)
V< alz < Y el —c,
s=1 i=q+1 |Aut(Hl)|

since |Wp,| < |V(fg‘)ji(u\§/(gg)‘\—1)’ for ¢ + 1 < i < r. This implies,

(2)
E[ 29Y0‘K] < oo, for || < min

1
E [ Wa,K]  for |0
e < or 0| < — 6C"
Now, we proceed to compute the MGF of Y, x. Observe that by independence,
E [EGYQ,K] - [QGYC&U] B {eG(Y;?%(JrYS;()} ) (B.l?)

We will consider the following 2 cases:
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Case 1: First, assume that A\s; # 0, for all 1 < s < K. Then recalling (B.19) and completing the
square,

K K
v 4 v = S, (77 N %m) STA,
s=1

) - i s (B.13)

Recall that {ns}s>1 are i.i.d. N(0,1). Hence, from the MGF of non-central chi-squared
distribution and (B.7) we have,

Tls

I
=
>
7 N

92

. XS (1-2750) 1
IE[ 031 As(mst 355 ] ¢ for all |0] < — < :
° H N WA Tr A e bW
This implies, for all |0] < 1667
O35 Ne(ns+55)? S 1 $
logE[e s=1 s\ TN ]: (1 —2X0)" Elog (1 —2X0)
s=1 4AS s=1

® N

18

K
1
L
(2X0)" + 5 >

Il
1=
INGVA
(=2

w
l
w
h
|é
vy
l‘
= EME;

2L_29L+1’7§)\£_1

I
D=
18

@
Il
—
T
=}
@
Il
—
V2l
Il
—_
h
Il
N

Recalling (B.13), this implies that

K o K o
(v 2+ L-2gL+1.2\L-1 1 (220
logE[e (v ,K>] =D > ok TplAla 2Ll 3 ) . (B.14)
s=1L=1 s=1L=2
Case 2: There exists 1 <t < K such that Ay = 0. Recall that {\s}s>1 are arranged according to
non-increasing order of magnitude. Hence, A = 0 for all t < s < K. In this case,

3 _y®

K
2 3
Yci,;{ o(z,K ot—1 + Yo(z,t)—l + 2 VsTs-

Clearly, v 1+ Y( ) _, is independent of Z _;VsTs- Moreover, note that Z ¢ VsMs ~

o,t—

N(O,3E 42). Hence using (B.14) we have,

(2) (3)
].OgE |:€9(YQ,K+YQ,K):| — 2L720L+1’YS2)\£71 +

K o
1 2040
2“29“1%2&4 + E § (24:0) (B.15)

)

m TMS “‘H TMS
i
18

[\V]
h
&

>
h
*
Do

>
=

+

N | =
1=
78
©
ik
=z

Combining (B.14) and (B.

@) @) & 1E & (2),0)F
log E [ee(Ya,ﬁYa,K)] _ Z 3 gb-2ghtl 2Lty : 33 ( ‘! )~ (B.16)
s=1L=1 s=1L=2

an conclude that for all K > 1,
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Finally, recall that G = (Gg41,- -+ ,Gr) T ~ Ny—4(0,%). This implies,

oy valc] _ 0
log E [e ] =logE [e + ] 5a+§]a+ (B.17)
Now by (B.12), (B.16), and (B.17) we conclude that,
0 18 & (2A0)8
logE [eOYavK] = Ea+ + Z Z ol- 20L+1 )\5_1 + 3 Z Z (22:6)
s=1L=1 s=1L=2
for all 0] < 16C O

Now, we compute the MGF of o' Z(H, W)).

Lemma B.2. The moment generating function of o' Z(H,W)) exists for all |0 < ﬁ and 1is
given by,

0 Q0
0T Z(H,W) L—1pL+2 2\ 4 =
logE[e ] Z oL—1g Z’y N+ 3 g ; (B.18)
where ¢y == ol Tay + | Va3 + 2|Ual3
Proof. Define,
Z o;G;, Y(2) Z As(nz — 1), and Y( ). Z YsNs- (B.19)

i=q+1

Observe that {7727_21}521 and {ns}s>1 are orthonormal. Hence, for Y, x as defined in (B.10) we
have,

E[(aTZ(%,W)—Ya,K)Q]gE[ i As(ng—l)] +E[ i vsns]

s=K+1 s=K+1
0 0
<2 )N+ D) -0,
s=K+1 s=K+1
as K — o0, by (B.7) and (B.9).Thus,

eMar B falZ(HW) g 4] 0] < — !
’ 32C°

From the proof of Lemma B.1 it follows that E[e?Yek] < oo for |0] < ﬁ Hence, {efYex
K > 1} is uniformly integral for |0 < C and
1
I}I—{noo logE[ GYQ’K] =logE [eeo‘Tz(H’W)] ,  forall |0 < -—— 320" (B.20)

Now, note that

20’,4_ + Z Z2L 20L+172)\L l+% i i
L=1s=1 L

=2
1
Z 2 oL~ 29L+172)\L 1, 5

=K
o0 0 - - 1 & 0 |2/\59|
:Z 2_]12L N S D D
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1i§:2“1 el Y Bl Y N e
<3 I A 2
L+loL+l '8 2 2 L/220L0L
S R i 132 ¢ 32°  Fn 2 Fnissls /232C
] 75 TaLltipz T 78 5 3 7 — 0, (B.21)
85 K+1 = 16 C —K+1C 259:I(+132 L=3 L16

as K — o0. Thus, combining (B.20) and (B.21), for 6] < 515,

log E [eeaTZ('H,W)]

_a+2a+ + Z ZQL 26)L+1 2)\5 1
L=1s=1

2 0 0
:2<a12a++27§+22A§> Z
s=1 L=2

0 0 2)\39L

Z 2( )

_L L L SR
729 +1 Z}\Sfl_’_

92 0 0 0 29 0
=3 <a12a+ + 72 +2 Z Aﬁ) Z ol—1gl+2 Z 2AE 4 2 Z Z
s=1 = s=1

L=3

N | =

—_

\V)

Now, observing that > 2° ;72 = ||V, |3 and ZOO A2 = |Uq|3, the result in Lemma B.2 follows.

O

NOW we relate the terms in (B.18) with those in Proposition B.1. To begin with note that
So (z,z)dz can be interpreted as the density of the L-cycle for the function Ug. Since
Ua [O 112 - R, is a symmetric and bounded function, it follows from arguments in [55,

Section 7.5] that, for L > 3,

2 Py f D (2, 2)dz, (B.22)

where {\s}s>1 are the eigenvalues, with eigenfunctions {¢s}s>1, for the operator Ty, as defined
n (B.5). This implies, by the spectral theorem,

N,y) = 3 Aa() s (y), (B.23)
s=1

Using this we relate Y el v2AE in terms of the functions Uy and V.
Lemma B.3. Forall L > 1

Z =] Vala()U @ ey

Proof. Since Vo () = Y00 | vs¢s(z) (vecall (B.8)), we have 5 = Sé Vo (x)¢s(z)dx, for s = 1, by
the orthonormality of the eigenvectors. Hence,

o0
Z VNE = J[O " <Z /\fqﬁs(w)cbs(y)) Va(2)Va (y)dady = J[O . Val(@)Va(y)US (2, y)dzdy,
; s=1 )
by (B.23). O
Combining Lemma B.2, (B.22), and Lemma B.3 gives,

log E [eaaTz(ﬂ’W)]
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0’cx N0 L1042 (L) L& (20)" (! (L)
= — + Z 20 1gnt j Va(@2)Va(y)Us’ (z,y)dady + = Z f Ua'(z,x)dx,
2 L=1 [0,1] 247 LU

where ¢ = al Sa + |Va|3 + 2|Ua|3. The result in Proposition B.1 now follows from the next
lemma.

Lemma B.4. nq, 7o as defined in Proposition B.1 the following hold:
Va3 =na and  2|Ual3 + aiSa; = fa.
Proof. Recalling the definition of V,, from (B.2) we have,

f 1 V2(z)dx

0

(B.24)
1<i,j<q 0 aeV(H;)
beV (H,)
where k; := W Observe that,

[t 0w = 80,09 G, 13, 00 — a0, )
0

1
= f ta(m, Hi7 W)tb(ac, Hj, W) — t(Hi, W)tb(.%', Hj, W) — t(Hj, W)ta(.%', Hj, W) + t(Hi, W)t(Hj, W)d.%‘
0

=t (Hi@Hj,W> — t(H;, W)t(H;,W). (B.25)
a,b
Combining (B.24) and (B.25) gives |Va|3 = 7a-

Next, recalling the definition of Uy from (B.3) we have,

IS 2 IS 2
| vgasay= [ (N ety dedy 3 awtmw)) . @20)
[0,1]2 [0,1]2

1=q+1 1=q+1
since S[O 12 Wy, (z,y)dzdy = ¢(H;, W). By definition,

r 2
J[O,l]Q ( Z O‘iWHi(fﬂvy)> dedy = 2

1=q+1 [0’1]2

q+1<i,j<r
and

[0,1]?
! > f tap(@,y, Hy, W)teq(x,y, Hj, W)dzd
= a,b\ T, Y, 114, c,d\ T, Y, 13, ray
4| Aut(H;)[ [Aut(H)| 5y Joape ’
C#dEV(Hj)

(B.28)
a#beV a,b),(c,d

C#dEV(H])
Finally, recalling the definition of ¥ from Definition 2.4 note that
a12a+

1
_ t| H; H, W |.
4|Aut(H;)| [Aut(H;)| Z(Hi) ( ( @ ) ’ )
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-y =y (t(Hi O H,W)-tH; @D Hj,vm)
q+1<i,j<r (a,b)eET (H;) (a,b),(c,d) (a,b),(c,d)
(c.d)eE™ (Hj)

- ) ”i;j > (t(Hi © H,W)-tH; D HJvW)) (B.29)

q+1<i,j<r a#beV (H;) (a,b),(c,d) (a,b),(c,d)
C#dEV(Hj)
where the last equality follows from Remark B.1. Combining (B.26), (B.27), (B.28), and (B.29)
we have 2|Uq[3 + alYa = fa. O

Remark B.1. Note that both the weak and strong edge join operations can be extended to
arbitrary (a,b) € V(Hp)? and (c,d) € V(Hz)?, with a # b and ¢ # d as follows: For the strong
join we keep all edges, while for the weak join we keep the joined graph simple by merging any
resulting double edge. In particular, if either (a,b) ¢ E*(H;) or (¢,d) ¢ E*(Hs), then the weak
and strong edge joins are the same graph. This implies,

tHy, & Hy,W)=tH1 @ H,W),
(a,b),(c,d) (a,b),(c,d)

which explains the step in (B.29).

APPENDIX C. PROOF OF COROLLARY 2.2 AND COROLLARY 2.1
C.1. Proof of Corollary 2.2. Since W is H-irregular for all H € H, by Theorem 2.1,
Z(H,Gn) D Z(HW) = (Z(H\, W), -, Z(H,, W)

where

Z(H;, W) = B
(H:, W) fo Aut()]

for 1 < < r. Since a linear stochastic integral has a centered Gaussian distribution,

|V (H;)|

oz, H;, —
fale His W) = i)

a=1

Z(H,W) £ N,(0,T),
where I' = ((Tij))lsz‘,jgr, with

Tij = COV(Z(Hi, W), Z(Hj, W))

1 [V (H)|VH)I
- \Aut(Hi)HAut(Hjﬂ{ f ta(, Hi, W)t (@, Hj, W)dz

— |V (H;)|t(H;, W)V(Hj)lt(Hj,W)}-
A direct computation shows that, for all 1 <i,j < r,

1
f o, Hoy Wty (ary H, Wdir = ¢ (H @Hj,w> .
0 a,b

This shows, 7;; = Cov(Z(H;, W), Z(H;,W)) equals to the expression in the statement of Corol-
lary 2.2.
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C.2. Proof of Corollary 2.1. Note that when W is H-irregular, the result is immediate from
Corollary 2.2. Hence, suppose W is H-regular. In this case, from Theorem 2.1 we know that,
1,1
D \V(H)[([V(H) - 1)
Z(H,G,) > G Wr(z,y) — t(H,W);dB,dB,, C.1
11,6 26+ [ [ {wten - P =D L apas, e

v

Z(HW)
where G ~ N(O,?ﬁiw), with

v = e, % (H)HH 0 mw)-i(n @ nw)|. e

(a,b),(c,d)eE+ (a,b),(c,d) (a,b),(c,d)
and G is independent of the Brownian motion {B; : 0 < ¢t < 1}. Note that the expression of
nu,w follows from Theorem 2.1 and (2.11). From (2.7) recall that,
dyy, = [VEDIVH) — 1))

" 2|Aut(H)|
is an eigenvalue of the kernel Wy with corresponding eigenfunction 1. Now, considering the
spectral decomposition of Wy notice,
_WVH)[(V(H) — 1))

2|Aut(H)|

t(H,W),

WH(x7y)

tHHW) = D Aga(@)éa),

AeSpec™ (Wy)

almost everywhere. Then,
1 p1 1,1

2w = [ [ Y de@awisds, - Y [ [ da@awdsas,
00 AeSpec™ (Wg) AeSpec™ (Wgr) 0Jo

where the last equality follows by Proposition G.1. Now, using (G.3) and Sé ér(7)2dz = 1, we
get

Jol L 1 ApA(2)dA(y)dBed By = A [( L 1 ¢,\(3:)de>2 - 1] , for all A € Spec™ (Wg).

The orthonormality of the eigenvectors {¢,} AeSpec— (W) implies,

1 2
ZHW)= ) A[(L gzb(x)de) —1] 2N aZ-n, (©3)

AeSpec™ (Wh) AeSpec™ (Wy)

where {Z) : A € Spec” (Wg)} are i.i.d. N(0,1) which are independent from G. The proof of
Corollary 2.1 is now complete by collecting (C.1), (C.2), and (C.3).

APPENDIX D. PROOF OF THEOREM 4.1

We begin by expressing the estimated distributions Z(H,Gy) (recall (4.7)) in terms of sto-
chastic integrals. For this, suppose Iy, Io, ..., I, be a partition of [0, 1] into intervals of length
1/n, that is, I, = [&2, %), for 1 < s < n. Let n, = SIS dBs, where (Bt)cpo,] 18 a standard

te

Brownian motion on [0, 1] independent of {G,},>1. Then {n1,n2,...,m,} is a collection of i.i.d.
N(0,1/n) random variables. With notations as in (4.5), define
ZZ:l(f(U»Hi, Gn) — E(Hiv Gn))nv ifl<i<g,
Z'(H;, Gy) := (D.1)

T n T n 6‘&,11 3 o
ZKU’Kn(W& (u,v) — ng ) <nunv - T) ifg+1<i<m,



HIGHER-ORDER GRAPHON THEORY 51

where, recall that, 8, = 1{u = v}, {(H;, G,) = 2 30 _, t(v, H;, Gy), and WI%” = n—lg Yil<uvsn ngn (u,v).
Denote,

Z'(H,Gy) = (Z'(Hy,Gy), Z'(Hy, Gp), ..., Z'(Hp, Gp)) . (D.2)

Note that Z'(H,G,) has the same distribution as Z(H,G,) and Z'(H,G,) is defined on the
same probability space as {By}c[o,1]- Now, recalling (4.3), for z € [0, 1], define

t(x, H;, Gy) = t([nz], H, Gy,). (D.3)
Note that Sé t(x, H;,Gyp)dzx = t(H;,G,,). Also, recalling (4.4), for z,y € [0, 1], define
Wi (,y) = Wiz (nal, [ng]). (D4)

Observe that S[o 172 ng (z,y)dzdy = WG_". Hence, (D.1) can be expressed as:

i (f(x,Hi,G — { f(w, H,, Gy d:z) dB, if1<i<q,
Z'(H;, Gy) =
8[071]2 (ng (x,y) — 8[0’1]2 ng (z, y)d:cdy) dB,dB, ifg+1<i<r.
In the next lemma we show that distribution of Z’(H;,G,,) remains unchanged in the limit
when t(x, H;, G,,) is replaced by #(z, H, W&) (recall (2.4)) and ng” (x,y) (recall (D.4)) is re-
placed by WGZ,", the 2-point conditional homomorphism kernel of the empirical graphon W&»

(recall (2.5)). This is because the difference between all homomorphisms and injective homo-
morphisms is negligible in the limit.

Lemma D.1. For1 <i<r, asn — o0,
~ 2
E “Z’(Hi,Gn) - Y(Hi,WG")‘ ‘Gn] a3 0, (D.5)

where Y (H;, WE) is defined as follows:
o for 1 <i<gq,

e 1 . vl o |V (H;)| G
Y (H;, W=n) 32J;) m (;1 to(x, H;, W ")—mt(f[uw ") ¢ dBu,

e forq+1<i<r,

Y (H;, WO) = f fl {Wgy(x,y) _ VEHIUVHD = 1|)t(HZ~,WG”)} dB,dB,.

2|Aut<Hl->|
Proof. We start, the proof by showing (D 5) for < ¢, that is, when W is H;-irregular.
Towards this, notice that t(H;, W) = {t4( H,,WG )dz, for all 1 < a < |V(H;)|, and
hence,
. 2
E [ Z'(H;,Gy) — Y (H;, WEm) Gn}
s L van) Y
< t(z, Hi, Gp) — ———+ tg (x, H;, W=n dx
) Ry 2 )
2

|V (H;)l

= ; ¢ ) - ; . Gn
_’UZlJ‘IU t(UaHZaGn) ‘Aut(HZ)| Z ta (Jf, HZ7W ) d.’L‘j (Dﬁ)

a=1
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almost surely, where I, = [&1, %), for 1 < v < n. Note that the first inequality follows by

n 'n
the boundedness property of stochastic 1ntegrals (see Section G) and the second equality follows

S
from the definition of (-, H;, Gy,) in (D.3). From (4.3) recall that,
|

1 U x LG

t(v, Hi, Gy) = TAw(Hy)| = S plvHE)-T

for 1 < v < n. Then from (D.6) we get,

~ 2
B ([205,6.) - (i1 w6
n ‘V(H1)| 2
Xa(U;Hi7Gn) Gn
DNPY L (W‘%(Mi’w )) dz, (D7)

almost surely. Now, recall Definition 2.1 to write,

ta(z, Hy, WGn) = j H W (2, 2,) H WY (24, 2,) H dx,,.

VI Ny (a) (u,0)eE(Hi\{a}) veV (Hi\{a})

Recalling the construction of empirical graphon W& from (2.3), t,(x, H;, W) can be equiva-
lently written as follows:

ta(a, Hi, W) = n|VH)| 1 Z H wos, (G H Ws,s, (Gn),

S veNs, (a) ( WEB(H\{a})

forall z € I,, and 1 < v < n, where the sum is over tuples 8(,)c = (52)zev (H,)\{a} € {[n]\{o}}IVHII-1,
From Definition 4.1 recall that X, (v, H;, Gy) is sum over tuples sy, = (8z)zev(H,)\{a} Where
the elements are all distinct. Thus, for all x € [, and 1 < v < n,

Xa(v, Hi, Gn)

VTt (2 H W)

1
<> —, D.8
H (D.8)

since the difference in the LHS above counts the number of non-injective homomorphisms ¢ :

V(H;) — V(G,) such that ¢(a) = v, up to a constant depending on H;. Substituting the bound
from (D.8) in (D.7) gives,

51 a2 1

E [{Z (Hi, G) = Y (Hi, W) ’G} < —

n?

almost surely. This proves (D.5), for 1 <i < gq.
Next, consider ¢ + 1 < ¢ < r, that is, W is H;-regular. Note that

t(H;, WEn) f f WG (z,y)dzdy.

Then once again by the boundedness property of stochastic integrals we get,
2
Gn]

1 p1 e G 2
SJ J (WHi”(w,y) —WHi"(w,y)> dady
0 Jo

EHZ(H Gy) — Y (H;, WOn)

~ 2 1
<o B | (WG - W) - Do)
1<u#v<n Iy x I n
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Xa b(u7v7Hi,Gn) G 2 1
<H; J < : ~— - Wyr(z,y) | + —, (D.10)
1<u§;<n LuxIy nlV (Hi)|-2 p -
1<a#b<|V (H;)|
almost surely. Note that the inequality in (D.9) follows since ngﬁ — 0 on I, x I, for all

1 <u<n,and ngn is bounded. Furthermore, (D.10) follows from the definition of ng in
(4.4).
Now, recalling X, ; from Definition 4.2 and by counting arguments similar to (D.8) gives,

2
?
almost surely. This completes the proof of Lemma D.1. O
Now, define

Z'(H;,Gp) — Y (H;, WGn)

1
an| ng PR
n

Y (H, WOy i= (Y (Hy, W), Y (H,, W) " (D.11)

Note that although Y (H, W) resembles the empirical analogue of Z(H, W) (recall (2.12)),
with W replaced with W& one important difference is that in the regular regime, that is, when
q+1<i<r Y(H;, W) does not have the Gaussian component G;, unlike in its population
counterpart Z(H;, W&n).

Since Z'(H,G) has the same distribution as Z(#,G,) (recall (D.2)), Lemma D.1 implies
that to prove Theorem 4.1 it suffices to show that Y (#, W)|G,, converges in distribution
(almost surely) to Z(H,W). We will establish this by showing that the MGF of o' Y (H, W&n)
conditioned on the graph G, will converge the MGF of o' Z(H, W) almost surely in a neigh-
borhood of zero, for all a € R". This is formalized in the following Proposition D.1, which is
proved in Section D.1.

Proposition D.1. For any a € R" and |0| < ﬁ, where C is defined in Proposition B.1, the

following hold:
lim logE Gn] — logE [69aTZ(H,W)] 7
n—ao0

on a set A (not depending on o) such that P(A) = 1.

[eeaTY(H,ch)

Proposition D.1 implies that
Y (H, WG, B Z(H, W),

for all @ € R", on the set A. Since the above convergence holds for all a € R", the result in
Theorem 4.1 follows from the Cramér-Wold device, Lemma D.1, and recalling that Z'(H, G,,)
has the same limiting distribution as Z(H, G,,).

D.1. Proof of Proposition D.1. Let a = (ay,az, -+ ,a,) € R". Similar to (B.2) we define,

q 1 [V (H:)] G \V(H;)| o
= i | — to(z, Hi, WO™) — —— " t(H;, W) |, D.12
and, similar to (B.3), let us define,
Ua7Gn (x7y) = Z (&7} (ngn (‘Ta y) - C(Hi7 WGn)) ) (D13)
1=q+1

where c(H;, W) := |V(I{2i|&(li/(%3)ll_l)t(Hi,WG").
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Lemma D.2. There exists a set A such that P(A) = 1 on which the following hold:
(1) For L =3,

n—o0

lim Uc(x%n (z,z)dx = JUéL) (x,x)dx,

where Uéfén and U&L) are the L-th path composition of Ua g, and Ue, respectively.
(2) For L>1,

i, [ Vi, (UL, (@) Vi, ()dody = [ Va(@)U 2,1V (w)dndy.
The proof of Lemma D.2 is given in Section D.2. Here, we apply this lemma to complete the
proof of Proposition D.1.
To begin with note that the Proposition B.1 holds for any graphon, in particular, it holds
for the emprical graphon W&, Hence, using this expression, with W replaced by W& and ¥
replaced by zero (recalling the definition of Y (H, W) from (D.11)) we get,

log IE [eGaTY(’H,WGn) |Gn]

l\D\»—l

92 n o0
_ % + ] 2L19L+2J Vet (2) Ve () UL (2, )y +
L=1 [0,1]2

e}
Z f U, (@, 2)de,
where

Con = HVa,GnH% + 2HUa,Gan- (D'14)

Note that |Uq,c,| < C, where C is defined in Proposition B.1. Then, for all |f] < 33> and L >3
we get,
2k10)-
L

oL 1
S — S .
T cL32lL 16LL

fUlgf(); (z,z)dz| <

Observe that 2%;3 IG%L < 00. Hence, using the Dominated Convergence Theorem and Lemma
D.2 we conclude,

B AR ) L 1 (20)° ()
nh—I}oloﬁ Z 7 JUmG" (x,z)dz = 3 Z 7 J;) o (z,x)dx (D.15)
L=3 =3
on the set A. Next, note that
_ L _ 1 ~ 1 ~
2L 1’0‘L+2 fVa,Gn(x)Va,Gn(y)Ua7an(x7y)dxdy‘ < 2L 132LTCL+202CL < WC2,

V H ~
where C = 237 Z||1L1(3(I;>’)’ Now, observe that g—z > 16%1 < 0. Hence, using DCT and
u i
Lemma D.2 we conclude,
0
lim ) 287 sh2 fVa,Gn (2)Varca UL, (,y)dardly
n—o0 -1 ;On

[oe}
= 3 2 [ Va@)Va ) US” (2, )iy, (D.16)
L=1
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on A. Now, denote k; = W Then from the proof of Lemma B.4 we get, as n — o

WVacals = Y wmirg Y, [t(H@Hj,WGn)—t(HZ-,WG")t(Hj,WGn)]
)

1<i,j<q aeV (H; a,b
beV (H;)
- > Rk, [t (Hi(—DHj,W> —t(H,-,W)t(Hj,W)] = Nexs (D.17)
1<i,j<q aeV (H;) a,b
bEV(Hj)

on the set A, since the vertex-join of 2 simple graphs produces another simple graph. Also, from
the proof of Lemma B.4, with W& in place of W (see in (B.26) and (B.28))

2
Va3 = >, ”ifj D t(Hi P Hj,WGn> <Zaz Z,WGH>
(;) (

q+1<ij<r a#beV (H a,b),(c,d)
c#deV (Hj)

Now, since W& is the empirical graphon corresponding to the graph G, W is {0, 1}-valued.
Thus, W& (z,y)? = WS (z,y), for all 2,y € [0, 1], hence,

t(Hi ) Hj,WG”>=t<HZ- S Hj,WGn>,
( )

a,b),(c,d (a,b),(c,d)
fora #be V(H;), c#deV(H;),and ¢+ 1 <i,j <r. Thus, on the set A,
2
9 RiKj Gn Gn
ZHUa,GnHQ = Z 2] Z t (Hl @ HjaW ) (Z a;c(H;, W )
q+1<i,j<r a;&bEV(Hi) (avb)v(cvd)
cAdeV (H;)
q 2
RiKj ~
— Z 5 J Z t (Hl @ Hj, W) - <Z aiC(Hia W)) = TNas
qH1<i,j<r a#beV (H;) (a;b),(c,d) i=1
cAdeV (Hj)
(D.18)

as the weak edge-join of 2 simple graphs produces a simple graph. Hence, recalling (D.14),
(D.17), and (D.18) gives, c2., — Na + Mo Combining this with (D.15), (D.16), and Proposition
B.1, the result in Proposition D.1 follows.

D.2. Proof of Lemma D.2. We begin by recalling the definitions of cut-distance and cut-
metric.

Definition D.1. [55, Chapter 8] The cut-distance between two bounded functions Wy, Wy :
[0,1]> > R is

Wy = Wallo = sup j (Wi, ) — Walz, y)) F(a)g(y)dady] .
f.9:[0,1]—[0,1] |J[0,1]?

The cut-metric between Wy, Wy is defined as,
8o (W, Wy) = ingW{p — Wal|o,

with the infimum taken over all measure-preserving bijections ¢ : [0,1] — [0, 1], and Wlw (z,y) :=
Wi (¢(x), ¥(y)), for z,y € [0,1].
By [55, Lemma 10.16] we known that 6,(W 5, W) — 0 almost surely.
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D.2.1. Proof of Lemma D.2 (1). Recall from (D.13),

Uac,(z,y) := Z a; (ng"(x,y) — c(H;, WGn)) 7

1=q+1

where ¢(H;, W) = lv(lgﬁA‘(l'l‘t/(%é)"*l)t(Hi,WG"). Denote v := maxi<i<, |V(H;)(|V(H;)| — 1).

Then, by the counting lemma (see [14, Theorem 3.7]), for 1 < i < r,

e(Hy, W6 — o(iy, w| = VHIWVEN = 1) o w6y _yom w) <, (W6 — W,

2[Aut(H;)|
Hence, given f, g : [0,1] — [0, 1], by the triangle inequality,
Uf ) — Uz, 9))g(y)ddady
< Zrm(Uf (VS (2.9) = Wi o hal)decds] + (WS = Wl.). (D19
i=q+1

Now, by a telescoping argument, replacing W with W one at a time, as in the proof of the
counting lemma [14, Theorem 3.7], it can be shown that

UmMW%mw—wmmmmwmwkww%—wm
Hence, from (D.19),
Ve = Ualle <o [WE™ — W, (D.20)

Again, by the counting lemma (adapted to general bounded functions) we have, for L > 3,

U Uéf()?n (z,x)dz — f éL) (z,z)dz

where the last inequality uses (D.20). Since SU&L) (z,z)dz is invariant to measure preserving
transformations of W and d,(W &, W) — 0 almost surely, as n — oo, from (D.21) the result in
Lemma D.2 (1) follows.

D.2.2. Proof of Lemma D.2 (2). Recall from (D.12),

<1 Uac, — Uale < [WE =W, (D.21)

|V (H;)|
1 |V (Hi)| G
Z |Aut(H;)| Z‘l | Aut(H;)|
Note that t(H;, W) — t(H;, W), for all 1 <14 < r, and

lim Uc(fén(x,y)dxdyzf éL)(x,y)dxdy,

n—0o0

by (D.20), almost surely. Hence, to establish Lemma D.2 (2) it suffices to show the following
for 1 <14,j <gq,

lim | ta(a, H, WEULL (2,9)ty(y, Hy, WO)dady

n— 00 a,G

_ fta(x, H;, WU (a2, y)toy, Hy, W)dady, (D.22)

and

n—0o0

lim | ta(z, Hi, WEULY (2, y)dady = f to(z, Hy, WU (, y)dzdy. (D.23)
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where a € V(H;) and be V(H;).
We will prove (D.22). The proof of (D.23) follows similarly. For this, note that by a telescoping
argument,

f to(w, Hy, WO (UYL, (w,y) — U (w,9)toly, Hy, WE)dady < |Ua,c, — Ualle

S ”WGTL - WHD?
where the last step uses (D.20). Hence, to prove (D.22) it suffices to show that

lim | to(z, Hy, WOUS (2, y)ty(y, H;, WO )dady. (D.24)

n—0o0

Consider the functions (not necessarily symmetric) By, (x,y) := tqo(z, H;, W)ty (y, H;, W)
and B(z,y) := to(x, H;, W)ty(y, Hj, W). By a telescoping argument it can shown that

|Bn = Bla < [WE = W
The result in (D.24) then follows from [55, Lemma 8.22].

APPENDIX E. PROOFS FROM SECTION 5
E.1. Proof of Proposition 5.1. To prove Proposition 5.1 we first replace with R(H, G,,) by
R(HWS)= > ¢ (H@H, WG"> — |V (H)[*t(H, W2,
1<a,b<|V (H)| ab

where ¢(-, W) is defined in (4.1). For a finite subgraph F' = (V(F), E(F)), recalling (4.1) and
(4.2) notice,

. 1 1
[E(F, Gr) — ((E,WE)| = IV (E)] 2 [T wasy =Gy 2 [[ o

se[n]lV(I (i,j)eB(F) M)y )] se([n]) v () (i-)eE(F)

1 1 1
S AV 2 [[ wes|+0 <n> =0 <n> :
se[n]IVIIN([n]) v (g (6:5)EE(F)

(E.1)
This implies,
1

|R(H,Gp) — R(H,W)| =0 <n> . (E.2)

Notice that, by definition, R(H, W) > 0 (see (5.2)) for any graphon W and in particular for
the empirical graphon W& . Now, we consider the following 2 cases:

e W is H-regular: Recalling that R(H, W) > 0 it is now enough to show that
ER(H, WE) = O(1/n). (E.3)
Towards that, recalling (5.3) note that,
E[R(H,WE)]

- > (H)|E [t <H€|—)H, WG">

1<a,b<|V a,b

—|V(H)PE [t(H|_|H, WG")] , (E.4)
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where H | | H is the disjoint union of two copies of H. Lemma 2.1 and Lemma 2.4 in
[56] implies that

E e || W] = | |mw) - 1 <2‘V§H)‘>

— {(H, W) — ;<QTV;H)I>

and

> E [t (H(—BH,WG”>]
1<a,b<|V (H)| a,b
1 /2|V(H)| -1
H®H, W) + n( ) >] )

1<a,b<|V (H)| a,b

Substituting these bounds in (E.4) give,

V()]
ER(H, W) < Yt (H@H, W) — |V(H)*t(H, W) + O(1/n)
a,b=1 a,b

= R(Hv W) + O(l/n)7
where the last equality follows by recalling the definition of R(H, W) from (5.2). The

proof of Proposition 5.1 (1) is now complete by noticing that R(H, W) = 0 when W is
H-regular.

o W is H-irreqular: From Corollary 10.4 in [55] we know that R(H, W) LA R(H,W).
Since R(H,W) > 0 whenever W is H-irregular, this implies /nR(H, W) £ 0. This
completes the proof Proposition 5.1 (2).

Remark E.1. Note that (E.3) and (E.2) implies R(H,Gy) = Op(n), when W is H-regular.

Hence, a,R(H,Gy) L 0, for any sequence {a,}n>1 such that a, — o and a,/n — 0. While
choosing a,, = 4/n shows Proposition 5.1 (1), the results in Section 5 would continue to hold
whenever a,,/n — 0.

E.2. Proof of Theorem 5.1. Without loss of generality assume that W is irregular with
respect to Hy, Ha, ..., H,; and regular with respect to Hy11, Hyy2, ..., H,. To proceed with the
proof we first show that the distribution of Z(H,Gy,) (recall (5.7)) converges to Z(H,W).

Lemma E.1. Let Z(H,G,) and Z(H,W) be as defined in (5.7) and (2.12), respectively. Then,
as n — o,

Z(H,Gy) B Z(H,W). (E.5)

Proof. Recall that S(H,G,) = {1 <i <r:+/nR(H,G,) > 1} is the set of indices where the
hypothesis of H;-regularity is rejected. Define the event

Dy :={S(H,G,) ={1,2,...,q}}. (E.6)
Now, by Proposition 5.1 notice that,

T

P(DE) < 2 P(i¢ S(H,Gn)) + Y, P(ic S(H,Gn))

i=1 i=q+1
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T

= i]@ (vVnR(H,Gyp) <1) + Z P (vnR(H,Gy) > 1) = o(1), (E.7)
i=1

i=q+1

since W is irregular with respect to Hy, Ha, ..., H, and regular with respect to Hy11, Hy42, .. ., H;.
Hence, to prove (E.5) it is enough to show that the characteristic functions converge. For this,
note that for any £ € R",

E [eLtTZ(H’G”)] =F [eLtTZ(H’G”)l {Dn}] +o(1).
Note that on the event D,,, Z,,(H,G,) = Z(H,G,,) (recall (2.10)). Therefore, (E.7) and Theorem
2.1 gives,
E[et 20060 — B [t 206601 (D, }| + o(1) = E [ 20460 4 o(1)
SF [ethZ(’H,W)] ‘
This completes the proof of Lemma E.1.
g

Now, we show that conditional on G,, the distribution of Q(#, Gy,) converges to Z(H, W) as
well.

Lemma E.2. Let Q(H,G,) and Z(H, W) be as defined in (5.5) and (2.12), respectively. Then,
as n — o,

QM. Cr) | G 5 Z(H, W),
i probability.
Proof. Recall the event D,, from (E.6). It follows from (E.7) that,
1{D5} = on(1). (E8)
Then for any t € R",
E [eLtTQ(H,Gn)

Gn] —E [e“TQ(H’G”) Gn] 1{Dy} + op(1).

As before, on the event D,,, we have Q(H,Gy) = Z(H,Gy), where Z(H,G,,) is defined in (4.7).
Hence, by (E.8) and Theorem 4.1,

E [ethQ(H,Gn) Gn] _E [ethZ(H,Gn)

Gn] 1{Dy} +op(1) =E [eLtTZAVH’Gn) Gn] +op(1)

P r [eLtTZ(H,W)] .

This completes the proof of Lemma E.2.
O

We now proceed to complete the proof of Theorem 5.1. To this end, using the continuous
mapping theorem along with Lemma E.1 and Lemma E.2 gives,

HZ(H,Gn) D120, W), and |Q(H, Ga)ly | G 2 [ Z(H, W), in probability.

Hence, recalling (5.8) and by Polya’s Theorem,
P(C(H, Gn)) =P (| Z(, G)

9 < (?1704,H,Gn> —1- «,

where ¢1_q 72,G, is the (1 — a)-quantile of the distribution of |Q(H,Gy)|, | Gn. ]
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APPENDIX F. PROOFS FROM SECTION 6

This section is organized as follows: In Section F.1 we prove Proposition 6.1. Proposition 6.2
is proved in Section F.2. In Section F.3 we derive the distribution of f(G,,) under the alternative.

F.1. Proof of Proposition 6.1. For notational convenience define
TT{Q = %tA(KQ, Gn) and T,?4 = %5(04, Gn>,
where #(H,G,,) is defined in (1.4). Recalling (6.2), note that
F(Gr) = WT2, T, (F.1)

n *.n

where h(z,y) = 16x* — 8y.

We begin by deriving the joint distribution of (752, T¢*) under Hy as in (6.1). Note that under
Hy, the G, is distributed as an Erdds-Rényi random graph G(n,p), for p = t(Ko, W) € (0,1).
Hence, recalling Example 3.2, in particular from (3.3) and (3.4) we get,

Trf{?—%p) D ! <1 p3>
B Ny(0,%),  where X = Lp(1 — . F.2
o (78 725) 2009, where s = o) (5 (F2)

8
Now, a Taylor expansion of the function h around the point (%p, %p‘l) gives,

h(TK2 TC4) — h(%p, ép‘l) = Vh(%p, %p4)TTn + TnTV2h(%p, %p‘L)Tn + op (HTHHQ) ,

n J’n

where
-
T, := (T2 — ip, TS — ') (F.3)

n
and Vh, V2h denote the gradient and hessian of h evaluated at the corresponding points. By def-
inition, h(%p, %p‘l) = 0. Hence, a direct computation of V2h(%p, %p‘l) along with the convergence
in (F.2) gives,

1
WTK2, T5*) = Vh(sp, 3p*) T + Op <n?) : (F.4)

Since by definition f(G,) = h(TX2, T4) (recall (F.1)), the result in Proposition 6.1 follows from

n J’Tn

(F.4) and the following lemma:
Lemma F.1. Under Hy as in (6.1),
3 D
n2Vh(ip, 1p") T, S N (0,32p5(1 - p)?),
where T, is defined in (F.3).

F.1.1. Proof of Lemma F.1. Notice that Vh(%p, %104)T = (8p?, —8). Hence, recalling the defini-
tions of {(K», Gy) and £(Cy, Gy,) from (1.4) gives,
11 AT 8p’ (n)2 8 (n)s 4
Vh(szp, gp°) T = )s (X(KQ,Gn) - 2P> BN (X(C47Gn) g P > ) (F.5)

where (n)s = n(n—1) and (n)s = n(n —1)(n — 2)(n — 3). We will now compute the orthogonal
decomposition of (F.5) using the framework described in Section A.1.

To this end, recall the definition of S, .(-) from (A.10). Then using (A.16) we can rewrite
(F.5) as,
3

@SH,Z(JC) -

where the functions f and g are defined as follows:
o f(Y12) =1{Y12 <p}—p.

8
mSn,z;(g), (F.6)

Vh(3p, ip")'T, =
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o g({Vij: (i,7) € B(Ky)}) =35, [leepG) 1{Ye <p}-— 3p*, where G1, Ga, G5 are cycles of

length four with edges E(G1) = {(1, 2) (2 3),(3,4), (4,1)}, E(Gs) = {(1 2) (2,4), (4,3), (3,1)}

and E(G3) = {(1,3),(3,2),(2,4), (4,1)}, respectively, and {Y;; = Yj; : 1 <i < j < 4} are
independently generated from U[0,1].

Now, recalling (A.13) and following [45, Example 2] we get,

1-
Sn,Q(f) = §Sn,2(fK2)7 (F7)
and
— 1 g 1 S 1 n4 gG
87%4(9) = 4Sn,4(gK2) GS (ng) 2 gKl 2 G; |Aut (FS)

where fg and gg are the projections of f and g on the subspace Mg (recall (A.3)). A direct

counting argument gives, Sy, 2(fx,) = EZ 3;‘ Sna(fr,). Hence, from (F.7) and (F.8), the RHS of

(F.6) can be rewritten as,
Vh(ip, ip")'T,
8 ~ 1 1~ n4 gG
= m ( < sz ng) - ES (ng) - 9K1 2 Z |Aut > (Fg)

Using (A.9) we now compute the differents projections. To begin with, note that

l\D\H

fi, = (1{Y12 < p} —p) and g, = 2p°(1 {Y12 < p} — p).

This shows that %pg fry — %g;@ = 0. Also, by computations similar to those in (A.26) and
(A.27), it can shown that gx, = 0. Further, by [45, Lemma 4],

n, gG _3
Z |Au4t = op(n”?).

Hence, (F.9) can be simplified as follows,

4 - _3
Vh(zp, 5p") T = @57%4(9}(1,2) +op(n”2). (F.10)
Once again, computing the projection of g on M, , using (A.9) we get,
K1, = P21 {Y12 < p} — p)(1 {Y13 < p} — D). (F.11)

Using (F.10) and (F.11) together with the distributional convergence result in [45, Lemma 7],
we have

3
n2

3 ~ D
n2 Vh(%p, %p‘l)TTn = Snal9K,,) +op(l) > N (O, 32p6(1 —p)2) .

(n)

This completes the proof of Lemma F.1. O

F.2. Proof of Proposition 6.2. Recall the definition of f(G,,) from (6.2). Then, since {(H, G,,) 5
t(H,W) for every fixed graph H, it follows that

F(Gn) = 1K, Gp)* = (Ca, Gr) 5 F(W) = t(Ka, W)* = +(C, W),
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The quasi-randomness result of Chung, Graham, and Wilson [20, Theorem 1], formulated in
terms of graphons (see [55, Section 11.8]), implies that f(WW) # 0, for any graphon W that is
not constant almost everywhere. Hence, under Hj,

f(Gn) P fW)

N2 iy G (L — 1K Gr)) . ot WL —tEa W)

Hence, recalling (6.4), T, ER o0, which now completes the proof.

F.3. Distribution of f(Gn) under the Alternative. In this section we apply Theorem 2.1
to derive the limiting of f(G),) under the alternative.

Proposition F.1. Suppose [t(Ka, W)* — t(Cy,W)| > 0. Then the following hold:
o If W is irreqular with respect to Ko and Cy, then
D

Vi(f(Gn) = f(W)) = N(0,79),

where 72 is defined in (F.12).
o If W is irregular with respect to Ko and regular with respect to Cy, then

Valf(Gn) = f(W)) B N(0,73),

where 73 is defined in (F.13).
o If W is regular with respect to Ko and irregular with respect to Cy, then

Va(f(Gn) — FW)) B N(0,72),

where 72 is defined in (F.14).
o If W is regular with respect to Ko and Cy, then

; D
n(f(Gn) = f(W)) = Z,
where the random variable Z is defined in (F.16).

Ky 0Cy = C4(PK> C5 = CiPCy KooCi=Cy @ Ko C°=Ci O O C*=0C @
1,1 1,1

(1,2),(1,2) (1,2),(1,2) (1,2),(1,2)

(a) (b)

FIGURE 9. Graphs obtained from (a) vertex join operations and (b) edge join
operations, between a copy of Ky and a copy of Cy.

Proof. Fix a graphon W such that [t(Ky, W)*—t(Cy, W)| > 0. We consider the 4 cases separately,
depending on whether or not W is K9 or Cy-regular.
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Case 1: W is irreqular with respect to Ko and Cy4. In this case, Corollary 2.2 gives,
t(Ky, Gn) = #(Ky, W)\ D T Ti
ZTL = N - N 07 9
\/ﬁ (t(04, Gn) - t(C4, W) 2 721 T22
where

— 711 = t(K1,2, W) — t(Ka, W)?,
— Tog = i [t (Cg, W) —t(C4, W)Z], where Cj is the graph obtained by the vertex join
of 2 copies of Cy (as shown in Figure 9(a)).
— Ti2 = o1 = 3 (t(Cy 0 K2) — t(Cy, W)t(K2,W)), where Cy0 K is the graph obtained
the vertex join of Cy and K> (as shown in Figure 9(a)) .
Note that /n(f(Gn) — f(W)) = 17 Z,,. Hence, by the continuous mapping theorem,

Vil(f(Ga) — F(W)) B N (0,0%),
with
7’12 = T11 + To2 — 2712. (F.12)

Case 2: W is irregular with respect to Ko and regular with respect to Cy. In this case, \/n(t(Ky, W) —
t(K2,W)) has a non-degenerate Gaussian limit, but /n(t(Cy, Gy,) —t(Cy, W)) has a de-
generate limit. In particular, from Theorem 2.1 we know that

_ (K2, Gy) = t(K2, W)\ D (G
Zn = /n <£(04,Gn) —t(C4,W)> - ( 0 ) )
where G ~ N(0,t(Ky2, W) — t(Ko, W)?). Since /n(f(Gp) — f(W)) = 17 Z,, this
implies,
Vi(f(Gn) = F(W)) 5 N(0,73),
where
T3 1= t(Ky 2, W) — t(Ka, W)?, (F.13)

Case 3: W is reqular with respect to Ky and irreqular with respect to Cyy. In this case, \/n(t(Ky, Gp)—
t(K2,W)) has a degenerate limit, but \/n(t(Cy, Gy) — t(Cy4, W)) has a non-degenerate
Gaussian limit. Hence, applying Theorem 2.1 we have,

(K27 ) t(K27 ) 0
Zn = _) )
vi(Sieven o) > (6
where Go ~ N (0, 1 (¢(C5, W) — t(Cy, W)?)). Taking inner product of Z, with 1, then
gives
3 D
Va(f(Gr) = F(W)) = N(0,75),
where
1 o
7'3? = 1 (t(C4, W) — t(C4, W)2) . (F14)
Case 4: W is regular with respect to both Ko and C4. Then from Theorem 2.1,

(K2, Gp) — t(Kay, W) §5( 1t(Ky,W)) dB,dB,

“n = <£(04,G )—t(c4,W)) n7s <Gz> (SS(WC4 (223) = $t(C0 W) dedB)?
(F.15)
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where the Brownian motion {B}e[1] and (G1,G2)" ~ N3(0,%) are independent, and
the matrix ¥ is given by:
©_ 1 t(Ko, W) — t(Co, W) t(Cy, W) — t(Ko @ Cy, W)
-2 \UC, W) — (K0 Cy, W) 1(C3°, W) = ¢(C3*, W)
In this case, as shown in Figure 9(b), Ky e Cy is the graph obtained by the strong edge
join of Ky and Cy, C§° is the graph obtained by the weak edge join of 2 copies of Cy,

and C}°® is the graph obtained by the strong edge join of 2 copies of Cy.
Therefore,

Va(f(Ga) = fW) =172, 5172 = 7, (F.16)

where Z as defined in (F.15).
U

APPENDIX G. MULTIPLE WEINER-ITO STOCHASTIC INTEGRALS

In this section we recall the basic properties of multiple Weiner-It6 stochastic integrals as
presented in [41]. To begin with, let {B;}c[o 1] be the standard Brownian motion in [0, 1]. We
interpret the Brownian motion as a stochastic measure on ([0, 1], 4([0,1]), where %([0,1]) is
the sigma-algebra generated by open sets of [0, 1]. Specifically, suppose {B(A) : A € A([0,1])}
is a collection of random variables defined on a common probability space (€2, F, ut) such that

e B(A) ~ N(0,\(A)), for all A e %([0,1]), where A(A) is the Lebesgue measure of A.
e For any finite collection of disjoint sets Ay, ---, Ay € AB(X), the random variables
{B(A1), B(A2),...,B(A;)} are independent and

t t
B (U AS> = ). B(Ay).
s=1 s=1
For d > 1, denote by L?([0,1]%) the space of measurable functions f : X4 — R such that
35= | Ve ao)Pdndes .. dog < o
[0,1]¢

Define £; < L?([0,1]%) as the set of all elementary functions having the form
f(tl,tQ,...,td) = Z ail,ig,,..,idl{(tlat27---atd)EA'il X oo XAid}, (Gl)
1<i1,i2,...,0q<M

where Ay, A, ..., Ay € [0,1] are measurable sets which are pairwise disjoint and a;, 4,,. i, is
zero if two indices are equal. The multiple Weiner-1t6 integral for functions in &; is defined as
follows:

Definition G.1. (Multiple Weiner-1t6 integral for elementary functions) The d-dimensional
Weiner-Ito stochastic integral, with respect to the standard Brownian motion {Bt}te[0,1]> for the
function f € £ in (G.1) is defined as

Iy(f) = J

d
[Ol]df(xl,xg,...,xd)HdB(xa):= > iy ig....igB(Aiy) X -+ x B(Aj,).
k] CL:].

1<21,12,...,ig<m

The multiple Weiner-It6 integral for elementary functions satisfies the following two properties
[41]):
e (Boundedness) For f € &, E[I4(f)?] < d!| f|? < co.
o (Lincarity) For f,g € &, Ta(f +9) 2 Lu(f) + 1a(g).
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This shows that I; is a bounded linear operator from &; to L2(£2, F, ), the collection of square-
integrable random variables defined on (9, F, 1). Since &; is dense in L2([0,1]¢, 2([0,1]%), \%)
(by [41, Theorem 2.1]), using the BLT theorem (see [71, Theorem 1.7]) I; can be uniquely
extended to L2([0,1]¢, 2([0, 1]%), A\?) by taking limits. (Here, A% denotes the Lebesgue measure
on [0,1]%) This leads to the following definition:

Definition G.2. (Multiple Weiner-Ito integral for general L2-functions) The d-dimensional
Weiner-It6 stochastic integral, with respect to the standard Brownian motion {Bi}[o 1), for a
function f € L%([0,1]%) is defined as the L? limit of the sequence {I;(f,)}n>1, where {f,}n>1 is
a sequence such that f,, € & with lim,,_, ||fr, — f]2 = 0. This is denoted by:

d
La(f) = jw s ra [ [ 4B (G.2)

As in the case of elementary functions, it can be easily checked that I4( f) satisfies the following
properties:
e (Boundedness) For f e L2([0,1]%), E[14(f)?] < d!|f]3 < .
e (Linearity) For f,g e L%([0,1]9), I4(f + g) = Li(f) + Ls(9).
It is also important to note that multiple Weiner-It6 integrals do not behave like classical (non-
stochastic) integrals with respect to product measures, since by definition diagonal sets do
not contribute to the stochastic integral. Nevertheless, one can express the multiple Weiner-1t6

integral for a product function in terms of univariate stochastic integrals using the Wick product
(cf. [44, Theorem 7.26]). In the bivariate case, with 2 functions f, g € L%([0,1]?), this simplifies

to
f f(x)g(y)dB(x)dB(y) = f(z)dB(x) f 9(y)dB(y) — f(z)g(z)dz. (G.3)
[0,1] J[0,1]

[0,1] [0,1]
Another important property is that one can interchange stochastic integrals with infinite sums
over an orthonormal and symmetric set of functions, as shown in the following result:

[0,1]

Proposition G.1. Let f € L*([0,1]%) and {@s}s>1 is an orthonormal and symmetric set of
functions in L?([0,1]%). Suppose there exists constants {cs}s=1 such that

f = Z AsPs,

s=1
is well-defined. Then
Io(f) 2 > aady(s). (G.4)
s=1
Proof. For N > 1, define the truncated the truncated version of f:
N
v = Z AsPs.
s=1

By Bessel’s inequality, > -, a? < ||f|3 < c. Then by [49, Lemma 6.8] along with the orthonor-
mality of {ps}s>1 gives,

|f = fxlz = o(1).

By the linearity of stochastic integrals we know that I;(fx) = 3., asI4(¢s). To complete the
proof it is now enough to show that both RHS and LHS of (G.4) are L? limits of I4(fx), as
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N — oo. For this, using the boundedness property of stochastic integrals note that,
E[(Lu(f) = La(fw)?] = E[La(f — )] < d!1f = ful3 = o(1).

This shows that the LHS of (G.4) is the L? limit of I4(fx), as N — co. For the RHS note that
by definition the functions {¢s}s>1 are symmetric in their arguments. Hence, by [44, Theorem
7.29], for all s > 1, Iy(ps) = d!Jg(ps), where the operator Jy(-) is defined as,

Jd(g) = f 9(1.171.27 e 7xd)dB$1 te 'dBLEda
Dy
for g € L?(Dy), with
D, = {($1,...,$d)€[0,1]d:0<1‘1 <:L'2<---<l’d<1}.

By Theorem 7.6 and Theorem 7.3 from [44] we know that J; is an isometry. Hence,

N 2 N 2
E (Z asla(ps) — Z asId(‘PS)> = d’E (Z asJa(ps) — Z ast(SOS)> = o(1),

s=1 s=1 s=1 s=1

where the last equality follows by noticing that {¢s}s>1 are orthonromal and J; is an isometry.
This shows, recalling the linearity of stochastic integrals, that the RHS of (G.4) is the L? limit
of I;(fn), which completes the proof. O
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