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Chapter 1
General-Relativistic Magnetohydrodynamic
Equations: the bare essential

Yosuke Mizuno and Luciano Rezzolla

Abstract Recent years have seen a significant progress in the development of gen-
eral relativistic codes for the numerical solution of the equations of magnetohydro-
dynamics in spacetimes with high and dynamical curvature. These codes are valu-
able tools to explore the large-scale plasma dynamics such as that takes place when
two neutron stars collide or when matter accretes onto a supermassive black hole.
This chapter is meant to provide a very brief but complete overview of the set of
equations that are normally solved in modern numerical codes after they are cast
into a conservative formulation within a 3+1 split of spacetime.

1.1 Introduction

Relativistic astrophysics studies the most energetic and violent astrophysical pro-
cesses that are characterized by very high speeds, strong gravitational fields, very
high temperatures and ultra-intense magnetic fields. Under these conditions, which
are normally met near neutron stars and black holes, a fully general relativistic treat-
ment is necessary for an accurate description of the physical conditions.

In this context, relativistic magnetohydrodynamics (MHD) represents a very ef-
fective framework to describe the dynamics of macroscopic plasma in a relativistic
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regime, also when considering non-astrophysical scenarios, such as the collision of
heavy ions (see, e.g., [79, 71]). Itis in fact important to note that plasma is the most
diffused state of matter in the Universe and that most plasmas are electrically con-
ducting. In the MHD approximation, the plasma is treated as a macroscopic fluid
that is coupled with electromagnetic fields that it produces with its dynamics or that
may be present from external sources. In addition, the collision times between par-
ticles in astrophysical fluids are usually smaller than the other relevant timescales
of the systems. As a result, the mean free paths of the plasma constituents are short-
ened, causing particles to interact on much smaller spatial scales than those of the
underlying macroscopic system. As a result, astrophysical plasmas represent what
is referred to as collisional systems so that, despite being composed of particles at
a microscopic level, the plasmas can be described as a continuous medium with
well-defined macroscopic average quantities such as velocity, density, and pressure.

Relativistic MHD is often employed to study the dynamics of relativistic plasma,
such as the collision of two magnetized neutron stars and the ensuing gamma-ray
burst [48, 3, 75, 67,41,58, 17,61, 62, 34], or the accretion and outflows onto a cen-
tral compact object [43, 87, 56, 52, 85, 60, 57, 46, 89, 19]. Under these conditions,
general relativistic effects become important if not dominant and, hence, the solution
of the full set of general-relativistic MHD (GRMHD) equations represent the only
avenue to obtain an accurate and physically consistent description of the system.
Numerical simulations have proven to be crucial in modern theoretical astrophysics,
enhancing our understanding of the dynamics of astrophysical systems in highly
nonlinear regimes. From the point of view of GRMHD, over the past few decades,
many GRMHD codes have been developed [37, 43, 21, 31, 8, 26, 81, 6,4, 7, 55,23,

, 13,28,90, 88,70, 64, 18, 16,47, 11] employing the 3+1 decomposition of space-
time and conservative ‘Godunov’ schemes based on approximate Riemann solvers
[33, 76, 29, 50]. These codes are utilized to study various high-energy astrophysi-
cal phenomena. Some of these GRMHD codes incorporate radiation [80, 53, 84],
and/or non-ideal MHD processes [12, 24, 25, 74, 15, 14,72, 22, 78]. State-of-the-
art GRMHD codes implement full adaptive mesh refinement [70, 64, 90, 83, 47],
which is useful for obtaining higher spatial resolution in particularly interesting re-
gions such as strong shocks, turbulence, and shear regions.

Chapter 1 of this book provides an overview of some essential properties of
GRMHD equations. The structure of the chapter is as follows. Sec. 1.2 introduces
the covariant GRMHD equations, while Sec. 1.3 introduces the basic decomposition
of a four-dimensional spacetime into a timelike time-line and space-like hypersur-
face. Section 1.4 finally provides the form of the GRMHD equations when cast in
a conservative form within a 3+1 split spacetime. A brief summary is contained in
Sec. 1.5.

Before concluding, two important remarks should be made. First, we will not dis-
cuss here the numerical methods that are normally employed to solve the equations
of GRMHD. This is because they are often complex, involving a variety of Riemann
solvers and reconstruction methods, and hence needing an independent discussion;
the interested reader can find an introduction to such methods in a number of text-
books (see, e.g., [45, 86, 77, 50, 9]) and more code-specific details in Part II of
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this book. Second, in this chapter, we will not discuss the solution to the Einstein
equations, which are needed to account for the evolution of spacetime and will be
covered in Chapter 2. Throughout the text, we adopt units where the speed of light,
¢ = 1, and the gravitational constant, G = 1 and we absorb a factor of V47 of the
magnetic field four-vector, b*. We also use the index notation for contracted indices,
employ Greek (Latin) letters for indices running between 0 (1) and 3, and a metric
with signature (—, 4, +,+).

1.2 Covariant General-Relativistic Magnetohydrodynamic
equations

Hereafter, we will generally consider an ideal fluid endowed with electromagnetic
fields whose equations of motion, — that is, the general-relativistic magnetohydrody-
namic (GRMHD) equations — can be derived after imposing the local conservation
laws of rest-mass (the continuity equation) and of the energy-momentum tensor, 7,y
(the Bianchi identities):

V' = Vput =0, (1.1)

VuTH =0, (1.2)

where V , is the covariant derivative associated with the four-dimensional spacetime
metric gy, JH is the rest-mass density current and T*V is the energy-momentum
tensor of the plasma.

Equation (1.1) represents the well-known mass-conservation law, where u* is
the fluid four-velocity and p is the proper rest-mass density. After introducing the
projector operator orthogonal to uy, i.e.,

h'uv = Muuv+guv, (1.3)

and such that hyyu* = 0, it is possible to realise that Eqs. (1.2) are four distinct
equations representing respectively the conservation of energy

quuT“"zo, (1.4)
and of four-momentum
havVuT“" =0. (1.5)

Note that the total energy-momentum is the linear combination of the contri-
butions coming from the matter and from the electromagnetic fields, i.e., THY :=
Tnﬁw + Tfuv, where

T8 = phutu¥ + pg", (1.6)

and



4 Yosuke Mizuno and Luciano Rezzolla

1
T = F}'F*Y — Z(IL““FM)g“V. (1.7)

In the expressions above,
h::1+£+§, (1.8)

is the specific enthalpy, € is specific internal energy, p is the fluid pressure, and F*Y
is the Faraday tensor.

The presence of electric and magnetic fields in the GRMHD equations requires
the solution of additional equations expressing the corresponding conservation laws,
namely, the Maxwell equations

VuFRY = g+, (1.9)

VuFRY =0, (1.10)

where #* is the charge current density, and “F*V is the dual of the Faraday tensor.
The Faraday tensor F*V is constructed from the electric and magnetic fields, E* and
B%, as measured in the generic frame having U* as tangent vector, i.e.,

FM = UMEY —UYE* — \/=gn*"*9U, B; (1.11)

where 'q“v}“S is the fully-antisymmetric symbol (see, e.g., [77]) and g is the deter-
minant of the spacetime four-metric. The dual Faraday tensor

PRV = /—gn*"MOFs, (1.12)

is written as
PRV = UMBY — UVBF + /—gn""AoU, E; (1.13)

Most of the GRMHD simulations to date have explored scenarios within the
so-called “ideal MHD limit”, that is, a limit in which the electrical conductivity is
assumed to be infinite. This limit represents a rather good first approximation in
astrophysical plasmas, where the conductivity is actually very large'. Under these
conditions, the electric charges are “infinitely effective” in canceling any electric
field, which are therefore zero in the frame comoving with the fluid u*, i.e.,

F*yu, =0. (1.14)

The main consequence of the condition (1.14) is that the electric fields cease to be
independent vector fields and can be obtained from simple algebraic expressions
involving the fluid four-velocity and the magnetic fields. In particular, after defining

! To be more precise, in geometrized units, as the one adopted here, the induction equation reveals
that the scalar component of the electrical conductivity tensor 6;; = 6§;; can be expressed as the
ratio between the Ohmic diffusion timescale Tgir and the (square of the) dynamical timescale Tqyy
of the magnetic field, i.e., 0 ~ Tgis/ rgyn [36]. In typical astrophysical plasmas, the dynamical
timescales of the system are much shorter than the timescale associated with the diffusion of the
the magnetic field so that it is reasonable to assume that the conductivity is actually infinite.
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the electric and magnetic four-vectors in the fluid frame as

et =F"y, (1.15)
oM =" F*Vy,, (1.16)

with the constraints that
et =0, (1.17)

and that the comoving magnetic field is fully spatial
u”b“:o. (1.18)
Under these conditions, the Faraday tensor can then be rewritten as

FHY = —/=gn""*u; by , (1.19)
PR =y — bVt (1.20)

We can write the total energy-momentum tensor in terms of the vectors u* and
b* [5] as
™" = phou* u” + poagh” —b"b" (1.21)

where we introduced total pressure

b2
Prot 3:P+?7 (1.22)
which now includes the magnetic pressure
1 1,
Pmag := Eb“bu = Eb , (1.23)
while the total specific enthalpy is given by
b2
htot = l’l—‘r; (124)

Note that the square of the magnetic-field strength in the fluid frame also satisfies
the following identity b> = B> — E? > 0, which is sometimes used as a physical
constraint in numerical evolutions [66, 2]. Finally, it is useful to express the current
density / M into two components, i.e., a “convection” (or advection) term and a
“conduction” term

IH =gnt +J*, (1.25)

where g = —_#Hn, is the charge density, gn" is the convection current and J* is
conduction current, that is, the current density measured by the Eulerian observer
and such that J#n, = 0.

In summary, the set of covariant GRMHD equations consists of the coupled sys-
tem of two conversation laws (1.1)—(1.2) and of the two sets of Maxwell equa-
tions (1.9) and (1.10). However, as such, the corresponding system of equations is
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not closed and needs to be complemented with an equation of state that normally
prescribes the behavior of the pressure as a function of the rest-mass density, spe-
cific internal energy (temperature) and particle abundances. The complexity of such
equations of state varies enormously, from very simple and analytic ones — as those
employed in simulations of accretion onto supermassive black holes — to very so-
phisticated and tabulated ones — as those employed in simulations of binary neutron
stars. Chapter 3 of this book will be dedicated to a detailed discussion of the equa-
tions of state employed in modern numerical simulations.

However, more importantly, as presented here, Egs. (1.1)—(1.2) and (1.9)—(1.10)
are not particularly useful for a numerical solution in a simulation code; rather, they
first need to be cast within a 3+1 decomposition of spacetime and then expressed in
a conservative formulation, as we will discuss in the following two sections.

1.3 The 3+1 decomposition of spacetime

The intrinsically “covariant view” of Einstein’s theory of general relativity is based
on the concept that all coordinates are equivalent and, hence, the distinction between
spatial and time coordinates is more an organizational matter than a strict require-
ment of the theory. Yet, our experience, and the laws of physics on sufficiently large
scales, do suggest that a distinction between the time coordinate from the spatial
ones is the most natural one in describing physical processes. Furthermore, such a
distinction of time and space is the simplest way to exploit a large literature on the
numerical solution of hyperbolic partial differential equations as those of relativis-
tic MHD. Adopting this principle, and following closely the presentation already
offered in Ref. [77], we “foliate” spacetime in terms of a set of non-intersecting
spacelike hypersurfaces X := X(¢), each of which is parameterized by a constant
value of the coordinate ¢. In this way, the three spatial coordinates are split from the
one temporal coordinate and the resulting construction is called the 3+1 decompo-
sition of spacetime [54].

Given one such constant-time hypersurface, X, belonging to the foliation X, we
can introduce a timelike four-vector n normal to the hypersurface at each event in
the spacetime and such that its dual one-form Q := Vt is parallel to the gradient of

the coordinate 7, i.e.,
ny =AQ, =AVt, (1.26)

with ny, = {A,0,0,0} and A a constant to be determined. If we now require that the
four-vector n defines an observer and thus that it measures the corresponding four-
velocity, then from the normalization condition on timelike four-vectors, n“n” =
—1, we find that

1
nfny =g nyny = g"A* = —EAZ =1, (1.27)



1 General-Relativistic Magnetohydrodynamic Equations: the bare essential 7

where we have defined a? := —1/g". From the last equality in expression (1.27)
it follows that A = - and we will select A = — ¢, such that the associated vector
field n* is future directed. The quantity @ is commonly referred to as the lapse
function, it measures the rate of change of the coordinate time along the vector n*
(see Fig. 1.1), and will be a building block of the metric in a 3+1 decomposition [cf.,
Eq. (1.37)].

The specification of the normal vector n allows us to define the metric associated
to each hypersurface, i.e.,

Yuv i= guv T Runy, =gt +nknt, (1.28)

where Y# =0, ¥;; = gi;, but in general Y/ # g'/. Also note that Y*y,; = 5}, that is,
¥/ and ¥ ; are the inverse of each other, so that the spatial metric ¥ can be used for
raising and lowering the indices of purely spatial vectors and tensors.

The tensors n and ¥ provide us with two useful tools to decompose any four-
dimensional tensor into a purely spatial part (hence contained in the hypersurface
%) and a purely timelike part (hence orthogonal to X; and aligned with n). Not
surprisingly, the spatial part is readily obtained after contracting with the spatial
projection operator (or spatial projection tensor)

Yy i=g""Yay = g +ntny, = 84, +ntny, (1.29)

while the timelike part is obtained after contracting with the time projection operator
(or time projection tensor)
N¥, .= —ntn,, (1.30)

and where the two projectors are obviously orthogonal, i.e.,
YiNL =0. (1.31)
Hence, a generic four-vector U can be decomposed as
UM =/ UY+NLUY, (1.32)

where the purely spatial part ¥, UY = V* is still a four-vector that, by construction,
has a zero contravariant time component, i.e., V! = 0, whereas it has the covariant
time component, V; = g,,;V#, which is nonzero in general. Analogous considera-
tions can be done about tensors of any rank.

We have already seen in Eq. (1.26) that the unit normal n to a spacelike hyper-
surface X; does not represent the direction along which the time coordinate changes,
that is, it is not the direction of the time derivative. Indeed, if we compute the con-
traction of the two tensors we obtain

1 1
Q= Xn”nﬂ =5 #1. (1.33)
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We can therefore introduce a new vector, ¢, along which to carry out the time evo-
lutions and that is dual to the surface one-form Q. Such a vector is just the time-
coordinate basis vector and is defined as the linear superposition of a purely tempo-
ral part (parallel to n) and of a purely spatial one (orthogonal to n), namely

t:e[:a[ ::(Zn+ﬁ. (134)

The purely spatial vector B [i.e., B* = (0,B7)] is usually referred to as the shift
vector and will be another building block of the metric in a 3+1 decomposition
[cf., Eq. (1.37)]. The decomposition of the vector ¢ into a timelike component on
and a spatial component B is shown in Fig. 1.1 (note that & = 1, 87 = 0 in special
relativity).

t+dt

Fig. 1.1: Schematic representation of the 3+1 decomposition of spacetime with hy-
persurfaces of constant time coordinate X; and X, foliating the spacetime. The
four-vector ¢ represents the direction of evolution of the time coordinate ¢ and can
be split into a timelike component an, where n is a timelike unit normal to the
hypersurface, and into a spacelike component, represented by the spacelike four-
vector B. The function o is the “lapse” and measures the proper time between ad-
jacent hypersurfaces, while the components of the “shift” vector B’ measure the
change of coordinates from one hypersurface to the subsequent one. Figure repro-
duced from [77].

We can check that ¢ is a coordinate basis vector by verifying that

o
MOy = o Qu + By = =1, (1.35)
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from which it follows that the vector # is effectively dual to the one-form €. This
guarantees that the integral curves of t* are naturally parameterized by the time
coordinate. As a result, all infinitesimal vectors t* originating on one hypersurface
% would end up on the same hypersurface X, ;. Note that this is not guaranteed
for translations along €, and that since t41, = g, = —a? + BH By, the vector ¢ is
not necessarily timelike (the shift can in fact be superluminal).

Using the components of n

ny = (—0,0,0,0) , n“:é(l,—ﬁi), (1.36)

we can now express the generic line element in a 3+1 decomposition as
ds* = —(a® — BiB")dt? + 2Bidx'dt + y;;dx‘dx’ . (1.37)

Expression (1.37) clearly emphasises that when B’ = 0 = dx/, the lapse measures
the proper time, dt, between two adjacent hypersurfaces, i.e.,

dt* = o (t,x7)dr?, (1.38)

while the shift vector measures the change of coordinates of a point from the hyper-
surface X, to the hypersurface X, 4, i.e.,

X g =x— B (t,x7)dr (1.39)

Similarly, the covariant and contravariant components of the metric (1.37) can be
written explicitly as

—o*+ B Bi —1/0? B/ o
8uv = ) gllV = ) - o ,  (1.40)
Bi Y B/ v/ —B'B//o?

from which it is easy to obtain an important identity which will be used extensively
hereafter, i.e.,

V=g=0ay, (1.41)

where g := det(g,v) and y := det(¥;;).

When defining the unit timelike normal n in Eq. (1.27), we have mentioned that
it can be associated to the four-velocity of a special class of observers, which are re-
ferred to as normal or Eulerian observers. Although this denomination is somewhat
confusing, since such observers are not at rest with respect to infinity but have a co-
ordinate velocity dx’/dt = n' = —B?/a, we will adopt this traditional nomenclature
also in the following and thus take an “Eulerian observer” as one with four-velocity
given by (1.36).

When considering a fluid with four-velocity u, the spatial four-velocity v mea-
sured by an Eulerian observer will be given by the ratio between the projection of u
in the space orthogonal to n, i.e., }/‘ n ut =, and the Lorentz factor of u as measured
by n [20]
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—ngut = ol . (1.42)

As a result, the spatial four-velocity of a fluid as measured by an Eulerian observer
will be given by

yim 8 (1.43)
—n-u
or, in component form, by
. '}’l l/tlJ 1 ui .
0 i fh (g 1.44
v =0, V=h= (B a4
R _ Ywdt wi (W j
Vf—ﬁivl, Vi_W_W_E ;-i-ﬁl . (145)
Using now the normalisation condition u*u, = —1 and indicating as usual with W
the Lorentz factor, we obtain
1 )
o =-nuw=——=W, u =W(—oa+ '), (1.46)

so that the components (1.44)—(1.45) can finally, be written as

7N L AT : u; u;
LA A (a1 = 1.47
"Twta a(u’+ﬁ)’ MW o (147)

where in the last equality we have exploited the fact that ; juj =u; — ;W /a. Finally,
using expressions (1.43) and (1.46), it is also possible to write the fluid four-velocity
as

ut =W(nt+0"), (1.48)

which highlights the split of u into a temporal and a spatial part.

The three different unit four-vectors in a 3+1 decomposition of spacetime are
shown in Fig. 1.2, which should be compared with Fig. 1.1. The four-vectors n, t
and u represent the unit timelike normal, the time-coordinate basis vector and the
fluid four-velocity, respectively. Also shown are the associated worldlines, namely,
the normal line representing the worldline of an Eulerian observer, the coordinate
line representing the worldline of a coordinate element, and the fluidline. The figure
also reports the spatial projection v of the fluid four-velocity u, thus highlighting
that v is the three-velocity as measured by the normal observer.

What remains to be done at this point is to apply the 341 decomposition to the
relevant vector fields that appear in the GRMHD equations. In particular, we start
by expressing the Faraday tensor and the dual of the Faraday tensor in Maxwell’s
equations (1.9) and (1.10) respectively as

FM = M EY —n"E* — /—gn""*3n; Bs, (1.49)
*F“":n”BV—nVB“—I-\/—igT]“‘/mnAEs’ (1.50)
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observer

Fig. 1.2: Schematic representation of the different unit vectors in a 3+1 decompo-
sition of spacetime (see Fig. 1.1). The four-vectors n, t, and u represent the unit
timelike normal, the time-coordinate basis vector and the fluid four-velocity, re-
spectively. It is shown the associated worldlines, namely, the normal line, the coor-
dinate line, and the fluidline. The spatial projection v of the fluid four-velocity u as
measured by the (Eulerian) normal observer n are also shown. Figure reproduced
from [77].

where the spatial components of the electric and magnetic fields measured by the
Eulerian observer are given as

E':=F"n, = aF", B :=*FVn, = a*F". (1.51)

We should note that our definition of the electric and magnetic fields differs by a
factor a from the corresponding definition used in Refs. [42, 31].

Going back to the definition of the total current density (1.25) and recalling that
the conduction current is purely spatial, i.e., J*n, = 0, we can express its spatial
components in terms of what is otherwise referred to as Ohm’s law [68, 12],

. Wl 1 A

Ji=qv'+ = |E'+ —n"*v;B, — (WE" )| | (1.52)
n vro

where 1) is the resistivity and is the inverse of the scalar term of the conductivity

tensor, i.e., N := 1/0 [36], where 1;jx is a Levi-Civita antisymmetric symbol, and

where we have ignored the Hall or dynamo terms for simplicity (see Refs. [12, 68]

where these terms are included in a generalized Ohm’s law). Assuming now the ideal
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MHD condition expressed by Eq. (1.14), we can obtain the explicit and algebraic
expression between the electric and magnetic fields

E' = /yn"*Bvy. (1.53)

This results, which coincides with the equivalent expression in Newtonian MHD,
underlines the passive role of dependent quantity for the electric field in the ideal-
MHD equations.

Finally, using Eq. (1.20) together with (1.51), we can obtain the transformation
between magnetic four-vector field in the fluid frame " and the magnetic four-
vector field in the Eulerian frame B* as

w . . | :
b= E(Bl‘}i) R b= W<BI + ab’u‘) R (1.54)

which allows us to express the dual Faraday tensor (1.20) in terms of the magnetic
four-vector field in the Eulerian frame as

1
FRY = (B — Bt (1.55)

and calculate the scalar b? as

BZ+a2(bt)2 BZ ;
bZZT:W‘F( Vi)za (156)

where B% := B'B;.

1.4 Formulation of the GRMHD equations for numerical
simulations

1.4.1 Conservative Formulations

The equations of (relativistic) hydrodynamics and MHD can be written in the
generic first-order-in-time form

U +A-VU =S, (1.57)

and the system above is said to be hyperbolic if the matrix of coefficients A is di-
agonalisable with a set of real eigenvalues, or eigenspeeds, A1, ...,Ay and a corre-
sponding set of N linearly independent right eigenvectors R(l)7 e ,R(’"), such that
ARY = ,RY), A := R"'AR = diag(Ay, ..., Ay) is the diagonal matrix of eigenval-
ues and R the matrix of right eigenvectors.

The most important property of hyperbolic equations is that they are well-posed,
hence suitable for numerical solution. Moreover, if the matrix A(U) is the Jacobian
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of a flux vector F (U) with respect to the state vector U, namely if A(U) := dF /JU,
then the homogeneous version of the system (1.57) can be written in conservative
form as

U +VF(U)=0, (1.58)

where U is therefore called the vector of conserved variables. With this definition in
mind, we can now discuss two theorems underlining the importance of a conserva-
tive formulation. The first one loosely speaking states that: conservative numerical
schemes, — that is, a numerical scheme based on the conservative formulation of the
equations — if convergent, do converge to the weak solution of the problem [44].
The second theorem states instead that: non-conservative schemes, i.e., schemes in
which the equations are not written in the conservative form (1.58), do not converge
to the correct solution if a shock wave is present in the flow [38]. In other words,
the two theorems above state that if a conservative formulation is used, then we are
guaranteed that the numerical solution will converge to the correct one, while if a
conservative formulation is not used, we are guaranteed to converge to the incorrect
solution in the likely event in which the flow develops a discontinuity.

1.4.2 The 3+1 Valencia formulation(s)

Given the importance of a conservative formulation to obtain a well-posed system of
equations, more than 30 years ago the group of Valencia started to develop Eulerian
3+1 formulations of the relativistic hydrodynamic and MHD equations written in
conservative forms. Because of this, these formulations are often referred to as the
“Valencia formulations”. The first step in this direction was taken by considering the
equations of special-relativistic hydrodynamics, which were cast into a conservative
formulation [49] and solved in conjunction with High-Resolution Shock-Capturing
(HRSC) methods (see, e.g., [77] for an introduction to HRSC methods). The second
step was taken a few years later, when the equations of genera-relativistic hydrody-
namics were cast into a conservative formulation [10] and have been employed in
a variety of numerical simulations starting from Refs. [30, 8]. A final step, which
is very relevant to the content of this chapter, was taken when the equations of
GRMHD were cast in an Eulerian conservative formulation [7].

In what follows, we detail the steps that are needed in order to cast the covariant
set ideal-GRMHD equations (1.1), (1.2), (1.9), (1.10) into the following 3+1 and
Eulerian conservative form

o (VYU)+0; (YF') = V7S, (1.59)

where U is the vector of conserved variables, F' are the flux vectors (or “fluxes”),
and § is the vector of source terms.

We can start from the covariant continuity equation (1.1), which can be written
as
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Vulput) = —=3, (V=spu)
1
e

which, after introducing the conserved rest-mass density in the Eulerian frame,

(9 (vV=gpu') +0; (vV—gpu')] =0, (1.60)

D :=putn, =pou' = pW, (1.61)
can be rewritten in the conservative form

o (V¥D) +9; [\/¥yD (' — B')] =0. (1.62)

Equivalently, after defining the transport velocity 7" := ov! — B/, Eq. (1.62) can be
further rewritten as

o (VYD) +9;[\/yDV'] =0, (1.63)

which represents the 3+1 conservative form of the continuity equation in a generic
(curved) spacetime.

Before considering the 3+1 conservative form of the energy-momentum equa-
tions, it is useful to write the energy-momentum tensor in terms of quantities mea-
sured by the Eulerian observer. In particular, we can define the conserved total en-
ergy density % as the full projection of the energy-momentum tensor 7" along the
unit normal n to the spatial hypersurface X, i.e.,

U =nyn,T""
1 .
—phW2 = p= [B (1+4v2) = (B))’] . (1.64)

Similarly, the three-momentum density measured by the Eulerian observer is defined
as the mixed parallel-transverse component of the energy-momentum tensor

S; ::'ﬂanvu
=phW?v; +B*v; — (B/v})B,. (1.65)
while the purely spatial part of the energy-momentum tensor is given by
Wij ::/yiuy]vT”v

i

. . BBJ .
=SV + poiy’ — W — (BSv)vB/. (1.66)

The corresponding four-dimensional definitions are given respectively by

W =y A TR and Sy = 1on" Ty, (1.67)

and allow us to rewrite the energy-momentum tensor in its generic 3+1 decomposi-
tion
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B = ntnY +SHnY + SVt + WHY . (1.68)

Next, recalling that the four-divergence of a symmetric rank-2 tensor is given by

1 1
VTHY = g"* \/?gau(\/ng'i)_iTaﬁalgaﬁ : (1.69)

we can express the conservation of energy-momentum tensor (1.2) as

faﬂ (V—gTh) = fTMang, (1.70)

and thus, using expression (1.68), obtain the 3+1 conservative form of the momentum-
conservation equation in a curved spacetime

: . 1
o (V¥S8j)+0i [V¥(aW; —B'S;) | = 7V —=8T* 0Ty (1.71)
In a similar way, we can combine Eqs. (1.2) and (1.4) as
Vu(T*ny)—=THVyny, =0, (1.72)

and replacing T*V with its decomposed form (1.68) so that, after some algebra,
we obtain the 3+1 conservative form of the energy-conservation equation in curved
spacetime

h(VYU)+0; [VY(aS' —UB')] = —/=gT" Vyuny. (1.73)

Equations (1.71) and (1.73) both involve source terms on their right-hand sides.
In particular, the source term of the momentum-conservation equation (1.71) can be
written more explicitly as

1 1. 1
SV =8T" djguv = v—¢ (W’kaf%'k +8HnY9;guy + %“nvafgﬂV)

_\/7( wik 9%+ Saﬁ —U0; 1noc> (1.74)
where we have used the following identities
djguy =Ty gux + 5, gxv (1.75)
and
ntVin, =0. (1.76)

where I" %y are the Christoffel symbols. Similarly, the source terms of the energy-

conservation equation (1.73) can be expressed explicitly as

—/—gT*'Vyny = V=g (KijW' —S'9;Ina) (1.77)
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where Ky is the extrinsic curvature [, 35, 77]. Expression (1.77) can be further
simplified if the spacetime is stationary, in which case the term oK;;W* reduces to

. 1 . . : )
akK Wik = 5Wlk[sfa,yik +W9,B". (1.78)

We should note that the expressions for the right-hand side of the energy and mo-
mentum conservation equations are due to Ref. [23] and do not correspond to the
ones originally presented in Ref. [10], which expressed the four divergences of the
energy-momentum tensor as

1
V=g

While this expression is mathematically equivalent to Eq. (1.69), it leads to more
complex expressions for the right-hand sides when expressed in a 3+1 decomposi-
tion.

The final equation needed to complete the set of GRMHD equations in 3+1 con-
servative form is relative to the electromagnetic sector and, in particular, Faraday’s
law of induction. Using Eq. (1.10) and the definition of the dual Faraday tensor, it is
possible to rewrite Eq. (1.20) in the 3+1 equivalent form

VT = du (V—gT"") + T, T (1.79)

OB’ +0; [/yB! (av' — B') — B" (an’ — B7)] =0, (1.80)
or, using the transport velocity, as
O/¥B +9; [y (B/V' —B¥/)| =0. (1.81)

Equation (1.81) is also known as the general-relativistic induction equation and
highlights how the evolution of the magnetic field is directly related to the curl of
the vector product of the three-velocity and of the magnetic field, as in Newtonian
MHD. Once the magnetic field is known, the electric field follows trivially from
Eq. (1.53).

At this point, it is possible to collect Egs. (1.62), (1.71), (1.73), and (1.80), so
as to build the state vector, the fluxes and the source vector and hence write the
ideal-GRMHD equations in the conservative Valencia formulation (1.59) [7]. More
specifically, after some simple algebra, it is not difficult to derive the following
expressions for the state and flux vectors

D DV
Sj ) (XWlii—ﬁiSj

U= , F'= , (1.82)
4 asS' — Biw

B/ Byt _BiyJ
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while the source vector has components

0

%aW""ajnk —I—S[ajﬁi — 02/8,05
S = ' . (1.83)
sWHBI9ya + W/ 9;B! — /0,0t
0

We note that since the linear combination of a conserved variable is still a conserved
variable, the state vector of conserved variables (1.82) is not unique and different
codes implement different definitions. A particularly common choice is to replace
the conserved total energy density % with its equivalent

T =% —-D=pWHW —1)—p+ %[32(1 +v2) — (Bp')?]. (1.84)

so that the corresponding state and flux vectors are given by

D DYl
S; _ aW!—B's;
U= , F' = , (1.85)
T a(S'—vD)—-Bit
B/ By By

while the source terms are not changed. Obviously, expressions (1.82) and (1.85)
are mathematically equivalent, but their numerical implementation has shown that
the latter systematically leads to more accurate evolutions.

A few remarks before concluding this section. First, in stark contrast with
what happens for the conservative formulation of the Newtonian MHD equations
(i.e., whenv? < 1, p < p, and E?> < B?> < p), in GRMHD (but already in general-
relativistic hydrodynamics) the relation between the primitive variables, i.e., p, Vi,
€ (or p), and B, and the conserved variables, i.e., D, S j» T, and B/, is not ana-
lytic. In other words, the calculation of the primitive variables from the conserved
one, i.e., what is normally referred to as the “primitive recovery” procedure, can-
not be done analytically but requires the use of a multidimensional root-finding
approach. The latter needs to be implemented at each numerical cell of the compu-
tational domain and can be particularly complex when tabulated equations of state
are employed. Over the years, various algorithms have been developed to ensure an
accurate, efficient, and stable primitive recovery, aiming at minimizing error accu-
mulation during the matter evolution. For compactness, we will not discuss here the
feature of such algorithms, but detailed discussions and comparisons of different
algorithms have been studied in Refs. [82, 40, 27, 63] with specific focus on their
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accuracy and robustness. Second, the set of evolution equations (1.59) does not in-
clude another important equation that needs to be solved together such a set and
that represents one of the most important ones in the actual solution of the GRMHD
equations, namely, the divergence-free condition (1.90). Also in this case, we will
not discuss here the numerous numerical approaches that are possible to limit or
prevent the growth of the violations of the divergence-free condition — from the
divergence-cleaning methods, over to the evolution of the vector potential and up
to the sophisticated constrained-transport methods — and refer the interested reader
to Ref. [64] for a recent review of the various methods, and to the following chap-
ters in this book. Finally, in the absence of gravity and thus in flat spacetimes, the
corresponding form of the special relativistic MHD equations can be obtained triv-
ially after setting o = 1, B/ = 0, and /7 = 1. The corresponding set of equations
is widely employed in particle physics to simulate the dynamics of the collisions of
heavy ions and some representative examples can be found in Refs. [39, 51].

1.4.3 General-Relativistic Resistive MHD Equations

As mentioned in the Introduction, the electrical conductivity in astrophysical plas-
mas is extremely high and the ideal-MHD condition of infinite conductivity repre-
sents a very good approximation. In this case, the magnetic flux is conserved and
the magnetic field is frozen in the fluid, being simply advected with it, and the elec-
tric field is trivially obtained from expression (1.53). By construction, therefore,
the solution of the ideal-GRMHD equations neglects any effect of resistivity on the
dynamics. In practice, however, even in astrophysical plasmas there will be spatial
regions with very high temperatures where the electrical conductivity is finite and
the resistive effects, most notably, the creation of current sheets and the consequent
reconnection, will play a role. Such effects are expected to take place, for example,
during the merger of two magnetized neutron stars or in accretion disks onto su-
permassive black holes, and could provide an important contribution to the energy
losses from the system.

In all of these scenarios, the ideal-MHD limit may not be sufficient to study those
physical processes that involve reconnection or the presence of anisotropic resistivi-
ties. This has motivated the derivation of a more extended set of GRMHD equations
that accounts for resistive effects and that, in practice is augmented by an evolution
equation for the electric field and by an extended Ohm’s law. The corresponding
system is normally referred to as the set of general-relativistic resistive MHD (GR-
RMHD) equations, and we refer to Ref. [68], where this system was first presented.

Since the changes with respect to the GRMHD equations take place only in the
electromagnetic sector, the conservation equations of rest-mass (1.62), momentum
(1.71), and energy (1.73) remain unchanged. On the other hand, the terms involved
in the basic decomposition of the energy-momentum tensor (1.68) are modified be-
cause of the explicitly appearance of the electric fields and take the form
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1
U :=nyn,TH :pth—p+§(E2+Bz), (1.86)
Si 1= YTy = phW?v; + /i E* B, (1.87)

WY =¥, Y\ T* = phW>'v/ —E'E/ — B'B/ + [p—f— 5(E2 +BZ)] Y/, (1.88)

The new expressions for the electromagnetic sector involve the evolution equa-
tion for the magnetic field (1.10) (Faraday’s induction law), whose modified expres-
sion takes into account also the contributions from the electric fields

Or/YB + 0, {ﬂ(ﬁ@"ﬁ"lgu}ynﬁka@ﬂ =0. (1.89)

and the corresponding divergence-free constraint following from the temporal com-
ponent of Eq. (1.10)
1
VY
In addition, Ampere’s law for the evolution of the electric field follows from the
spatial part of the second couple of Maxwell equations (1.10) and is given by

/7B =0. (1.90)

I/ YE! +9; {\ﬁ (ﬁ’E’ —B'E/ - ﬂn”kaBk)] =Y —gB’), (1.91)
while the temporal component of (1.10) expresses the charge density in terms of the
divergence of the electric field, i.e.,

1
VY

Substituting now Eqgs. (1.52) and (1.92) in Ampere’s law (1.91), we can rewrite it as

9 (VYE") =q. (1.92)

IV/VE + 0, {ﬂ (B’Ei ~B'E - \lﬁ,nij"aBk>}

aW | . 1 .. : ; : ;
=7 [E’ +—niky By — (vkEk) v’} — (v = B) 9; (VTET) . (1.93)
n VY
At this point, we can finally collect Egs. (1.62), (1.71), (1.73), (1.89), and (1.91),
S0 as to obtain the conservative form (1.59) of the GRRMHD equations. The corre-
sponding augmented state and flux vectors are given by
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D DY
S; aW! —B's,
U= |%|, Fi = as' —Biw , (1.94)
B/ B/B — BB/ + an*Ey/\/¥
E’ B/E'—B'E/ —an*B/\/7

while the source terms are
0
%(XWikaj%'k +Si8jﬁi — %8ja
SWkBI0yy+ W/ 0,8 - 519, (1.95)
0

Note that, as for the set of GRMHD equations, also the set of GRRMHD equa-
tions is not closed and requires the specification of an equation of state. Similarly,
a complex primitive-recovery approach is needed to compute at each numerical
cell the primitive variables from the conserved ones (see, e.g., Ref. [78]). What
is new, however, is that Ohm’s law (1.52) does not provide any information on the
properties of the resistivity, which will in general be a function of space and time,
i.e., n = n(x',¢). In principle, the information about the properties of the resistiv-
ity should follow from microphysical considerations and hence be calculated under
specific physical conditions (see, e.g., [360] in the case of neutron-star matter). In
practice, however, given the poor knowledge of the resistive aspects of astrophys-
ical plasmas, much cruder choices are made that model the resistivity as a con-
stant or as a simple function of the rest-mass density (see, e.g., [25, 65]). Finally,
it should be mentioned that the solution of the GRRMHD equations is consider-
ably more challenging that those of the GRMHD equations. For the former set,
in fact, the equations become mixed hyperbolic-parabolic in Newtonian physics or
hyperbolic with stiff relaxation terms in special relativity. The appearance of stiff
terms in the equations follows from the fact that the diffusive effects take place on
timescales that are intrinsically larger than the dynamical one or, in other words,
from the fact the relaxation terms dominate over the purely hyperbolic ones, pos-
ing severe constraints on the timestep for the evolution (similar difficulties arise
when considering the inclusion of radiative effects; see, e.g., Refs. [91, 73, 59]).
Overall, the presence of stiff terms forces the use of specially designed numerical
methods such as the implicit-explicit Runge-Kutta time-integration schemes or RK-
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IMEX [69], and hence a significant extension of the numerical infrastructure (see,
e.g., Refs. [65, 78]).

1.5 Summary

The equations of MHD represent a very effective tool to describe the dynamics of
astrophysical plasmas and because of this they are employed in a variety of scenar-
ios in astrophysics and cosmology. When applied in their GRMHD form to study
astrophysical compact objects, they are the most accurate and powerful tool to ex-
plore the properties of compact black holes and neutron stars in fully dynamical and
nonlinear regimes. In this chapter, we have presented the MHD equations in generic
and curved spacetimes, either in the ideal-MHD limit (GRMHD equations) or in the
presence of resistivity (GRRMHD equations). We have also discussed the basic as-
pects of a 3+1 decomposition of spacetime and the importance of writing the MHD
equations in a conservative form.

The purpose of this Chapter — together with Chapters 2, which covers the cou-
pling of the MHD equations with the Einstein equations, and of Chapter 3, which
reviews the properties of modern equations of state — is to lay out the mathematical
foundations of the set of equations that will be employed extensively in the rest of
the book and which have a more applied nature. In particular, after an introduction
of some representative GRMHD codes in Part II, Part III and IV are dedicated to the
study of the dynamics of a variety of astrophysical plasmas, either when the space-
time is held fixed because the plasmas are not self-gravitating (Part III) or when the
spacetime is dynamically evolved because the plasmas are self-gravitating (Part IV).
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