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Abstract The first-order binomial autoregressive (BAR(1)) model is the

most frequently used tool to analyze the bounded count time series. The

BAR(1) model is stationary and assumes process parameters to remain constant

throughout the time period, which may be incompatible with the non-stationary

real data, which indicates piecewise stationary characteristic. To better analyze

the non-stationary bounded count time series, this article introduces the BAR(1)

process with multiple change-points, which contains the BAR(1) model as a

special case. Our primary goals are not only to detect the change-points, but

also to give a solution to estimate the number and locations of the change-points.

For this, the cumulative sum (CUSUM) test and minimum description length

(MDL) principle are employed to deal with the testing and estimation problems.

The proposed approaches are also applied to analysis of the Harmonised Index

of Consumer Prices of the European Union.

Keywords : BAR(1) model · Change-point · INAR(1) model · Parameter

estimation · CUSUM test

1 Introduction

In recent years, modeling and analysis of count time series have become an attractive issue with

a large quantity of articles in fields like epidemiology, social sciences, economics, life sciences and

others. One of the most commonly used approaches to analyze count time series is to construct

integer-valued time series models based on different types of thinning operators. In particular, the

binomial thinning operator is the most popular one in real-world applications since its simplicity

and high interpretability. The binomial thinning operator, which was proposed by Steutel and
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Van Harn (1979), is defined as

α ◦X =
X∑
i=1

Bi,

where α ∈ (0, 1), {Bi} is an independent and identically distributed (i.i.d.) Bernoulli(α) random

sequence independent of non-negative integer-valued random variable X.

Based on the different actual background, the research on count time series is mainly divided into

statistical inference for unbounded and bounded integer-valued time series model. On one hand,

the unbounded count time series (having a range contained in N0 = {0, 1, 2, ...}) are frequently

encountered in practice, such as monthly unemployment figures, counts of fatal accidents, severe

injury accidents, minor injury accidents, vehicle damage accidents and so on. First-order integer-

valued autoregressive (INAR(1)) model based on the binomial thinning operator is the most

commonly applied tool to deal with the unbounded count time series. We give the definition of

the INAR(1) model as follows.

Definition 1 The INAR(1) model {Xt}t⩾1 is defined by the following recursion

Xt = α ◦Xt−1 + ϵt, t = 1, 2, ...,

where “ ◦ ” is the binomial thinning operator, {ϵt} is a sequence of i.i.d. integer-valued random

variables and ϵt is not depending on past values of {Xs}s<t.

Due to the flexibility and practicability of the INAR(1) model, a large quantity of articles focusing

on the modeling and statistical inference for the INAR(1) model have arisen. For example, Al-Osh

and Alzaid (1987), Scotto et al. (2018), Barreto-Souza (2019), Darolles et al. (2019), Kang et al.

(2020b, 2022, 2023) and Rao et al. (2022) considered the modeling of the INAR(1) models to

better handle the fitting problems for unbounded count time series. Pedeli et al. (2015), Jentsch

and Weiß (2019) studied the parameter estimation for the INAR(1) models. McCabe et al. (2011),

Lu (2021), Freeland and McCabe (2004b), Maiti and Biswas (2017) detailedly investigated the

prediction approaches for the INAR(1) models. Schweer and Weiß (2014), Weiß et al. (2019)

handled the testing problems for overdispersion and zero inflation in INAR(1) models framework.

Fernández-Fontelo et al. (2016, 2021), Henderson and Rathouz (2018), Guan and Hu (2022) and

Gourieroux and Jasiak (2004) applied the INAR(1) models to under-reported data, longitudinal

data and insurance actuarial.

On the other hand, the bounded count time series (with a fixed finite range {0, 1, 2, ..., n}) are
also sometimes suffered, such as the monitoring of computer pools (with n workstations), infections

(with n individuals), metapopulations (with n patches) and transactions in the stock market

(with n listed companies). The first-order binomial autoregressive (BAR(1)) model, proposed by

McKenzie (1985), is the most natural choice to handle this kind of data. We give the definition

of the BAR(1) model below.

Definition 2 The BAR(1) process {Xt}t⩾1 is defined by the recursion

Xt = α ◦Xt−1 + β ◦ (N −Xt−1), X0 ∼ B(N, p), (1.1)
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where “ ◦ ” is the binomial thinning operator and N ∈ N is a known upper bound of the model,

β := p(1 − ρ), α := β + ρ, p ∈ (0, 1), ρ ∈
(
max

{
− p

1− p
,−1− p

p

}
, 1

)
. θ := (p, ρ)⊤ is the

parameter vector corresponding to the BAR(1) process. The condition mean and variance of the

BAR(1) model are E(Xt|Ft−1) = ρXt−1 +Np(1− ρ) and Var(Xt|Ft−1) = ρ(1− ρ)(1− 2p)Xt−1 +

Np(1− ρ)[1− p(1− ρ)], respectively, where Ft−1 is the σ-field generated by the whole information

up to time t − 1. All thinnings are performed independently of each other, and the thinnings at

time t are independent of {Xs}s<t.

The BAR(1) model is a strictly stationary and ergodic Markov chain with h-step transition prob-

abilities (Weiß and Pollett, 2012)

P(Xt = j|Xt−h = i) =

min{i,j}∑
k=max{0,i+j−N}

(
i

k

)(
N − i

j − k

)
αk
h(1− αh)

i−kβj−k
h (1− βh)

N−i−j+k, (1.2)

where βh = p(1 − ρh) and αh = βh + ρh. During the past ten years, the interest in the BAR(1)

process has significantly increased and research on this model has gained plentiful and substantial

harvest. For example, Scotto et al. (2014), Weiß and Pollett (2014) and Kang et al. (2020b, 2021,

2023, 2024) proposed several extensions to the classical BAR(1) model. Weiß and Kim (2013a,b)

studied the parameter estimation for the BAR(1) model. Kim and Weiß (2015) and Kim et al.

(2018) considered the testing problems for zero inflation and goodness-of-fit in BAR(1) model

framework. Weiß and Pollett (2012) and Gouveia et al. (2018) applied the BAR(1) model to the

ecology, epidemiology and meteorology.

The analysis of change-points, or structural breaks, was initially developed by Page (1954, 1955)

for the detection of change in the mean of independent normal observations. In the change-points

analysis framework, inferential problems primarily involve two aspects, which are respectively

detection and estimation. As for change-points detection, one tests the null hypothesis of no change

in the parameters of the statistical model against the alternative hypothesis that parameters of

the model change subsequent to at least one unknown change-points. With regard to change-

point estimation, researchers are not only interested in the number of change-points, but also

attach importance to obtain the location of the change-points. As the continuous improvement of

relevant theories, researchers have come to realize that it appears to be of significant importance to

incorporate dependent observations into the change-points analysis since the non-stationary time

series, which indicated piecewise stationary characteristic, were frequently encountered. During

the past few decades, the time series change-points analysis has been vigorously developed and we

refer to the studies of Aue and Horváth (2013), Jandhyala et al. (2013) and Aminikhanghahi and

Cook (2017) for a general review. Especially, relevant achievements in count time series gradually

become abundant and articles concentrating on the change-points analysis for the INAR(1) models

frequently arise in recent years. For example, Pap and Szabó (2013) proposed sever test statistics

to detect the change-points in the INAR(1) model. Kang and Lee (2009), Yu and Kim (2020)

and Lee and Jo (2023) considered the problem of testing for a parameter change in different types

of INAR(1) models by taking advantage of the CUSUM test. Kashikar et al. (2013) developed

the Poisson INAR(p) process with change-points and applied it to the two biometrical data sets.
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Chattopadhyay et al. (2021) considered the problem of change-point analysis for the INAR(1)

model with time-varying covariates. Yu et al. (2022) applied the empirical likelihood ratio (ELR)

test to uncover a structural change in INAR processes, Sheng and Wang (2024) studied the change-

points analysis of the MCP-GCINAR model based on the MDL principle, and optimized by genetic

algorithm (GA). For a review of the change-points analysis in count time series, we refer to the

survey by Lee and Kim (2021).

However, to our best knowledge, the change-points analysis for time series of counts is mainly

considered in unbounded count data. The related research is rare in bounded count data context,

although the development would be extremely important for practice. Up to now, there is only one

article that studied the relevant issue. Zhang (2023) proposed a BAR(1) model with one change-

point and further studied the change-point detection and estimation problems. However, it is

well-known that the multiple change-points model is an extension to the one change-point model.

Moreover, a significant limitation of one change-point model is that the multiple change-points

situation is more commonly observed in practice. Based on the above consideration, we conclude

that it is a vitally necessary and significant issue to come up with a solution to modeling the

bounded count time series with multiple change-points. To further illustrate the above statement,

we consider the following example.

Example 1 Weiß and Kim (2014) studied the data set representing how many of the seventeen

European Union countries have a monthly inflation rate below 2% from January 2000 to December

2011. The data set has a range in {0, 1, 2, ..., 17} and the length of data is 132. Figure 1 shows

the time series plot, autocorrelation function (ACF), and partial ACF (PACF). As pointed out by

Weiß and Kim (2014), they only analyzed the first 84 observations, i.e., the data corresponds to

the period 2000-2006, since these data give no reason to doubt a stationarity based on the time

series plot. The authors also agreed with the opinion that the stationarity of the series is violated

due to the occurrence of economic events since 2007 such as sub-prime crisis and so on. Moreover,

based on the sample path in Figure 1, it is not difficult to speculate that a bounded count time series

model with multiple change-points is a reasonable choice to analyze this data set.

To achieve the goal of better fitting the non-stationary bounded count time series, this article

concentrates on the statistical analysis for the BAR(1) model with multiple change-points. For

this, we initially give the definition of the BAR(1) model with multiple change-points and study

the statistical inference for the proposed model. Furthermore, the CUSUM test based on the

conditional least squares and modified quasi-likelihood estimators are used to detect the change-

points. The estimation problems for the number and location of change-points are also handled

by utilizing the minimum description length principle. The number and location of change-points

are implicitly defined as the optimizer of an objective function, and the searching algorithm based

on genetic algorithm is proposed to solve this difficult optimization problem.

The rest contents of this article are organized as follows. In Section 2, the CUSUM test based

on the conditional least squares and modified quasi-likelihood estimators is employed to detect

the change-points in the BAR(1) model. In Section 3, the definition of the BAR(1) model with

multiple change-points is proposed. Furthermore, we utilize the minimum description length

criterion to determine the number and locations of the change-points. Section 4 evaluates the
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proposed test statistics and estimation methods via some simulation studies. In Section 5, to

show the usefulness of our model and methods, we apply the proposed model to the monthly price

stability counts. The article ends with a conclusion section and all proofs are given in Appendix.

2 CUSUM test for change-point detection

In this section, we focus on the change-point detection in the BAR(1) model. The CUSUM

test based on conditional least squares (CLS), modified quasi-likelihood (MQL), and conditional

maximum likelihood (CML) estimators are employed. To task it, we set up the null and alternative

hypotheses as follows:

H0: ρ and p do not change over X1, ..., Xn v.s. H1: not H0.

Under H0, we denote the parameter vector by θ = (ρ, p)⊤, the parameter space by

Θc = [δ, 1− δ]×
[
max

{
− p

1− p
,−1− p

p

}
+ δ, 1− δ

]
,

where δ is a finite positive constant.

2.1 CUSUM test based on CLS estimators

Suppose we have a series of observations {Xt}nt=1 generated from the BAR(1) process under H0.

The condition mean of the BAR(1) model is E(Xt|Ft−1) = ρXt−1 + Np(1 − ρ). Then, the CLS

estimator θ̂n,CLS := (ρ̂n,CLS, p̂n,CLS)
⊤ of θ is obtained by minimizing the sum of the squared

deviations

Sn(θ) :=
n∑

t=1

[Xt − ρXt−1 −Np(1− ρ)]2 =
n∑

t=1

s2t (θ), (2.1)

The closed-form expressions for the CLS estimators can be given by

p̂n,CLS =

∑n
t=1Xt − ρ̂n,CLS

∑n
t=1Xt−1

nN(1− ρ̂n,CLS)
,

ρ̂n,CLS =
n
∑n

t=1XtXt−1 − (
∑n

t=1Xt) (
∑n

t=1Xt−1)

n
∑n

t=1X
2
t−1 − (

∑n
t=1Xt−1)

2 .

(2.2)

Since the BAR(1) model is stationary, ergodic, and all moments are bounded, then using the Taylor

expansion and the martingale central limit theorem, the following theorem about the consistency

and asymptotic normality of the parameter estimator θ̂n,CLS can be obtained. The detailed proof

is presented in the Appendix.

Theorem 1 Let θ0 = (ρ0, p0)
⊤ be the true value of the parameter vector θ. Suppose that θ0

is an interior point of the compact space, then the CLS estimator θ̂n,CLS satisfies the following

asymptotic normality

√
n
(
θ̂n,CLS − θ0

) d−→N
(
0,V −1

CLSWCLSV
−1
CLS

)
,
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as n → ∞, where WCLS and VCLS have the entries W
(i,j)
CLS and V

(i,j)
CLS , i, j = 1, 2, with

W
(1,1)
CLS = E[st(θ0)(Xt−1 −Np0)]

2, W
(2,2)
CLS = E[st(θ0)N(1− ρ0)]

2,

W
(1,2)
CLS = W

(2,1)
CLS = E{[N(1− ρ0)(Xt−1 −Np0)]s

2
t (θ0)},

V
(1,1)
CLS = −E(Xt−1 −Np0)

2, V
(1,2)
CLS = V

(2,1)
CLS = 0, V

(2,2)
CLS = −[N(1− ρ0)]

2.

Motivated by Kang and Lee (2009) and Lee et al. (2016), applying the relationship between

Brownian motion and Brownian bridge, we obtain the following conclusion.

Theorem 2 Under H0,

W
−1/2
CLS VCLS

[nλ]√
n
(θ̂[nλ],CLS − θ̂n,CLS)

d−→B2(λ),

as n → ∞, where [nλ] is the greatest integer that is less than or equal to nλ and 0 ⩽ λ ⩽ 1,

B2(λ) = (B1(λ), B2(λ))
⊤ is a two-dimensional Brownian bridge.

In fact, according to the ergodicity of the BAR(1) model, it is easy to see that

V̂n,CLS =

(
1
n

∑n
t=1(Xt−1 −Np̂n,CLS)

2 1
n

∑n
t=1(Xt−1 −Np̂n,CLS)N(1− ρ̂n,CLS)

1
n

∑n
t=1(Xt−1 −Np̂n,CLS)N(1− ρ̂n,CLS) N2(1− ρ̂n,CLS)

2

)
is a consistent estimator of VCLS, and

Ŵn,CLS =

(
Ŵ

(1,1)
n,CLS Ŵ

(1,2)
n,CLS

Ŵ
(2,1)
n,CLS Ŵ

(2,2)
n,CLS

)
,

where

Ŵ
(1,1)
n,CLS =

1

n

n∑
t=1

[st(θ̂n,CLS)(Xt−1 −Np̂n,CLS)]
2,

Ŵ
(1,2)
n,CLS = Ŵ

(2,1)
n,CLS =

1

n

n∑
t=1

s2t (θ̂n,CLS)(Xt−1 −Np̂n,CLS)N(1− ρ̂n,CLS),

Ŵ
(2,2)
n,CLS =

1

n

n∑
t=1

[st(θ̂n,CLS)N(1− ρ̂n,CLS)]
2,

is a consistent estimator of WCLS. Thus, we have the following result under H0:

Ŵ
−1/2
n,CLSV̂n,CLS

[nλ]√
n
(θ̂[nλ],CLS − θ̂n,CLS)

d−→B2(λ),

as n → ∞. Thus, we can construct the CUSUM test based on the CLS estimators and deduce its

asymptotic distribution.

Theorem 3 Let k0 be a positive integer, and define

CCLS
n = max

k0⩽k⩽n

k2

n
(θ̂k,CLS − θ̂n,CLS)

⊤V̂n,CLSŴ
−1
n,CLSV̂n,CLS(θ̂k,CLS − θ̂n,CLS).

Then, under H0,

CCLS
n

d−→ sup
0⩽λ⩽1

||B2(λ)||2, n → ∞.

Under H1,

CCLS
n

p−→+∞, n → ∞.
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2.2 CUSUM test based on MQL estimators

Similar to the CUSUM test based on the CLS estimators, we can also construct the CUSUM test

from the asymptotic distribution of the MQL estimators. Let

D−1
t (θ̂n,CLS) := Var(Xt|Ft−1)

= ρ̂n,CLS(1− ρ̂n,CLS)(1− 2p̂n,CLS)Xt−1 +Np̂n,CLS(1− ρ̂n,CLS)[1− p̂n,CLS(1− ρ̂n,CLS)].

Then the MQL estimator θ̂n,MQL := (ρ̂n,MQL, p̂n,MQL)
⊤ of θ is obtained by minimizing the sum of

the squared deviations

Qn(θ) :=
n∑

t=1

Dt(θ̂n,CLS)[Xt − ρXt−1 −Np(1− ρ)]2 =
n∑

t=1

Dt(θ̂n,CLS)s
2
t (θ).

The closed-form expressions for the MQL estimator can be given by

ρ̂n,MQL =

n∑
t=1

Dt(θ̂n,CLS)
n∑

t=1

Dt(θ̂n,CLS)Xt−1Xt −
(

n∑
t=1

Dt(θ̂n,CLS)Xt

)(
n∑

t=1

Dt(θ̂n,CLS)Xt−1

)
n∑

t=1

Dt(θ̂n,CLS)
n∑

t=1

Dt(θ̂n,CLS)X2
t−1 −

(
n∑

t=1

Dt(θ̂n,CLS)Xt−1

)2 ,

p̂n,MQL =

n∑
t=1

Dt(θ̂n,CLS)Xt − ρ̂n,MQL

n∑
t=1

Dt(θ̂n,CLS)Xt−1

N(1− ρ̂n,MQL)
n∑

t=1

Dt(θ̂n,CLS)
,

Similar to the proof of Theorem 1, θ̂n,MQL is a consistent estimator and satisfies asymptotic

normality.

Theorem 4 Suppose θ0 = (ρ0, p0)
⊤ is the true value of the parameter vector θ, then the MQL

estimator θ̂n,MQL satisfies the following asymptotic normality

√
n
(
θ̂n,MQL − θ0

) d−→N
(
0,V −1

MQLWMQLV
−1
MQL

)
,

as n → ∞, where WCLS and VCLS have the entries W
(i,j)
MQL and V

(i,j)
MQL, i, j = 1, 2, with

W
(1,1)
MQL = E[Dt(θ̂n,CLS)st(θ0)(Xt−1 −Np0)]

2, W
(2,2)
MQL = E[Dt(θ̂n,CLS)st(θ0)N(1− ρ0)]

2,

W
(1,2)
MQL = W

(2,1)
MQL = E{D2

t (θ̂n,CLS)[N(1− ρ0)(Xt−1 −Np0)]s
2
t (θ0)},

V
(1,1)
MQL = −E[Dt(θ̂n,CLS)(Xt−1 −Np0)

2], V
(2,2)
MQL = −[N(1− ρ0)]

2E[Dt(θ̂n,CLS)],

V
(1,2)
MQL = V

(2,1)
MQL = −E[Dt(θ̂n,CLS)N(1− ρ0)(Xt−1 −Np0)].

Similar, we can also approximate VMQL and WMQL by their consistent estimators V̂n,MQL and

Ŵn,MQL, and then obtain the following result.

Theorem 5 Let k0 be a positive integer, and define

CMQL
n = max

k0⩽k⩽n

k2

n
(θ̂k,MQL − θ̂n,MQL)

⊤V̂n,MQLŴ
−1
n,MQLV̂n,MQL(θ̂k,MQL − θ̂n,MQL),
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where the expressions of V̂n,MQL and Ŵn,MQL are in Appendix. Then, under H0,

CMQL
n

d−→ sup
0⩽s⩽1

||B2(λ)||2, n → ∞.

Under H1,

CMQL
n

p−→+∞, n → ∞.

Remark 1 The MQL estimation method can be considered a form of weighted CLS method.

Clearly, it exhibits lower asymptotic variance relative to the CLS method. This suggests greater

efficiency in estimating parameters with the MQL method. Hence, such efficiency gains may en-

hance the power of CUSUM tests utilizing MQL estimators, as supported by subsequent simulation

studies.

2.3 CUSUM test based on CML estimators

In this subsection, we review the conditional maximum likelihood (CML) estimation for the

BAR(1) model. The log-likelihood function for {Xt}nt=i+1 can be given by

Ln(i,θ) =
n∑

t=i+1

ℓt(θ|Xs, s < t) =
n∑

t=i+1

log P(Xt|Xt−1),

where P(Xt|Xt−1) is defined in (1.2) with h = 1. The CML estimator θ̂n,CML := (ρ̂n,CML, p̂n,CML)
⊤

of θ for {Xt}nt=1 is obtained by

θ̂n,CML = argmax
θ∈Θc

Ln(0,θ).

According to the discussion in Section 2 of Weiß and Kim (2013b), θ̂n,CML is consistent and has

the following asymptotically distribution,

√
n(θ̂n,CML − θ0)

d−→N(0, I−1(θ0)), n → ∞,

where θ0 denotes the true parameter value of θ and I−1(θ0) = E
[
−∂2ℓt(θ0|Xt−1)

∂θ∂θT

]
denotes the Fisher

information matrix. Let În,CML be the approximation of I(θ0). Then, analogy to the process in

the previous two sections, we obtain the following Theorem.

Theorem 6 Let k0 be a positive integer, and define

CCML
n = max

k0⩽k⩽n

k2

n
(θ̂k,CML − θ̂n,CML)

⊤În,CML(θ̂k,CML − θ̂n,CML).

where the expressions of În,CML is in Appendix. Then, under H0,

CCML
n

d−→ sup
0⩽s⩽1

||B2(λ)||2, n → ∞.

Under H1,

CCML
n

p−→+∞, n → ∞.
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3 Estimation for the change-points

Section 2 gives a solution to the problem of change-point detection. However, in many practical

applications, estimation for the number and location of change-points is also an important topic.

A reliable estimation method for the change-points will help us in model fitting and analyzing

the background of the change-points. Clearly, if there is only one change-point, applying the one-

by-one search method can solve the estimation problem (Zhang, 2023). However, the situation of

multiple change-points is commonly encountered in data analysis. In this case, the number and

location of change-points are all unknown and the one-by-one search method will be very inefficient

since the high computing cost and the increase in estimation inaccuracy are not negligible. Thus,

in this section, we focus on the estimation for the number and location of change-points. The

minimum description length criterion is used to handle the above concerned issue and a new

algorithm, named searching algorithm based on genetic algorithm (S-GA), is proposed.

To better fit the non-stationary bounded count time series, we extend the BAR(1) model defined

in Equation (1.1) to the BAR(1) model with m change-points by allowing the parameters of the

process to vary according to time.

Definition 3 The multiple change-points BAR(1) (MCP-BAR(1)) process with m change-points

{Xt}nt=1 is defined by the recursion:

Xt =


α1 ◦Xt−τ0−1,1 + β1 ◦ (N −Xt−τ0−1,1), t ⩽ τ1,

α2 ◦Xt−τ1−1,2 + β2 ◦ (N −Xt−τ1−1,2), τ1 < t ⩽ τ2,
...

αm+1 ◦Xt−τm−1,m+1 + βm+1 ◦ (N −Xt−τm−1,m+1), t > τm,

(3.1)

where N ∈ N is a known upper bound of the model, βj := pj(1 − ρj), αj := βj + ρj, pj ∈ (0, 1),

ρj ∈
(
max

{
− pj
1− pj

,−1− pj
pj

}
, 1

)
, θj := (pj, ρj)

⊤ is the parameter vector corresponding to the

jth segment of the BAR(1) process and min1⩽j⩽m ||θj+1−θj|| > 0, τ = (τ1, τ2, ..., τm)
⊤ denotes the

vector of unknown locations of change-points, τ0 = 0 and τm+1 = n. Each change-points location

τj, j = 1, ...,m, is an integer between 1 and n−1 inclusive, and the change-points are ordered such

that τj1 < τj2 if, and only if, j1 < j2. All thinnings are performed independently of each other,

and the thinnings at time t are independent of {Xs}s<t.

For a specified vector (m, τ ), the time series Xn = (X1, X2, ..., Xn) generated by (3.1) can also

be written as

Xn = (X⊤
n1,1

, ...,X⊤
nj ,j

, ...,X⊤
nm+1,m+1), (3.2)

where Xnj ,j = (X1,j, ..., Xnj ,j)
⊤ denotes the time series for the jth segment, corresponding to the

period τj−1 +1 ⩽ t ⩽ τj, nj = τj − τj−1 for j = 1, ...,m+1 and n = n1 +n2 + · · ·+nm+1. {Xt}nt=1

is a non-stationary process in general but can be viewed as a stationary BAR(1) process in each

regime.
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3.1 Minimum description length criterion

Loosely speaking, change-point estimation can be considered as the identification of points within

a data set where the statistical properties change. One common approach is to minimize a spe-

cific information criterion (IC) to identify multiple change-points. In this section, we apply the

minimum description length (MDL) principle of Rissanen (1989) as IC to identify a best-fitting

model.

For the sake of readability, we provide the following notations and assumptions, and their cor-

responding explanations before introducing the MDL criterion.

Notations :

• Denote this whole class of the MCP-BAR(1) models by M and any submodel from this class

by F ∈ M.

• Let λ = (λ1, ..., λm), 0 < λ1 < · · · < λm < 1, satisfy τj = [λjn], where [x] is the greatest

integer that is less than or equal to x.

• Denote the true number of change-points by m0, the true location of change-points by λ0 =

(λ0
1, ..., λ

0
m0

)⊤, the true parameter vector by θ0 =
(
(θ0

1)
⊤, ..., (θ0

m0+1)
⊤)⊤ with θ0

j = (p0j , ρ
0
j)

⊤,

and min1⩽j⩽m0 ||θ0
j+1 − θ0

j || > 0.

Assumption 1 To accurately estimate the specified BAR(1) parameter values, the segments must

have a sufficient number of observations, if not, the estimation is overdetermined and the likelihood

has an infinite value. So to ensure identifiability of the change-points, when we search for the

change-points, we assume that there exists a ϵλ > 0 such that ϵλ < min1⩽j⩽m(|λj − λj−1|) and set

Am
ϵλ

= {λ ∈ (0, 1)m, 0 < λ1 < · · · < λm < 1, λj − λj−1 ⩾ ϵλ, j = 1, ...,m+ 1}.

so under this restriction the number of change points is bounded by M0 = [1/ϵλ] + 1.

Assumption 2 Denote the parameter vector of the jth segment by θj = (pj, ρj)
⊤, which is as-

sumed to be an interior point of the compact space Θj,

Θj = [δ, 1− δ]×
[
max

{
− pj
1− pj

,−1− pj
pj

}
+ δ, 1− δ

]
,

where δ is a finite positive constant. θ = (θ⊤
1 , ...,θ

⊤
m+1)

⊤ belongs to the parameter space Θ =
m+1∏
j=1

Θj.

Assumption 3 To make sure the change-points exist, assume that there exists a ϵθ > 0 such that

min1⩽j⩽m0 ||θj+1 − θj|| > ϵθ.

Next, we introduce the MDL criterion for the MCP-BAR(1) model. According to Davis et al.

(2006), the MDL criterion can be regarded as a cost function (CF ), which is the sum of negative

log-likelihood for each of the segments, plus a penalty term. That is, denote a fitted model by F̂ ,

CFF̂(Xn) = −
m+1∑
j=1

Lnj
(τj−1,θj) + CLF̂(F̂),

10



where CLF̂(F̂) is the code length of the fitted model F̂ , or called it the penalty term of fitted

model F̂ . Next, the task is to derive expressions for CLF̂(F̂) according to the MDL principle.

Since F̂ is composed of m, τj’s, θj’s, we can further decompose CLF̂(F̂) into

CLF̂(F̂) =CLF̂(m) + CLF̂(τ ) + CLF̂(θ̂1) + · · ·+ CLF̂(θ̂j) + CLF̂(θ̂m+1),

where the first two items are CLF̂(m) = log(m) and CLF̂(τ ) = (m + 1) log(n). To calculate

CLF̂(θ̂j), we use the result of Rissanen (1989): A maximum likelihood estimator of a real param-

eter computed from N observations can be effectively encoded with 1/2 log(N) bits. Because each

of the two parameters of θ̂j is computed from nj observations, there is CLF̂(θ̂j) = 2/2 log(nj).

Then, combining these results, the MDL criterion for the MCP-BAR(1) model is given by

MDL(m,λ,θ) = log(m) + (m+ 1) log n+
m+1∑
j=1

log(nj)−
m+1∑
j=1

Lnj
(τj−1,θj). (3.3)

The estimator of the number of change-points, the locations of change-points and the parameters

in each of the segments, (m̂n, λ̂n, θ̂n), is obtained by

(m̂n, λ̂n, θ̂n) = arg min
m≤M0,λ∈Am

ϵλ
,θ∈Θ

MDL(m,λ,θ). (3.4)

where λ̂n = (λ̂1, ..., λ̂m̂n), θ̂n = (θ̂1, ..., θ̂j, ..., θ̂m̂n+1) with θ̂j = arg max
θj∈Θj

Lnj
(τj−1,θj), and the

parameter space Θ satisfies Assumption 3.

Next we consider the consistency of the estimators. It is obvious that BAR model is a typical

bounded time series, which means that any finite moments of the BAR model are finite. Based on

Assumptions 1-3, we can obtain the conclusion in Theorem 7 without any moment assumption.

Theorem 7 not only shows the strong consistency of the MDL procedure, but also gives the rate

of convergence of the change-point estimators.

Theorem 7 (Strong Consistency) Let {Xt}nt=1 be observations from a piecewise stationary

process (3.1) specified by the true value vector (m0,λ
0,θ0) and satisfy Assumptions 1-3. The

estimator (m̂n, λ̂n, θ̂n), defined in Equation (3.4), is strongly consistent, i.e.,

m̂n
a.s.−−→ m0, λ̂n

a.s.−−→ λ0, θ̂n
a.s.−−→ θ0,

and for each λ0
j , j = 1, ...,m0, there exists a λ̂j′ ∈ λ̂n, 1 ⩽ j′ ⩽ m̂n, such that

|λ̂j′ − λ0
j | = o(n− 1

2 ), a.s.,

furthermore,

θ̂j′(λ̂j′−1, λ̂j′)− θ0
j = Op

(√
log log n

n

)
, (3.5)

where

θ̂j′(λ̂j′−1, λ̂j′) = arg max
θj′∈Θj′

Lnj′
([nλ̂j′−1],θj′)

11



= arg max
θj′∈Θj′

 [n̂j′ λ̂j′ ]∑
t=[n̂j′ λ̂j′−1]+1

ℓt(θj′|Xs, s < t)

 .

Remark 2 An ϵθ > 0 in Assumption 3 ensures the model’s sensitivity to actual change-points.

Intuitively, a larger ϵθ emphasizes the differences between segments and may even allow approx-

imate identification of change-points from sample path plots. However, ϵθ is not the sole factor

affecting the efficacy of change-point estimators. For the BAR(1) model, estimators derived from

the MDL criterion exhibit varying sensitivities to changes in different parameters. Typically, they

are more sensitive to the mean parameter p compared to the correlation coefficient parameter ρ.

Subsequent simulations in Section 4.2.4 have corroborated these inferences.

Remark 3 The ϵλ guarantees adequate sample between change-points, thereby validating the ef-

fectiveness of the CML estimators. This setting is critical to optimize change-point estimators

based on the MDL criterion within the framework of the CML function. Empirical evidence from

Monte Carlo studies suggests that setting ϵλ = 10/n typically yields precise estimation outcomes.

Remark 4 Evidently, based on the findings (3.5) delineated in Theorem 7, the convergence rate

of the CML estimator θ̂n,CML, remains unimpacted even if the estimated segment partially extends

beyond a stationary section into adjacent stationary intervals.

3.2 Searching algorithm based on genetic algorithm

In this section, we discuss the optimization algorithm of MDL criterion. Since the search space

(consisting of m, τ and θ) is huge, practical optimization of various IC is not a trivial task. So

far, there have been many optimization algorithms designed to solve this popular issue, such as

optimal partitioning (OP) (Jackson et al., 2005), genetic algorithm (GA) (Davis et al., 2006),

pruned exact linear time (PELT) (Killick et al., 2012), pruned dynamic programming (PDP)

(Rigaill, 2010), wild binary segmentation (WBS) (Fryzlewicz, 2014), just to name a few. In this

paper, GA, which is frequently used to optimize MDL criterion, is applied to solve the change-point

estimation problem.

GA is a population-based search algorithm that applies the survival of the fittest concept. Since

Davis et al. (2006) proposed a classical Auto-PARM process based on GA, this type of algorithm

has been widely used in optimizing MDL to identify multiple change-points. Although the sim-

ulation and application in Davis et al. (2006) show that the Auto-PARM process is efficient, the

calculation amount is quite large because the design of algorithm considers all m in its parameter

space [1,M0]. In fact, as we all know, MDL function is convex if we just focus on the number

of change-points. Therefore, we can obviously start the search at one end of the range [1,M0],

and end the search by finding the inflection point of the MDL function. This will greatly reduce

computation costs. In view of this, we propose the following searching algorithm based on genetic

algorithm (S-GA) for MCP-BAR model to identify multiple change-points. For the purpose of

clarifying the S-GA algorithm, we divide the algorithm into two parts: S step and GA step, which

are given detailed introduction in the Appendix.
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Remark 5 GA leverages the principles of natural selection and genetic mechanisms, optimizing

solutions through an iterative search within the candidate solution space. Initially, the algorithm

generates a set of candidate change-point positions τ , to form a population. The fitness of each con-

figuration is determined by the magnitude of its corresponding MDL. Through selection, crossover,

and mutation processes, the algorithm continually refines the population, selecting individuals with

higher fitness for reproduction, while introducing novel mutations to explore additional possible

solutions. As iterations progress, the overall fitness of the population increases, converging to-

wards the optimal or a near-optimal change-point configuration. Due to space constraints, detailed

explanations of chromosome representation, selection, crossover, mutation, and fitness function

computation are omitted and can be found in Davis et al. (2006) and Sheng and Wang (2024).

4 Simulation

In this section, our target is to investigate the performances of the CUSUM test and the S-GA

algorithm for the detection and estimation of the change-points.

4.1 CUSUM test

Some simulations are conducted to investigate the performances of the CUSUM test. Also, the

test statistic CZhang
n , proposed in Section 3.3 of Zhang (2023), is considered as a comparison. We

select the significance level γ = 0.01, 0.05, the associated critical value is 3.269 and 2.408 (Lee et

al., 2003), sample size n = 200, 500, 1000, N = 10 and k0 = 10. All results are summarized in

Tables 1-3 based on 1000 replications. For analyzing the empirical size, the data is generated from

the BAR(1) model with three parameter combinations:

Model T1: (ρ, p) = (−0.1, 0.6);

Model T2: (ρ, p) = (0.1, 0.3);

Model T3: (ρ, p) = (0.4, 0.3).

Then, in term of the empirical power, we consider the following three classes of models, which are

corresponding to Models T1-T3:

Model T11, only ρ change: (ρ, p) = (−0.1, 0.6) change to (ρ, p) = (0.5, 0.6) at τ = 0.5n;

Model T12, only p change: (ρ, p) = (−0.1, 0.6) change to (ρ, p) = (−0.1, 0.3) at τ = 0.5n;

Model T13: (ρ, p) = (−0.1, 0.6) change to (ρ, p) = (0.1, 0.3) at τ = 0.5n.

Model T21, only ρ change: (ρ, p) = (0.1, 0.3) change to (ρ, p) = (0.5, 0.3) at τ = 0.5n;

Model T22, only p change: (ρ, p) = (0.1, 0.3) change to (ρ, p) = (0.1, 0.6) at τ = 0.5n;

Model T23: (ρ, p) = (0.1, 0.3) change to (ρ, p) = (0.3, 0.5) at τ = 0.5n.

Model T31, only ρ change: (ρ, p) = (0.4, 0.3) change to (ρ, p) = (−0.2, 0.3) at τ = 0.5n;

Model T32, only p change: (ρ, p) = (0.4, 0.3) change to (ρ, p) = (0.4, 0.6) at τ = 0.5n;

Model T33: (ρ, p) = (0.4, 0.3) change to (ρ, p) = (−0.2, 0.6) at τ = 0.5n.

The results are reported in Tables 1-3, which show that the empirical sizes are close to the sig-

nificant levels γ = 0.05, 0.1, as expected. Although, the proposed test statistics give satisfactory

performances for the empirical sizes (especially the CUSUM test based on the MQL and CML
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Table 1: The empirical size and power for CUSUM test for Models T1-T13.

Size
γ = 0.01 γ = 0.05

Sample size 200 500 1000 200 500 1000

T1 CCLS
n 0.0450 0.0280 0.0180 0.1190 0.0830 0.0870

with (ρ, p) = (−0.1, 0.6) CMQL
n 0.0110 0.0110 0.0130 0.0410 0.0620 0.0630

CCML
n 0.0350 0.0130 0.0090 0.0590 0.0540 0.0450

CZhang
n 0.0100 0.0080 0.0090 0.0330 0.0460 0.0440

Power
γ = 0.01 γ = 0.05

Sample size 200 500 1000 200 500 1000

T11 CCLS
n 0.3610 0.9890 1.0000 0.6220 1.0000 1.0000

only ρ CMQL
n 0.8150 0.9990 1.0000 0.9200 1.0000 1.0000

change to 0.5 CCML
n 0.8300 0.9990 1.0000 0.9290 1.0000 1.0000

CZhang
n 0.0330 0.0510 0.0480 0.1000 0.1090 0.1280

T12 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

only p CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to 0.3 CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T13 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(ρ, p) CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to (0.1, 0.3) CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

estimators), the CZhang
n statistic achieves convergence to the significance level more rapidly, i.e.,

CZhang
n performs better in terms of the empirical sizes. Regarding empirical power, as evidenced by

Tables 1-3, the CCLS
n and CZhang

n statistics exhibit limited sensitivity in detecting changes in the

autocorrelation structure, especially under conditions of modest sample sizes and isolated varia-

tions in ρ (refer to the results for Models T11, T21, T31 across Tables 1-3). However, the CCLS
n

statistic demonstrates a notably enhanced empirical power compared to CZhang
n . In scenarios with

a constant p value, such as Models T11, T21, T31, the CZhang
n statistic remains small, even as the

sample size increases. Conversely, the proposed statistics progressively approximate to 1 with

increasing sample size, with CCML
n performing best, followed by CMQL

n . This trend is anticipated,

given that the CML estimators more accurately account for the probabilistic distribution char-

acteristics of the data, thereby facilitating more precise change-point detection. Consequently, it

is inferred that the proposed test statistics are predominantly effective in identifying mean shifts

over alterations in the autocorrelation coefficient. For practical applications, the CML-based and

MQL-based test statistic are recommended.

14



Table 2: The empirical size and power for CUSUM test for Models T2-T23.

Size
γ = 0.01 γ = 0.05

Sample size 200 500 2000 200 500 1000

T2 CCLS
n 0.0180 0.0070 0.0200 0.0480 0.0420 0.0540

with (ρ, p) = (0.1, 0.3) CMQL
n 0.0220 0.0140 0.0220 0.0640 0.0600 0.0600

CCML
n 0.0340 0.0060 0.0120 0.0780 0.0370 0.0420

CZhang
n 0.0080 0.0110 0.0120 0.0380 0.0360 0.0470

Power
γ = 0.01 γ = 0.05

Sample size 200 500 1000 200 500 1000

T21 CCLS
n 0.3330 0.8600 0.9970 0.5310 0.9460 0.9990

only ρ CMQL
n 0.4730 0.9050 0.9970 0.6640 0.9640 0.9990

change to 0.5 CCML
n 0.6980 0.9740 1.0000 0.8430 0.9940 1.0000

CZhang
n 0.0130 0.0190 0.0210 0.0660 0.0730 0.0880

T22 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

only p CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to 0.6 CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T23 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(ρ, p) CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to (0.3, 0.5) CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: The empirical size and power for CUSUM test for Models T3-T33.

Size
γ = 0.01 γ = 0.05

Sample size 200 500 1000 200 500 1000

T3 CCLS
n 0.0290 0.0200 0.0180 0.0730 0.0590 0.0650

with (ρ, p) = (0.4, 0.3) CMQL
n 0.0390 0.0220 0.0220 0.1090 0.0710 0.0560

CCML
n 0.0370 0.0040 0.0050 0.0170 0.0200 0.0340

CZhang
n 0.0070 0.0100 0.0090 0.0360 0.0340 0.0420

Power
γ = 0.01 γ = 0.05

Sample size 200 500 1000 200 500 1000

T31 CCLS
n 0.9890 1.0000 1.0000 0.9980 1.0000 1.0000

only ρ CMQL
n 0.9890 1.0000 1.0000 0.9980 1.0000 1.0000

change to −0.2 CCML
n 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 0.8680 1.0000 1.0000 0.9520 1.0000 1.0000

T32 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

only p CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to 0.6 CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T33 CCLS
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(ρ, p) CMQL
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change to (−0.2, 0.6) CCML
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CZhang
n 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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4.2 Change-point estimation

To evaluate the finite-sample performance of the proposed S-GA algorithm, we conduct extensive

simulation studies, which are split into four parts. First, we consider the sensitivity of genetic

algorithm to tunning parameter CF. Second, we compare the performance in minimizing MDL

based on the CML function evaluated on the CLS and CML estimators. Third, S-GA algorithm

was compared with GA algorithm (Davis et al., 2006). In the last part, simulations are utilized

to study the consistency conclusion in Theorem 7.

In this section, we not only calculate the correct rate of the number of change-points, CR(m)=

1/r
∑r

i=1 I(m̂
(i)
n = m0), where I(A) denotes the indicator function, assigning a value of 1 if A is

true, and zero otherwise, r is the number of repetitions, m̂
(i)
n is the i-th estimator for m0, but also

report the following two type evaluation metrics to measure the performance of the change-points

location estimator λ̂n:

ζ(λ0|λ̂n) = sup
b∈λ̂n

inf
a∈λ0

|a− b|, ζ(λ̂n|λ0) = sup
b∈λ0

inf
a∈λ̂n

|a− b|, (Boysen et al., 2009),

which quantify the under-segmentation error and the over-segmentation error, respectively. A

desirable estimator should be able to balance both quantities. In addition, to evaluate the location

accuracy of the estimated change-points, we also report the following distance from the estimated

set λ̂n and true change-points set λ0:

d(λ̂n,λ
0) =

1

|λ0|
∑
λ0
k∈λ0

min
λ̂j∈λ̂n

|λ̂j − λ0
k|, (Chen et al., 2023).

Also, the empirical biases (Bias) and mean square errors (MSE) for every estimator is considered

when m is correctly estimated. All simulations are carried out using the MATLAB software. The

empirical results displayed in the tables are computed over 1000 replications.

We consider two classes of scenarios with two change-points (A-type) and three change-points

(B-type) in our simulation study. For two change-points case or three change-points case, we also

investigate three types of changes in mean and correlation: (1) the mean is a constant but the

autocorrelation coefficient changes (A1, B1); (2) the autocorrelation coefficient is a constant but

the mean changes (A2, B2); (3) both mean and autocorrelation coefficient change (A3, B3). The

parameter settings, sample size, and the location of change-points are specified in Tables 4 and 5.
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Table 4: Parameter combinations for Models (A1)-(A3) (upper bound N = 10).

Model
Two change Change-point location

Segment I II III Sample size τ1 τ2

A1 p 0.5 0.5 0.5 200 70 140

ρ change, p same ρ −0.2 0.6 0.1 500 150 350

A2 p 0.3 0.5 0.7 800 300 450

ρ same, p change ρ 0.2 0.2 0.2

A3 p 0.3 0.5 0.7

(ρ, p) change ρ −0.2 0.6 0.3

Table 5: Parameter combinations for Models (A1)-(A3) (upper bound N = 10).

Model
Three change Change-points location

Segment I II III IV Sample size τ1 τ2 τ3

B1 p 0.5 0.5 0.5 0.5 200 50 100 150

ρ change, p same ρ −0.2 0.6 0.1 0.4 500 100 225 390

B2 p 0.2 0.4 0.6 0.8 800 200 400 650

ρ same, p change ρ 0.3 0.3 0.3 0.3

B3 p 0.3 0.4 0.6 0.8

(ρ, p) change ρ −0.2 −0.1 0.2 0.4

4.2.1 Sensitivity analysis for the tunning parameter CF

In the S-GA algorithm, it is necessary to measure the influence of the setting of tunning parameter

CF (the option in ”ga” function) on estimation effect. For this, we set CF= 0.3, 0.55, 0.8 and sam-

ple size n = 200 and compare the estimation effect for Models (A1)-(A3). The simulation results

are summarized in Table 6. From the CR(m) results, CF= 0.3 almost attains the value closest

to 1, followed by CF= 0.55, though the difference between them is very small. Regarding the

under-segmentation error and the over-segmentation error, CF= 0.55 achieves a balance between

these two types of errors, with ζ(λ0|λ̂n) and ζ(λ̂n|λ0) being not significantly different, and its

performance is noticeably better than that of CF= 0.3, 0.8. In terms of estimation accuracy index

d(λ̂n,λ
0), CF= 0.8 shows the best performance, though CF= 0.55 is not far behind. Hence, we

set CF= 0.55 in the simulations.

4.2.2 Comparing S-GA based on CML estimator with CLS estimator

In this section, our main goal is to determine whether the settings outlined in Setting tips (1)

are reasonable. We utilized the S-GA algorithm with both the CML and CLS estimators to
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Table 6: Sensitivity analysis for CF with sample size n = 200.

CF= 0.3

Model CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ
0) λ1 λ2

A1 0.545 0.0687 0.2126 0.3220 Bias −0.0114 0.0102

MSE 0.0029 0.0086

A2 0.924 0.0404 0.0386 0.0606 Bias 0.0015 −0.0034

MSE 0.0014 0.0013

A3 0.874 0.0407 0.0620 0.0914 Bias −0.0046 0.0011

MSE 0.0008 0.0025

CF= 0.55

Model CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ
0) λ1 λ2

A1 0.547 0.0748 0.1398 0.2130 Bias −0.0056 0.0018

MSE 0.0027 0.0081

A2 0.917 0.0434 0.0326 0.0527 Bias −0.0002 −0.0061

MSE 0.0010 0.0010

A3 0.871 0.0452 0.0400 0.0628 Bias −0.0042 0.0018

MSE 0.0008 0.0028

CF= 0.8

Model CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ
0) λ1 λ2

A1 0.523 0.0785 0.1083 0.1694 Bias −0.0060 0.0062

MSE 0.0022 0.0070

A2 0.924 0.0438 0.0326 0.0527 Bias −0.0001 −0.0058

MSE 0.0011 0.0010

A3 0.853 0.0501 0.0382 0.0600 Bias −0.0022 0.0024

MSE 0.0007 0.0028
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estimate the number and locations of change-points. We summarized the assessment criterion

and durations in Table 7, which shows that the following four criterion: the two estimators in

terms of CR(m), the under-segmentation error ζ(λ0|λ̂n), the over-segmentation error ζ(λ̂n|λ0),

and the accuracy of the estimated change-point locations d(λ̂n,λ
0), give similar results based on

the CLS and CML estimators. Although the CML estimator performs slightly better than the

CLS estimator in several criterion, the durations based on the CML method are much longer than

those based on the CLS method. Therefore, based on overall performance, it is a reasonable choice

to use the CLS estimator rather than the CML estimator.

Table 7: Comparision of S-GA algorithm based on CML and CLS estimators
CLS

Model Sample size CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0) λ1 λ2 Duration(s)

A1 n =200 0.540 0.0707 0.2113 0.3225 Bias −0.0083 0.0153 2941.085

MSE 0.0026 0.0071

n =500 0.936 0.0316 0.0385 0.0599 Bias −0.0026 0.0099 5245.813

MSE 0.0003 0.0013

n =800 0.947 0.0247 0.0259 0.0462 Bias −0.0016 0.0087 7374.188

MSE 0.0002 0.0012

A2 n =200 0.910 0.0390 0.0392 0.0615 Bias −0.0004 −0.0045 3218.818

MSE 0.0010 0.0011

n =500 0.970 0.0146 0.0109 0.0183 Bias −0.0008 −0.0017 5008.807

MSE 0.0001 0.0001

n =800 0.984 0.0090 0.0066 0.0126 Bias −0.0005 −0.0013 6180.803

MSE 0.0000 0.0000

CML

Model Sample size CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0) λ1 λ2 Duration(s)

A1 n =200 0.533 0.0782 0.2084 0.3204 Bias −0.0085 0.0168 154358.245

MSE 0.0030 0.0079

n =500 0.929 0.0333 0.0384 0.0601 Bias −0.0021 0.0103 382916.025

MSE 0.0003 0.0014

n =800 0.954 0.0254 0.0219 0.0398 Bias −0.0016 0.0082 464652.567

MSE 0.0002 0.0010

A2 n =200 0.873 0.0434 0.0381 0.0598 Bias −0.0003 −0.0045 185618.739

MSE 0.0010 0.0012

n =500 0.956 0.0160 0.0109 0.0184 Bias −0.0006 −0.0018 309415.621

MSE 0.0001 0.0001

n =800 0.980 0.0099 0.0069 0.0130 Bias −0.0006 −0.0014 400169.839

MSE 0.0000 0.0001

4.2.3 Comparison between the Auto-PARM and S-GA

In this section, we conduct some simulations to illustrate that the proposed S-GA algorithm

significantly improves the efficiency without the loss of estimation accuracy. For this, we compare

the S-GA algorithm with the Auto-PARM proposed by Davis et al. (2006) and the simulation

results are given in Table 8. We can see that the S-GA algorithm outperforms the Auto-PARM

when we consider estimation accuracy and computational cost. From the duration in Table 8, we

can see that the S-GA algorithm is 60 times faster than the Auto-PARM when we set the sample

size n = 200 and this advantage becomes more apparent as the sample size increases.
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Table 8: Comparison between the Auto-PARM and S-GA
Auto-PARM-Davis

Model Sample size CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0) λ1 λ2 Duration(s)

A1 n =200 0.535 0.0695 0.2090 0.3181 Bias −0.0037 0.0144 162325.172

MSE 0.0025 0.0058

n =500 0.929 0.0335 0.0427 0.0659 Bias −0.0016 0.0104 533674.816

MSE 0.0004 0.0016

n =800 0.950 0.0315 0.0230 0.0414 Bias −0.0011 0.0062 1187773.597

MSE 0.0002 0.0007

S-GA

Model Sample size CR(m) ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0) λ1 λ2 Duration(s)

A1 n =200 0.540 0.0721 0.2056 0.3141 Bias −0.0083 0.0153 2941.085

MSE 0.0026 0.0071

n =500 0.936 0.0330 0.0376 0.0585 Bias −0.0026 0.0099 5245.813

MSE 0.0003 0.0013

n =800 0.947 0.0336 0.0227 0.0408 Bias −0.0016 0.0087 7374.188

MSE 0.0002 0.0012

4.2.4 Consistency Analysis

The previous section primarily focused on the effectiveness and competitiveness of the algorithm.

In this section, we mainly consider the consistency of the number and location of change-points,

and the parameters in each segment under the MDL criterion (see Theorem 7). The corresponding

results are summarized in Tables 9-12.

Firstly, from Tables 9-10, it can be seen that the accuracy rate of estimated number of change-

points are overall satisfactory. Although in the case of constant mean and small sample size

(Models (A1) and (B1) with n = 200), the accuracy rate of estimated number of change-points

has large deviation, but it increasingly approaches 1 as the sample size increases. Furthermore,

comparing the results of Models (A1) and (A2) in Table 9, despite the minimum parameter distance

in Model (A1) being ϵθ = 0.25 and in Model (A2) being ϵθ = 0.04, the change-point estimation

performance under Model (A2) is noticeably superior to that under Model (A1). This validates

the conclusion stated in Remark 2, that is, the change-point estimators are more sensitive to the

mean parameter p compared to the correlation coefficient parameter ρ.

Secondly, from the results of the change-point location estimation in Table 11, as the sample

size increases, the accuracy d(λ̂n,λ
0) gives better performance, and the estimation results of the

under-segmentation error and the over-segmentation error tend to balance.

Thirdly, Table 12 is designed to verify Remark 4, that is, the convergence of the estimator θ̂ is not

affected even when the estimated piece may not be fully inside a stationary piece of a time series

but involves part of the adjacent stationary pieces. We summarize the results of Models (A1)-

(A3) based on the true change-point location and the estimated change-point location. Although

the parameter estimation results based on the true change-point location are better than those

based on the estimated change-point location, as the sample size increases, both estimators are

consistent. This fully conforms to the conclusion we obtained, that even if the estimated segment

is not stationary, it does not affect the convergence of the estimators.
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Table 9: Summary of the number of estimated change-points (two change-points case)

Number of segments(m)

Change-points(%)

Model Sample size m = 1 m = 2 m = 3 m > 3

A1 n =200 0.427 0.54 0.031 0.002

n =500 0.027 0.936 0.037 0

n =800 0.029 0.947 0.024 0

A2 n =200 0.025 0.91 0.064 0.001

n =500 0 0.97 0.03 0

n =800 0 0.984 0.016 0

A3 n =200 0.086 0.857 0.057 0

n =500 0 0.976 0.024 0

n =800 0 0.98 0.02 0

Table 10: Summary of the number of estimated change-points (three change-points case)

Number of segments(m)

Change-points(%)

Model Sample size m = 1 m = 2 m = 3 m = 4 m > 4

B1 n =200 0.697 0.129 0.168 0.006 0

n =500 0.257 0.046 0.671 0.025 0.001

n =800 0.06 0.036 0.886 0.018 0

B2 n =200 0.008 0.316 0.647 0.029 0

n =500 0 0.02 0.947 0.032 0.001

n =800 0 0.007 0.979 0.014 0

B3 n =200 0.022 0.371 0.588 0.019 0

n =500 0 0.105 0.861 0.033 0.001

n =800 0 0.038 0.942 0.02 0
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Table 11: Summary of estimated location of change-points for Models (A1)-(A3).

Model Sample size λ1 λ2 ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0)

A1 n =200 Bias −0.0083 0.0153 0.0707 0.2113 0.3225

MSE 0.0026 0.0071

n =500 Bias −0.0026 0.0099 0.0316 0.0385 0.0599

MSE 0.0003 0.0013

n =800 Bias −0.0016 0.0087 0.0247 0.0259 0.0462

MSE 0.0002 0.0012

A2 n =200 Bias −0.0004 −0.0045 0.0390 0.0392 0.0615

MSE 0.0010 0.0011

n =500 Bias −0.0008 −0.0017 0.0146 0.0109 0.0183

MSE 0.0001 0.0001

n =800 Bias −0.0005 −0.0013 0.0090 0.0066 0.0126

MSE 0.0000 0.0000

A3 n =200 Bias −0.0049 0.0051 0.0432 0.0640 0.0954

MSE 0.0007 0.0026

n =500 Bias −0.0008 0.0000 0.0165 0.0136 0.0221

MSE 0.0001 0.0004

n =800 Bias −0.0006 0.0008 0.0124 0.0087 0.0160

MSE 0.0000 0.0001

Model Sample size λ1 λ2 λ3 ζ(λ0|λ̂n) ζ(λ̂n|λ0) d(λ̂n,λ0)

B1 n =200 Bias −0.0104 0.0090 −0.0071 0.0504 0.4133 0.6998

MSE 0.0019 0.0016 0.0027

n =500 Bias −0.0035 0.0049 −0.0020 0.0270 0.1834 0.3070

MSE 0.0003 0.0005 0.0007

n =800 Bias −0.0018 0.0022 −0.0002 0.0179 0.0602 0.0895

MSE 0.0001 0.0002 0.0002

B2 n =200 Bias 0.0003 −0.0021 −0.0039 0.0448 0.0994 0.1436

MSE 0.0011 0.0018 0.0012

n =500 Bias 0.0007 −0.0006 −0.0019 0.0192 0.0211 0.0329

MSE 0.0002 0.0003 0.0002

n =800 Bias 0.0000 −0.0002 −0.0016 0.0107 0.0113 0.0165

MSE 0.0000 0.0001 0.0001

B3 n =200 Bias 0.0049 −0.0011 −0.0068 0.0433 0.1219 0.1708

MSE 0.0029 0.0011 0.0012

n =500 Bias 0.0016 −0.0002 −0.0031 0.0206 0.0428 0.0569

MSE 0.0006 0.0001 0.0002

n =800 Bias −0.0002 −0.0008 −0.0016 0.0125 0.0203 0.0259

MSE 0.0002 0.0000 0.0000
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5 Real data analysis

In this section, we conduct an application to demonstrate the usefulness of the MCP-BAR(1)

model in explaining piecewise stationary phenomena in count time series with bounded support.

We applied the proposed model to fit the count data, which represent the number of seventeen

European Union countries with inflation rates of less than 2% per month from January 2000 to

December 2011. This data set has been investigated by Weiß and Kim (2014). Especially, the

authors focused on the data set during January 2000 to December 2006 and pointed out that the

observations were quite stable in the years before 2007, but they became clear that the stationary

behavior ends within 2007. Furthermore, the authors found external evidence that supported

their conjecture about a change-point within 2007. The above conclusions can also be strongly

supported by the time series plot, ACF, and PACF of the counts in Figures 1-2. Figure 1 shows

that the observations during January 2000 to December 2006 are clearly stationary. However,

from Figure 2, we can see that the ACF plot appears the shape of a symmetrical triangle and

the time series plot also shows several significant trends and change-points after 2006. These

phenomena indicate that the data set is non-stationary. In our work, we adopt the CUSUM test

to explore whether it is necessary to use a BAR(1) model with change-points to fit this data set,

i.e., the CUSUM test is used to solve the following testing problem:

H0: ρ and p does not change over X1, ..., Xn v.s. H1: not H0.

The test statistics were computed as 23.9294 and 20.2223 based on the CLS and MQL estimators,

respectively, which means that we reject H0 but accept H1 at the significance levels β = 0.01, 0.05

since the critical values are 3.269 and 2.408. Hence, it is reasonable to employ the MCP-BAR(1)

model to fit this data set.

For comparison purposes, we compare the MCP-BAR(1) model with the BAR(1) model (McKen-

zie, 1985), Beta-BAR(1) model (Weiß and Kim, 2014), and NBAR(1) model (Zhang, 2023). It is

worth mentioning that the NBAR(1) model is the BAR(1) model with one change-point. The fol-

lowing statistics were employed to evaluate the capability of the fitted models: Akaike information

criterion (AIC), Bayesian information criterion (BIC), root mean square of differences between

observations and forecasts (RMS), where RMS is calculated by

RMS =
m̂∑
j=1

√√√√ 1

nj − 1

nj∑
t=2

[Xt − ρ̂jXt−1 −Np̂j(1− ρ̂j)]
2.

From Table 13, we find that the BAR(1) model is not suitable to fit this data set since it gives

poor performances based on each statistic. Comparing the Beta-BAR(1) model with the NBAR(1)

model, it is unexpected that the Beta-BAR(1) model outperforms the NBAR(1) model based on

AIC and BIC since the NBAR(1) model can capture the change-point in observations. The

location of change-point in NBAR(1) model is estimated as τ̂ = 107, which is not consistent

with the time series plot in Figure 2. For the MCP-BAR(1) model, it gives best performances

among the alternative models based on each statistics. Furthermore, we can see that the locations

of change-points are τ̂1 = 91, τ̂2 = 107, and τ̂3 = 126, which means that the change-points are
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Figure 1: The sample path, ACF and PACF of the download counts

(from January 2000 to December 2006, sample size n = 84).

observed during 2007, 2008 and 2010. The estimation results are consistent with the time series

plot in Figure 2.

Table 13: Estimators and statistics for price stability counts.

Model Segment ρ̂ p̂ ϕ̂ τ̂ AIC BIC RMS

BAR - 0.7470 0.3079 - - 625.5306 631.4563 1.8814

Beta-BAR(1) - 0.3241 0.7354 0.1369 - 569.5953 578.4838 1.9018

NBAR(1) I 0.6359 0.3197 - 107 581.0453 592.8967 1.6940

II 0.8478 0.7784 -

MCP-BAR(1) I 0.6140 0.2690 - 91 518.2197 541.9225 1.6413

II 0.4464 0.0595 - 107

III 0.7635 0.8072 - 126

IV 0.5804 0.1446 -
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Figure 2: The sample path, ACF and PACF of the download counts

(from January 2000 to December 2011, sample size n = 143).
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6 Conclusion

The target of this article is to introduce a new BAR(1) model with multiple change-points, which

is useful to handle the non-stationary count time series with a finite range. To detect the change-

points, the CUSUM test is studied based on the CLS and MQL estimators. The simulation studies

show that the test statistics are effective to detect change-points. Estimation for the number and

locations of change-points is another important issue. For this, the MDL principle and a new

algorithm named S-GA are applied. The simulation studies reveal that the adopted methods have

the ability to give accurate estimators and save plenty of computing costs. Finally, an application

to the price stability counts is conducted to show the superiority of the multiple change-points

BAR(1) model.
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Appendix

Proof of Theorem 1. Note that the fact that the BAR(1) model is a strictly stationary and

ergodic Markov chain and is bounded with all moments finite. Thus, it is enough to check the as-

sumption (B2) in Theorem 3.2.24 in Taniguchi and Kakizawa (2000). Let m(ρ, p) = E(Xt|Ft−1) =

ρXt−1 +Np(1− ρ). It follows that

∂m(ρ, p)

∂ρ
= Xt−1 −Np,

∂m(ρ, p)

∂ρ
= N(1− ρ),

which shows that the partial derivatives of the mean function form a linearly independent system.

After replacing R by WCLS, U by VCLS in Theorem 3.2.24 in Taniguchi and Kakizawa (2000),

Theorem 1 is easily to be proved.

Proof of Theorem 2. Since θ̂n,CLS satisfies the least-squares equation, by Taylor’s theorem,

we obtain

0 =
1√
n

∂Sn(θ̂n,CLS)

∂θ
=

1√
n

∂Sn(θ0)

∂θ
+

1

n

∂2Sn(θ
∗
n,CLS)

∂θ∂θ⊤

√
n(θ̂n,CLS − θ0), (6.1)

where θ∗
n,CLS is an intermediate point between θ0 and θ̂n,CLS. Denote

Vn,CLS :=
1

2n

∂2Sn(θ
∗
n,CLS)

∂θ∂θ⊤ .
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By the ergodicity of {Xt}, it can be obtained that Vn,CLS
a.s.−→ VCLS by using the ergodic theorem.

From Equation (6.1), we have

VCLS ·
√
n(θ̂n,CLS − θ0) = − 1

2
√
n

∂Sn(θ0)

∂θ
+ {VCLS − Vn,CLS} ·

√
n(θ̂n,CLS − θ0). (6.2)

Furthermore, if the inverse matrix of Vn,CLS exists, we have

√
n(θ̂n,CLS − θ0) = − (Vn,CLS)

−1 · 1

2
√
n

∂Sn(θ0)

∂θ
,

then

VCLS ·
√
n(θ̂n,CLS − θ0) =− 1

2
√
n

∂Sn(θ0)

∂θ

− (VCLS − Vn,CLS) · (Vn,CLS)
−1 · 1

2
√
n

∂Sn(θ0)

∂θ
. (6.3)

According to Equations (6.2) and (6.3), we can rewrite that for 0 ⩽ λ ⩽ 1,

VCLS · [nλ]√
n
(θ̂[nλ],CLS − θ̂n,CLS) =− 1

2
√
n

∂S[nλ](θ0)

∂θ
− [nλ]

n

(
− 1

2
√
n

∂Sn(θ0)

∂θ

)
+

√
[nλ]

n
∆[nλ] −

[nλ]

n
∆n, (6.4)

where

∆k =

{
− (VCLS − Vk,CLS) · (Vk,CLS)

−1 · 1
2
√
k

∂Sk(θ0)
∂θ

, if V −1
k,CLS exists,

(VCLS − Vk,CLS) ·
√
k(θ̂k,CLS − θ0), otherwise.

It is easy to check that E[∂Sk(θ0)/∂θ|Fk−1] = 0. As seen in Lee et al. (2003), the functional limit

theorem for martingales is a key tool to verify the asymptotic results for the CUSUM test, coupled

with the fact that WCLS is a positive definite matrix under H0, there is

−W
−1/2
CLS

1

2
√
n

∂S[nλ](θ0)

∂θ

d−→B◦
2(λ), (6.5)

where B◦
2(λ) = (B◦

1(λ), B
◦
2(λ))

⊤ is a two-dimensional standard Brownian motion. Building upon

Lemma 1, which asserts that

max
1⩽k⩽n

√
k

n
||∆k|| = op(1),

and integrating the results from (6.4) and (6.5), we have

W
−1/2
CLS VCLS

[nλ]√
n
(θ̂[nλ],CLS − θ̂n,CLS)

d−→B2(λ).

The proof of Theorem 2 has been completed.
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Proof of Theorem 3. Following Theorem 2, the result in Theorem 3 under H0 is obviously

true. Inspired by the proof of Theorem 2 in Pešta and Wendler (2020), we next prove the result

in Theorem 3 under H1, i.e,

CCLS
n

p−→+∞, n → ∞.

Without loss of generality, we assume that the sequence {Xt}nt=1 has only one change point at

t = τ , and denote λ = τ/n with 0 < λ < 1. It follows that we can divide the sequence {Xt}nt=1 into

two stationary sequences, {Xt}τt=1 and {Xt}nt=τ+1, which are generated from the BAR(1) model

(1.1) depending on θ1 and θ2 with θ1 ̸= θ2, respectively. According to the definition of CCLS
n , we

have

CCLS
n ⩾ CCLS

n,τ =
τ 2

n
(θ̂τ,CLS − θ̂n,CLS)

⊤V̂n,CLSŴ
−1
n,CLSV̂n,CLS(θ̂τ,CLS − θ̂n,CLS).

Following the asymptotic proprieties of the CLS estimator, we have θ̂τ,CLS
a.s.−→θ1, as n → ∞.

Also, since θ1 ̸= θ2, the asymptotic proprieties imply that

||θ̂τ,CLS − θ̂n,CLS|| ≠ 0, n → ∞.

Notably, the determinant of V̂n,CLS is given by

|V̂n,CLS| = N2(1− ρ̂n,CLS)
2 1

n

n∑
t=1

(Xt−1 −Np̂n,CLS)
2 −

[
1

n

n∑
t=1

(Xt−1 −Np̂n,CLS)N(1− ρ̂n,CLS)

]2

= N2(1− ρ̂n,CLS)
2

 1

n

n∑
t=1

(Xt−1 −Np̂n,CLS)
2 −

[
1

n

n∑
t=1

(Xt−1 −Np̂n,CLS)

]2 .

Clearly, |V̂n,CLS| ≠ 0. Similarly, we can verify |Ŵn,CLS| ≠ 0. Thus, there exist a constant c ̸= 0

such that

CCLS
n ⩾ CCLS

n,τ = λ([nλ])(θ̂τ,CLS − θ̂n,CLS)
⊤V̂n,CLSŴ

−1
n,CLSV̂n,CLS(θ̂τ,CLS − θ̂n,CLS)

⩾ cλ[nλ]
p−→+∞, n → ∞.

That is, CCLS
n

p−→+∞, as n → ∞. The proof of Theorem 3 has been completed.

Proof of Theorem 5. The proof is similar to the proof of Theorem 3, and we omit it.

Expression in Theorem 5. Let k0 be a positive integer, and define

CMQL
n = max

k0⩽k⩽n

k2

n
(θ̂k,MQL − θ̂n,MQL)

⊤V̂n,MQLŴ
−1
n,MQLV̂n,MQL(θ̂k,MQL − θ̂n,MQL).

where

V̂n,MQL =

(
V̂

(1,1)
n,MQL V̂

(1,2)
n,MQL

V̂
(2,1)
n,MQL V̂

(2,2)
n,MQL

)
, Ŵn,MQL =

(
Ŵ

(1,1)
n,MQL Ŵ

(1,2)
n,MQL

Ŵ
(2,1)
n,MQL Ŵ

(2,2)
n,MQL

)
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with

V̂
(1,1)
n,MQL =

1

n

n∑
t=1

Dt(θ̂n,CLS)(Xt−1 −Np̂n,MQL)
2,

V̂
(1,2)
n,MQL = V̂

(2,1)
n,MQL =

1

n

n∑
t=1

Dt(θ̂n,CLS)
{
(Xt−1 −Np̂n,MQL)(N(1− ρ̂n,MQL) + st(θn,MQL)]

}
,

V̂
(2,2)
n,MQL = N2(1− ρ̂n,MQL)

2 1

n

n∑
t=1

Dt(θ̂n,CLS),

Ŵ
(1,1)
n,MQL =

1

n

n∑
t=1

[Dt(θ̂n,CLS)st(θ̂n,MQL)(Xt−1 −Np̂n,MQL)]
2,

Ŵ
(1,2)
n,MQL = Ŵ

(2,1)
n,MQL =

1

n

n∑
t=1

[Dt(θ̂n,CLS)st(θ̂n,MQL)]
2(Xt−1 −Np̂n,MQL)N(1− ρ̂n,MQL),

Ŵ
(2,2)
n,MQL =

1

n

n∑
t=1

[Dt(θ̂n,CLS)st(θ̂n,MQL)N(1− ρ̂n,MQL)]
2.

Proof of Theorem 6. The proof is similar to the proof of Theorem 3, and we omit it.

Fisher information matrix Expression in Theorem 6. Recall that the transition probabil-

ities of the BAR(1) model is given by

P(Xt|Xt−1) =

min{Xt−1,Xt}∑
k=max{0,Xt−1+Xt−N}

(
Xt−1

k

)(
N −Xt−1

Xt − k

)
αk(1− α)Xt−1−kβXt−k(1− β)N−Xt−1−Xt+k,

=:

∆2∑
k=∆1

J0(k)J1(k,θ)J2(k,θ)J3(k,θ)J4(k,θ),

where

J0(k) =

(
Xt−1

k

)(
N −Xt−1

Xt − k

)
,∆1 = max{0, Xt−1 +Xt −N},∆2 = min{Xt−1, Xt},

J1(k,θ) = αk, J2(k,θ) = (1− α)Xt−1−k, J3(k,θ) = βXt−k, J4(k,θ) = (1− β)N−Xt−1−Xt+k.

It follows that

∂J1(k,θ)

∂ρ
= kαk−1(1− p),

∂J1(k,θ)

∂p
= kαk−1(1− ρ),

∂J2(k,θ)

∂ρ
= −(Xt−1 − k)(1− α)Xt−1−k−1(1− p),

∂J2(k,θ)

∂p
= −(Xt−1 − k)(1− α)Xt−1−k−1(1− ρ),

∂J3(k,θ)

∂ρ
= (Xt − k)βXt−k−1(−p),

∂J3(k,θ)

∂p
= (Xt − k)βXt−k−1(1− ρ),
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∂J4(k,θ)

∂ρ
= −(N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−1(−p),

∂J4(k,θ)

∂p
= −(N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−1(1− ρ).

After a simple calculation, there is

P
′

ρ(k,θ) =
∂P(Xt|Xt−1)

∂ρ
=

∆2∑
k=∆1

J0(k)
[∂J1(k,θ)

∂ρ
J2(k,θ)J3(k,θ)J4(k,θ)

+
∂J2(k,θ)

∂ρ
J1(k,θ)J3(k,θ)J4(k,θ) +

∂J3(k,θ)

∂ρ
J1(k,θ)J2(k,θ)J4(k,θ)

+
∂J4(k,θ)

∂ρ
J1(k,θ)J2(k,θ)J3(k,θ)

]
,

P
′

p(k,θ) =
∂P(Xt|Xt−1)

∂p
=

∆2∑
k=∆1

J0(k)
[∂J1(k,θ)

∂p
J2(k,θ)J3(k,θ)J4(k,θ)

+
∂J2(k,θ)

∂p
J1(k,θ)J3(k,θ)J4(k,θ) +

∂J3(k,θ)

∂p
J1(k,θ)J2(k,θ)J4(k,θ)

+
∂J4(k,θ)

∂p
J1(k,θ)J2(k,θ)J3(k,θ)

]
.

Furthermore, there is

∂2J1(k,θ)

∂ρ2
= k(k − 1)αk−2(1− p)2,

∂2J1(k,θ)

∂p2
= k(k − 1)αk−2(1− ρ)2,

∂2J1(k,θ)

∂ρ∂p
=

∂2J1(k,θ)

∂p∂ρ
= k(k − 1)(α)k−2(1− p)(1− ρ)− kαk−1,

∂2J2(k,θ)

∂ρ2
= (Xt−1 − k − 1)(Xt−1 − k)(1− α)Xt−1−k−2(1− p)2,

∂2J2(k,θ)

∂p2
= (Xt−1 − k − 1)(Xt−1 − k)(1− α)Xt−1−k−2(1− ρ)2,

∂2J2(k,θ)

∂ρ∂p
=

∂2J2(k,θ)

∂p∂ρ
= (Xt−1 − k − 1)(Xt−1 − k)(1− α)Xt−1−k−2(1− p)(1− ρ)

+ (Xt−1 − k)(1− α)Xt−1−k−1,

∂2J3(k,θ)

∂ρ2
= (Xt − k − 1)(Xt − k)βXt−k−2p2,

∂2J3(k,θ)

∂p2
= (Xt − k − 1)(Xt − k)βXt−k−2(1− ρ)2,

∂2J3(k,θ)

∂ρ∂p
=

∂2J3(k,θ)

∂p∂ρ
= (Xt − k − 1)(Xt − k)βXt−k−2p(ρ− 1)− (Xt − k)βXt−k−1,

∂2J4(k,θ)

∂ρ2
= (N −Xt−1 −Xt + k − 1)(N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−2p2,

∂2J4(k,θ)

∂p2
= (N −Xt−1 −Xt + k − 1)(N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−2(1− ρ)2,
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∂2J4(k,θ)

∂ρ∂p
=

∂2J4(k,θ)

∂p∂ρ
= (N −Xt−1 −Xt + k − 1)(N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−2

× p(ρ− 1) + (N −Xt−1 −Xt + k)(1− β)N−Xt−1−Xt+k−1.

Denote

A1j(k,θ) =
∂2Jj(k,θ)

∂ρ2

4∏
s1=1,
s1 ̸=j

Js1(k,θ) +
∂Jj(k,θ)

∂ρ

 4∑
s2=1,
s2 ̸=j

∂Js2(k,θ)

∂ρ

4∏
s3=1,s3 ̸=s2,

s3 ̸=j

Js3(k,θ)


 ,

A2j(k,θ) =
∂2Jj(k,θ)

∂ρ∂p

4∏
s1=1,
s1 ̸=j

Js1(k,θ) +
∂Jj(k,θ)

∂ρ

 4∑
s2=1,
s2 ̸=j

∂Js2(k,θ)

∂p

4∏
s3=1,s3 ̸=s2,

s3 ̸=j

Js3(k,θ)


 ,

A3j(k,θ) =
∂2Jj(k,θ)

∂p2

4∏
s1=1,
s1 ̸=j

Js1(k,θ) +
∂Jj(k,θ)

∂p

 4∑
s2=1,
s2 ̸=j

∂Js2(k,θ)

∂p

4∏
s3=1,s3 ̸=s2,

s3 ̸=j

Js3(k,θ)


 ,

where j = 1, 2, 3, 4. Then, after some simple calculations, there is

P
′′

ρ(k,θ) =
∂2P(Xt|Xt−1)

∂ρ2
=

∆2∑
k=∆1

J0(k) [A11(k,θ) + A12(k,θ) + A13(k,θ) + A14(k,θ)] ,

P
′′

ρ,p(k,θ) =
∂2P(Xt|Xt−1)

∂ρ∂p
=

∂2P(Xt|Xt−1)

∂p∂ρ

=

∆2∑
k=∆1

J0(k) [A21(k,θ) + A22(k,θ) + A23(k,θ) + A24(k,θ)] ,

P
′′

p(k,θ) =
∂2P(Xt|Xt−1)

∂p2
=

∆2∑
k=∆1

J0(k) [A31(k,θ) + A32(k,θ) + A33(k,θ) + A34(k,θ)] .

Recall that the Fisher information matrix is

I−1(θ0) = E

[
−∂2ℓt(θ0|Xt−1)

∂θ∂θT

]
.

Clearly, according to the ergodicity of the BAR(1) model, the consistent estimator of I−1(θ0) is

given by

Î−1
n,CML =

(
Î
(1,1)
n,CML Î

(1,2)
n,CML

Î
(1,2)
n,CML Î

(2,2)
n,CML

)
,

where

Î
(1,1)
n,CML =

1

n

n∑
t=1

{
− 1

(P(Xt|Xt−1))
2

[
P

′

ρ(k,θ)
]2

+
1

P(Xt|Xt−1)
P

′′

ρ(k,θ)

}
θ=θ̂n,CML

,
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Î
(1,2)
n,CML =

1

n

n∑
t=1

{
− 1

(P(Xt|Xt−1))
2

[
P

′

ρ(k,θ)P
′

p(k,θ)
]
+

1

P(Xt|Xt−1)
P

′′

ρ,p(k,θ)

}
θ=θ̂n,CML

,

Î
(2,2)
n,CML =

1

n

n∑
t=1

{
− 1

(P(Xt|Xt−1))
2

[
P

′

p(k,θ)
]2

+
1

P(Xt|Xt−1)
P

′′

p(k,θ)

}
θ=θ̂n,CML

.

Proof of Theorem 7. Let the time series {Xt,j}
nj

t=1 generate from the jth segment BAR model.

Denote the true likelihood based on the time series {Xt,j}
nj

t=1 by

L̃nj
(0,θj) =

nj∑
t=1

ℓt(θj|Xs,j, s < t) =

nj∑
t=1

log P(Xt,j|Xt−1,j). (6.6)

Denote supλd,λu
:= supλd∈[0,1],λu∈[0,1],λu−λd>ϵλ

. Define, for j = 1, ...,m+1, the true and the observed

likelihood formed by a portion of the jth segment respectively by

L̃nj
(θj, λd, λu) =

[njλu]∑
t=[njλd]

ℓt(θj|Xs,j, s < t) =

[njλu]∑
t=[njλd]

log P(Xt,j|Xt−1,j),

Lnj
(θj, λd, λu) =

[njλu]∑
t=[njλd]

ℓt(θj|Xs, s < t) =

[njλu]∑
t=[njλd]

log P(Xt|Xt−1).

To ensure the validity of Theorem 7, we confirm adherence to Assumptions 1 (2), 2 (4), 3 , 5,

and either 4 (0.5) or 4* in Davis and Yau (2013). Given our focus on the first-order BAR model,

Assumption 5 in Davis and Yau (2013), which is designed to ensure model selection consistency

and identifiability of models, is obviously true. For easy reading, we summarize Assumptions 1(κ),

2(κ), 3, 4* in Davis and Yau (2013) as follows:

• Assumption 1(κ): For any j = 1, 2, ...,m + 1, the function ℓt(θj|Xs,j, s < t) is two-time con-

tinuously differentiable with respective to θj, and the first and second derivatives L̃
′
nj
(θj, λd, λu),

L
′
nj
(θj, λd, λu) and L̃

′′
nj
(θj, λd, λu), L

′′
nj
(θj, λd, λu), respectively, of the function L̃nj

(θj, λd, λu) and

Lnj
(θj, λd, λu), satisfy

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃nj

(θj, λd, λu)−
1

n
Lnj

(θj, λd, λu)| = o(n
1
κ
−1),

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃

′

nj
(θj, λd, λu)−

1

n
L

′

nj
(θj, λd, λu)| = o(n

1
κ
−1),

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃

′′

nj
(θj, λd, λu)−

1

n
L

′′

nj
(θj, λd, λu)| = o(1),

almost surely.

• Assumption 2(κ): For j = 1, 2, ...,m+ 1, there exists an ϵ > 0 such that

sup
θj∈Θj

E|ℓt(θj|Xs,j, s < t)|κ+ϵ < ∞,

sup
θj∈Θj

E|ℓ′t(θj|Xs,j, s < t)|κ+ϵ < ∞,

34



sup
θj∈Θj

E|ℓ′′t (θj|Xs,j, s < t)| < ∞,

where ℓ
′
t and ℓ

′′
t are the first and second derivatives of ℓt

• Assumption 3: For each j = 1, 2, ...,m+ 1,

sup
θj∈Θj

∣∣∣∣ 1nL̃nj
(0,θj)− E[ℓt(θj|Xs,j, s < t)]

∣∣∣∣ a.s.−→ 0,

sup
θj∈Θj

∣∣∣∣ 1nL̃′

nj
(0,θj)− E[ℓ

′

t(θj|Xs,j, s < t)]

∣∣∣∣ a.s.−→ 0,

sup
θj∈Θj

∣∣∣∣ 1nL̃′′

nj
(0,θj)− E[ℓ

′′

t (θj|Xs,j, s < t)]

∣∣∣∣ a.s.−→ 0.

• Assumption 4*: For each j, {ℓt(θj|Xs,j, s < t); t ∈ Z} and {ℓ′t(θj|Xs,j, s < t); t ∈ Z} are

strongly mixing sequences of random variables with geometric rate.

To substantiate the aforementioned assumptions, we then divided the proof into the following

three steps.

Step 1. We first prove the Assumption 1 (2) to be hold. In fact, since BAR(1) model is bounded,

we can easily prove that Assumption 1 (κ) in Davis and Yau (2013) to be hold for any κ ⩾ 1.

That is, for any j = 1, 2, ...,m + 1, the function ℓt is two-time continuously differentiable with

respective to θj, and the first and second derivatives satisfy

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃nj

(θj, λd, λu)−
1

n
Lnj

(θj, λd, λu)| = o(n−1),

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃

′

nj
(θj, λd, λu)−

1

n
L

′

nj
(θj, λd, λu)| = o(n−1),

sup
λd,λu

sup
θj∈Θj

| 1
n
L̃

′′

nj
(θj, λd, λu)−

1

n
L

′′

nj
(θj, λd, λu)| = o(1),

almost surely.

Step 2. Assumption 2 (4) and Assumption 3 are the regularity conditions for the conditional

log-likelihood function to ensure the consistency of the maximum likelihood estimation. Where,

similar to the argument in the Step 1, Assumption 2 (4) is obviously true because the BAR(1)

model is bounded. Assumption 3 can be verified by the ergodic theorem and the compactness of

the parameter space.

Step 3. We finally verify Assumption 4* to hold. It is well known that the BAR(1) process

is a stationary ergodic Markov chain, according to the discussion on Page 101 in Basrak et al.

(2002), the BAR(1) process is strongly mixing with geometric rate. As a result, ℓt(θj|Xs,j, s < t)

is strongly mixing with the same geometric rate as it is a function of finite number of the strongly

mixing Xt,j’s (Theorem 14.1 of Davidson (1994)). Thus Assumption 4* holds. In fact, Lemma

1 in Davis and Yau (2013) already states that Assumption 4(0.5) in Davis and Yau (2013) holds

under Assumption 2(2) and 4*. Clearly, Assumption 2(2) is true, so Assumption 4(0.5) in Davis

and Yau (2013) is also satisfied. The proof of Theorem 7 is completed.
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Lemma 1 Under H0, we have

max
1⩽k⩽n

√
k

n
∥∆k∥ = op(1).

Proof of Lemma 1. Recall that

∆k =

{
− (VCLS − Vk,CLS) · (Vk,CLS)

−1 · 1
2
√
k

∂Sk(θ0)
∂θ

, if V −1
k,CLS exists,

(VCLS − Vk,CLS) ·
√
k(θ̂k,CLS − θ0), otherwise.

Note that the fact Vn,CLS
a.s.−→ VCLS as n → ∞ and VCLS is a positive definite matrix under H0.

Therefore, it follows from Egorov’s theorem that given ϵ > 0 and δ > 0, there exists an event E

with P(E) > 1− ϵ/3, a positive real number η, and a positive integer n0, such that on E and for

all n > n0,

vn ⩾ η, (6.7)

where vn denotes the minimum eigenvalue of Vn,CLS, and for each 1 ⩽ i, j ⩽ 2∣∣∣V (i,j)
CLS − V

(i,j)
n,CLS

∣∣∣ ⩽ δη. (6.8)

Since (6.7) implies the existence of V −1
n,CLS, we have that on E and for all n > n0,

∆n = − (VCLS − Vn,CLS) · (Vn,CLS)
−1 · 1

2
√
n

∂Sn(θ0)

∂θ
,

Thus, on E,

max
n0<k⩽n

√
k

n
||∆k|| = max

n0<k⩽n

√
k

n

∥∥∥∥(VCLS − Vk,CLS) · (Vk,CLS)
−1 · 1

2
√
k

∂Sk(θ0)

∂θ

∥∥∥∥
⩽ max

n0<k⩽n
∥VCLS − Vk,CLS∥ · max

n0<k⩽n

∥∥(Vk,CLS)
−1
∥∥ · max

n0<k⩽n

∥∥∥∥ 1

2
√
n

∂Sk(θ0)

∂θ

∥∥∥∥
⩽

2∑
i=1

max
n0<k⩽n

∥VCLS − Vk,CLS∥ · max
n0<k⩽n

∥∥(Vk,CLS)
−1
∥∥ · max

1⩽k⩽n

∣∣∣∣ 1

2
√
n

∂Sk(θ0)

∂θi

∣∣∣∣ . (6.9)

First, from (6.8) it holds that on E and for n > n0,

∥VCLS − Vn,CLS∥ := sup {∥(VCLS − Vn,CLS)h∥ : ∥h∥ ⩽ 1}

= sup


 2∑

i=1

(
2∑

j=1

(V
(i,j)
CLS − V

(i,j)
n,CLS)hj

)2
1/2

:
2∑

j=1

h2
j ⩽ 1


⩽ 2δη

and consequently, on E

max
n0<k⩽n

∥VCLS − Vk,CLS∥ ⩽ 2δη. (6.10)
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Next, since Vn,CLS is a real symmetric matrix for all n ⩾ 1 and (6.7) holds on E and for all n > n0,

we have

max
n0<k⩽n

∥∥(Vk,CLS)
−1
∥∥ = max

n0<k⩽n

{
the maximum absolute eigenvalue of (Vk,CLS)

−1}
= max

n0<k⩽n

1

vn
⩽

1

η
. (6.11)

Therefore, combing equations (6.10) and (6.11), it follows that the right-hand side of (6.9) is no

more than
∑2

i=1 2δmax1⩽k⩽n |(2
√
n)−1∂Sk(θ0)/∂θi| on E, and consequently,

P

{(
max

n0<k⩽n

√
k

n
∥∆k∥ >

ϵ

2

)⋂
E

}
⩽ P

{
2∑

i=1

2δ max
1⩽k⩽n

∣∣∣∣ 1

2
√
n

∂Sk(θ0)

∂θi

∣∣∣∣ > ϵ

2

}

⩽
2∑

i=1

P

{
max
1⩽k⩽n

∣∣∣∣∂Sk(θ0)

∂θi

∣∣∣∣ > ϵ
√
n

4δ

}

⩽
2∑

i=1

16δ2

nϵ2
E

(
∂Sn(θ0)

∂θi

)2

.

Clearly, under H0, there exist a constant 0 < c < ∞, such that

2∑
i=1

1

n
E

(
∂Sn(θ0)

∂θi

)2

⩽ c.

Furthermore, we set δ ⩽
√

ϵ3/48c, and there is

P

{(
max

n0<k⩽n

√
k

n
∥∆k∥ >

ϵ

2

)⋂
E

}
⩽

ϵ

3
.

Notably, there exists a positive integer n1 > n0, such that

P

{
max

1⩽k⩽n0

√
k

n1

∥∆k∥ >
ϵ

2

}
⩽

ϵ

3
.

Following the above derivation, we have that for all n > n1

P

{
max
1⩽k⩽n

√
k

n
∥∆k∥ > ϵ

}
⩽P

{
max

1⩽k⩽n0

√
k

n
∥∆k∥+ max

n0<k⩽n

√
k

n
∥∆k∥ > ϵ

}

⩽P

{
max

1⩽k⩽n0

√
k

n
∥∆k∥ >

ϵ

2

}

+ P

{(
max

n0<k⩽n

√
k

n
∥∆k∥ >

ϵ

2

)⋂
E

}
+ P{Ec} ⩽ ϵ,

which implies

max
1⩽k⩽n

√
k

n
∥∆k∥ = op(1).
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The proof of Lemma 1 is completed.

Searching algorithm based on genetic algorithm

S step:

Input: The random sample {x1, x2, ..., xn} from the MCP-BAR(1) model.

The upper bound N in MCP-BAR(1) model.

The upper bound of the number of change-points M0.

The sample size n.

Initialise: Let ∗MDL-best1 = min
τ ,θ

MDL(1, τ
n
,θ), where MDL is defined by (3.3);

Let m̂ = 1, and (τ̂ , θ̂) = argmin
τ ,θ

MDL(1, τ
n
,θ).

Iterate: for j = 2 : M0

Let ∗MDL-best2 = min
τ ,θ

MDL(j, τ
n
,θ).

Let (τ̂ ⋆, θ̂⋆) = argmin
τ ,θ

MDL(j, τ
n
,θ).

if MDL-best2 > MDL-best1
break.

else

MDL-best1 = MDL-best2.

m̂ = j, and (τ̂ , θ̂) = (τ̂ ⋆, θ̂⋆).

end

end

Output: change-points estimator (m̂, τ̂ , θ̂).

∗GA step:

Step 1: If τ is given, the estimator for the jth segment parameter θ̂j can be easily

obtained by the closed-form expressions or solved by MATLAB function “fmincon”.

Step 2: Use “ga” function in MATLAB to get the global optimal solution τ̂ .

∗When (m, τ ) is fixed, parameter estimation for each segment of our model is a

conventional optimization problem. We divided the estimation procedure into the

above two steps.

Setting tips for Step 1 and Step 2:

(1) Since the closed-form of the estimators will greatly improve the computation speed, we mini-

mized MDL based on the CML likelihood function evaluated at CLS estimators (2.2) in Step

1.

(2) The options of “ga” function is set as: “options=gaoptimset(‘PlotFcns’,{@gaplotbestf},‘Popula
tionSize’,10*s, ‘CrossoverFraction’, 0.55, ‘Generations’, 300)”, where ‘PopulationSize’ is the

size of the population, ‘CrossoverFraction’ (CF) is the fraction of the population at the next

generation, not including elite children, that the crossover function creates. Later in Section
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5, we will do the sensitivity analysis of the tunning parameter CF.

(3) To satisfy the Assumption 1: each segment must have a sufficient number of observations,

the following restriction is given when we carry out Step 2:

if min(τ̂i+1 − τ̂i) < n ∗ ϵλ, (i = 1, ..., j), we set MDL(·, (τ̂1, ..., τ̂j), ·) = INF. In simulation, we

set ϵλ = 10/n.
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