
Inference for multiple change-points in generalized

integer-valued autoregressive model

Danshu Sheng1, Dehui Wang1∗

Abstract In this paper, we propose a computationally valid and theoretically

justified methods, the likelihood ratio scan method (LRSM), for estimating

multiple change-points in a piecewise stationary generalized conditional integer-

valued autoregressive process. LRSM with the usual window parameter h is

more satisfied to be used in long-time series with few and even change-points

vs. LRSM with the multiple window parameter hmix performs well in short-time

series with large and dense change-points. The computational complexity of

LRSM can be efficiently performed with order O((log n)3n). Moreover, two

bootstrap procedures, namely parametric and block bootstrap, are developed for

constructing confidence intervals (CIs) for each of the change-points. Simulation

experiments and real data analysis show that the LRSM and bootstrap proce-

dures have excellent performance and are consistent with the theoretical analysis.

Keywords :Piecewise stationary GCINAR process· Multiple change-points

estimation· Likelihood ratio · Confidence interval · Count time series

1 Introduction

Modeling and analysis of non-stationary count time series have attracted a lot of attention over

the past years. Although complex non-stationary models have been developed in different fields,

they are often difficult to explain. The concept of piecewise stationary models has become a

popular method by dividing nonstationary data into several stationary parts. Among the different

types of piecewise stationary models, the so-called multiple change-points (MCP) models have

received special attention. Studies of change-points models date back to Page (1954, 1955). Since

then, this topic has been of interest to statisticians and researchers in many other fields. So

far, many excellent articles, such as Lee et al. (2003), Davis et al. (2006), Chan et al. (2014),

Chen et al. (2021), Aue and Horváth (2013), Niu et al. (2016), Casini and Perron (2018), Truong

et al. (2020), just to name a few, have studied and reviewed methodological issues related to

estimation, detection and computation for continuous time series models involving structural
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changes. In contrast, the research of count time series models involving change-points is still mainly

focused on the change-points detection, and there is little research on change-points estimation

and computation.

One common and useful model to describe simple stationary count time series data is integer-

valued autoregressive (INAR) time series model. Since Al-Osh and Alzaid (1987) proposed the

INAR(1) model based on binomial thinning operator (Steutel and Van Harn, 1979), modeling

INAR-type models based on different thinning operators have become a common approach and

have been widely used in many fields like epidemiology, social sciences, economics, life sciences

and others. To make the integer-valued models more flexible for practical purposes, many scholars

have extended the INAR (1) model by changing thinning operators, innovation. For example, just

to name a few, the INAR(p) model based on generalized thinning operator proposed by Latour

(1998); the mixture INAR(1) model based on the mixture of Pegram and thinning operators

studied by Khoo et al. (2017); the bounded binomial autoregressive (BAR) model proposed by

McKenzie (1985); the nonlinear INAR(1) model, self-exciting threshold autoregressive process

introduced by Monteiro et al. (2006). Actually, most of these INAR-type models can be written

as the following p-order causal and stationary generalized conditional integer-valued autoregressive

(GCINAR(p)) process.

Definition 1 Considering a N0-valued (N0 = N
⋃
{0}) GCINAR(p) process {Xt}t∈Z, where the

conditional mean is defined by the following recursion

E(Xt|Ft−1) =

p∑
k=1

βkXt−k + β0. (1.1)

Ft = σ(Xs, s ≤ t) is the σ-field generated by the whole information up to time t. The parameter

vector θ = (β0, ..., βp)
⊤ satisfied

∑p
i=1 βi < 1, βi ≥ 0 for i = 1, ..., p and β0 > 0.

Remark 1 Clearly, GCINAR can be called a conditional linear AR (CLAR, Grunwald et al.

(2000)) model in term of the form of the model. However, the change-point of the continuous-type

CLAR models has been studied by some scholars, see Yau and Zhao (2016), Ng et al. (2022).

Therefore, the focus of this paper is on the model defined on integer values and the conditional

expectation is linear. For example, the INAR-type model based on thinning operators, the INARCH

models (Weiß , 2010), the BAR models (McKenzie, 1985) and among others.

Then, a simple and useful idea to model piecewise stationary count time series is to construct

the following GCINAR model with multiple change-points, that is, the so-called multiple change-

points generalized conditional integer-valued autoregressive model (MCP-GCINAR).

Definition 2 The MCP-GCINAR process with m change-points {Xt}nt=1 is defined by the recur-

sion:

E(Xt|Ft−1) =



β1,1Xt−1,1 + ...+ βp1,1Xt−p1,1 + β0,1, 0 < t ≤ τ1,
...

β1,jXt−τj−1−1,j + ...+ βpj ,jXt−τj−1−pj ,j + β0,j, τj−1 < t ≤ τj,
...

β1,mXt−τm−1,m + ...+ βpm,mXt−τm−pm,m + β0,m, τm < t ≤ n,

(1.2)
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where τ = (τ1, τ2, ..., τm) denotes the vector of unknown locations of change-points, τ0 = 0 and

τm+1 = n. Each change-point location τj is an integer between 1 and n − 1 inclusive, and the

change-points are ordered such that τj1 < τj2 if, and only if, j1 < j2. The time series vector

(X1, X2, ..., Xn) can be written as

(X1,1, ..., Xn1,1, ..., Xτj−1+1,j, ..., Xτj+nj ,j, ..., Xτm+1,m+1, ..., Xτm+nm+1,m+1), (1.3)

where nj = τj − τj−1 for j = 1, ...,m+1 and n = n1 + n2 + ...+ nm+1. In particular, the jth piece

{Xt,j}
nj

t=1 of the series is modeled as a stationary GCINAR process (1.1) with order pj,

E(Xt,j|Ft−1) = β1,jXt−1,j + ...+ βpj ,jXt−pj ,j + β0,j,

θj = (β0,j, β1,j, ..., βpj ,j)
⊤ is the parameter vector corresponding to the jth segment GCINAR(pj)

process, which is assumed to be an interior point of the compact space Θj(pj) = [δ, 1/δ] × [0, 1 −
δ]pj ∩Mj, where Mj = {0 ≤

∑pj
k=1 βk,j ≤ 1− δ < 1}, δ ∈ (0, 1) is a constant.

So far, most research has focused on the change-points detection of the INAR-type models.

For example, among others, Kang and Lee (2009), Yu and Kim (2020) and Lee and Jo (2022)

considered the problem of testing for a parameter change in different types of INAR(1) models by

taking advantage of the cumulative sum (CUSUM) test. Chattopadhyay et al. (2021) considered

the problem of change-point analysis for the INAR(1) model with time-varying covariates. Yu

et al. (2022) applied the empirical likelihood ratio (ELR) test to uncover a structural change in

INAR processes. Weiß (2007, 2009a,b), Weiß and Testik (2009) studied the Shewhart, combined

jumps, exponentially weighted moving average and cumulative sum charts for controlling the

Poisson counts process.

However, few research has studied the estimation of change-points, especially optimization. Diop

and Kengne (2021b) derive a data-driven procedure based on the slope heuristic to calibrate the

penalty term of the contrast to achieve general integer-valued time series change-points estima-

tion, and optimized by dynamic programming (DP) algorithm; Sheng and Wang (2023) studied

the change-points analysis of the MCP-GCINAR model based on minimum description length

(MDL) principle, and optimized by genetic algorithm (GA). Although these two algorithms have

been suggested for implementing the inference of change-points in the MCP-GCINAR model, op-

timization can be computationally very expensive because the number of possible change-points

combinations grows exponentially as the sample size grows. Specifically, the GA involves various

tuning parameters, and the DP algorithm exhibits a computational order O(n2). In fact, if the

computational complexity of optimal methods is too great for the application at hand, we can

resort to an “approximate methods”. That is, we can roughly judge a potential change-points set

which is far smaller than the sample size by some methods, and then the optimization problem

based on information criteria is realized by selecting the best subset of this potential change-points

set. Of course, it is necessary to ensure that the number of elements in the potential change-points

is higher than the true number of change-points, and there are some subsets in a neighborhood

of all true change-points. This “approximate methods” approach is also often considered in some

continuous-type models, such as Yau and Zhao (2016), Ng et al. (2022), Chan et al. (2014),

Safikhani and Shojaie (2022). In addition, it should be noted that the generalized likelihood ratio
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scan method (GLRSM) proposed by Ng et al. (2022) requires the likelihood function to be a mea-

surable and continuous function with respect to {Xt}. And the proof for the GLRSM relies on

the application of the continuous mapping theorem. Consequently, it can not be simply applied

to count time series models.

Inspired by the above review/discussion, we propose two computationally valid and theoretically

justified methods for off-line change-points inference in the MCP-GCINAR processes. The main

contributions in this paper are as follows:

• We propose a computationally efficient and theoretically sound procedure LRSM for the

inference of the MCP-GCINAR model in the case of long-time series with few and even

change-points. Performing LRSM involves three steps: first, a likelihood ratio scan statistic

is used to obtain a potential change-points set; second, a model selection procedure based on

the MDL principle is employed to give a set of consistent change-points estimates; and finally,

an exhaustive method is used to determine the final change-points in an extended local

window and its convergence and asymptotic distribution are given. Also, we demonstrated

that the computational order of the LRSM can be as low as O((log n)3n). After simulation

results and real data analysis, LRSM performs well in samples of long-time series with few

and even change-points.

• We construct the CIs based on two bootstrap procedures, parametric and block bootstrap,

for each estimated change-point. In addition, the validity of the two bootstrap procedures

are discussed.

Although these methods are similar to the problem of change-points estimation in continuous-type

models, there are many differences in the derivation of asymptotic properties, model assumptions,

and algorithm implementation. For example, the techniques and assumptions used to develop the

asymptotic properties in LRSM, the techniques used to develop the validity of the two bootstrap

procedures.

The rest contents of this article are organized as follows. In Section 2, we state the details of

the three-step LRSM and construct the confidence intervals by two bootstrap procedures. Section

3 discusses the tuning parameters, computational complexity and some implementation issues.

Extensive simulation studies and real data applications are given in Sections 4 and 5 respectively.

The article ends with a conclusion section. All proofs, some implementation algorithms and

additional simulation results are given in the Appendix.

2 MCP-GCINAR model change-points inference based on

the three-step LRSM

In this section, we state the three-step LRSM to implement the inference of the MCP-GCINAR

model. Following Section 2.1 in Sheng and Wang (2023), considering the complexity of proof and

computation, Poisson quasi-maximum likelihood (PQML) estimation as the cost function for the

MDL criterion is reasonable and convenient. Thus, we first review the Poisson quasi-maximum
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log-likelihood for the GCINAR process and provide some notations and assumptions used in the

LRSM.

The conditional Poisson quasi-maximum log-likelihood for the data set is obtained by

Ln(k,θ, p) =
n+k∑

t=k+1

[Xt log ξt(θ, p|Xt−1)− ξt(θ, p|Xt−1)] (2.1)

=
n+k∑

t=k+1

ℓt(θ, p),

where {Xt}n+k
t=k+1−p is generated from the GCINAR process (1.1), k ∈ Z and k ≥ p, ξt(θ, p|Xt−1)

=
p∑

i=1

βiXt−i + β0 ≜ X⊤
t−1θ with Xt−1 = (1, Xt−1, Xt−2, ..., Xt−p)

⊤ and θ = (β0, β1, ..., βp)
⊤. Then

the PQML estimate of θ is defined by

θ̂ = arg max
θ∈Θ(p)

Ln(k,θ, p).

Assuming that 0 <
p∑

i=1

βi < 1 and E(Xt) < ∞, then θ̂ satisfy the following asymptotic normality

√
n(θ̂ − θ0)

d−→ N(0,Σ) as n → ∞,

where θ0 denote the true parameter value of θ. The asymptotic variance matrix of the PQML

estimate can be consistently estimated by Σ̂n = Ĵ−1
n (k, θ̂)În(k, θ̂)Ĵ

−1
n (k, θ̂) with

Ĵn(k, θ̂) =
1

n

n+k∑
t=k+1

1

ξt(θ, p|Xt−1)

∂ξt(θ, p|Xt−1)

∂θ

∂ξt(θ, p|Xt−1)

∂θT

∣∣∣∣
θ=θ̂

, (2.2)

În(k, θ̂) =
1

n

n+k∑
t=k+1

(
Xt

ξt(θ, p|Xt−1)
− 1)2

∂ξt(θ, p|Xt−1)

∂θ

∂ξt(θ, p|Xt−1)

∂θT

∣∣∣∣
θ=θ̂

. (2.3)

Notations:

• Denote this whole class of the MCP-GCINAR model by M and any model from this class

by F ∈ M.

• Upper bounds for the GCINAR orders p are represented by pmax. Setting p = (p1, ..., pm+1)

belongs to the parameter domain P = (0, pmax]
m+1

⋂
Zm+1, θ(m) = (θ1, ...,θm+1) belongs

to the parameter domain Θ =
m+1∏
j=1

Θj(pj).

• Denote the true number of change-points by m0, the set of true change-points by J0 =

{τ 01 , τ 02 , ..., τ 0m0
}, the set of true order by p0 = {p01, ..., p0m+1}.

• Let |J | be the cardinality of the set J .
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Assumptions:

H. 1 For each segment, assume that θj is an interior point of the compact space Θj(pj) and

satisfies
∑pj

i=1 βi,j < 1, βi ≥ 0 for i = 1, ..., pj.

H. 2 Assume that there exists a ϵθ > 0 such that min1≤j≤m0 ||θj+1 − θj|| > ϵθ.

H. 3 Assume that there exists a ϵτ > 0 such that min0≤j≤m0 |τj+1 − τj| > nϵτ .

H. 4 For each segment, assume that there exist a constant ϵK > 0 such that E
[
e|lt(θj)−E[lt(θj)]|

]
<

ϵK for all θj ∈ Θj(pj).

H. 5 For each segment, assume that E|Xt|4+ϵX < ∞ for some ϵX > 0.

Under the assumption H.1, the jth segment process {Xt,j} is ergodic and has a strictly stationary

solution, additionally, {Xt,j} is strong mixing with geometric rate. Assumption H.2 imposes

restrictions on the parametric differences between each segment, which is essential for the existence

of change-points. Assumption H.3 imposes restrictions on the distances between change-points. To

accurately estimate the specified GCINAR parameter values, the segments must have a sufficient

number of observations. If not, the estimation is over-determined and the likelihood has an

infinite value. This assumption is common in likelihood-based model selection, such as Davis

et al. (2006), Davis and Yau (2013), Yau and Zhao (2016). Assumption H.5 is proposed to

guarantee the consistency of the change-points estimate in Theorem 2. Assumption H.4 provides

the condition for the establishment of the large deviation conclusion in Theorem 1. It’s worth

mentioning that, if the arbitrary moments of subsegment model are bounded, assumption H.5

and H.4 are unnecessary. For example, if the MCP-GCINAR model represent the BAR model

(McKenzie, 1985) with multiple change-points, it is no longer necessary to assume H.5 and H.4.

2.1 First Step: obtain potential change-points based on LR scan statis-

tics

For t = h, ..., n− h, define the scanning window at t and the corresponding observations as

Wt(h) = {t− h+ 1, ..., t+ h} and XWt(h) = (Xt−h+1, ..., Xt+h),

respectively, where h is called the window radius. To establish asymptotic theory, we assume that

h = h(n) depends on the sample size n. Then the likelihood ratio scan statistic for the scanning

window Wt(h) by

Sh(t) =
1

h
Lh(t− h, θ̂1, p1) +

1

h
Lh(t, θ̂2, p2)−

1

h
L2h(t− h, θ̂, p)

where Lh(t − h, θ̂1, p1), Lh(t, θ̂2, p2), L2h(t − h, θ̂, p), defined by (2.1), are the Poisson quasi-

likelihoods formed by the observations {Xs}ts=t−h+1, {Xs}t+h
s=t+1, {Xs}t+h

s=t−h+1, evaluated at the

PQML estimates θ̂1, θ̂2, θ̂, respectively. Similar to AR model, each GCINAR(pj) model can be
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regarded as an GCINAR(pmax) model (with the last few coefficients equal to 0), we can regard

each GCINAR model as pmax order when deducing the theoretical results in this step.

Next, Sh(t) scans the observed time series to obtain a sequence of likelihood ratio scan statistics

(Sh(h), Sh(h + 1), ..., Sh(n − h)). As discussed by Yau and Zhao (2016), after this construction,

Sh(t) tends to be larger if t is change-point. In particular, if h is selected as 2h < nϵτ and h > pmax,

there is at most one change-point in each scanning window. Thus, we can derive a set of potential

change points from local change point estimates, given by

Ĵ (1)(h) =
{
τ ∈ {h, h+ 1, ..., n− h} : Sh(τ) = max

t∈(τ−h,τ+h]
Sh(t)

}
,

where Sh(t) ≜ 0, for t < h and t > n − h. Clearly, if Sh(τ) is the maximum on the window

[τ − h+ 1, τ + h] centered on τ , then τ is a local point of change estimate.

Denote the number of elements in Ĵ (1)(h) by m̂(1), the local change-points estimates set by

Ĵ (1)(h) = {τ (1)1 , τ
(1)
2 , ..., τ

(1)

m̂(1)}. Theorem 1 states that all change-points can be identified in an

h-neighborhood of Ĵ (1)(h) obtained in this step.

Theorem 1 Suppose Assumptions H.1-H.4 hold, 2h < nϵτ and ϵτ > c for some c > 0, then there

exists some d > 0 such that, for h ≥ d(logn)3,

P
(
max
τ∈J0

min
s=1,...,m̂(1)

|τ − τ̂ (1)s | < h
)
→ 1.

For the first step, make the following supplementaries through Remark 2.

Remark 2

• To enhance practical performance, when we evaluate Sh(t), the order p for the three estimates

θ̂1, θ̂2, θ̂ can be individually selected by using the information criteria: Akaike information

criterion (AIC) or Bayesian information criterion (BIC).

• Usually, m̂(1) is much larger than the true number of change-points, especially if h is small.

In order to enhance computational efficiency, we can select the first mmax elements in Ĵ (1)

that have the largest Sh(t)s as the final Ĵ (1), where mmax is a reasonably large number upper

bound of the number of change points, such as 20 or 50.

Note that these two operations are only intended to enhance practical performance and compu-

tational efficiency, and are not necessary, especially the value of mmax has little effect on the

estimation results.

2.2 Second Step: consistency estimation based on MDL principle

The set of potential change-points Ĵ (1) can be viewed as a rough estimate of the change-points,

which usually overestimates the true set of change-points. To detect the true change-points, the

best subset of Ĵ (1) can be selected according to some prescribed information criterion (IC), such

as BIC (Yao, 1988), MDL (Davis et al., 2006). Here, MDL is selected as IC to select the most

concise model as the optimal model.
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Given a set of change-points J = {τ1, ..., τm}, the MDL criterion is defined as

MDL(m,J ,p) = log(m) + (m+ 1) log n+
m+1∑
j=1

log(pj) +
m+1∑
j=1

pj + 1

2
log(nj)

−
m+1∑
j=1

Lnj
(τj−1,θj , pj;Xj). (2.4)

where Xj = {Xτj−1+1, ..., Xτj}. Given the potential change-points estimates Ĵ (1), the change-

points and corresponding GCINAR orders can be estimated by

(m̂(2), Ĵ (2), p̂(2)) = arg min
m=|J |,|J |⊆Ĵ (1),p∈P

MDL(m,J ,p), (2.5)

where m̂(2) = |Ĵ (2)|, Ĵ (2) = {τ (2)1 , τ
(2)
2 , ..., τ

(2)

m̂(2)}, p̂(2) = (p̂
(2)
1 , ..., p̂

(2)

m̂(2)). Minimization MDL equa-

tion (2.5) can be achieved by optimal partitioning (OP) algorithm (Jackson et al., 2005). The

implementation details of OP algorithm are given in Appendix. Following Sheng and Wang (2023),

which proved the consistency of estimates based on the MDL principle, we have the following The-

orem 2.

Theorem 2 Under the setting in Theorem 1 and suppose Assumption 5 hold, there is m̂(2) p−→ m0.

In addition, given that m̂(2) = m0, we have

P
(

max
j=1,...,m0

|τ̂ (2)j − τ 0j | < h
)
→ 1, and max

j=1,...,m0

|p̂(2)j − p0j |
p−→ 0.

2.3 Third Step: final change-points estimates

Although the consistent estimate of m can be achieved based on the MDL criterion, it should be

noted that Ĵ (2) is a subset of Ĵ (1), Theorem 2 only implies that maxj=1,...,m0 |τ̂
(2)
j − τ 0j | = Op(h),

which is not optimal compared with the typical rate of Op(1). Nevertheless, the Theorem 2 also

guarantees that the true change-point τ 0j is within (τ̂
(2)
j −h, τ̂

(2)
j +h] with probability approaching

1 for all j = 1, ..., m̂(2). A simple idea is to use exhaustive methods to determine the final change-

points in an extended local window (τ̂
(2)
j − 2h, τ̂

(2)
j +2h] and corresponding observations. Yau and

Zhao (2016) discusses in detail that this is possible, and if 3h < nϵτ , there is only one change

point inside the extended local window.

Define the extended local window and corresponding observations for the jth estimated change-

point τ̂
(2)
j by

EWj(h) = {τ̂ (2)j − 2h+ 1, ..., τ̂
(2)
j + 2h} and XEWj(h) = {X

τ̂
(2)
j −2h+1

, ..., X
τ̂
(2)
j +2h

}.

For j = 1, ..., m̂(2), Let

Lj(τ,θj,θj+1) = L
τ−τ̂

(2)
j +2h

(τ̂
(2)
j − 2h,θj, p̂

(2)
j ) + L

τ̂
(2)
j +2h−τ

(τ,θj+1, p̂
(2)
j+1),

8



where L
τ−τ̂

(2)
j +2h

(τ̂
(2)
j − 2h,θj, p̂

(2)
j ) and L

τ̂
(2)
j +2h−τ

(τ,θj+1, p̂
(2)
j+1) are defined in (2.1), i.e.,

L
τ−τ̂

(2)
j +2h

(τ̂
(2)
j − 2h,θj, p̂

(2)
j ) =

τ∑
t=τ̂

(2)
j −2h+1

ℓt(θj, p̂
(2)
j ),

L
τ̂
(2)
j +2h−τ

(τ,θj+1, p̂
(2)
j+1) =

τ̂
(2)
j +2h∑
t=τ+1

ℓt(θj+1, p̂
(2)
j+1).

Define the final estimate as

τ̂
(3)
j = arg max

τ∈(τ̂ (2)j −h,τ̂
(2)
j +h]

Lj(τ, θ̂j, θ̂j+1),

where θ̂j and θ̂j+1 are the maximizers of L
τ−τ̂

(2)
j +2h

(τ̂
(2)
j − 2h,θj, p̂

(2)
j ) and L

τ̂
(2)
j +2h−τ

(τ,θj+1, p̂
(2)
j+1)

on Θj(p̂j) and Θj(p̂j+1), respectively. Following Theorem 1 and 2 in Cui et al. (2021), we have

the convergence and asymptotic distribution of the final estimates.

Theorem 3 Under the setting in Theorem 2 and 3h < nϵτ , Then, we have

τ̂
(3)
j − τ 0j

d−→ argmax
τ

Wj,τ ,

where

Wj,τ =



τ0j +τ∑
t=τ0j +1

[
ℓt(θ

0
j , p

0
j)− ℓt(θ

0
j+1, p

0
j+1)

]
τ > 0,

0 τ = 0,
τ0j −1∑

t=τ0j +τ

[
ℓt(θ

0
j+1, p

0
j+1)− ℓt(θ

0
j , p

0
j)
]

τ < 0

(2.6)

is a double-sided random walk. In particular, τ̂
(3)
j = τ 0j +Op(1).

2.4 CIs’ approximation for the final change-points estimates.

Although Theorem 3 deduces the asymptotic distribution argmax
τ

Wj,τ of (τ̂
(3)
j − τ 0j ), it is difficult

to use in practice. According to the arguments of Cui et al. (2021) about the approximation

distribution of argmax
τ

Wj,τ , we have the following theorem when change is small.

Theorem 4 Let dj = θ0
j − θ0

j+1, under the setting of Theorem 3, if ||dj|| → 0 as n → 0, then

∆̂−1
j (τ̂

(3)
j − τ 0j )

d−→ argmax
r∈R

B(r)− 1

2
|r|, (2.7)

where

∆̂j = (d̂⊤
j Ĵjd̂j)

−2(d̂⊤
j Îjd̂j) and d̂j = θ̂j − θ̂j+1.

With Ĵj = Ĵ4h(τ̂
(3)
j − 2h, θ̂

(3)
j+1) and Îj = Î4h(τ̂

(3)
j − 2h, θ̂

(3)
j+1) are defined in (2.2) and (2.3). B(r)

is the two-sided standard Brownian motion in R.
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Remark 3 If the orders of GCINAR in two consecutive segments, denoted by p̂j and p̂j+1, are

not equal, then the GCINAR parameter vectors θ̂j and θ̂j+1 will be interpreted as being in the

order of max(p̂j, p̂j+1).

To simplify notation, denote V = argmax
r∈R

B(r)− 1

2
|r|. The distribution of V has been studied by

Yao (1987), who demonstrates that V has a symmetric distribution, and for a > 0, the distribution

function is given by

P (V ≤ a) = 1 +

√
a

2π
exp(−a

8
) +

3

2
exp(a)Φ(−3

2

√
a)− 1

2
(a+ 5)Φ(−1

2

√
a),

where Φ(·) represents the standard normal distribution function. Let Fα/2 be the (1 − α/2)th

quantile of V , that is P (V ≤ Fα/2) = 1 − α/2, and F0.05 = 7.6873. Then an approximate

100(1− α)% confidence interval (CI) for τ 0j can be constructed by

CI =
[
τ̂
(3)
j − ⌊∆̂jFα/2⌋ − 1, τ̂

(3)
j + ⌊∆̂jFα/2⌋+ 1

]
, (2.8)

where ⌊a⌋ is the largest integer not greater than a. Since the minimum distance between change-

points is much larger than the maximum window radius h, i.e. nϵτ/h → ∞, the distance between

the extended local windows EWj(h)s diverge to∞. Under H.1, the GCINAR(p) process is strongly

mixing, the CIs constructed are asymptotically independent. According to a Bonferroni-type

argument, one can construct an asymptotically correct 1 − α simultaneous CI covering all m̂(2)

change-points by using a collection of (1− α)1/m̂
(2)

CIs for each of a set of m̂(2) change-points.

2.5 Bootstrap approximation

Due to the restriction of condition ||dj|| → 0 in Theorem 4, some scholars have confirmed the fact

that the asymptotic theory of change-points estimates given by Theorem 3 in Cui et al. (2021)

provides a poor approximation to the actual multimodal finite sample distribution under small

parameter changes, thus the asymptotic theory of change-points estimates given by Theorem 4

also has this problem. Furthermore, the pivotal approximations in CI (2.8) work unsatisfactorily

under medium and large parameter changes. Considering these issues, inspired by Ng et al. (2022),

we propose the following two bootstrap procedures, parametric bootstrap and block bootstrap, to

construct the CI for the change-point τ 0j .

Parametric Bootstrap Algorithm (PBA). The basic idea of parametric bootstrap is to

first use the model based on the PQML estimate to simulate replicated samples of the series before

and after the change-point. Then the bootstrap samples are used to approximate the asymptotic

distribution of argmax
τ

Wj,τ in Theorem 3. The detail of PBA for τ 0j is given introduction in the

following.
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Parametric Bootstrap Algorithm:

Input: The significance level α, resample size np and the sampling number B.

The order estimates p̂
(2)
j and p̂

(2)
j+1 from “Second step”.

The parameter estimates θ̂j and θ̂j+1, change-point estimate τ̂
(3)
j from “Third step”.

Simulate replicated samples:

for s = 1 : B

simulate time series sample {X̃(s)
t }np+1

t=1 follow the special GCINAR(θ̂j,p̂
(2)
j ) model,

simulate time series sample {X̃(s)
t }2np+1

t=np+2 follow the special GCINAR(θ̂j+1,p̂
(2)
j+1) model,

join them to form the resampled process {X̃(s)
t }2np+1

t=1 .

end

Approximate the asymptotic distribution of argmax
τ

Wj,τ :

for s = 1 : B

obtain {ℓ̃(s)t (θ̂j,p̂
(2)
j )}2np+1

t=1 and {ℓ̃(s)t (θ̂j+1,p̂
(2)
j+1)}

2np+1
t=1 from (2.1) based on the sample {X̃(s)

t }2np+1
t=1 ,

compute the double-sided random walk,

W̃
(s)
j,τ =



np+1+τ∑
t=np+2

[
ℓ̃
(s)
t (θ̂j, p̂

(2)
j )− ℓ̃

(s)
t (θ̂j+1, p̂

(2)
j+1)

]
τ > 0,

0 τ = 0,
np∑

t=np+1+τ

[
ℓ̃
(s)
t (θ̂j+1, p̂

(2)
j+1)− ℓ̃

(s)
t (θ̂j, p̂

(2)
j )
]

τ < 0,

(2.9)

compute τ̃
(s)
j,np

= arg max
τ∈{−np,...,np}

W̃
(s)
j,τ .

end

Obtain the final CIPBA
j :

compute the α
2
and 1− α

2
percentiles of the sample {τ̃ (1)j,np

, ..., τ̃
(B)
j,np

}, denoted by l̃ and ũ,

obtain the parametric bootstrap 100(1− α)% CI for the change-point τ 0j : CI
PBA
j = [τ̂

(3)
j − ũ, τ̂

(3)
j − l̃].

Block Bootstrap Algorithm (BBA). Unlike PBA, block bootstrap obtain replicate samples

from joining block subsamples of the observations before and after the change-point. Then similar

to PBA to get the final CIBBA
j . The detail of BBA for τ 0j is given introduction in the following.
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Block Bootstrap Algorithm:

Input: The significance level α, resample size nb and the sampling number B.

The data set: {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

.

The order estimates p̂
(2)
j and p̂

(2)
j+1 from “Second step”.

The parameter estimates θ̂j and θ̂j+1, change-point estimate τ̂
(3)
j from “Third step”.

Simulate replicate samples:

for s = 1 : B

sample the block of observations {X∗(s)
t }nb+1

t=1 from the original data set {Xt}
τ̂
(3)
j

t=τ̂
(3)
j−1+1

,

sample the block of observations {X∗(s)
t }2nb+1

t=nb+1 from the original data set {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j +1

,

join them to form the resampled process {X∗(s)
t }2nb+1

t=1 .

end

Approximate the asymptotic distribution of argmax
τ

Wj,τ :

for s = 1 : B

obtain {ℓ∗(s)t (θ̂j,p̂
(2)
j )}2nb+1

t=1 and {ℓ∗(s)t (θ̂j+1,p̂
(2)
j+1)}

2nb+1
t=1 from (2.1) based on the sample {X∗(s)

t }2nb+1
t=1 ,

compute the double-sided random walk,

W
∗(s)
j,τ =



nb+1+τ∑
t=nb+2

[
ℓ
∗(s)
t (θ̂j, p̂

(2)
j )− ℓ

∗(s)
t (θ̂j+1, p̂

(2)
j+1)

]
τ > 0,

0 τ = 0,
nb∑

t=nb+1+τ

[
ℓ
∗(s)
t (θ̂j+1, p̂

(2)
j+1)− ℓ

∗(s)
t (θ̂j, p̂

(2)
j )
]

τ < 0,

(2.10)

compute τ
∗(s)
j,nb

= arg max
τ∈{−nb,...,nb}

W
∗(s)
j,τ .

end

Obtain the final CIBBA
j :

compute the α
2
and 1− α

2
percentiles of the sample {τ ∗(1)j,nb

, ..., τ
∗(B)
j,nb

}, denoted by l∗ and u∗,

obtain the block bootstrap 100(1− α)% CI for the change-point τ 0j : CI
BBA
j = [τ̂

(3)
j − u∗, τ̂

(3)
j − l∗].

Next, we consider the validity of the parametric and block bootstrap procedures. Assume

that, in the parametric bootstrap procedure, the jth segment GCINAR model in the MCP-

GCINAR model is composed of a specific thinning operator (“⋄”) plus a innovation Zt, that is

Xt,j =
∑p

k=1 βk,j ⋄Xt−k,j +Zt,j. And the form of the thinning operator as well as the distribution

of the innovation Zt are known, then under the Assumption H.6, we have the following Theorem

5. For notational simplicity, we omit the superscript (s) that indicates the sth realization of the

B bootstrap simulations.
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H. 6 Denote LZt,j ,β as the distribution of the jth segment innovation process Zt,j with the param-

eter β ∈ R+ (R+ is the set of positive real numbers). Assume that E(Zt,j)
ϵZ < ∞ for some ϵZ ∈ N

and 0 < LZt,j ,β(0) < 1 holds, where LZt,j ,β(k) = P (Zt,j = k), k ∈ N. For all ϵ > 0, there exist

a c > 0 such that for all β′ ∈ R+ with |β′ − β| < c, there is
∑∞

k=0 |LZt,j ,β(k) − LZt,j ,β′(k)| < ϵ.

Furthermore, assume that there exists a neighborhood Mβ0,c = {β
∣∣|β−β0| < c, β ∈ R+} of β0 such

that
∑∞

k=0 k
ϵZLZt,j ,β(k) < ∞ holds uniformly on Mβ0,c.

Theorem 5 Under the setting in Theorem 3, and for all segment, H.6 holds, then for any fixed

reasonably large np ∈ N, nb ∈ N, and nb < min(τ̂
(3)
j+1 − τ̂

(3)
j , τ̂

(3)
j − τ̂

(3)
j−1), we have

sup
x∈R

∣∣∣P̃(τ̃j,np ≤ x)− P(argmax
τ

Wj,τ ≤ x)
∣∣∣ p−→ 0, (2.11)

sup
x∈R

∣∣∣P∗(τ̃j,nb
≤ x)− P(argmax

τ
Wj,τ ≤ x)

∣∣∣ p−→ 0, (2.12)

where Wj,τ is defined in (2.6), and P̃ and P∗ denote probability measures, respectively, under the

two bootstrap schemes conditional on the original data set {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

.

Note that a lot of model-formal assumptions, such as the form of the thinning operator and the

distribution of Zt,j, restrict the application of PBA because we usually do not have this information

a priori. To task this situation, we assume that the inference of change-points is obtained from the

multiple change-points Poisson INAR (MCP-PINAR) model, where the j-th segment in Model

(1.2) is defined as follows,

Xt,j =

pj∑
k=1

βk,j •Xt−k,j + Zt,j, (2.13)

where “ • ” is the Poisson thinning operator, defined as: β ◦X =
∑X

i=1 Bi(β), the counting series

{Bi(β)} is an independent and identically distributed (i.i.d.) Poisson random sequence with mean

β. And {Zt,j} is a sequence of i.i.d. Poisson random variables with mean β0,j. Then, we do the

“simulate replicated samples” step based on the MCP-PINAR model, and the 100(1−α)% CI for

the change-point τ 0j can be obtained after implementing PBA.

Remark 4 This setup is reasonable and convenient. On the one hand, this is a continuation of

the PQML idea, which assumes that the conditional distribution is a Poisson distribution. So since

there is no prior distribution information, we might as well continue with this idea. Moreover, the

subsequent simulation results also verify that the performance of confidence interval constructed

by the PBA is still satisfactory when the wrong model is specified. Another advantage of this is

that Theorem 5 can be held without assumption H.6, which is a complex condition after all.

3 Computational issues

In this section, the tuning parameters and computational complexity are discussed.
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3.1 Tuning parameters setting in the LRSM

The tuning parameters involved in the LRSM are pmax,mmax and h. As discussed in Section 2.1,

as long as pmax,mmax are large enough, their values have little effect on the estimation results. In

contrast, the LRSM estimates are mainly affected by the window parameter h. Smaller windows

are more sensitive to changes occurring in short time durations, and are more likely to guarantee

the condition, 2h < nϵτ , while larger windows are more sensitive to small changes. It is theoret-

ically crucial to choose an h > d(log n)3 for Theorem 1 to hold, where d is an unknown window

coefficient constant. Based on the experience of scholars as well as our simulation studies, set-

ting h = max(n/20, (log n)4/25) will generally yield satisfactory results with different models and

sample sizes.

However, such a setting may not guarantee the condition 2h < nϵτ hold, when the sample size

is small and the change-points are dense. To solve this, we can combine multiple h in the first

step of LRSM to get potential change-points. The detailed operation is explained as follows,

Setting window coefficient set d̃ (such as d̃ = {1, 2}), and hmix = {hi}|d̃|i=1, where hi = d̃i(log n)
4/25

(such as h1 = (log n)4/25, h2 = 2(log n)4/25). Then start from i = 1 to i = |d̃|, get the potential

change-points set Ĵ (1)(hi), combine them and get the final Ĵ (1)(h).

Similar aggregation procedures can be found in Ng et al. (2022). Empirical evidence suggests

that, setting d̃ = {0.2, 0.4, 0.6, 0.8, 1, 1.2} for small sample size and d̃ = {1, 2, 3, 4, 5, 6} for large

sample size usually results in more satisfactory performance.

3.2 Tuning parameters setting in Bootstrap procedure

The tuning parameters involved in the two bootstrap methods are the sampling number B, re-

sample size np and nb. For the sampling number B, large enough to guarantee reliable results,

such as B = 1000. For the parametric bootstrap, we set np = n/2 to ensure that np is sufficiently

large to include the maxima of the random walk. For the block bootstrap, the following iterative

procedure is used to find a data-driven or adaptive block bandwidth nb:

• Step 1: Compute a (1− α)% CI using CIs’ approximation or the PBA method. Denote the

width of the CI by l. Set initial block bandwidth nb = 2l.

• Step 2: Perform the BBA to obtain {τ ∗(s)j,nb
}, s = 1, 2, ..., B. If the proportion of the sample

{τ ∗(s)j,nb
} lying in either of the regions [τ̂

(3)
j − nb, τ̂

(3)
j − (1 − α)nb] or [τ̂

(3)
j + (1 − α)nb, τ̂

(3)
j + nb] is

greater than (α/2)%, increase nb by l.

• Step 3: Repeat Step 2: until a final block bandwidth nb is found. Set this nb as the adaptive

bandwidth.

3.3 Computational complexity

The computational complexity of the three-step LRSM has been discussed by many scholars,

such as Yau and Zhao (2016), Ng et al. (2022). Since the size of Wt(h) is 2h, the computational

complexity of Sh(t) for each t is order O(h), and the computational complexity of the first step

in LRSM is O(nh). The computational complexity of the second step, the OP Algorithm, is

O
(
(m̂(1))2n

)
and the computational complexity of the third step for evaluating extended local
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windows is O
(
m̂(2)h2

)
. Therefore, the total computational complexity in the three-step LRSM

procedure is O(hn).

4 Simulation

To evaluate the finite-sample performance of the proposed LRSM and Bootstrap procedures, we

conducted extensive simulation studies and split the simulation studies into the following five

parts. In the first part, we consider the sensitivity of the LRSM to its tuning parameter, the

windows parameter h. In the second simulation, we compare the performance of LRSM with GA

and penQLIK. Furthermore, the performance of LRSM to deal with a large number of change-

points under different sample size is compared in the third part. Finally, the performance of the

CIs constructed by the parametric and block bootstrap approximations proposed in Section 2.5 is

examined, and compared to the approximation method of CIs, proposed in Theorem 4.

We first introduce the following notations and evaluation metrics that are primarily used in

simulations.

Notations:

• Denote “ ◦ ” as the binomial thinning operator, which is proposed by Steutel and Van Harn

(1979) and defined as: β ◦ X =
∑X

i=1 Bi(β), the counting series {Bi(β)} is an independent and

identically distributed (i.i.d.) Bernoulli random sequence with mean β.

• Denote “∗” as the negative binomial thinning operator of Ristić et al. (2009), it is defined as

β ∗X =
∑X

i=1 Bi

(
β/(1+ β)

)
, the counting series {Bi

(
β/(1+ β)

)
} is a sequence of i.i.d. geometric

random variables with mean β,

• Denote the Poisson distribution with mean β by Poi(β), the Geometric distribution with mean

β by Geo(β/(1 + β)).

• Let υn = (υ1, ..., υm), 0 < υ1 < ... < υm < 1, satisfy τj = [υjn], where [x] is the greatest

integer that is less than or equal to x.

Evaluation Metrics:

• Denote the true positive rate of m by TPR(m), i.e., the proportion of informative points are

correctly identified.

• Define the following two type evaluation metrics to measure the under-segmentation error and

the over-segmentation error of the change-points location estimate υ̂n, respectively.

ζu(υ
0|υ̂n) = sup

b∈υ̂n

inf
a∈υ0

|a− b|, ζo(υ̂n|υ0) = sup
b∈υ0

inf
a∈υ̂n

|a− b| (Boysen et al., 2009).

A desirable estimate should be able to balance both quantities.

• Define the following metric to measure the location accuracy of estimated change-points.

ζd(υ̂n,υ
0) =

1

|υ0|
∑
υ0
k∈υ0

min
υ̂j∈υ̂n

|υ̂j − υ0
k| (Chen et al., 2021),

which is the distance from the estimated set υ̂n and the true change-points set υ0.

All simulations are carried out using the MATLAB software. The empirical results displayed in

the tables are computed over 1000 replications.
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Table 1: Sensitivity analysis for the window h in the LRSM based on Model (A1).

d h = max( n
20

, d
(logn)4

25
) Sample size (n) TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) Average time (s)

0.5 29 500 0.8070 0.0410 0.0973 0.1645 0.7439

0.5 50 1000 0.9930 0.0284 0.0287 0.0484 1.5489

0.5 100 2000 0.9980 0.0107 0.0105 0.0178 3.6764

1 59 500 0.7110 0.0370 0.1219 0.2059 0.5506

1 91 1000 0.9760 0.0250 0.0316 0.0518 1.5935

1 133 2000 0.9890 0.0110 0.0102 0.0172 4.3840

1.5 89 500 0.6710 0.0274 0.1237 0.2071 0.7409

1.5 136 1000 0.9690 0.0163 0.0248 0.0414 2.2516

1.5 200 2000 0.9950 0.0063 0.0060 0.0108 8.5836

2 119 500 0.6400 0.0234 0.1290 0.2111 1.6022

2 182 1000 0.9580 0.0113 0.0238 0.0401 4.9702

2 267 2000 0.9990 0.0055 0.0054 0.0100 13.1729

2.5 149 500 0.3660 0.0383 0.2214 0.3714 1.6629

2.5 227 1000 0.9030 0.0118 0.0398 0.0647 5.8175

2.5 333 2000 0.9900 0.0054 0.0078 0.0135 14.9413

3 178 500 0.0000 0.0892 0.3831 0.7040 0.7435

3 273 1000 0.8010 0.0132 0.0716 0.1127 3.8218

3 400 2000 0.9880 0.0053 0.0088 0.0152 11.0657

dmix hmix = dmix
(logn)4

25
Sample size (n) TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) Average time (s)

{0.2, 0.4, 0.6, 0.8, 1, 1.2} {12, 24, 36, 48, 59, 71} 500 0.9130 0.0276 0.0529 0.0909 3.7002

{0.2, 0.4, 0.6, 0.8, 1, 1.2} {19, 37, 55, 73, 91, 110} 1000 1.0000 0.0166 0.0166 0.0301 9.9580

{0.2, 0.4, 0.6, 0.8, 1, 1.2} {27, 54, 80, 107, 133, 160} 2000 0.9990 0.0099 0.0096 0.0166 31.0050

4.1 Sensitivity analysis for the tuning parameter h in the LRSM

To study the choice of the tuning parameter h in the three-step LRSM, we conducted a sensitivity

analysis by using data generated from Model (A1) with the sample sizes n = 500, 1000, 2000.

h = max(n/20, d(log n)4/25) was considered using different values of d. Furthermore, the combine

multiple h, introduced in Section 3.1, was also studied with dmix = {0.2, 0.4, 0.6, 0.8, 1, 1.2}. The
results are summarized in Table 1.

Model (A1) is as follows:

Xt =


0.5 ◦Xt−1,1 + Zt Zt

i.i.d∼ Poi(0.5) 0 < t ≤ τ 01 ,

0.126 ◦Xt−τ01−1,2 + 0.254 ◦Xt−τ01−2,2 + 0.297 ◦Xt−τ01−3,2 + Zt Zt
i.i.d∼ Poi(1) τ 01 < t ≤ τ 02 ,

0.4 ◦Xt−τ02−1,3 + Zt Zt
i.i.d∼ Poi(2) τ 02 < t ≤ n.

where (τ 01 , τ
0
2 ) = ([0.3n], [0.6n]).

The following conclusions can be drawn from Table 1. In terms of the calculation time (Average

time) and the metric TRP, smaller windows reduce computing cost, and are more sensitive to

changes occurring in short time durations. In terms of the metrics ζu(υ
0|υ̂n), ζo(υ̂n|υ0), and

ζd(υ̂n,υ
0), larger windows balance the under-segmentation error and the over-segmentation error,

improving the accuracy of estimates. Such as, n = 2000, h = 200, 267 have the optimal accuracy

0.0108 and 0.01 in the entire result table. In particular, the mixture window hmix has excellent

performance, of course, this advantage is at the cost of increasing the calculation cost. In addition,

the LRSM is robust given a mild violation of 2h < nϵτ . Such as, with the sample size n =
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1000, τ 01 = 300 and τ 02 = 600, the minimum distance being 300, the LRSM requires h < 300/2 =

150 for consistent estimate. However, the estimate remains satisfactory when h = 273. This may

be related to the findings that the likelihood ratio test statistic can consistently estimate a single

change-point in the presence of multiple changes. Thus, although the choice of h will affect the

accuracy of estimation results, it is not sensitive for estimation purposes.

4.2 Comparing LRSM and existing methods

In this subsection, we compare the performance of GA (Sheng and Wang, 2023), penalized con-

trast QLIK (penQLIK, Diop and Kengne (2021b)), and the LRSM in implementing change-point

inference. We consider Model (A1) with sample sizes of n = 500, 1000, 2000. Additionally, we

include the penQLIK method proposed by Diop and Kengne (2021b) for comparison with the

LRSM. The penQLIK is a data-driven method that utilizes the slope heuristic procedure (Baudry

et al., 2012) to calibrate the penalty term. The penQLIK criterion is minimized using a dynamic

programming algorithm. It is important to note that penQLIK does not consider the change of

orders p. Therefore, we implement penQLIK by considering a sufficiently large p = 5, q = 5

(denoted as penQLIK(5,5)).

Table 2: Comparison results of the penQLIK, GA and LRSM based on Model (A1).

Method Sample size(n) TRP(m) ζu(υ
0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ

0) Average time (s)

penQLIK(5,5) 500 0.4190 0.1250 0.0440 0.0772 129.9832

1000 0.7140 0.0916 0.0172 0.0298 935.9727

2000 0.8290 0.1087 0.0073 0.0127 5697.9496

GA 500 0.9090 0.0174 0.0437 0.0721 1052.2157

1000 0.9990 0.0087 0.0090 0.0162 3217.8543

2000 1.0000 0.0043 0.0043 0.0078 3688.3210

LRSM 500 0.8070 0.0410 0.0973 0.1645 0.7439

1000 0.9930 0.0284 0.0287 0.0484 1.5489

2000 0.9980 0.0107 0.0105 0.0178 3.6764

As you can see from Table 2, GA is the top performer in almost all evaluation metrics. It has a

smaller ζd(̂̃τ , τ̃ 0), the highest TRP(m), and balances ζu(τ̃
0|̂̃τ ) and ζo(̂̃τ |τ̃ 0). However, the results

of the LRSM are also acceptable, especially in Model (A1) with sample size n = 2000. It balances

ζu(τ̃
0|̂̃τ ) and ζo(̂̃τ |τ̃ 0) and the value of TRP(m) is closed to 1. In addition, although penQLIK can

handle this sequence-changing model, it produces a large number of under-segmentation errors. In

other words, penQLIK does not compress the model any better than the MDL criterion. Taking

into account all simulation results, LRSM has good and stable performance. Especially consid-

ering the calculation time, the advantage is more obvious. In summary, GA achieves the global

optimization of MDL, so the optimal results are given in terms of estimation accuracy. How-

ever, when the sample size is large and the number of change-points is relatively small, GA may
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require computational cost, and the LRSM can serve as a reliable and computationally efficient

alternative.

4.3 Performance of the LRSM based on difference scenarios

In this subection, the performance of the LRSM is studied based on the scenario of a large number

of dense change-points with a finite-sample (sample size n = 2000) and in the scenario of a long

time series (sample size n = 10000). Two types of the MCP-GCINAR model are considered,

B-type models have a Poisson distribution innovation and a binomial thinning operator, while C-

type models have a negative binomial thinning operator and a Geometric distribution innovation.

Models (B1) - (B9) represent the case of B-type models under m0 = 1 to m0 = 9, and Models

(C1) - (C9) represent the case of C-type models under change-points numbers m0 = 1 to m0 = 9.

While sample size n = 2000, the LRSM is implemented by the h = (log n)4/25 = 133 and

hmix = {27, 54, 80, 107, 133, 160}, and while in the scenario of a long-time series, sample size

n = 10000, the LRSM is implemented by the h = (log n)4/25 = 287. All results of Models (B1) -

(B9) are summarized in Table 3 and Table 4. The specific forms of Models (B1) - (C9) are in the

Appendix to save space.

Table 3 reveals that the application of hmix can improve LRSM’s performance, because it sig-

nificantly improves the metric TRP, reduces the metrics ζu(υ
0|υ̂n), ζo(υ̂n|υ0), and ζd(υ̂n,υ

0), and

balances the under-segmentation error and the over-segmentation error. But this apparent ad-

vantage also comes at the cost of increasing the computational burden. Therefore, in the scenario

of large sample size (n = 10000), Table 4 only summarizes the results of applying LRSM with

h = 287. After all, considering hmix, a lot of time and computing resources are needed. However,

it can be seen that in such a situation, the general h can handle the change-point problem of the

MCP-GCINAR models well.

4.4 Constructing confidence intervals

In this subsection, we examine the coverage accuracy of the CIs for the change-points estimates

based on the correct estimates of Models (B1) - (C2) in the previous subsection. For each of the

cases, CIs using CIs approximation (2.7), parametric bootstrap and block bootstrap with adaptive

block bandwidth are generated.

Table 5 provides a summary of the CIs results based on the LRSM procedure, including the

median and mean of the estimate τ̂
(3)
j , the range of the middle 90% of the final estimates (90%

Range) average of the end-points (Mean of 90% CI), and coverage probability (Coverage Prob.)

of the CIs.

From the results in Table 5, it can be seen that the CIs of both PBA and BBA methods have

quite accurate coverage probability, which are close to the nominal level of 90%. Particularly,

the CIs constructed from the two bootstrap procedures have more accurate coverage probability

than that obtained from the approximation method (2.7). This is consistent with the previous

discussion, the pivotal approximations in CI (2.8) work unsatisfactorily under medium and large
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Table 3: Performance of the three-step LRSM based on Models (B1) - (C9) with sample size

n = 2000, h = 133 and hmix = {27, 54, 80, 107, 133, 160}.

Average Average

Model m0 window TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) time (s) Model m0 window TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) time (s)

(B1) 1 h 0.9890 0.0034 0.0026 0.0052 6.9152 (C1) 1 h 0.9590 0.0085 0.0037 0.0073 6.9470

hmix 0.9990 0.0026 0.0023 0.0047 49.3130 hmix 0.9780 0.0078 0.0031 0.0062 50.2625

(B2) 2 h 0.9860 0.0066 0.0050 0.0084 7.6469 (C2) 2 h 0.9540 0.0124 0.0062 0.0108 7.6078

hmix 0.9980 0.0028 0.0027 0.0049 53.1847 hmix 0.9710 0.0084 0.0044 0.0081 51.9576

(B3) 3 h 0.9860 0.0052 0.0065 0.0089 8.0786 (C3) 3 h 0.9700 0.0075 0.0064 0.0095 8.0287

hmix 1.0000 0.0034 0.0034 0.0056 43.0814 hmix 0.9800 0.0064 0.0048 0.0074 43.2224

(B4) 4 h 0.9740 0.0048 0.0099 0.0127 8.8324 (C4) 4 h 0.9710 0.0073 0.0079 0.0109 8.8331

hmix 0.9970 0.0041 0.0040 0.0066 46.3998 hmix 0.9560 0.0085 0.0055 0.0085 46.1871

(B5) 5 h 0.7260 0.0073 0.0687 0.0683 9.3995 (C5) 5 h 0.9500 0.0086 0.0136 0.0152 9.4700

hmix 0.9580 0.0070 0.0135 0.0150 48.0895 hmix 0.8810 0.0135 0.0074 0.0101 48.1504

(B6) 6 h 0.0110 0.0113 0.1640 0.2514 8.7535 (C6) 6 h 0.0860 0.0144 0.1127 0.1484 9.0956

hmix 0.3690 0.0193 0.0868 0.0868 41.7372 hmix 0.8960 0.0229 0.0463 0.0497 42.9014

(B7) 7 h 0.0430 0.0180 0.4030 0.8972 8.0163 (C7) 7 h 0.2140 0.0353 0.1097 0.1374 10.3091

hmix 0.7630 0.0254 0.0604 0.0857 41.4308 hmix 0.6180 0.0456 0.0384 0.0436 45.9520

(B8) 8 h 0.0090 0.0258 0.6544 1.6095 7.3036 (C8) 8 h 0.1220 0.0231 0.1261 0.1748 10.6836

hmix 0.6390 0.0264 0.1274 0.2370 42.7765 hmix 0.7900 0.0300 0.0407 0.0442 45.5573

(B9) 9 h 0.0010 0.0147 0.4927 1.2206 7.7363 (C9) 9 h 0.0310 0.0196 0.1323 0.2141 7.0678

hmix 0.2180 0.0216 0.2059 0.3833 46.0448 hmix 0.8770 0.0298 0.0528 0.0550 42.8664

Table 4: Performance of the three-step LRSM based on Models (B1) - (C9) with sample size

n = 10000 and h = 287.

Model m0 TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) Average time (s) Model m0 TRP(m) ζu(υ0|υ̂n) ζo(υ̂n|υ0) ζd(υ̂n,υ0) Average time (s)

(B1) 1 0.99 0.0007 0.0005 0.0010 69.4290 (C1) 1 1.00 0.0008 0.0008 0.0015 69.01765

(B2) 2 0.94 0.0040 0.0006 0.0010 70.5583 (C2) 2 0.93 0.0046 0.0009 0.0016 71.3397

(B3) 3 0.98 0.0012 0.0008 0.0013 69.3625 (C3) 3 0.89 0.0081 0.0013 0.0019 70.1191

(B4) 4 0.97 0.0031 0.0008 0.0014 73.3520 (C4) 4 0.84 0.0111 0.0010 0.0016 73.67172

(B5) 5 0.96 0.0020 0.0010 0.0015 75.4675 (C5) 5 0.87 0.0096 0.0014 0.0019 76.34772

(B6) 6 0.82 0.0026 0.0210 0.0169 74.3734 (C6) 6 0.92 0.0065 0.0030 0.0036 75.81408

(B7) 7 0.99 0.0149 0.0130 0.0105 78.2058 (C7) 7 0.73 0.0268 0.0033 0.0037 80.13946

(B8) 8 0.94 0.0110 0.0113 0.0087 79.4421 (C8) 8 0.94 0.0054 0.0026 0.0031 81.14015

(B9) 9 0.80 0.0041 0.0239 0.0166 81.5739 (C9) 9 0.98 0.0034 0.0026 0.0032 81.07215
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Table 5: Confidence intervals based on the LRSM change-points correct estimates

under the Models (B1) to (C2).

Median of Mean of Construct CIs 90% Mean of Coverage

Model τ0j τ̂
(3)
j τ̂

(3)
j Method range 90% CI Prob.

Model (B1) 1000 998 996.2961 CIs’ approximation [993,1003] [990.83, 1001.76] 74.32 %

1000 Parametric bootstrap [956,1006] [952.64, 1004.14] 89.02 %

1000 Block bootstrap(nb = 50) [971,1005] [968.61, 1002.91] 85.50 %

Model (C1) 1000 999 999.8216 CIs’ approximation [993,1006] [993.17, 1006.48] 70.85 %

1000 Parametric bootstrap [959,1007] [957.22, 1007.80] 89.50 %

1000 Block bootstrap(nb = 50) [965,1006] [964.98, 1007.02] 86.65 %

Model (B2) 600 598 596.1302 CIs’ approximation [593,604] [590.68, 601.58] 71.44 %

600 Parametric bootstrap [557,606] [552.56, 604.24] 90.01 %

600 Block bootstrap(nb = 42) [572,605] [570.06, 603.07] 85.07 %

1200 1200 1203.3673 CIs’ approximation [1196,1203] [1199.80, 1206.94] 87.08 %

1200 Parametric bootstrap [1193,1204] [1196.12, 1207.71] 92.43 %

1200 Block bootstrap(nb = 18) [1195,1204] [1198.34, 1207.50] 90.21 %

Model (C2) 600 599 598.7670 CIs’ approximation [592,606] [591.94, 605.59] 68.45 %

600 Parametric bootstrap [559,607] [556.34, 606.83] 87.63 %

600 Block bootstrap(nb = 42) [567,606] [567.43, 606.36] 84.64 %

1200 1200 1200.9876 CIs’ approximation [1196,1204] [1196.65, 1205.33] 76.80 %

1200 Parametric bootstrap [1193,1204] [1193.90, 1205.53] 81.03 %

1200 Block bootstrap(nb = 18) [1192,1205] [1192.98, 1206.61] 83.20 %

parameter changes.

5 Real data

In this section, the LRSM was used to detect the change-points in the daily stock volume data

of four airline groups. The aim is to investigate whether any of the detected change-points were

influenced by recent sudden international events, particularly the global COVID-19 over the past

few years. Four airline data sets were originally downloaded it on-line at the Yahoo Finance web

site (https://hk.finance.yahoo.com/), including:

• Singapore Airlines Limited (C6L.SI): the series has 5,927 observations from January 4, 2000, to

May 19, 2023.

• Air China Limited (0753.HK): the series has 4,550 observations from December 16, 2004, to

May 19, 2023.

• Deutsche Lufthansa AG (LHA.DE): the series has 6,774 observations from December 17, 1996,

to May 19, 2023.

• United Airlines Holdings, Inc. (UAL): the series has 4,338 observations from February 27, 2006,

to May 19, 2023.

As the data is relatively large, considering the convenience of calculation, we analyze the data

by the unit of ‘1e+06’ trading volume. Figure 1 shows sample path figures for six data sets. It can

be roughly judged from the figure that there are obvious change-points in the company’s trading

volume data.
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Figure 1: Sample paths for six airline group daily trading volume data sets,

including C6L.SI, 0753.HK, LHA.DE, UAL.

We applied the three-step LRSM with h = (log n)4/25, mmax = 30, pmax = 7 to implement

the change-points inference. Furthermore, we evaluated the goodness of fit of the model using

root mean square of differences between observations and forecasts (RMS) and Pearson residuals

(Pr). These evaluation metrics are commonly employed. The equations defining RMS and Pr are

provided below.

RMS =

√√√√ 1

n− 1

n∑
t=2

(Xt − E(Xt|Ft−1))
2, Prt =

Xt − E(Xt|Ft−1)√
Var(Xt|Ft−1)

.

Table 6 summarizes all change-points inference results for four airline group data sets, including

the estimate of the number of change-points (m̂), the estimate of change-points locations (τ̂) and

their corresponding time (Date), the MDL value, RMS and the mean and variance of Prt (Prm
and PrVar). In addition, two bootstrap methods, PBA and BBA, are applied to obtain CIs of

change-points estimates, where the adaptive block bandwidth nb in BBA is in parentheses. In

order to be intuitive, the change-points of each model and the CIs constructed by two bootstrap

methods are shown in the figures. However, due to space constraints, only one group (C6L.SI) is

listed (Model 5.1 and Figure 3); the others are in the Appendix.

From Table 6, it can be seen that the analysis results also show that the stock volumes of

four airline groups have been relatively stable in the past 20 years or so, because a maximum of

six change-points are detected in the large amount of data in each group. As for the estimated

model, the SE of estimated parameters in most estimated models is significant, except “0753.HK”
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estimated model. For this data set, some other models, such as integer-valued autoregressive

conditional heteroskedastic (INGARCH) models, should be considered to fit this data in future

studies. Furthermore, it is discernible that the RMS outcome for 0753.HK is large, and its PrVar
value is relatively large. This could be attributed to the presence of additional types of outliers in

the segmented data of 0753.HK, such as additive outliers, thereby affecting the analytical results.

The diagnostic checking plots in Figure 2 display the Pearson residuals of Model MCP-GCINAR for

C6L.SI dataset. These plots indicate that most lagged values of the ACF and PACF fall within

the boundaries of the blue lines, suggesting a white noise characteristic for the residuals. To

further support this claim, we conduct the Ljung-Box (LB) test on the series of Pearson residuals.

This test is performed with delay orders ranging from 1 to 10. Interestingly, all corresponding

p-values are found to be greater than 0.05, suggesting that the series of Pearson residuals exhibits

characteristics of white noise.

Next, the following international event that may have an impact on the airline groups is analyzed

for the common change-points obtained.

• τ̂ = 5103 in C6L.SI data (February 10, 2020); τ̂ = 3701 in 0753.HK data (December 6, 2019);

τ̂ = 5886 in LHA data (November 21, 2019); τ̂ = 3480 in UAL data (December 20, 2019). Since

the outbreak of COVID-19 at the end of 2019, it has brought a great impact on various industries

around the world, especially on the airline industry, which can be said to be unprecedented, which

is also clearly reflected in the stock trading volume data. From the data analysis, it can be seen

that before the outbreak of COVID-19, the stock trading volume of airlines had remained at a

relatively stable level. However, since the beginning of COVID-19, the airline stock trading volume

has almost all seen the most significant change-point since going public. To figure out why, first

of all, the epidemic led many governments to implement strict travel restrictions. Most flights

were canceled and passenger demand dropped significantly, which led to the decline of airline stock

prices. A lack of confidence in the airline’s future has led many investors to sell these shares, which

is the main reason for the sharp increase in trading volume. Second, airlines are under considerable

financial pressure due to the rising costs of prolonged grounding, epidemic prevention and control

and flight resumption, which also affect the performance of their stocks. Finally, COVID-19’s

impact on the global economy has had a negative impact. As a result, airlines have been severely

hit and may face the risk of bankruptcy, affecting investor confidence in the future of airlines and

stock trading behavior.

22



0 2000 4000 6000
-4

-2

0

2

4

6

8

10

Pr
t o

f C
6L

.S
T 

da
ta

-0.2

0

0.2

0.4

0.6

0.8

1

AC
F

0 5 10 15 20

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

PA
C

F

0 5 10 15 20

Lag

Figure 2: Diagnostic checking plots of the fitted MCP-GCINAR model:

the traces, ACF and PACF plots of Pearson residual.

Table 6: Summary of the change-points estimate results implemented by the LRSM based on

four airline groups data set.

LRSM CIs

Group m̂ τ̂ Date MDL RMS Prm PrVar CI-PBA CI-BBA(nb)

C6L.SI 1 5103 2020/2/10 −4438.7116 2.2851 0.0015 0.8932 [5082,5118] [5074,5115](nb =60)

0753.HK 6 420 2006/8/25 −180550.5027 12.2339 0.0007 1.6302 [416,425] [407,451.5](nb =108)

994 2008/12/22 [989,1000] [971,1036](nb =108)

1934 2012/10/8 [1914,1954] [1843,2158](nb =432)

3175 2017/10/19 [3160,3198] [3167,3315](nb =288)

3701 2019/12/6 [3704,3757] [3697,3755](nb =328)

4030 2021/4/12 [3985,4027] [3879,4015](nb =168)

LHA.DE 3 1159 2001/5/25 −18682.851 6.1740 -0.0004 1.2861 [1015,1145] [1008,1149](nb =204)

5886 2019/11/21 [5799,5933] [5701,6066](nb =186)

6495 2022/4/20 [6500,6560] [6501,6555](nb =60)

UAL 1 3480 2019/12/20 −54833.6158 7.3444 -0.0002 1.5487 [3370,3552] [3486,3660](nb =362)
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6 Conclusion and discussion

In this paper, we propose a three-step LRSM, which provides a computationally valid and the-

oretically justified methods for change-points inference in the MCP-GCINAR process. We infer

that the computational complexity of the LRSM is O((log n)3n). Simulation results and real data

analysis results show that, the LRSM with usual window parameter h performs well in samples of

long-time series with few and even change-points, and is robust when the assumption of window

h is violated. In contrast, the LRSM with the multiple window parameter hmix performs well

in short-time series with large and dense change-points, at the cost of high computational cost.

Furthermore, we demonstrated the asymptotic distribution of the change-points estimates. The

approximation distribution and two bootstrap procedures, parametric bootstrap and block boot-

strap, to approximate the finite sample distribution of change-point estimates, and hence construct

the CIs for the change-points. Nevertheless, with proper modifications to the assumptions of the

LRSM, it is possible to extend it to more generalized integer-value time series models, such as

INGARCH models, integer-value moving average (INMA) models. We will leave the above issues

as our future work.
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Appendix

We first state the following lemmas and their proofs, which are required to prove theorems in the

LRSM. Note that θ corresponds one-to-one to the order p, to lighten notation, denote ℓt(θ) =

ℓt(θ, p) and ξt(θ) = ξt(θ, p|Xt−1).

Lemma 1 For the jth change-point τ 0j , the scan statistic Sh(τ
0
j )

Sh(τ
0
j ) =

1

h
Lh(τ

0
j − h, θ̂j, pj) +

1

h
Lh(τ

0
j , θ̂j+1, pj+1)−

1

h
L2h(τ

0
j − h, θ̂j,j+1, pj,j+1)

=
1

h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ̂j) +

1

h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ̂j+1)−
1

h

[ τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ̂j,j+1) +

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ̂j,j+1)
]

p−→
1∑

i=0

E
{
ℓt,θ0

j+i
(θ0

j+i)− ℓt,θ0
j+i

(θj,j+1)
}

=
1∑

i=0

E
{
Xt log

ξt(θ
0
j+i)

ξt(θj,j+1)
−
[
ξt(θ

0
j+i)− ξt(θj,j+1)

]}
≜ gj > 0.

where

θ̂j,j+1 = argmax
θ∈Θ

1

h

[ τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ) +

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ)
]
,
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θj,j+1 = argmax
θ∈Θ

[
E
(
ℓt,θ0

j
(θ)
)
+ E

(
ℓt,θ0

j+1
(θ)
)]
.

and ℓt,θ0
s
(θ) represents ℓt(θ, p) with the true parameter θ0

s .

Proof of Lemma 1. We first have

θ̂j,j+1 = argmax
θ∈Θ

1

h

[ τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ) +

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ)
]
,

= argmax
θ∈Θ

[
E
(
ℓt,θ0

j
(θ)
)
+ E

(
ℓt,θ0

j+1
(θ)
)
+ op(1)

]
p−→ θj,j+1, as h → ∞.

Combine θ̂j
p−→ θ0

j and θ̂j+1
p−→ θ0

j+1, after some simple transformations

Sh(τ
0
j ) =

1

h
Lh(τ

0
j − h, θ̂j, pj) +

1

h
Lh(τ

0
j , θ̂j+1, pj+1)−

1

h
L2h(τ

0
j − h, θ̂j,j+1, pj,j+1)

p−→
1∑

i=0

E
{
ℓt,θ0

j+i
(θ0

j+i)− ℓt,θ0
j+i

(θj,j+1)
}

(6.1)

=
1∑

i=0

E
{
Xt log

ξt(θ
0
j+i)

ξt(θj,j+1)
−
[
ξt(θ

0
j+i)− ξt(θj,j+1)

]}
= gj.

Next, to show gj > 0. By the definition of maximum likelihood estimate, for the first part (i = 0)

in eq.(6.1),

E
[
ℓt,θ0

j
(θ0

j )− ℓt,θ0
j
(θj,j+1)

]
≥ 0,

the equality sign is true if and only if θj,j+1 = θ0
j . Similarly, for the second part (i = 1),

E
[
ℓt,θ0

j+1
(θ0

j+1)− ℓt,θ0
j+1

(θj,j+1)
]
≥ 0,

the equality sign is true if and only if θj,j+1 = θ0
j+1. Note that θ0

j ̸= θ0
j+1, which means that both

parts cannot be equal at the same time, that is gj > 0, and the proof is completed.

Lemma 2 Let {Xt} be a piecewise stationary MCP-GCINAR process defined in (1.2), and Yt(θ) =

ℓt(θ)−E
(
ℓt(θ)

)
. For all θ ∈ Θ, if E(Xt)

2k+2ϵX < ∞ for some ϵX > 0, then supθ∈Θ E|ℓt(θ)|k+ϵX <

∞.

Proof of Lemma 2. By the definition of ℓt(θj), we have

E|ℓt(θj)|k+ϵX = E|Xt,j log ξt(θj)− ξt(θj)|k+ϵX

≤ E|Xt log ξt(θj) + ξt(θj)|k+ϵX .

Clearly, there exist a suitable constant 0 < C1 < ∞ satisfy

E|ℓt(θj , pj)|k+ϵX ≤ C1E|X2
t |k+ϵX .
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That is, if E(Xt)
2k+2ϵX < ∞, there is

sup
θ∈Θ

E|ℓt(θ)|k+ϵX < ∞ and sup
θ∈Θ

E|Yt(θ)|k+ϵX < ∞.

The proof of Lemma 2 is completed.

Lemma 3 For any ϵ > 0, there exists a positive integer C2 such that for any h > C2,

P
(
|Sh(t)| > ϵ

)
≤ 6 exp(−1

4
h1/3ϵ2/3),

for all t such that Wt(h) does not contain any change-point.

Proof of Lemma 3. Since the scanning window Wt(h) has no change point, we can assume that

all data in the window comes from the segment specified by θ0. Hence, Sh(t) can be written as

Sh(t) =
1

h

t∑
s=t−h+1

[
ℓs(θ̂1)− ℓs(θ

0)
]
+

1

h

t+h∑
s=t+1

[
ℓs(θ̂2)− ℓs(θ

0)
]
− 1

h

t+h∑
s=t−h+1

[
ℓs(θ̂)− ℓs(θ

0)
]

= I + II + III, (6.2)

where θ̂1, θ̂2 and θ̂ and the PQML estimates of the parameter θ in the left half, right half, and

the entire scanning window, respectively. For the third part (III) in eq.(6.2),

1

h

t+h∑
s=t−h+1

[
ℓs(θ̂)− ℓs(θ

0)
]
=

1

h

t+h∑
s=t−h+1

[
ℓs(θ̂)− E

(
ℓs(θ̂)

)]
− 1

h

t+h∑
s=t−h+1

[
ℓs(θ

0)− E
(
ℓs(θ

0)
)]

+ 2
[
E
(
ℓs(θ̂)

)
− E

(
ℓs(θ

0)
)]
.

To simplify notation, let Ys(θ, p) = ℓs(θ)− E
(
ℓs(θ)

)
. Within any segment, ℓs(θ) is a measurable

and Lipschitz continuous function with respect to {Xt}. under the assumption H.4, there exists a

C
(1)
2 such that E

(
e|Ys(θ)|

)
≤ C

(1)
2 , and Ys(θ) is obviously a finite sequence of martingale differences

for s = t−h+1, ..., t+h and θ ∈ Θ. Then, following the Theorem 3.2 of Lesigne and Voln (2011),

for any ϵ > 0, there exists a positive integer C
(2)
2 depending only on C

(1)
2 and ϵ, such that, for any

h > C
(2)
2 and θ ∈ Θ,

P
(∣∣∣1

h

t+h∑
s=t−h+1

[
ℓs(θ)− E

(
ℓs(θ)

)]∣∣∣ > ϵ

3

)
≤ exp(−1

4
h1/3ϵ2/3). (6.3)

Moreover, ℓs(θ) is the uniform integrability for all θ ∈ Θ, combine θ̂
p−→ θ0, we have that, for any

ϵ > 0, there exists a constant C
(3)
2 > 0 such that, for any h > C

(3)
2 ,

2
∣∣∣E(ℓs(θ̂))− E

(
ℓs(θ

0)
)∣∣∣ < ϵ

3
(6.4)
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Thus, applying (6.3) to θ̂ and θ0, there exists a constant C
(4)
2 > 0 such that, for any h > C

(4)
2 ,

P
(∣∣∣1

h

t+h∑
s=t−h+1

[
ℓs(θ̂)− E

(
ℓs(θ̂)

)]∣∣∣ > ϵ

3

)
≤ exp(−1

4
h1/3ϵ2/3),

P
(∣∣∣1

h

t+h∑
s=t−h+1

[
ℓs(θ

0)− E
(
ℓs(θ

0)
)]∣∣∣ > ϵ

3

)
≤ exp(−1

4
h1/3ϵ2/3).

Then, together with (6.4), we obtain that, for any ϵ > 0, there exists a constant C
(5)
2 = max{C(3)

2 , C
(4)
2 }

such that, for any h > C
(5)
2 ,

P
(∣∣∣1

h

t+h∑
s=t−h+1

[
ℓs(θ̂)− ℓs(θ

0)
]∣∣∣ > ϵ

)
≤ 2 exp(−1

4
h1/3ϵ2/3). (6.5)

Similarly exponential inequalities hold for the other two parts (I) and (II) in eq.(6.2), and the

proof of Lemma 3 is completed.

Lemma 4 For any ϵ > 0, there exists a positive integer C3 such that for any h > C3,

P
(
|Sh(τ

0
j )− gj| > ϵ

)
≤ 22 exp(−1

4
h1/3ϵ2/3),

for all j = 1, ...,m0.

Proof of Lemma 4. Using the notations in Lemma 1, there is

Sh(τ
0
j )− gj

=
[1
h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ̂j)− Eℓt,θ0

j
(θ0

j )
]
+
[1
h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ̂j+1)− Eℓt,θ0
j+1

(θ0
j+1)

]

−
[1
h

τ0j∑
t=τ0j −h+1

(
ℓt,θ0

j
(θ̂j,j+1) + ℓt+h,θ0

j+1
(θ̂j,j+1)

)
− E

(
ℓt,θ0

j
(θj,j+1) + ℓt,θ0

j+1
(θj,j+1)

)]

=
[1
h

τ0j∑
t=τ0j −h+1

(
ℓt,θ0

j
(θ̂j)− ℓt,θ0

j
(θ0

j )
)]

+
[1
h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ0

j )− Eℓt,θ0
j
(θ0

j )
]

+
[1
h

τ0j +h∑
t=τ0j +1

(
ℓt,θ0

j+1
(θ̂j+1)− ℓt,θ0

j+1
(θ0

j+1)
)]

+
[1
h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ0
j+1)− Eℓt,θ0

j+1
(θ0

j+1)
]

+
1

h

τ0j∑
t=τ0j −h+1

((
ℓt,θ0

j
(θ̂j,j+1) + ℓt+h,θ0

j+1
(θ̂j,j+1)

)
−
(
ℓt,θ0

j
(θj,j+1) + ℓt+h,θ0

j+1
(θj,j+1)

))

+
[1
h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θj,j+1)− Eℓt,θ0

j
(θj,j+1)

]
+
[1
h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θj,j+1)− Eℓt,θ0
j+1

(θj,j+1)
]
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=I + II + III + IV

For the parts I and II, according to equations (6.3) and (6.5) in Lemma 3, we have that for any

ϵ > 0, there exists a constant C
(1)
3 such that, for any h > C

(1)
3 ,

P
(∣∣∣1

h

τ0j∑
t=τ0j −h+1

[
ℓt,θ0

j
(θ̂j)− ℓt,θ0

j
(θ0

j )
]∣∣∣ > ϵ

)
+ P

(∣∣∣1
h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θ0

j )− Eℓt,θ0
j
(θ0

j )
∣∣∣ > ϵ

)
≤ 5 exp(−1

4
h1/3ϵ2/3).

and

P
(∣∣∣1

h

τ0j +h∑
t=τ0j +1

[
ℓt,θ0

j+1
(θ̂j+1)− ℓt,θ0

j+1
(θ0

j+1)
]∣∣∣ > ϵ

)
+ P

(∣∣∣1
h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θ0
j+1)− Eℓt,θ0

j+1
(θ0

j+1)
∣∣∣ > ϵ

)
≤ 5 exp(−1

4
h1/3ϵ2/3). (6.6)

By the definition of θj,j+1, we have

∂

∂θ
E
(
ℓt,θ0

j
(θ) + ℓt+h,θ0

j+1
(θ)
)∣∣∣

θ=θj,j+1

= 0.

Obviously, ℓt,θ(θ) is twice continuously differentiable with respect to θ almost surely, thus

E
∂

∂θ

(
ℓt,θ0

j
(θj,j+1) + ℓt+h,θ0

j+1
(θj,j+1)

)
= 0.

That is,
{

∂
∂θ

(
ℓt,θ0

j
(θj,j+1)+ ℓt+h,θ0

j+1
(θj,j+1)

)}
is a martingale difference sequence. Similarly to the

proof of Lemma 3, we have that for any ϵ > 0, there exists a constant C
(2)
3 such that, for any

h > C
(2)
3 ,

P
(∣∣∣1

h

τ0j∑
t=τ0j −h+1

[(
ℓt,θ0

j
(θ̂j,j+1) + ℓt+h,θ0

j+1
(θ̂j,j+1)

)
−
(
ℓt,θ0

j
(θj,j+1) + ℓt+h,θ0

j+1
(θj,j+1)

)]∣∣∣ > ϵ
)

≤ 6 exp(−1

4
h1/3ϵ2/3). (6.7)

Also, applying (6.3) to θj,j+1, for any ϵ > 0, there exists a constant C
(3)
3 such that, for any h > C

(3)
3 ,

P
(∣∣∣1

h

τ0j∑
t=τ0j −h+1

ℓt,θ0
j
(θj,j+1)− Eℓt,θ0

j
(θj,j+1)

∣∣∣ > ϵ
)
≤ 3 exp(−1

4
h1/3ϵ2/3), (6.8)

and

P
(∣∣∣1

h

τ0j +h∑
t=τ0j +1

ℓt,θ0
j+1

(θj,j+1)− Eℓt,θ0
j+1

(θj,j+1)
∣∣∣ > ϵ

)
≤ 3 exp(−1

4
h1/3ϵ2/3). (6.9)
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Combining formulas (6.6) - (6.9), and the proof of Lemma 4 is completed.

The proof of Theorem 1 is similar to the proof of Theorem 1 in Yau and Zhao (2016).

Proof of Theorem 1. Let At ={ some point in the t-th local-window is a local change-point es-

timate} and A =
⋂

t∈J0
At. If we can prove that P(A) → 1 as n → ∞, then the proof of Theorem

1 holds. Let Zn = {1, 2, ..., n}. Define E = Zn \
⋂

t∈J0
Wt(h) as the set of all points outside the

h-neighbourhood of the true change-points. A sufficient condition for the event A to occur is that

min
t∈J0

Sh(t) > max
t∈E

Sh(t). (6.10)

Let g = 1
2
minj=1,...,m0(gj) where gjs are defined in Lemma 1. Note that from (6.10), there is

P(A) ≥ P
(
min
t∈J0

Sh(t) > g > max
t∈E

Sh(t)
)
.

Hence, the proof of Theorem 1 is completed by proving the following two facts,

(i) P
(
mint∈J0 Sh(t) > g

)
→ 1,

(ii) P
(
g > maxt∈E Sh(t)

)
→ 1.

For (i),

P
(
min
t∈J0

Sh(t) > g
)
= 1− P

( ⋃
t∈J0

{Sh(t) ≤ g}
)
≥ 1−

∑
t∈J0

P
(
Sh(t) ≤ g

)
,

from Lemma 4 and the definition of g, it can be shown that P
(
Sh(t) ≤ g

)
≤ 22 exp(−1

4
h1/3ϵ2/3),

for all t ∈ J0. Thus, set h = d(log n)3, for some d > 0 and m0 = O(1), we have

P
(
min
t∈J0

Sh(t) > g
)
≥ 1− 22m0 exp(−

1

4
h1/3ϵ2/3) → 1.

For (ii), note that when t ∈ E , all observations in Sh(t) belong to one stationary piece. From

Lemma 3, P
(
Sh(t) ≥ g

)
< 6 exp(−1

4
h1/3ϵ2/3) for all t ∈ E . Thus, set h = d(log n)3, for some

d > 64/g2, we have

P
(
g > max

t∈E
Sh(t)

)
= 1− P

(⋃
t∈E

{Sh(tj) ≥ g}
)
≥ 1−

m0+1∑
j=1

(τ 0j − τ 9j−1)
(
Sh(t) ≥ g

)
,

> 1− 6 exp(−1

4
h1/3ϵ2/3) → 1

where tj ∈ (τ 0j−1 + h, τ 0j − h). To sum up, when h = d(log n)3 for some d > 64/g2, there is

P(A) → 1, and the proof of Theorem 1 is completed.

Proof of Theorem 2. In Sheng and Wang (2023), it shows that, if m0 is known, under the

assumption E|Xt,j|2+ϵX < ∞, estimates based on MDL principle are strongly consistent. If m0 is

unknown, under the assumption E|Xt,j|4+ϵX < ∞, estimates are weakly consistent, further, under

the assumption E|Xt,j|8+ϵX < ∞, change-points estimates are strongly consistent.

30



Proof of Theorem 3. Let G(Xt) = |Xt log ξt(θj) + ξt(θj)|. Clearly, G(Xt) is an integrable

function and |ℓt(θj)| ≤ G(Xt) for all θj ∈ Θj. Furthermore, from Lemma 2, E
(
G(Xt)

)
< ∞.

By using the uniform law of large number in Jennrich (1969), we have as h → ∞, 1
h

∑h
t=1 ℓt(θj)

converges uniformly to Eθ0
j

(
ℓt(θj)

)
, for any θj ∈ Θj. The remaining part of the proof is the same

as that of Theorem 3 in Yau and Zhao (2016) and we omit it.

Proof of Theorem 4. The proof of Theorem 4 is similar to the Theorem 3 of Cui et al. (2021),

and we omit it.

Lemma 5 Let

gt(θ1,θ2,Xt) =sgn(t)
(
ℓt(θ1,Xt)− ℓt(θ2,Xt)

)
, (6.11)

=sgn(t)

{[
Xt log

p∑
i=1

βi,1Xt−i + β0,1

p∑
i=1

βi,2Xt−i + β0,2

−
( p∑

i=1

(βi,1 − βi,2)Xt−i + β0,1 − β0,2

)]}

where θ1 = (β0,1, ..., βp,1) and θ2 = (β0,2, ..., βp,2) are the interior points of the compact space

Θ(p) = [δ, δ̃]× [0, 1− δ]p ∩M, where M = {0 ≤
∑p

k=1 βk ≤ 1− δ < 1}, δ and δ̃ are finite positive

constants with δ approaching 0 and δ̃ < +∞, and sgn(t) = 1 with t > 0, sgn(t) = 0 with t = 0,

sgn(t) = −1 with t < 0. Then the function gt(θ1,θ2,Xt) about Xt has partial derivatives, which

satisfy a Lipschitz condition, that is, the derivative

∂p+1gt(θ1,θ2,Xt)

∂Xt∂Xt−1...∂Xt−p

is Lipschitz.

Proof of Lemma 5. For any θ1,θ2 ∈ Θ(p), Xt ∈ [0,+∞)p+1, there exist a constant 0 < C
(1)
5 <

∞, such that∣∣∣∣∣ ∂p+1gt(θ1,θ2,Xt)

∂Xt∂Xt−1...∂Xt−p

∣∣∣∣∣ =
∣∣∣∣∣(−1)p

( ∏p
i=1 βi,1∑p

i=1 βi,1Xt−i + β0,1

−
∏p

i=1 βi,2∑p
i=1 βi,2Xt−i + β0,2

)∣∣∣∣∣
< β−1

0,1 + β−1
0,2 < C

(1)
5 ,

and the Lemma 5 is clearly true.

Proof of Theorem 5. Without loss of generality, we consider the segment before and after the

jth change-point, and the other change-points are similarly. Denote L(X), L̃(X), and L∗(X) as

the distribution of random variable X under probability measures P, P̃, and P∗, respectively. We

first prove the assertion (2.11) in Theorem 5, that is, conditional on the sample {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

, for

any finite np ∈ N, there is

L̃(Wj) ≜ L̃(W̃j,−np , W̃j,−np+1, ..., W̃j,np)
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d−→ L(Wj,−np ,Wj,−np+1, ...,Wj,np) ≜ L(Wj), in probability. (6.12)

where Wj,s, W̃j,s with s = −np, ..., np are defined by (2.6) and (2.9). It suffices to show that,

L̃

((
ℓ̃−np(θ̂j+1)− ℓ̃−np(θ̂j)

)
, ...,

(
ℓ̃np(θ̂j)− ℓ̃np(θ̂j+1)

))
based on sample set {X̃t}2np+1

t=1

d−→ L

((
ℓ−np(θ

0
j+1)− ℓ−np(θ

0
j )
)
, ...,

(
ℓnp(θ

0
j )− ℓnp(θ

0
j+1)

))
based on sample set {Xt}

τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

in probability. (6.13)

Clearly, gt(θ̂j, θ̂j+1, X̃t) defined in Lemma 5 is the extend function of
(
ℓ̃t(θ̂j)− ℓ̃t(θ̂j+1)

)
,

gt(θ̂j, θ̂j+1, X̃t) = sgn(t)
(
ℓ̃t(θ̂j)− ℓ̃t(θ̂j+1)

)
for all X̃t ∈ Np+1,

and gt(θj,θj+1,Xt) fulfills the smoothness condition in Assumption 1 in Jentsch and Weiß (2019).

Then combining the Assumption H.6 and following the Corollary 3.4 in Jentsch and Weiß (2019),

there is

L̃

((
ℓ̃−np(θ̂j+1)− ℓ̃−np(θ̂j)

)
, ...,

(
ℓ̃np(θ̂j)− ℓ̃np(θ̂j+1)

))
based on sample set {X̃t}2np+1

t=1

d−→ L

((
ℓ−np(θ̂j+1)− ℓ−np(θ̂j)

)
, ...,

(
ℓnp(θ̂j)− ℓnp(θ̂j+1)

))
based on sample set {Xt}

τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

in probability. (6.14)

Furthermore, since ℓt(θ) is continuous with respect to θ at θ0
j and θ0

j+1, and θ̂j
p−→ θ0

j and

θ̂j+1
p−→ θ0

j+1, we have

L

((
ℓ−np(θ̂j+1)− ℓ−np(θ̂j)

)
, ...,

(
ℓnp(θ̂j)− ℓnp(θ̂j+1)

))
based on sample set {Xt}

τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

P−→ L

((
ℓ−np(θ

0
j+1)− ℓ−np(θ

0
j )
)
, ...,

(
ℓnp(θ

0
j )− ℓnp(θ

0
j+1)

))
based on sample set {Xt}

τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

in probability. (6.15)

Combining (6.14) and (6.15) yields (6.13), which implies (6.12). Then, by the argmax continuous

mapping theorem, for any np ∈ N, there is

τ̃j,np = arg max
τ∈{−np,...,np}

W̃j,τ
d−→ argmax

τ
Wj,τ in probability,

and the proof of the part (2.11) in Theorem 5 is completed.

Next, we prove the assertion (2.12) in Theorem 5. Note that the sample set {X∗
t }

2nb+1
t=1 is

a concatenation of subsegments {Xt}
τ̂
(3)
j

t=τ̂
(3)
j−1+1

and {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j +1

, which belong to two stationary
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process segments in MCP-GCINAR model. Furthermore, since {X∗
t }

nb+1
t=1 and {X∗

t }
2nb+1
t=nb+2 are

independently resampled conditional on the given {Xt}
τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

, that is, {X∗
t }

nb+1
t=1 and {X∗

t }
2nb+1
t=nb+2

are independent. Therefore, there is

L∗(X∗
1 , ..., X

∗
2nb+1)

d−→ L(X
τ̂
(3)
j−1+1

, ..., X
τ̂
(3)
j+1

) in probability.

Furthermore, similar to the proof of the assertion (2.11), we have

L

((
ℓ∗−nb

(θ̂j+1)− ℓ∗−nb
(θ̂j)

)
, ...,

(
ℓ∗nb

(θ̂j)− ℓ∗nb
(θ̂j+1)

))
based on sample set {X∗

t }
2nb+1
t=1

d−→ L

((
ℓ−nb

(θ0
j+1)− ℓ−nb

(θ0
j )
)
, ...,

(
ℓnb

(θ0
j )− ℓnp(θ

0
j+1)

))
based on sample set {Xt}

τ̂
(3)
j+1

t=τ̂
(3)
j−1+1

in probability.

By the argmax continuous mapping theorem, for any nb ∈ N and nb < min(τ̂
(3)
j+1− τ̂

(3)
j , τ̂

(3)
j − τ̂

(3)
j−1),

there is

τ ∗j,nb
= arg max

τ∈{−nb,...,nb}
W ∗

j,τ
d−→ argmax

τ
Wj,τ in probability,

and the proof of Theorem 5 is completed.

Optimal Partitioning Algorithm

We first define the notations used in the OP Algorithm.

Denote the cost function for the jth segment by

C(X(τj−1+1):τj) = −Lnj
(τj−1,θj , pj;X(τj−1+1):τj) + log(pj) +

pj + 1

2
log(nj).

where order pj can be selected through AIC.

Optimal Partitioning Algorithm:

Input: The data set {Xt}nt=1, the penalty constant c = log(n).

The potential change-points set Ĵ (1) and m̂(1) from “First step”.

Initialise: F (1) = −c, τ ∗ = [0, Ĵ (1), n], cp(1) = Null.

Iterate: for s1 = 1, ..., m̂(1)

s′1 = argmins2=1,...,s1

[
F (s2) + C(X(τs2+1):τs2+1) + c

]
.

F (s1 + 1) = mins2=1,...,s1

[
F (s2) + C(X(τs2+1):τs2+1) + c

]
.

τ ′ = τ ∗(s′1).

cp(s1 + 1) = {cp(s′1), τ ′}.
end

Output: the change-points estimates set Ĵ (2) = cp(m̂(1) + 2).
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Models (B1) - (B9) and (C1) - (C9)

Model (B):

Xt =



0.5 ◦Xt−1,1 + Zt Zt
i.i.d∼ Poi(0.5) 0 < t ≤ τ01 ,

0.249 ◦Xt−τ0
1−1,2 + 0.254 ◦Xt−τ0

1−2,2 + 0.297 ◦Xt−τ0
1−3,2 + Zt Zt

i.i.d∼ Poi(1) τ01 < t ≤ τ02 ,

0.4 ◦Xt−τ0
2−1,3 + Zt Zt

i.i.d∼ Poi(0.5) τ02 < t ≤ τ03 ,

0.014 ◦Xt−τ0
3−1,4 + 0.041 ◦Xt−τ0

3−2,4 + 0.29 ◦Xt−τ0
3−3,4 + 0.454 ◦Xt−τ0

3−4,4 + Zt Zt
i.i.d∼ Poi(2) τ03 < t ≤ τ04 ,

0.332 ◦Xt−τ0
4−1,5 + 0.268 ◦Xt−τ0

4−2,5 + Zt Zt
i.i.d∼ Poi(0.5) τ04 < t ≤ τ05 ,

0.2 ◦Xt−τ0
5−1,6 + Zt Zt

i.i.d∼ Poi(4) τ05 < t ≤ τ06 ,

0.109 ◦Xt−τ0
6−1,7 + 0.306 ◦Xt−τ0

6−2,7 + 0.305 ◦Xt−τ0
6−3,7 + Zt Zt

i.i.d∼ Poi(3) τ06 < t ≤ τ07 ,

0.3 ◦Xt−τ0
7−1,8 + Zt Zt

i.i.d∼ Poi(0.5) τ07 < t ≤ τ08 ,

0.202 ◦Xt−τ0
8−1,9 + 0.127 ◦Xt−τ0

8−2,9 + 0.179 ◦Xt−τ0
8−3,9 + 0.392 ◦Xt−τ0

8−4,9 + Zt Zt
i.i.d∼ Poi(1) τ08 < t ≤ τ09 ,

0.3 ◦Xt−τ0
9−1,10 + Zt Zt

i.i.d∼ Poi(2) τ09 < t ≤ n.

Model (B1) consists of the first two segments of Model (B) and τ 01 = [0.5n]. That is

Xt =

{
0.5 ◦Xt−1,1 + Zt Zt

i.i.d∼ Poi(0.5) 0 < t ≤ [0.5n]

0.249 ◦Xt−τ01−1,2 + 0.254 ◦Xt−τ01−2,2 + 0.297 ◦Xt−τ01−3,2 + Zt Zt
i.i.d∼ Poi(1) [0.5n] < t ≤ n

Similarly, we design (B2)-(B9) models as follows.

Model (B2) consists of the first three segments of Model (B) and (τ 01 , τ
0
2 ) = ([0.3n], [0.6n]).

Model (B3) consists of the first four segments of Model (B) and (τ 01 , τ
0
2 , τ

0
3 ) = ([0.2n], [0.5n], [0.8n]).

Model (B4) consists of the first five segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 ) = ([0.2n], [0.4n], [0.6n], [0.8n]).

Model (B5) consists of the first six segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 ) = ([0.1n], [0.3n], [0.6n], [0.7n], [0.9n]).

Model (B6) consists of the first seven segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 ) = ([0.1n], [0.2n], [0.3n], [0.5n], [0.8n], [0.9n]).

Model (B7) consists of the first eight segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.8n], [0.9n]).

Model (B8) consists of the first nine segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 , τ

0
8 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.7n], [0.8n], [0.9n]).

Model (B9) consists of the first ten segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 , τ

0
8 , τ

0
9 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.6n], [0.7n], [0.8n], [0.9n]).

Similarly, we set (C1) - (C9) models based on the Model (C).
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Model (C):

Xt =



0.5 ∗Xt−1,1 + Zt Zt
i.i.d∼ Geo(1/3) 0 < t ≤ τ01

0.249 ∗Xt−τ0
1−1,2 + 0.254 ∗Xt−τ0

1−2,2 + 0.297 ∗Xt−τ0
1−3,2 + Zt Zt

i.i.d∼ Geo(1/2) τ01 < t ≤ τ02

0.4 ∗Xt−τ0
2−1,3 + Zt Zt

i.i.d∼ Geo(1/3) τ02 < t ≤ τ03

0.014 ∗Xt−τ0
3−1,4 + 0.041 ∗Xt−τ0

3−2,4 + 0.29 ∗Xt−τ0
3−3,4 + 0.454 ∗Xt−τ0

3−4,4 + Zt Zt
i.i.d∼ Geo(2/3) τ03 < t ≤ τ04

0.332 ∗Xt−τ0
4−1,5 + 0.268 ∗Xt−τ0

4−2,5 + Zt Zt
i.i.d∼ Geo(1/3) τ04 < t ≤ τ05

0.2 ∗Xt−τ0
5−1,6 + Zt Zt

i.i.d∼ Geo(4/5) τ05 < t ≤ τ06

0.109 ∗Xt−τ0
6−1,7 + 0.306 ∗Xt−τ0

6−2,7 + 0.305 ∗Xt−τ0
6−3,7 + Zt Zt

i.i.d∼ Geo(3/4) τ06 < t ≤ τ07

0.3 ∗Xt−τ0
7−1,8 + Zt Zt

i.i.d∼ Geo(1/3) τ07 < t ≤ τ08

0.202 ∗Xt−τ0
8−1,9 + 0.127 ∗Xt−τ0

8−2,9 + 0.179 ∗Xt−τ0
8−3,9 + 0.392 ∗Xt−τ0

8−4,9 + Zt Zt
i.i.d∼ Geo(1/2) τ08 < t ≤ τ09

0.3 ∗Xt−τ0
9−1,10 + Zt Zt

i.i.d∼ Geo(2/3) τ09 < t ≤ n

Model (C1) consists of the first two segments of Model (B) and τ 01 = 0.5n. That is

Xt =

{
0.5 ∗Xt−1,1 + Zt Zt

i.i.d∼ Geo(1/3) 0 < t ≤ [0.5n]

0.249 ∗Xt−τ01−1,2 + 0.254 ∗Xt−τ01−2,2 + 0.297 ∗Xt−τ01−3,2 + Zt Zt
i.i.d∼ Geo(1/2) [0.5n] < t ≤ n

Similarly, we design (C2)-(C9) models as follows.

Model (C2) consists of the first three segments of Model (B) and (τ 01 , τ
0
2 ) = ([0.3n], [0.6n]).

Model (C3) consists of the first four segments of Model (B) and (τ 01 , τ
0
2 , τ

0
3 ) = ([0.2n], [0.5n], [0.8n]).

Model (C4) consists of the first five segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 ) = ([0.2n], [0.4n], [0.6n], [0.8n]).

Model (C5) consists of the first six segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 ) = ([0.1n], [0.3n], [0.6n], [0.7n], [0.9n]).

Model (C6) consists of the first seven segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 ) = ([0.1n], [0.2n], [0.3n], [0.5n], [0.8n], [0.9n]).

Model (C7) consists of the first eight segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.8n], [0.9n]).

Model (C8) consists of the first nine segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 , τ

0
8 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.7n], [0.8n], [0.9n]).

Model (C9) consists of the first ten segments of Model (B) and

(τ 01 , τ
0
2 , τ

0
3 , τ

0
4 , τ

0
5 , τ

0
6 , τ

0
7 , τ

0
8 , τ

0
9 ) = ([0.1n], [0.2n], [0.3n], [0.4n], [0.5n], [0.6n], [0.7n], [0.8n], [0.9n]).
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