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Abstract

Directed Acyclic Graphical (DAG) models efficiently formulate causal relation-
ships in complex systems. Traditional DAGs assume nodes to be scalar variables,
characterizing complex systems under a facile and oversimplified form. This paper
considers that nodes can be multivariate functional data and thus proposes a multi-
variate functional DAG (MultiFun-DAG). It constructs a hidden bilinear multivariate
function-to-function regression to describe the causal relationships between different
nodes. Then an Expectation-Maximum algorithm is used to learn the graph struc-
ture as a score-based algorithm with acyclic constraints. Theoretical properties are
diligently derived. Prudent numerical studies and a case study from urban traffic
congestion analysis are conducted to show MultiFun-DAG’s effectiveness.
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1 Introduction

Directed acyclic graph (DAG), a.k.a., Bayesian network, is a probabilistic graphical model
that represents a set of variables and their causal relationships. In a DAG, each node corre-
sponds to a random variable, and each directed acyclic edge represents a causal dependence
relationship between the two variables, i.e., a parent node and a descendant node. The
distribution of each variable can be written as a conditional probability distribution given
its parent nodes and is independent from other nodes. DAG has been widely used to offer
vital insights for causal relationship discovery in biological (Aguilera et al.| |2011), physical
(Velikova et al., |2014)), social systems (Ruz et al., 2020)), etc.

Previous work has thoroughly studied DAG with each node as a scalar variable (Heck-
erman, 2008). However, it is common to come across systems where the variables have a
functional form, as shown in Fig. (b). Functional data is formally defined as the data
with each sample in the form of random curves or functions over a continuum, such as
time or space (Qiao et al., [2019), which is commonly observed in complex systems such as
medical science (Chen et al., 2018), physiology ([Li and Soleay, 2018), and climate (Fraiman
et al) 2014). For example, in urban transportation, sensors collect the real-time signals
of the traffic elements, such as traffic volume, vehicle speed, lane saturation, cycle length
of traffic lights, and weather, which are all functional data and can be combined into a
multivariate form. By modeling these traffic variables as different nodes in a DAG to learn
their causal relationships, root causes for traffic congestion can be identified, and then
corresponding actions can be taken (Lan et al., [2023]).

We consider the DAG in which each node can be multivariate functional data, as it can
describe the practical systems more pertinently than the scalar-based ones. Such a DAG

has three critical properties: (1) Infinite dimensionality: Functional data are naturally



(a) Scalar-based DAG (b) Multi-Functional DAG

O Scalar node —> Directed edge -~ func2func relationship
O Functional node —— Unknown directed edge

Figure 1: Scalar-based DAG v.s. Multi-Functional DAG. Each node is a scalar or func-
tional variable, and the directed edge is the causal dependence. MultiFun-DAG learns the

unknown causal edge (solid) via formulating the func2func relationships (dotted).

infinite-dimensional, and in theory, can have infinitely many points; Though in practice
functional data is usually discretized or approximated to a finite number of observation
points. However, the theoretical foundation is that the true underlying functional observa-
tion is of infinite dimensionality. (2) Data heterogeneity: Functions of different nodes
can be heterogeneous, such as containing various numbers of functions and coming from dif-
ferent spaces. (3) Inter-causation: Functions of different nodes could be inter-correlated
in different ways, i.e., different functions of one node can have different causal effects on
another function of another node.

As a result, traditional scalar-based DAGs cannot be easily extended to our case.

This paper aims to build a Multi-Functional DAG (MultiFun-DAG) to learn the
valuable causal dependence structure among different multi-functional nodes. The task

is unfolded by three concrete questions: (1) how to preserve the information and describe



causal dependence relationships for infinite functions? (2) how to model and fuse the causal
dependence relationships between multiple functions in any two nodes and build an edge
between them? (3) how to conduct structural learning and parameter learning for these
edges?

To address these challenges, we are the first to propose a novel DAG to learn the causal

structure with multivariate functional data, with the following major contributions:

e We model the causal dependence relationships between nodes with multiple func-
tions via hidden bilinear function-to-function (func2func) regression with low-rank

decomposition.

e We propose an Expectation-Maximization (EM) algorithm in the score-based struc-
tural learning framework to learn the DAG structure with acyclic constraint and

group lasso penalty.

e We derive the theoretical properties of the model, including its identifiability and
asymptotic error bound of the EM algorithm, and the asymptotic oracle property of

our structure learning algorithm.

2 Related Work

2.1 DAG structural learning methods

Methods for DAG learning can be categorized into combinatorial learning and continuous
learning algorithms.

Combinatorial learning algorithms solve a combinatorial optimization problem to
find whether an edge exists between any two nodes. This type of method can be further

divided into constraint-based and score-based algorithms.



Constraint-based methods, such as PC (Spirtes et al., [2000), rankPC (Harris and Dr-
ton), 2013), and fast causal inference (Spirtes et al., |2000)), learn the edges by conditional
independence tests. However, they are built upon that the independence tests should accu-
rately reflect the independence model, which is generally difficult to be satisfied in reality.
As a result, these methods suffer from error propagation, where a minor error in the early
phase can result in a very different DAG.

The score-based methods instead construct a score function to evaluate DAG structures
and select the graph with the highest score. Some commonly used score functions include
the likelihood function, mean square fitting error, etc. Some further regularization items on
edges are also added in the score to learn a sparse graph (Chickering, 2002; Nandy et al.
2018)). Then greedy searches are implemented to find the graph with the highest score.
However, one drawback of the combinatorial score-based method is the nonconvexity of the
combinatorial problem. The acyclicity constraint means that the solution space stretches
along all topological orderings that have d! permutations in a graph with d nodes, rendering
DAG learning an NP-hard problem.

Continuous learning algorithms formulate the acyclic constraint into an algebraic
form and convert the structure learning problem into a purely continuous optimization
problem to save computation cost. In particular, |Zheng et al. (2018) proposed NoTears,
which formulates an algebraic form as h(W) = tr(exp(W o W)) — d = 0, where W is the
adjacency weight matrix, tr(-) is the trace, and o is Hadamard product. This idea was
popularly borrowed in many preceding works. For example, Zheng et al.| (2020) develops a
nonparametric DAG based on NoTears Bhattacharya et al. (2021)) considers both directed
and undirected edges based on NoTears. Besides, Ng et al.| (2020) also proposes a soft

constraint for acyclicity. However, the NoTears-based methods only offer solutions for



scalar-variable nodes. The more realistic problem where nodes contain heterogeneous multi-

functional data has never been addressed so far.

2.2 Functional graphical models

Functional graphical models (FGMs), as an extension of traditional graphical models, de-
scribe the probabilistic dependence between nodes with functional data and could poten-
tially offer solutions for functional DAG learning. According to the direction of the edges,
FGMs can be divided into undirected FGMs and directed FGMs.

The undirected FGMs focus on estimating the correlation dependence structure be-
tween different nodes. In particular, Qiao et al.| (2019) proposes a functional graphical
Lasso model to describe the sparse correlation dependence structure of different functional
nodes. As an extension, |Qiao et al. (2020)) proposes a doubly FGM to capture the evolving
conditional dependence among functions. Later more FGMs were proposed, such as using
nonparametric additive conditional independence model (Li and Solea;, |2018)), assuming the
dependence to be partially separable (Zapata et al. 2022), or heterogeneous (Wu et al.,
2022)), etc. However, undirected FGMs only capture the correlations, instead of causation,
of nodes.

For directed FGMs focusing on the causal relationship of nodes, the current research is
scarce. Sun et al| (2017)) proposes a DAG that considers both scalar and functional nodes.
Yet it assumes the DAG structure is known in advance. |Gomez et al.| (2020) considers DAG
with each node as a univariate function. However, it still assumes the topological ordering
of nodes should be known in advance by domain knowledge, and transforms the structural
learning problem into a parameter selection problem, i.e., selecting the parent node from

the candidate parent set. Furthermore, Gémez et al.[(2020) is a two-step framework by first



adopting functional principal component analysis (FPCA) to extract features for each node
separately, and then using the FPCA scores to model the causal effects. However, since
its FPCA totally ignores the causal relationships between different nodes, the extracted
PCs may not represent the most useful information in the whole network. Then the causal
effects estimated based on these PCs may be misleading and lead to higher estimation

errors.

3 Proposed Model

Suppose that a graph G = (V, &) represents a DAG with a vertex set ¥V € RY and an
edge set £ € RP*P | with P denoted as the total number of nodes. A tuple (j,j") € &
represents a directed edge leading from node j to node j’, i.e., j — j'. Here we assume
the node j has L; functional variables, with Yj;(¢),t € I' denoted as its [-th function, for
l =1,2,..,L;. Here without loss of generality, we assume I' = [0, 1] is a compact time
interval. Suppose we have N identically and independently distributed samples. The n-
th sample, n = 1,..., N, is formulated as Y™ (t) = (YYL) (t),an)(t), ...,Yg?)(t))T, with
Y () = (Yj(ln) (1), YJ(Z") (t), ..., YJ(L"]) (t)). Therefore, Y™(t) represents L = >, L; functions
of all the nodes, which is a vector. Our MultiFun-DAG aims to learn the causal relations
between different nodes, i.e., the edge set £, shown as red lines in Fig. [T}

To achieve it, in Section [3.1], we first assume that the causal structure £ is known, and
construct a hidden bilinear func2func regression, to learn the conditional dependence from
the function [ of node j to the function [ of node j’, shown as the green dotted edge in
Fig. In Section 3.2, we show that causal structure is non-identifiable under maximum

likelihood estimation. Therefore, we introduce a restriction for DAG structure and its

necessity. In Section [3.3] we combine the restriction in Section [3.2| and propose an EM
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Figure 2: The Illustration of MultiFun-DAG

algorithm for learning the causal structure of MultiFun-DAG.

3.1 Multi-functional DAG with known structure

We first give an overview of our MultiFun-DAG in Fig. Our function Yj(t) follows
Gaussian distribution in Eq. with mean function p;(¢). The mean functions follow
func2func regression in Eq. with their parents in DAG. To preserve the information
for infinite functional variables, we decompose the mean function into a basis set with
coefficients in Eq. . Then we conduct a bilinear regression for the coefficients to describe
the linear causality of different nodes via Eq. @ The joint likelihood of coefficients of all
the nodes can be represented using a linear Structural Equation Model (SEM) (Eq. (g)).

In this paper, we focus on Gaussian distributed function:

V() ~ Nl (0), Ral-,-), (1)

J

(

where ,uj?) (t) is the mean function and Rj(-,-) is the covariance function of Y;(ln) We



assume that Rj(t,t') = r3I(t = t'), where 77

71 1s the scale of variance. The parent set

of node j is denoted as A; = {j'|j' € V,j" # j,(5',7) € £€}. We assume that the joint
distribution of ,u§.7) (t) of all the nodes can be written as the production of the conditional

distribution of each node, i.e.,

P Lj
p(/igr{) (), 7NPLP H Hp M;l Aj) (2)
7j=11=1

We focus on linear conditional dependence relationship for p(,u]l (t)|A;), which is formu-

lated as below:

IS S S [ nte sias + £, ®)

j'eAp, I'=1

where 55-?)(15) is the noise function. ~;;(t,s) is the coeflicient function for (j',j) € &,

l=1,2,...,Ljand I' = 1,2, ..., Ly, which describes the contribution of the I’-th function of
node j' to the {-th function of node j. We represent v,/ ;;(t,s) and p;;(t) as follows:
For 4;,(t): Given they are in infinite dimensions and hard to be estimated directly, it

is common to decompose them into a well-defined continuous space for feature extraction:

N]l Z x]lkﬁjk (4)

where B;(t) = (8;1(t), Bj2(t), ..., Bjk, (t))" is an orthonormal functional basis set for node
g, with [Bu(t)?dt = 1,k = 1,...,Kp and [ Bu(t)Bw(t)dt = 0, k # K. 2} is the
corresponding coefficient.

For v, u(t,s): , we describe 7,/(t, s) using the corresponding basis sets in a bilinear

way (Hoff, 2015)) as

K K/

Virjei(t, s) Z Z Crjrk  CirjvtBiwe (8) B (t)- (5)

k=1 k'=1
cjrji; represents the influence caused by the basis pair: S (s) on Bjx(t). ¢jji represents

the influence caused by the function pair: function !’ of node j' on function [ of node j.
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This decomposition describes the regression coefficient function from two aspects, i.e., (1)
the basis set of a node and (2) the variables of a node, separately. Besides, it also improves
estimation stability.

By plugging the representation of Eq. and into Eq. , for function [ in node

7, we could obtain:

K L -/

Z SEOES YN Z Z / Cy ik - Crin T Bin(t) B (s)ds + eq(t). (6

J'EA; k=1 I'=1 k'=1
By integrating this equation over s, and combining all the parameters x%ﬂ) into a vector,

(n) _ (n)

Le., x; = vec(zyy) € REE: | where [x -n)]i represents the [(i — 1) mod K] + 1 coefficient

(
j
of the function [(i —1)/K;] + 1 in node j, Eq. () can be re-written as:
xV = 3" (CL; @ Cf) X + € (7)
J'EA;

Here CJL,J- e Rlv*Li with [C]L/j]l/l = Cjrjie, lefj € RE7>Ki with [CJ J]k’k Cjikk- @ is the
Kronecker product. §; € REKi is the noise of x;, where [€la-1)K;+1 to [§;]ix; are the
projection of &?ZL) (t) on its corresponding basis set for j =1,...,P,l =1,...,L;. Here we
assume Egn) ~ N(0,9;) with ; € RL5i*LiK;i - For brevity, we simply assume €2, has a
diagonal form, i.e., Q; = diag(w?).

Lastly, we use a linear SEM to interpret our MultiFun-DAG. We denote C € RM*M

with its (7, j') block as Cjr ;) = Cyij, Cjr; = Ch; @ Cl if (j,5') € &, otherwise we have

Cyrj) = Or, K, x1;K;- Then for x( = [x&"), o ,ng)] € RM a linear SEM interpretation
is:
xM = CTx™ 4 ¢, (8)

Here M = Zle L;K;, " = [5§”),...,5§2)] ~ N(0,Q) is the noise vector. Q =

diag(€2y,...,2p).

11



In reality, Yj;(t) can only be measured at certain discrete observation points. In this
paper, without loss of generality, we assume that, for all the nodes, the sampling points
are equally spaced as t1,...,tr. Then we define X = [xM7, .. xMT|T ¢ ]RNXM,YJ(?) =

[Yj(l") (t1),. .. ,Yj(ln) (tr)]. By abusing the notation Y™ = [Y(?),j =1,...,Pl=1,...,Lj

J

and Y = [YW, ... ' YN)] for convenience, we can write the joint likelihood of the generative
model as:
N
FX.Y) = [[p")p(Y ™), (9)
i=1

where p(x(™) and p(Y™|x(™) are computed by Eqgs. (1)), and (§). It is to be noted
that our model can also be applicable to functional nodes measured at distinct observation

points with different lengths, with trivial notation modifications.

3.2 Non-identifiability and equivalence class

In reality, the graph structure is unknown and to be estimated. This can be transferred
to infer whether the weight C]L/ ; and C;fj equals O for certain blocks. In particular, the
parameters to be estimated in our model includes 1) the weights C]L,j and lefj for nodes
4,j =1,..., P; 2) the variance of functional noise, denoted as r = [r$;, 7, ...,r5, ] € RM;
3) the variance of x;, i.e., Q1,€y, ..., Qp, denoted as Q.p|; 4) the basis functions B;(t) =
[8;1(t), Bj2(t), ..., Bix, (t)]" for node j =1,..., P. It is to be noted that in reality, we only
need to estimate B; = [B;(¢1)7,...,B;(tr)"]", denoted as B = [B;, By, ..., Bp|. For other
observation points, we can adopt Kernel smoothing to estimate them easily.

The parameters © = (C,B,r,Q.p) are statistically nonidentifiable without further

constraints. Based on our model structure, the marginal distribution of Y follows a Gaus-

sian distribution with mean 0 and covariance function Xy (0), which is determined by the

12



parameters O, i.e.,

B;[(I-C)"QI~C) ;puB] +r3lr  (5,1) = (4,0)
EY(@)jl,j'l/ = . (10)

B,[(I-C)TQ(I - C)*l]jlvj/yBi 0.W.

We aim to estimate the model parameters © based on the information from the observed
covariance matrix Xy. However, it turns out that the mapping from © to Xy (0©) is not
one-to-one, i.e., one Xy can correspond to multiple sets of model parameters ©. Denote the
true covariance matrix as 33, = Xy (0*), where ©* is the true underlying parameters. We
define the set of all © whose Xy (0) equals X3, as the equivalence class © corresponding
to Xy, i.e.,

D ={6|Xy = Xy (6)}.

Without additional restrictions, we can only find one © € © based on the observation
data. However, infinite combinations of parameters exist in the equivalence class and cannot
provide us with useful information regarding the causal structure. The most common
solution for Gaussian noise is to assume Condition [I} which can be viewed as an extension

of the equal variance condition in [Van de Geer and Biithlmann| (2013)).
Condition 1. In the true DAG, all latent variables have equal variance, i.e., Q = w3l

It is a common condition for ensuring the identifiability of a linear structural causal
model with Gaussian noise. With it, all the graphs with © € ® will have the same causal

structure.

3.3 Regularized EM estimation

Under Condition , we rewrite the parameter set as © = {C, B, r,w?2}. Since the coefficients

X are unknown, we estimate x™ n = 1,..., N by treating them as latent variables and
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using a regularized EM algorithm for estimation (Yiand Caramanis, 2015)). The regularized
EM algorithm consists of an Expectation-step and a regularized Maximization-step. In each

iteration, the operator M,, of the regularized EM is denoted as follows:

M, (0") = argmax @Q,(0;0") — AR(C)
° (11)
s.t. g is a DAG,

where
Qn(0;0") = Exjyer log f(X,);0) = / log f(X,Y: 0)p(X|y; ©")dX, (12)
(X P L
log f(X,);0) 3 (Z (Z Z Y(n ))TTﬁQ(Y](;L) _ Bjxg'?))
n=1  j=1 =1
P oL
+ Z(Xg‘n) —x" Cj)Tw52(X§n —x"Cy) + Z Z Tlogrs,
j=1 j=1 1=1
+ M log wé)) + constants, (13)

and R(C) is the sparse penalty, to penalize the model complexity.
To represent the DAG constraint in Eq. to a mathematical form, we define the
adjacency matrix W € RP*F corresponding to the edge set £ for the DAG G. Consider

W as a measure of causal effects and it fuses the information of C;; in a scalar. We have:
[W]ij #0 < Cij # Or,x,x1,K; - (14)

Then in this work, we give an intuitive and valid definition for W as
[(Wli; = [1Cisll - (15)

Consequently, to ensure C is a DAG, we adopt Notears constraints (Zheng et al., 2018 for

the adjacency matrix W that h(W) := tr(exp(W o W)) — P and we have:

h(W) =0« G is a DAG. (16)

14



Finally, for a large graph, it is usually assumed the edges are sparse, and penalize the
Iy norm of W. Therefore, we set R(C) = ||C||;,/r = S Zle |CijllF, and A adjusts the
strength of the penalty.

Expectation-step is to calculate @Q,(©;0’). It can be derived by calculating the

posterior likelihood p(X|Y;©'), which can be estimated in a forward and backward way.

Proposition 1. For any parameter set ©', the posterior distribution can be decomposed as

p(X|Y;0) = I, p(x™ Y™ 0. p(x™|Y™; @) follows a multivariate normal distri-

- (n)

bution ./\/'(ﬁg,)Y(n), o) with mean Gy, (., € R™" and variance Xor € RF*F where G y

is a linear combination of Y depending on © while Yo only depends on ©.
Proof. Proposition [I] is straightforward by following the procedure in Appx. B.3] O

Maximization-step is to solve the maximization problem of Eq. based on the
calculated @,(0,0’) in the Expectation-step, and update the model parameters ©. The
parameters can be decoupled into two sub-groups. The first sub-group is B;(¢),j =1,..., P
and r, which are directly related to the observations )). The second sub-group contains the
important C and w?, which determine the causal relationship of different nodes, namely,
the DAG structure.

For the first sub-group: denote F,(B,©’) as the part of the quadratic loss in Eq.

15



related to B. Minimizing F;, is equivalent to maximizing @),, respecting to B:

N P Lj
Bi,.Br 1 =1 =1
1 N P Lj
x> ( Y5 = Bjtjer x5 + tr(BjEjB?D
n=1 j=1 [=1
= F,(B,0)

st. BIB;=1 Vj=1,...,P.
(17)
To solve Eq. , we can utilize the polar decomposition. We first calculate A =
v zn 1 Zl 1Y(” Wi oy and then perform the polar decomposition on A to obtain
A= VBj, where V is a symmetric matrix, and Bj is the matrix we are interested in.

For estimating r, it can be solved in a closed form as:

N

L 1 . |

= ((Yj(") B0 vo) (Y — Bjiitjenyin)” BEB)),ijl,...,P,lzl,...
n=1

(18)
For the second sub-group: the key is to infer C, which represents the struc-
ture of DAG. Denote G, as the loss part in Q, (0, ©’) related to C. Maximizing Eq.

is equivalent to the following:

CK = arg mlnz ZEx(n)|Y<n> o (( (n) _ X(”)Cj)Tw()_2(X§-n) - X(”)Cj)> + M|Clli/r

ck.ct n=1 j=1

N
1 n n
7 2 Bl = Xl + AICl e

1
=N Z ( Gy — U v C|5 4+ tr((T — C)TEQI(I — C))) + A|Clli /¢

= Gn(07 @/) + )\HCHZI/F

(19)
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Algorithm 1 EM algorithm
Input: data ), tolerances ¢

Initialize O = vec(B©®, CK©) CHO RO 20 s =0.
repeat

s+ s+1

~ (n)

U (e1) yin s 2@@71) + Forward filtering & backward smoothing(@(s_l)) via Appx. [B.3

B®) argénin F,(B,0C7Y) via Polar decomposition.

CE®) CEB) a(I;%IéliLn Gn(C;067D) 4+ \||C||;, /F via Algorithm
Update wg(s) by Eq ‘D

O6)  veo(BE), CKE), CLE) RE), 4 2))

until D(O®, 06~D) < ¢

where C* is a 37, K x 37, K; matrix with its (j, j') block as Cf5 ;) = CJj;, Cisa L x L

R

matrix with its (7, ;') block as C(Lj’j,) = Cl,,

Cy; = Cj; @ Cj;.
We can convert Eq. into an unconstrained problem using the Lagrangian dual
method:

C¥,C! € argminmax G,,(C, ") + \|C|,,/r, (20)
CK,CL b>0

where

Gn(C,0') = G, (C,O') + bh(W) + gh(W)Q.

b € R is dual variable and a € R is the coefficient for quadratic penalty. We solve the
Lagrangian dual problem by the dual ascent method. Due to the non-smoothness of [; /F'
norm, we use the proximal gradient method for group lasso penalty. We summarize the

algorithm in Algorithm 2]

17



After obtaining the transition matrix C, &2 can be solved in a closed form as

A

N
. 1 . . . o
5 = o 3 (oo~ O+ (1= O B0-0)). @

Combine Egs. , , and , we can update © and replace ©" by the updated

O.
We repeat the Expectation-step and Maximization-step iteratively until convergence,

i.e., the difference between the estimated parameters

D(©,0") = \/IIC —CfE+ 1B =B|F + v = |13 + Jw§ — o 1%

is smaller than a threshold ¢y. We summarize the regularized EM algorithm in Algorithm

i} where © = {C, B, r,w?} and ©' = {C',B/,v/,w? }.

4 Theoretical Properties

In the following, we prove that when certain model assumptions hold, the estimated param-
eters can converge to those of the true model. Assuming for the true model, its parameter
set is denoted as ©* = {C*, B*, w?*, r*}. Condition [2| gives the upper and lower bounds of

the variances that ensure the data covariance matrix is not degenerate, i.e.,

Condition 2. All the eigenvalues of ¥* = (I — C*)"Tw2*(I— C*)~! should be greater than

a constant ns+ > 0 and finite, andVj € 1,...P andl =1,...,L;, we assume 7"]2'1 < 00.
Condition [3] ensures the identifiability of decomposition on Y.

Condition 3. The number of latent variables is smaller than the number of sampling points

for each function, i.e., K; <T,Vj=1,...,P.

By combining these three conditions, we can obtain the good property for all the models

in the equivalent class © in Theorem [I]

18



Algorithm 2 Algorithm for Largrangian dual problem
(n)
Q(s-1) y(n)»

Input: posterior distribution 2@(3_1), tolerance hyy, learning rate Ir, .
Initialize CX,C* a + 1,b « 0.
repeat
Update C¥, CF by minimizing G, by gradient method.
b b+ ah(W)
a<+lrxa
until h(W) < hyy
for i from 1 to P do

for j from 1 to P do

if ||Cij||r > 7 then

ct
HCL]”F

CiLj — CiLj — YA
else
Cl«0
end if
end for

end for

Theorem 1 (Equivalence class). Define the equivalence class of the true parameters ©*
as ®. Under Conditions |1] to @ for any parameters ©¢ = {C,B,r,w?} € D, it can be

represented by the following form:

— * .
B, = BIQ,,
¥
I‘jl—I‘jl,

2 2%
Wo = Wo s

* T
C]’jl'l = Q]C]/jl/lQ],7
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where Q; € RXi*Ki s an orthogonal matriz satisfying Q]TQ] = QJQf = 1. This states
that the equivalence class of the true solution is only the set of orthogonal transformations

of ©F.
Proof. The proof is in Appx. ]

Intuitively speaking, this indicates though we choose different orthogonal basis functions
to map Y, the spaces spanned by these orthogonal functional basis spaces are the same.
Therefore, we can obtain the true causal structure once we get any equivalent solution
0°e®.

Next, we aim to prove that our regularized EM algorithm is capable of discovering the
true causal order and parameters when the initial parameters O are close to the true

parameters ©*. We give the definition of population analogs of F,, and G,, in Definition [I}

Definition 1 (Population analogs). Define F' and G as the population analogs of F,, and

G, respectively, i.e.,

L .

F(B,0) = [ Y05 EaverlYs - Bxil3(Yi67)aY,

Jj=1 [l=1

<

G(C,0") = /Exw;e/HX —xC||3p(Y;0%)dY.

Using the Strong Law of Large Numbers, we can observe that as n approaches infinity, the

results F,, and G,, converge almost surely to F' and G respectively.

Theorem [2f shows the true parameters ©* can maximize the population log-likelihood

function and satisfy the self-consistency property (McLachlan and Krishnan) 2007)).
Theorem 2 (Self-consistency). When Conditions[] and [ hold, we can obtain ©* by min-
imizing G(-,©%) and F(-,©%).

Proof. The proof is in Appx. O

20



Next, we introduce the theorem related to causal structure. We define the causal order

7 in Definition 2

Definition 2. Since W s the adjacency matriz of a DAG G, the nonzero entries of W
define the causal order of graph m € Sp, which can be represented by a permutation over

1,2, ..., P. w(i) represents the position of node i in the order. A causal order 7 is consistent

with a DAG G if and only if:
W, # 0= 7(i) < 7(j). (22)

With abusive use of notation, we denote C(7) to address this C is consistent with

causal order m. Then define C() as the set of C(7) that has the same causal order 7, i.e.,

C(m) € C(m). Denote C§(m) = argmin G(C(7), O). Let IIf be the set of all causal orders
C(m)eC(n)

consistent with C*. Since Theorem [2 holds, we have Cg.(my) = C*,Vn, € 1L,

Condition 4 (Omega-min). Under Conditions|1] and[9, for all m ¢ 1T}, 31 > 0 that:
G(C*,0") — G(Cg«(m),0") < —n. (23)

Condition 4] assumes that if we restrict our model to a wrong causal order 7" ¢ IIf,
G(Cg«(7'), ©%) will increase by at least 7;. This is similar to the Omega-min condition in

Van de Geer and Bithlmann| (2013)), and is used to justify the precision of our true model.

Lemma 1. Under Condition@ a,nd@ 37y, the following inequalities hold for © € By(O*,7):

1 EvExy. 8) < oo;
(1), max  EvBuviel[x]) < o0

(2) , max  max EyEye(| Yo vllf) < oo;

3 i inEig(Cov(tier y) + Ze-) > 0;
()@eﬁrﬁg}*,ﬁ)mm ig(Cov(tie-y) o)

(4) eelﬁg%g}« fl)njl-iln Omin(EYEX\Y?@(leﬁgrl,e,Y)) > 0;
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where minEig() is the minimum eigenvalue of the matriz. omin(A) is k-th mazimum
singular value of the matriz for A € RT*¥ where opin(-) > 0 shows that the matriz is

column full rank. By(0*,r) :={6©|D(0,0*) < r}.
Proof. The proof is in Appx. O]

Lemma (1| shows that the posterior distribution p(x|Y;©) is not degraded and has

bounded variance when © € B,(©*, 7). We denote

sup EYEX\Y;G(”XHg) = XEUP’
O€B2 (0*,71)

sup  sup EyExye([YultjevlF) = youp
@GEQ(G*,F:[) ],l

inf inEig(C § 2 = Sinf,
@eBl?@*,ﬁ)mm ig(Cov(tey) + Xo) = Sinf

. . AT
inf  min oy (EvExo(Y 0 = binf
OB (0,71) i mm( X; ( J ﬂ,&Y)) inf

where xfup, yé‘up, Ssup, Pinf > 0 are universal constants depended on 7.

Lemma 2. Under Condition[4, 372, VO € By(0*,72), denote IIf = {r|r = arg min, G(Cg(7'), ©)}
and C§ = argminG(C§(n); ©). We have:
Co(m)

(1) g =11,

(2) For all m ¢ 11,30 < ny < my that:
Proof. The proof is in Appx. [A.4] O

Lemma 2 extends Condition {4 from ©* to all © € By(0©*, 7). It states that when ©
is close to ©*, we can still identify the true causal order by minimizing G(C,©). Taking
7 = min(7y, 73), Lemma [3[ and 4| provide the lower bound for the error when estimating C

and B, in a single iteration of the regularized EM iteration.
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Lemma 3. Under Conditions @ and suppose that we solve the optimization of Eq. (@)
with specified regularization parameters A and © € Bo(O*, 7). Since Bo(O*,7) is a contact

set, we denote cqp =  sup  sup||CE(m)ls,/r and d;lup = sup sup|ll—Cy(n)||%. If
O€By(0*,7) T O€By(0*,7) ™

the following conditions are satisfied for o1, 02,03 € (0,1),0, € (0,1/2):

d x4
772 > 2 % + )\(251 + 1)Csup’
1
2 4
dsustup

A2N 2

<1,

1 —201 — P!Moy — 03 >0,

4 8
Xsup Xgup
Sinf > +y | =
inf N 03N

Denote C and # as the matriz and corresponding causal order by solving Eqs. (@) with

©" = ©. Then the following statements hold true:
(1) With probability at least 1 — 20, — P\M oo, 7 € II§;

(2) With probability at least 1 — 20, — P!M oy — o3,

délupxﬁup
. —uESR A (207 + 1)cgy
IC ~ Callf < ——% =
xgup Xgup
Sinf — N N
Proof. The proof is in Appx. O]

Lemma 4. Under Condition |4 and @ denote By as the matriz that minimizes F(-,0)
with B§:Bg; = 1,Vj and B as the optimal solution to F,(-,0) with BJTBJ =1,Vj. Then

if for 04,05 € (0,1):

Yup N Yaup

1— Pos— Pos >0 d b —
04 05 , an £ N 03N

> 0,

with probability at least 1 — Poy — Pos, we have:

P (
IB - Bg||% < 5
2 [y2
(binf - yj\h}p + Z?}S)
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Proof. The proof is in Appx. O

Next, we aim to derive an upper bound for the total error bound of our regularized EM
algorithm, i.e., D(©") ©*) for total S iterations in the regularized EM algorithm. Under
certain conditions (seeing Conditions 5 and [6] in Appendix. [B.2)), Theorem [3 and Corollary
establish the convergence properties and error analysis of our regularized EM algorithm.
These results hold when the initial solution ©© is in proximity to the true solution, en-
compassing scenarios of both finite N and as N approaches infinity. Furthermore, this
property still holds when replacing ©* with any equivalent solution ©°¢ € . As Theorem
states, any ©°¢ € © has the same causal structure as ©*. Therefore, we show that our

regularized EM algorithm can effectively learn the correct causal structure locally.

Theorem 3. Assume Conditions[1] to[ and the conditions in Lemmas[3 and[] are satisfied,

and the EM estimator M(©) = argmax Q(0';0) — AR(C) is contractive with parameters
@/

€ (0,1) in the ball Bo(©*,7). Denote S as the total iterations of the regqularized EM
algorithm, we have

1

D(OY, 0% < DO, 0% €(0/S,N/S.T),
— K

where

0/S =201+ MPlos + 03+ Pos + Pos + Mgs,
1/2

dgup sup P YSup + Y§ups
g—N + )\(251 + 1)Csup n 04N

2
2
Sinf — sup —|— s“pS YSup ybups
m 03N binf - + 05N

Proof. According to Lemma [3]and [4] above, together with Lemma[11] and [I2] which gives the

e(5/8,N/S,7) = O((N/S)~7?).

error bound of r and w? in each EM iteration as O((N/S)~%/2) with probability 1 — M gg,
we can prove Theorem (3| following the procedures in Theorem 5 in |[Balakrishnan et al.

(2017). 0
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Corollary 1 (Asymptotic property). Based on Theorem @ we have the following two
corollaries:

(1) As N — oo, by setting A ~ N~V with v € (0,1/2), the conditions in Lemma @
hold. Then €(6/S,N/S,7) = O((N/S)T1H+2)/%) " and the total estimation error after S EM
iterations can be described as D(O®), 0*) < xID(0® %) + O((N/S))-1+2)/4),

(2) Under S — oo, N — oo and N/S — oo, we have O — ©* with probability 1.

5 Numerical study

To evaluate the performance of our methodology and selection of A, we apply our MultiFun-
DAG to solve a synthetic graphical model. We show the performance of our algorithm on
tasks of different combinations (N, P, Ly, Ky), where Vj = 1,..., P, we have L; = L, and
K; = K.

In each experiment, the graphs are generated by Erdos-Rényi random graph model,
where the functional data of the different nodes have the same Fourier basis v4(t), vs(t),
ey Vi (1):

k=1,

vi(t) = cos(2rut), k=2u, VuE€Zu=Ll

sin(2rut), k= 2u+1,

By combining Eq. , E(; and Eq. , we can write the representation of each
functional data. The generated transition matrix is C;; = ¢;/;1 LyxL; ® Ix, where cj; is
independently and identically generated from a uniform distribution ¢ (—2,0.5) U (0.5, 2).
The variance of noise is set by w2 = 1 and 7}2'1 =0.01,vj=1,...,P.

For model comparison, we select two methods from the literature and another two

variants of our MultiFun-DAG. The baselines compared in this paper are introduced below.
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Since they cannot be directly used for DAG with nodes as multivariate functions, we modify
these methods by concatenating multivariate functions as long univariate functions for

analysis.

e FDGM _S: The functional directed graph model proposed by [Sun et al. (2017)). To
deal with multivariate functional data for each node, we concatenate L; functional

data of each node as long functional data with L; x T" observation points.

e FDGM _G: The functional directed graph model proposed by (Gémez et al.| (2020).
To deal with multivariate functional data for each node, we concatenate L; functional

data as long univariate functional data with L; x T" observation points.

e MFGM: This baseline provides a two-stage method to model the multivariate func-
tional DAG. It first implements FPCA for each node separately to obtain their PC
scores. Then it treats these scores as X and uses the same structural learning method

as MultiFun-DAG to estimate the causal structure, i.e.,

1 2

st. tr(exp(WoW))—P =0,
where W and )\ have the same meaning as our method.

e NoTears: It first implements FPCA for the functional data of each node, where all
the nodes share a common set of K bases. After FPCA, the causal relationships
between each PC score of each original node are learned by NoTears (Zheng et al.,
2018). Then the causal relationships between all the PC scores from two nodes are

merged as the final causal relationship between these two nodes.

In this experiment, we aim to test the effectiveness of different methods to recover the

true DAG structures. For brevity, we give the F1 score of the arcs to represent model
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Figure 3: F1 score of the edges with 95% confidence intervals: F1 score with different

numbers of (a) samples N; (b) nodes P; (c¢) functions Loy; (d) bases K.

performance, i.e.,

Precision * Recall

F1 = 2% .
seore Precision + Recall

In Fig. [3] we see that our MultiFun-DAG has the best performance among all the
baselines. The performance increases as the number of samples N increases. MFGM has
a similar performance to MultiFun-DAG but performs worse when the number of function
data Lg increases. This justifies the importance of our joint estimation of X and C.

Meanwhile, by comparing MFGM with NoTears, we verify the benefit of learning the
DAG with vector-value nodes over the DAGs with scalar-value nodes. The difference in
performance between MFGM and NoTears increases as the number of nodes increases or
the number of functions increases. This is due to model complexity, i.e., the search space
of causal order in NoTears is much larger than that in MFGM.

Table [1| compares the result of our estimated parameters and the true parameters. In
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Figure 4: Heatmap of C* and the estimated C by MultiFun-DAG. Titles of the subplots

represent the results under different experiment settings of (N, \).

this case, we rotate the matrix B to the true matrix B*. The rotation equation is given by
Theorem : B = B,Q, and C;;, = Cl. ® (Q] Ck.Qp), where Q; is an orthogonal matrix.
The rotation process maintains the structure of DAG. Then we compare C and C*, by
HC — C*||%. Furthermore, MSE.y and MSE;,,, measures the l5 loss of ) for the estimated

model and the true model, which can be computed by:

N P Lj
1 S~ (n
MSEest = mzzz (n)|Ye||Y - Bx ( ||27
n=1 j=1 =1
1 N P L
MSEue = 577 2 2 2 IV = B
n=1 j=1 [=1

When MSEq; < MSE;, e, overfitting occurs. When MSEq; > MSE;, ., underfitting occurs.
A smaller [MSEqs —MSEi, |, which is denoted by |A[, indicates a smaller difference between
the estimated and true parameters. Besides, a smaller N needs a larger A to prevent

overfitting, and on the contrary, a larger N needs a smaller A\ to prevent underfitting.
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Table 1: Estimated parameters v.s. True parameters.

N XA |C=C*% MSEw MSEuw. |A]

800 0 1.21 1.99 2.013  0.02

800 0.1 47.20 2.29 2.013  0.28

20 0 238.40 0.99 2.006 1.02

20 0.1 107.74 1.46 2.006  0.95

This might be because large A increases the bias and robustness of our algorithm. Fig.
visualizes the estimated C (the structure) under different experiment scenarios and its

ground truth. With (N, X) = (800, 0), we could faithfully recover the structure.

6 Case study

In this section, we illustrate how our method can be applied to real-world urban traf-
fic data for root cause analysis of traffic congestion. We focus on three types of traffic
variables (nodes). (1) The real-time traffic setting variables, such as the real-time
Origin-Destination (OD) demand, turning probability, the cycle time of the traffic light,
etc., denoted as S(t) = [S1(t), S2(t), ..., Sp,(t)]. (2) The real-time traffic condition vari-
ables, such as the occupancy of each lane, the average speed of each lane, the average
waiting time of each lane, the number of vehicles in each lane, the number of halting ve-
hicles in each lane, etc., denoted as Y (t) = [Y1(t), Ya(t),..., Yp,(t)]. (3) The real-time
traffic congestion root cause variables, such as long/short cycle time of traffic lights,
phase imbalance, irrational guide lane, irrational phase sequence, imbalance of entrance,
etc., denoted as R(t) = [Ry(t),...,Rp.(t)]. Table [2] summarizes the abbreviations and
descriptions of each node.

We use the Simulation of Urban MObility (SUMO) (Krajzewicz et al. [2002) to syn-
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thesize the real-time traffic data. We collect data from S(t) and Y () every five min-
utes and simulate for 60 minutes. Therefore, each functional data has T = 12 obser-
vation points. For each node of Y;(¢),t = 1,...,T, it has four functions, defined as
Y; € R"™T j =1,..., P, For each node of S;(t) and R;(¢), it is a univariate function,
defined as S; e R, j =1,...,P;and R; e RT,j =1,..., P.. We set R;(¢) € {0,1}. Here
R;(t) = 1 indicates that the j-th type of congestion appears at time ¢, which is decided by
rule-based algorithms in transportation. Its data is also collected every five minutes, with

the same sampling grids as the other two types of traffic variables.

Table 2: Abbreviation and the description of traffic data

Node Name Description
S, e RT OD-A OD demand of all direction
S, € RT OD-S OD demand of certain direction
S; € RT T-A Turning probability of all direction
S, € RT T-S Turning probability of certain direction
Ss € RT CT Cycle time of traffic light
Y; € R>T oC Occupancy of each of 4 lanes
Y, € R™>T MS Mean speed of each of 4 lanes
Y; € RXT MW Mean waiting time of each of 4 lanes
Y, € R™T NV # of vehicles in each of 4 lanes
Y; € RT NH # of halting vehicles in each of 4 lanes
R, ¢ R” Cycle-L Long cycle time of traffic light
R, € RT Cycle-S Short cycle time of traffic light
R; ¢ RT Phase-imb Phase imbalance
R, e RT lanes-irr Irrational guide lane
R; ¢ RT  Entrance-imb Imbalance of entrance
R € RT Cyecle-irr Irrational phase sequence
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In the experiment, we set 11 levels on Sy, 3 levels on S, 3 levels on S3, 4 levels on Sy
and 4 levels on S5. Therefore, we have 11 x 3 x 3 x 4 x 4 = 1584 treatment combinations.
We run a single experiment on each treatment. In each experiment of S, we collect the
traffic situation variables Y and the congestion indicator variables R, and treat them as
one sample [S™, Y™ R™] for n = 1,2, ..., 1584.

Then we use MultiFun-DAG to learn the causal relationships between traffic setting
variables and traffic congestion root cause variables. Based on domain knowledge, traffic
setting variables have effects on the root cause variables, and different types of root cause
variables will affect traffic condition variables. Therefore we assume the one-way connection
from S to R and from R to Y. Moreover, we assume that there are no interior edges between
nodes in S and nodes in Y. However, we assume that some types of congestion will lead
to other types of congestion, i.e., there can be interior edges between nodes in R.

The causal relationships between the variables in MultiFun-DAG are illustrated in Fig.
[} and the probability interpretations are provided. The explainable insights about traffic
congestion can be derived. For example, the edges Lanes-irr — Phase-imb and Cycle-S
indicate that the irrationality of the guide lane could lead to the imbalanced traffic flow in
different traffic signal phases, with some directions having long traffic queues and relatively
short phase cycle. Thus, the guide lane should be better planned and the cycle time should
be extended. In reality, the conditional probability P(R;|S,Y) could also be used to predict

the root cause probability in reality.

7 Conclusion

This paper presents a new framework for DAG with nodes as heterogeneous multivariate

functional data. It simultaneously conducts functional decomposition for each node and
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Figure 5: The causal structure of traffic data.

uses the decomposition coefficients to represent the linear causal relationships between
different nodes. By conducting a tailored regularized EM algorithm, the DAG structure
together with other model parameters can be estimated based on a score-based structural
learning algorithm with continuous acyclic constraint. The effectiveness of our algorithm is
demonstrated by both theoretical proofs and numerical studies. Some future works include
extending the current MultiFun-DAG model to graphs with multi-mode data with both
functional nodes and vector nodes. It is also interesting to conduct root causal analysis

based on MultiFun-DAG for anomaly detection in multivariate functional data.
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Appendix

A Proof of theoretical property

A.1 Proof of Theorem [1

Proof. Denote ©, = {C(l),B(l),r(l),wS(l)} and Oy = {C(2),B(2),r(2),w§(2)} are two so-
lution in the equivalence class ®. Denote £ = (I — CW)~T,2MW(T — CM)~1 and
$® = (I-C®)Tw2®(I—C®)~! are the covariance matrices of x determined by ©; and

©,. Then the following equations hold true:

BV BOT 4 iV = BYSD) BOT 40001, Vil (25)
1 T 2 2 2)T . .
B! BY" =BPxY, B V(5.0 # (7, 0). (26)

For the Eq. , we have:

1 nT 2 2)T 2(2 2(1
B BOT - BPs? BOT _ (22 _ 20, (27)

If rjz.l( — 7"2(1) # 0 in Eq. , the rank of the right-hand side is T', while the rank of the
left-hand side is less than or equal to K; < T, so the equation does not hold. Therefore, we

have r2®) — ()—O andB E()B() —B()E()

jt Tji jLl 1B T ¥4, 4',1,'. This implies that

Bél) = B§-2)Qj with orthogonal matrix Q;. From Eq. 1.} we obtain 2! l],l, =Q; ]l],l,QT

The optimality and uniqueness of the solution are proved in Lemma 5.1 in |/Aragam et al.
(2015) under the assumption of equal variances (Condition [I). It is shown that for any
given (V| there exists a unique solution of C™. We can show that for any 3 satisfying

Jlj,l, = QX Jlﬂ, T, C? satisfying Q,;C J)l,lQT = ]ljl,l is also the unique solution for

»®@),
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A.2 Proof of Theorem

Proof. 1t is equivalent to prove that the optimal points to F(-, ©*) and G(-, ©*) are unique
since T and @} are determined on B and C. The uniqueness of F(-,©*) is guaranteed by
the uniqueness of polar decomposition. As for G(-, ©*), the uniqueness is proved by Lemma

5.1 in |Aragam et al.| (2015). O

A.3 Proof of Lemma [

Proof. Proposition. shows that the mean of posterior distribution tig y can be represented
by tie.y = Agvec(Y) and the covariance is represented by Se. It is easy to show that
Ag and g are continuous functions of © by following the forward & backward update in
Appx. [B.3] Therefore, (1) and (2) are hold.

For (3), from Lemma [5] we have:
minEig(Cov(lie- v) + Leo-) = minEig(T*) > ng-.

Because Ag and g are continuous for O, for some 0 < sjr < 1x+ and € = é(ﬁz* —

Sinf), 37, that VO € By(0©*,7,), we have:

~

|(Cov(tiey) + Ze-) — (Cov(tiey) + o)l < ciei.

From Lemma [0}, we have

~

IminEig(Cov(iiey) + Ze) — minEig(Cov(tie- v) + Ze-)

< Ci1€1,

and we have:

A

minEig(COV(ﬁ@,Y) + E@) > Nxzx — C1€1 > Sinf.

Then (3) is hold.
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For (4),Vjel,...,Pandl€l,...,L;, we have
EyExyior (Yt y o) = Exer (Bix;x)) = B; X%,

where B}X7 is column full rank since B} is column full rank and 3% is full rank. Therefore,
we have Jmin(BjE;l) > (0. Because Ag and ﬁl@ are continuous to ©, for some 0 < by, <
min;, amin(BjE;l) and €, = é(amm(BjE;l) — binf), 37,1 that VO € By (0%, 7 1), we have:
||EYEXIY;®*<leﬁﬁ,Y,@*) - EYEXIY;G(leﬁﬁY,@)”F < C2€2.
From Lemma [7], we have

O-min(EYEx|Y;6(leﬁﬁ’Y7@)) > omin(BjX]) — c2€2 > bing > 0.

Let 7:1, = mian fb,jl, then (4) is hold.

Finally, we set 7y = min(7,,7}) to obtain (1) to (4). O

A.4 Proof of Lemma [2

Proof. Since G(C,©) is a continuous function of O, Vny, 72, C, 37y that VO € By(O*, 7y),
we have |G(C,0) — G(C,0%)| < 5(m — 12), for some 0 < 1, < ;.
And from Condition [4] Vr ¢ II;, we have
G(C*,0") — G(C&«(m),0%) < —ny. (28)
Then V7 ¢ 11, we have
G(C",0) - G(Cs(n),0) <|G(C*,B)—-G(C" o)
+ G(C*,0%) — G(C§.(m),0")
+|G(Co(7), 0) — G(Cg(m), ©7)]

1 1

<_ J— J— —_ —_
2(771 772) Ui 2(771 772)
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Therefore, Vrr ¢ 115, we have:
G(Co,0) — G(Cg(m), ©) < G(C*,0) — G(Cg(m), ©) < —1p.

This shows that C§ () is not the minimum solution of G(C, ©), and we simultaneously

obtain (1) and (2). O

A.5 Proof of Lemma [3l
For Lemma [3] (1):

Proof. For a fixed © € By(0*,7), let C be the estimator that minimizes G, (C,©) +
AIC|l;,/r and is consistent with causal order 7. We have

1 . - A
~ Exivie [ XCo (7) — XC[7 + AllCllu

1 * * (A
< FExe(1X = XCh|7 — [X = XCh(#)]7)

(29)
2 * (A ~ * (A * (A
+ yExe(X — XCq(), X(C — Co (7)) + Al Co () 17
< (1) + (1) + AMCe (M)l /s
where (-, -) denotes the inner product, and || - || denotes the Frobenius norm. Next, we

will gives the upper bound for terms (I) and (II).

Bound (I):

(1) = Gu(Co, ) = Ga(Cg(7), ©)

< |Gn(Ce,0) — G(Cg, ©)] + G(Cq, ©) — G(Cy(71), ©) + |Gn(C (1), ©) — G(Co(7), O)].

We have the following statements, which show that the term G, (C,0) — G(C, O) has
expectation 0 and bounded variance:

(1) Ex(Gn(C, ©) — G(C, 0)) = 0:

(2) Var(G,,(C, 0) — G(C, 0)) = LVar(Exyelx — xC||2) < =rm
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By Chebyshev’s inequality, we have:

||I - CH Sup

P l|G.(C,0)-G(C, ) >
G.(C.6) = G(C,0) N

Using Eq. in (I), we obtain the following inequality with probability at least

1—2@11

I - C¢ I-Cy(n :

Bound (II):

To bound the second term, we aim to show that the following equation holds true with
high probability for §; € (0,1/2):

1 * (A ~ ® (A
L B (X - XC(#). X(C — Oy (4)
01

_2]\7

(32)
S Exy:e[X(C = Co ()7 + A C — Co () |l r

Let e;(m) € RY as the j-th column of matrix X — XC¥(7) and 8 € RM as the j-th

column of matrix C — C4(#). Denote &; is the event:

01

1
&= { sup N]EX\;V o(e;(T),X8) — ﬁExw;@HXﬁH% — 0Bl < 0} : (33)
BGRIM

where 8 = [/817/627 SR ’IBP] for ﬁz e R%*: and HIBHh/lz = Zz HﬁzHQ
Therefore, to prove Eq. , it suffices to show that for any given column j and causal
order 7, the event &£ hold with a high probability.

We can then express &; as:

e;()

1 e (7 1 I
& < { sup o Expyel ]5(1 Jp- LE ( ) — X853+ MIBllujm < 0}

1
{O € arg mln—E)qy;@ H

BERM 2N _X/Bug—i_)\HﬂHll/lz}
(S

Event &; is correspond to the Null-consistency of group lasso problem, we use Lemma
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to find the solution 8 and w,

B =0,

1
—E x 7 e
W = Ly el

e)()
01 )

Next we proof that ||[wl; s, < 1 holds with a high probability, where |[wl;_/, =
max;—1,__p||w;||2 and w; is the gradient corresponds to B;. To proof this, we bound the
variance of ||w||s.

We first prove that the expectation of w is 0 from Lemma [9] and we have

1 .
Iwi < AQNQ(SQEWHZX RO

n=1

1 n
T 2N ZEx<">\Y<n>,9HX el )( )|[F

1 n n *
< WWZE oy XXM (I — Co ()%

1T - C&(m)l17
S )\2N252 FZExWHY(")@HX ||2a

where,

N
Ey (Z Ex(n>|y<n>,e|\x(")”3> < Nxgps

n=1
N
4 8
ar (Z Ex(")|Y(">,9”X(n)||2> < Nxgyp-

n=1
”I_C*( )”Fxsup

Suppose we have W < 1. By Chebyshev’s inequality, we have

”1740)('{—):57‘-)”‘1{"}(8 fgu;) XS
NIN3sT Ssup MN35T S sup
P(|wl3>1) < 5 < = 09

2
1 ”I Cg (W)HF sup 1_ sup gup
)\2N52 )\2N52

Since ||w||i. /i, < [[W]]2, we have:
P([W sy 2 1) < 02,
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Thus, with probability 1 — g9, event &; holds true. Taking uniform control over all
possible 7 = 1,2,..., M and 7, we conclude that with probability 1 — M Plo,, Eq.
holds true.

Finally, for Lemma [3{(1), suppose @ ¢ IIj, then G(Cg,0) — G(C§(7),0) < —ns, and
we back to Eq. . With probability 1 — o1 — M Plgs, we have:

1 A .
—ExlyGHXCe( ) — XC||%+)‘||C||11/F

\/HI—C’éH \/HI—C*A (34)
o N

+NEX|)J®||X(C Co(m ||F+251)\||C Co (@) liyr + MCo(T) |1y /-

For 6; € (0,1), we have:

1 .
—Exly ®||XC9 ) XCH%

\/H Qcﬁ sup \/” Ko + A(201 + 1) Coup-
1

It contradicts with the condition that:

dgupxglup
My > 2 Ql—N + )\(251 + 1)Csup-

For Lemma (2): we denote that A = C — Cg(7), we have:

N
1 1 R .
NEXD’;@HXAH% - N Z Hu@,Y(n)AH% + tl‘(ATZQA)

n=1

N
1 . ~
= tr AT N E Y(”) u®7Y(n))A) + tr(ATz(_)A)

N

2 ||A\|%minEig< Z ymle ym + 29) :

Denote ®g = ZnN:1 U v le vy + 3o and denote ®¢ := Ey(Pe). From Lemma
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, we have minEig(®e) > siur, and

N
_ 1 . X _
[®e — ®oll? = I D vemle v — Poli
n=1

1 & _
= -5 210G yeotie vy — ®ell7
N n=1

| X N
=2 D 18 v tio e — Y (08 o e ywn) 15
n=1 n/=1
where,
N N
= (32 e = 0 o) < 2,
n=1 n'=1
N N
Var Z ||ﬁg,y<n> Ug y(m) — Z(ﬁgy(n')ﬁ@y(n’))HZF) < NXSup-
n=1 n/=1
By Chebyshev’s inequality, we have:
4 8
_ X X
P @ o @ 2 > sup sup <
1o — Pollr = — + LN | <%
P inEi ((I) inEi (i > X;lup Xgup
— <
|minEig(®g) — minEig(®e)| > N + i 03,
. . XgLup Xgup
P | minEig(®g) > sjur — N + 0N >1— ps.

Then, with at least probability 1 — 20, — P!M gy — 03, we have 7 € II, therefore:

vExpiel XA

2
IAlF <
X4 XS
Sint — |/ 2 + (/2%
2 dgupxgup )\ 25 1
N + ( 1+ )Csup
< 01
s _ Xglup Xgup
inf N 03N
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A.6 Proof of Lemma

A A~

Proof. Because Bf]g] =L tr(BTS;B;) = tr(3;) is a constant unrelated to B,. For a

fixed 7, the estimator of Bj is given by:

B —argmmNL ZZHYJZ l@Y — Bl

J n=1 1=1

st. BTB; =L

We denote Z = NL SN Y JZ)A%)@TXW and Z = Ey(Z). We consider Z is a small

perturbation of Z = Z + E and use the perturbation theory of Polar decomposition. From

Li (1993)), we obtain that:

1Z — Z||»

”B B HF = . — = 14
min{||Z*[|57, | Z*]|5"}

(35)

where | Z¥]|5"! and ||Z*]];" is smallest singular value of Z and Z greater than 0. Next,
we bound the numerator and denominator of RHS of Eq. (37)).

For the numerator, we have

J

1 _
I o T

J =1 1=1
N L;

1 1 ()T 9
Z“L_Z jl u]lgvy(n)) _Z||F7

J =1
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where

N L;
1 n)(n)T
Ey | DI D (Y a0 vo) — 2%
n=1 J =1
L;

| A
=NEy | |+~ >_(Yaifey) — ZIl%

=1

L.
N d R
=728y ( Y (Yitfey —2)|7

L.
N : .
gL—EY ”leujl;@,YH%“
J =1
<Nyl
and
N L;

1 n) ~(n)T
Var (D D (Y050 ) — ZIlE | < Nyh,.

n=1 J =1

then by Chebyshev’s inequality, we have:

N v
pllz -7z > lw Jsw | 36
I IF = =7 + N 04 (36)

For the denominator, from Lemma (3) By Chebyshev’s inequality, we have:

. v ya
Pl IIZT]5Y < by — 4| 2522 s | 37
|1Z7]]3" < bint ~ 0N 05 (37)

Combine Eq. (36) and Eq. (37)), at least probability 1 — o4 — g5, we have:
y2 v
Youp 4 /Ysup
- . N N
1B, — B, 7 < - : (38)

2
1 Yau Yiu
( " N TV N )

Finally, we take the uniform control for all nodes j = 1,2,..., P, then with probability
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1 — Po, — Pps;, we have:

¥2, v
L r(E)
|IB-Bgl# <

-
2 4
. o Ysup Ysup
(blnf N + Q5N)

Il
B Minor Lemma and Derivation
B.1 Minor Lemma
Lemma 5. Ey(ﬂ@*’y) =0 and COV(ﬁ@*yy) + 2@* = (I — C*)_ng*a: — C*)_l.
Proof. We have
EyEx|Y;@* (X) = Ex‘@* (X) = O,
CovEyjy 0 (x) + EyCovyy.e+ (x) = Covye-(x) = (I — C*) Twg* (I — C*) "
Il

Lemma 6. For any positive definite matriz A and B, minEig(A)—minEig(B) < ||A—B||F.

Proof. 1t is straightforward from [Li (1994) that we have

\/Z(M,i — i) < [[A = BllF,

2

where A4 and Ap are the eigenvalues of matrix A and B. O
Lemma 7. For any matriz A and B, we have oyin(A) — omin(B) < [|JA — B||¢

Proof. 1t is straightforward from Mirsky| (1960) that we have:

\/Z@—A,@» o5 < ||A - B|p,

7

where 04 and op are the singular values of matrix A and B. O
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Lemma 8. The B8 = 0 is the optimal solution of the penalized Lasso with ly/ly penalty

ﬁEXW;@HeJ;f) — XB|| + A|B|i,/r if the following condition is hold:

w € 0| Bllu/r,
1 e;(T)
—ExjyeX (L= —XB)+Aw =0
v ExiveX ( 5 B) +Aw =0,
Wl s < 1.
Proof. 1t is straightforward by following Lemma 1 in |Aragam et al.| (2015)). O

Lemma 9. VO and wr, denote e;(r) is the j-th column of X—XC¥(w). We have EyEx|y o(XTe;(m)) =

0, V.

Proof. Since e;(7) is the j-th column of X — XCg (7). Therefore, C§, satisfies

0G(Cs, 0)
oC

EyExjvio(x(x; —xCo(7);)) = 0,5,

=0,

EyEyv.o(xej(r))) = 0.
Therefore, we have ]EY]EX|Y7@(XT%;T)) =0. O

Lemma 10 (Balakrishnan et al. (2017)). For radius ¥ > 0 and pair (v, ) satisfying
0 < v < B, suppose that the function Q(-,0%) is globally [-strongly concave, and the
Condition[6 holds on the ball By(©*, 7). Then the EM operator is contractive over By (0%, 7),
i particular with:

D(M(©),0%) < %D(@, 0"

Lemma 11. Denote the t% ¢ as the variance determined by Bg and t as the variance

determined by B from Eq. (@ Under Lemma we have

My},
Nos

8% — 25763 <

1
+0(53)
with probability 1 — M og.
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Proof. We have
1 N
i = 7 LB ol Vi~ Bl

- L S By oll V) — Bt + B — B

n=1

= 2 By o (Y57 = Box I3+ 1Boxy — Bx[3 +2(Y5) — Box), Boxy — Bxj)”)).
n=1

Denote e, = 7% — =5 |E [y ), eHle —F *@xg?)H%, we have

N
]- n = n * n n
= 2 B o(1BEx7 — B+ 2(Y7 — Box? Box(y ~ B

< %< 2By + 25
Denote e, = 77 — LYV E Wy, @||Yﬂ . 6X§7)||§, we have
() = 0.
Var(e]) < -y,

Therefore, using Chebyshev’s inequality, with probability og, we have

YSup

Ple >
Nos

< O¢-

and with 1 — gg, we have

o Vi
r < 2||Bg 2Vsu ==
’6 | + |€r‘ — N( sup + || HFXsup + y p) + NQﬁ
Thus,
~2 %2 YSup 1
(rjl - 7’jl,@) S NQG + O(N2)

Taking uniform control of all 5,1 that, with probability 1 — M g we have

My4 1
82 _ oo sup
[ ﬂ@)”z Nog + O(m)
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Lemma 12. Denote the wi* is the variance determined by C§ and &3 is the variance

determined by C from Eq. . Under Lemma@ we have

d4 x4
=g < —Sz]\j“p + A(261 + 1)cCsup

with probability 1.
Proof. From Eq. (21)), we have

N
1 I
(A)g = W ;Ex(n)w(n)ﬂx( ) — X( )CHg

<2 B + A28, + 1)
= Ql—N 1 Csup

B.2 Conditions to ensure the convergence of EM algorithm

To utilize the theorem proposed by Wang et al| (2015) and Balakrishnan et al.| (2017)), we
denote @ as the population analog of @,. Condition [5] and [6] are common conditions to

satisfy the convergence of EM algorithm.
Q(@a @,) = ]EY]Ele;@/ 1Og f(X7 Y7 6)
= [ 6(Y:0") [ plxlYi0)log fx, Y ©)dxdY.

Condition 5 (Concavity-Smoothness). For any 01,0, € By(0*,7), Q(- ;0%) is a-

smooth, i.e., denote the 01,05 are the vector form of parameter set ©1, 4, we have
Q(6:1,6") > Q(6:2,0") + (6 — 6:)"VQ(02:6) — Z 12~ b |
and (-strongly concave, i.e.,
Q(0:,0%) < Q(0:,0%) + (6 — 6:) (05 0") L, — ..
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Condition 6 (Lipschitz-Gradient). For the true parameter ©* and any © € By(0*, 1),

denote 0,0 are the vector form of parameter set ©, 0%, we have:

IVQ(M(©);07) = VQ(M(O); ©)l2 < 7[|6 — 67| (39)

B.3 Computing Expectation
B.3.1 Forward filtering

When using forward filtering in DAG, we need to know source of the noise, this process is

implement by the matrix G and H, which record the coefficients of the noise from Eq. @

and Eq. (T).
We, denote:

o X: X =[Xy,...,Xp] with size N x > L;K;, which is the distribution of X before
forward filtering.

e X : X = [Xy,...,Xp] with size N x > L,K;, which is the distribution of X after

forward filtering.

X : X = [Xy,...,Xp| with size N x 3. L;K;, which is the distribution of X after

backward smoothing.

£:&=&,...,&p] with size N x )_ L;K;, which is the noise from Eq. (7).

o c:e=[en(th),en1(ta), ...,epr, (tr)] with size N x > L;T, which is the noise from Eq.

(i
e G : Coefficient of noise (from Eq. (7)) with size Y- L;K; x > L;K;.

e H : Coefficient of noise (from Eq. (1)) with size Y L;K; x > L;T.

o1



e G : Posterior coefficient of noise (from Eq. ) with size Y L;K; x > L;Kj.
e H : Posterior coefficient of noise (from Eq. ) with size Y L, K; x > L;T.

e G : Coefficient of noise after backward smoothing (from Eq. ), with size Y L; K; X

S LK.

e H : Coefficient of noise after backward smoothing (from Eq. ) with size Y L, K; X

S LT,

Then X, X, X have following representation:

x™ = u® 4 Ge™ + He™
%™ — 6™ 4 Ge™ + Fe™

%™ = a4 G¢™ 4+ He™

where 11, 1 and 1 represent the mean of x, x and x.

Update for prior:

52



), 3,), where:

J
Z CT ~(n)

k€pa;

=Y CLGy +1c())

kepa;

H; = ) C[H,

k’epa]‘

Therefore, xg.") ~ N(u

3, = WSG’]’G? + deiag(r)H;‘-F

where Ig(j) is a ) L;K; x > L;K; matrix with the identity matrix in the submatrix
corresponding to node j, Ig(7);; = Ir,k,x1,K; -

Update for posterior: We estimated the posterior distribution of x in n-th sample,

Y( B X(”) + 6(”)

= B;(u} + Gjut™ + Hye™) + )

Therefore, Y rv/\f(B ul" B, i2B] +r3Ir), where: And we have:

gt
X N ajy) i %;Bj
Yy Bju') B,X; B;Z;B! +r3Iy

The posterior x;;|Y;; ~ N (i, fljl), where

1)) = u + ;BT (B; ;BT +21r) (Y, — Bjul)

G = Gy — B} (B;%;B] + r3lr) ' BGy,

I:Ijl -

Hj — zj,Bf(szj,Bf + rJ?ZIT)—l(BHj, + I (5,0))

where Ig(j,1) is a ) L;T x > L;T matrix with the identity matrix I in the submatrix
corresponding to the [-th function in node j, In(4,1);1.5 = Ir.
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B.3.2 Backward smoothing

For k and the descendants j, we derive the covariance of nodes j, k:

ij,k = wgéjéf + I:I]D(I')I:Ir‘kr

2 (n) ~(n) S S
x u pIA 3 de(k
k N k 7 ) (k)
2 (n) ~(n) S S
X de(k) Wie(k) Vde(k)  de(k)
Derive p(Xk|Xde(r), Y):
~(n) _ =(n) | ¥ -1 (~(n) ~ (1)
u,=u Ek,de(k)zde(k)(ude(k) - ude(k)>

Gy =Gy, — z~31e,cle(k)2;el(k)(éde(lc) - Gde(k))

H; = H; — Ek,de(k)z];el(k) (Hgery — Haer))
Finally, posterior mean of x is 1 and the posterior variance is:

> = wiGGT + Hdiag(r)HY

o4

(40)
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