
MultiFun-DAG: Multivariate Functional
Directed Acyclic Graph

Tian Lan
Department of Industrial Engineering, Tsinghua University

Ziyue Li
Information Systems Department, University of Cologne

Junpeng Lin
Department of Industrial Engineering, Tsinghua University

Zhishuai Li
Sensetime
Lei Bai

Shanghai AI Laboratory
Man Li

Department of Industrial Engineering and Decision Analytics,
The Hong Kong University of Science and Technology

Fugee Tsung
Department of Industrial Engineering and Decision Analytics,

The Hong Kong University of Science and Technology
Rui Zhao
Sensetime
Chen Zhang

Department of Industrial Engineering, Tsinghua University

April 23, 2024

Abstract

Directed Acyclic Graphical (DAG) models efficiently formulate causal relation-
ships in complex systems. Traditional DAGs assume nodes to be scalar variables,
characterizing complex systems under a facile and oversimplified form. This paper
considers that nodes can be multivariate functional data and thus proposes a multi-
variate functional DAG (MultiFun-DAG). It constructs a hidden bilinear multivariate
function-to-function regression to describe the causal relationships between different
nodes. Then an Expectation-Maximum algorithm is used to learn the graph struc-
ture as a score-based algorithm with acyclic constraints. Theoretical properties are
diligently derived. Prudent numerical studies and a case study from urban traffic
congestion analysis are conducted to show MultiFun-DAG’s effectiveness.
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1 Introduction

Directed acyclic graph (DAG), a.k.a., Bayesian network, is a probabilistic graphical model

that represents a set of variables and their causal relationships. In a DAG, each node corre-

sponds to a random variable, and each directed acyclic edge represents a causal dependence

relationship between the two variables, i.e., a parent node and a descendant node. The

distribution of each variable can be written as a conditional probability distribution given

its parent nodes and is independent from other nodes. DAG has been widely used to offer

vital insights for causal relationship discovery in biological (Aguilera et al., 2011), physical

(Velikova et al., 2014), social systems (Ruz et al., 2020), etc.

Previous work has thoroughly studied DAG with each node as a scalar variable (Heck-

erman, 2008). However, it is common to come across systems where the variables have a

functional form, as shown in Fig. 1. (b). Functional data is formally defined as the data

with each sample in the form of random curves or functions over a continuum, such as

time or space (Qiao et al., 2019), which is commonly observed in complex systems such as

medical science (Chen et al., 2018), physiology (Li and Solea, 2018), and climate (Fraiman

et al., 2014). For example, in urban transportation, sensors collect the real-time signals

of the traffic elements, such as traffic volume, vehicle speed, lane saturation, cycle length

of traffic lights, and weather, which are all functional data and can be combined into a

multivariate form. By modeling these traffic variables as different nodes in a DAG to learn

their causal relationships, root causes for traffic congestion can be identified, and then

corresponding actions can be taken (Lan et al., 2023).

We consider the DAG in which each node can be multivariate functional data, as it can

describe the practical systems more pertinently than the scalar-based ones. Such a DAG

has three critical properties: (1) Infinite dimensionality: Functional data are naturally
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Figure 1: Scalar-based DAG v.s. Multi-Functional DAG. Each node is a scalar or func-

tional variable, and the directed edge is the causal dependence. MultiFun-DAG learns the

unknown causal edge (solid) via formulating the func2func relationships (dotted).

infinite-dimensional, and in theory, can have infinitely many points; Though in practice

functional data is usually discretized or approximated to a finite number of observation

points. However, the theoretical foundation is that the true underlying functional observa-

tion is of infinite dimensionality. (2) Data heterogeneity: Functions of different nodes

can be heterogeneous, such as containing various numbers of functions and coming from dif-

ferent spaces. (3) Inter-causation: Functions of different nodes could be inter-correlated

in different ways, i.e., different functions of one node can have different causal effects on

another function of another node.

As a result, traditional scalar-based DAGs cannot be easily extended to our case.

This paper aims to build a Multi-Functional DAG (MultiFun-DAG) to learn the

valuable causal dependence structure among different multi-functional nodes. The task

is unfolded by three concrete questions: (1) how to preserve the information and describe
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causal dependence relationships for infinite functions? (2) how to model and fuse the causal

dependence relationships between multiple functions in any two nodes and build an edge

between them? (3) how to conduct structural learning and parameter learning for these

edges?

To address these challenges, we are the first to propose a novel DAG to learn the causal

structure with multivariate functional data, with the following major contributions:

• We model the causal dependence relationships between nodes with multiple func-

tions via hidden bilinear function-to-function (func2func) regression with low-rank

decomposition.

• We propose an Expectation-Maximization (EM) algorithm in the score-based struc-

tural learning framework to learn the DAG structure with acyclic constraint and

group lasso penalty.

• We derive the theoretical properties of the model, including its identifiability and

asymptotic error bound of the EM algorithm, and the asymptotic oracle property of

our structure learning algorithm.

2 Related Work

2.1 DAG structural learning methods

Methods for DAG learning can be categorized into combinatorial learning and continuous

learning algorithms.

Combinatorial learning algorithms solve a combinatorial optimization problem to

find whether an edge exists between any two nodes. This type of method can be further

divided into constraint-based and score-based algorithms.
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Constraint-based methods, such as PC (Spirtes et al., 2000), rankPC (Harris and Dr-

ton, 2013), and fast causal inference (Spirtes et al., 2000), learn the edges by conditional

independence tests. However, they are built upon that the independence tests should accu-

rately reflect the independence model, which is generally difficult to be satisfied in reality.

As a result, these methods suffer from error propagation, where a minor error in the early

phase can result in a very different DAG.

The score-based methods instead construct a score function to evaluate DAG structures

and select the graph with the highest score. Some commonly used score functions include

the likelihood function, mean square fitting error, etc. Some further regularization items on

edges are also added in the score to learn a sparse graph (Chickering, 2002; Nandy et al.,

2018). Then greedy searches are implemented to find the graph with the highest score.

However, one drawback of the combinatorial score-based method is the nonconvexity of the

combinatorial problem. The acyclicity constraint means that the solution space stretches

along all topological orderings that have d! permutations in a graph with d nodes, rendering

DAG learning an NP-hard problem.

Continuous learning algorithms formulate the acyclic constraint into an algebraic

form and convert the structure learning problem into a purely continuous optimization

problem to save computation cost. In particular, Zheng et al. (2018) proposed NoTears,

which formulates an algebraic form as h(W ) = tr(exp(W ◦W )) − d = 0, where W is the

adjacency weight matrix, tr(·) is the trace, and ◦ is Hadamard product. This idea was

popularly borrowed in many preceding works. For example, Zheng et al. (2020) develops a

nonparametric DAG based on NoTears Bhattacharya et al. (2021) considers both directed

and undirected edges based on NoTears. Besides, Ng et al. (2020) also proposes a soft

constraint for acyclicity. However, the NoTears-based methods only offer solutions for
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scalar-variable nodes. The more realistic problem where nodes contain heterogeneous multi-

functional data has never been addressed so far.

2.2 Functional graphical models

Functional graphical models (FGMs), as an extension of traditional graphical models, de-

scribe the probabilistic dependence between nodes with functional data and could poten-

tially offer solutions for functional DAG learning. According to the direction of the edges,

FGMs can be divided into undirected FGMs and directed FGMs.

The undirected FGMs focus on estimating the correlation dependence structure be-

tween different nodes. In particular, Qiao et al. (2019) proposes a functional graphical

Lasso model to describe the sparse correlation dependence structure of different functional

nodes. As an extension, Qiao et al. (2020) proposes a doubly FGM to capture the evolving

conditional dependence among functions. Later more FGMs were proposed, such as using

nonparametric additive conditional independence model (Li and Solea, 2018), assuming the

dependence to be partially separable (Zapata et al., 2022), or heterogeneous (Wu et al.,

2022), etc. However, undirected FGMs only capture the correlations, instead of causation,

of nodes.

For directed FGMs focusing on the causal relationship of nodes, the current research is

scarce. Sun et al. (2017) proposes a DAG that considers both scalar and functional nodes.

Yet it assumes the DAG structure is known in advance. Gómez et al. (2020) considers DAG

with each node as a univariate function. However, it still assumes the topological ordering

of nodes should be known in advance by domain knowledge, and transforms the structural

learning problem into a parameter selection problem, i.e., selecting the parent node from

the candidate parent set. Furthermore, Gómez et al. (2020) is a two-step framework by first
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adopting functional principal component analysis (FPCA) to extract features for each node

separately, and then using the FPCA scores to model the causal effects. However, since

its FPCA totally ignores the causal relationships between different nodes, the extracted

PCs may not represent the most useful information in the whole network. Then the causal

effects estimated based on these PCs may be misleading and lead to higher estimation

errors.

3 Proposed Model

Suppose that a graph G = (V , E) represents a DAG with a vertex set V ∈ RP and an

edge set E ∈ RP×P , with P denoted as the total number of nodes. A tuple (j, j′) ∈ E

represents a directed edge leading from node j to node j′, i.e., j → j′. Here we assume

the node j has Lj functional variables, with Yjl(t), t ∈ Γ denoted as its l-th function, for

l = 1, 2, ..., Lj. Here without loss of generality, we assume Γ = [0, 1] is a compact time

interval. Suppose we have N identically and independently distributed samples. The n-

th sample, n = 1, . . . , N , is formulated as Y(n)(t) = (Y
(n)
1 (t),Y

(n)
2 (t), ...,Y

(n)
P (t))T , with

Y
(n)
j (t) = (Y

(n)
j1 (t), Y

(n)
j2 (t), ..., Y

(n)
jLj

(t)). Therefore, Y(n)(t) represents L =
∑

j Lj functions

of all the nodes, which is a vector. Our MultiFun-DAG aims to learn the causal relations

between different nodes, i.e., the edge set E , shown as red lines in Fig. 1.

To achieve it, in Section 3.1, we first assume that the causal structure E is known, and

construct a hidden bilinear func2func regression, to learn the conditional dependence from

the function l of node j to the function l′ of node j′, shown as the green dotted edge in

Fig. 1. In Section 3.2, we show that causal structure is non-identifiable under maximum

likelihood estimation. Therefore, we introduce a restriction for DAG structure and its

necessity. In Section 3.3, we combine the restriction in Section 3.2 and propose an EM
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Figure 2: The Illustration of MultiFun-DAG

algorithm for learning the causal structure of MultiFun-DAG.

3.1 Multi-functional DAG with known structure

We first give an overview of our MultiFun-DAG in Fig. 2. Our function Yjl(t) follows

Gaussian distribution in Eq. (1) with mean function µjl(t). The mean functions follow

func2func regression in Eq. (3) with their parents in DAG. To preserve the information

for infinite functional variables, we decompose the mean function into a basis set with

coefficients in Eq. (4). Then we conduct a bilinear regression for the coefficients to describe

the linear causality of different nodes via Eq. (7). The joint likelihood of coefficients of all

the nodes can be represented using a linear Structural Equation Model (SEM) (Eq. (8)).

In this paper, we focus on Gaussian distributed function:

Y
(n)
jl (t) ∼ N (µ

(n)
jl (t), Rjl(·, ·)), (1)

where µ
(n)
jl (t) is the mean function and Rjl(·, ·) is the covariance function of Y

(n)
jl . We
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assume that Rjl(t, t
′) = r2jlI(t = t′), where r2jl is the scale of variance. The parent set

of node j is denoted as Aj = {j′|j′ ∈ V , j′ ̸= j, (j′, j) ∈ E}. We assume that the joint

distribution of µ
(n)
jl (t) of all the nodes can be written as the production of the conditional

distribution of each node, i.e.,

p(µ
(n)
11 (t), . . . , µ

(n)
PLP

(t)) =
P∏

j=1

Lj∏
l=1

p(µ
(n)
jl (t)|Aj). (2)

We focus on linear conditional dependence relationship for p(µ
(n)
jl (t)|Aj), which is formu-

lated as below:

µ
(n)
jl (t) =

∑
j′∈Ap

Lj′∑
l′=1

∫ 1

0

γj′jl′l(t, s)µ
(n)
j′l′(s)ds+ ε

(n)
jl (t), (3)

where ε
(n)
jl (t) is the noise function. γj′jl′l(t, s) is the coefficient function for (j′, j) ∈ E ,

l = 1, 2, ..., Lj and l′ = 1, 2, ..., Lj′ , which describes the contribution of the l′-th function of

node j′ to the l-th function of node j. We represent γj′jl′l(t, s) and µjl(t) as follows:

For µjl(t): Given they are in infinite dimensions and hard to be estimated directly, it

is common to decompose them into a well-defined continuous space for feature extraction:

µ
(n)
jl (t) =

Kj∑
k=1

x
(n)
jlkβjk(t), (4)

where Bj(t) = (βj1(t), βj2(t), ..., βjKj
(t))T is an orthonormal functional basis set for node

j, with
∫
βjk(t)

2dt = 1, k = 1, . . . , KP and
∫
βjk(t)βjk′(t)dt = 0, k ̸= k′. x

(n)
jlk is the

corresponding coefficient.

For γj′jl′l(t, s): , we describe γj′jl′l(t, s) using the corresponding basis sets in a bilinear

way (Hoff, 2015) as:

γj′jl′l(t, s) =

Kj∑
k=1

Kj′∑
k′=1

cj′jk′k · cj′jl′lβj′k′(s)βjk(t). (5)

cj′jk′k represents the influence caused by the basis pair: βj′k′(s) on βjk(t). cj′jl′l represents

the influence caused by the function pair: function l′ of node j′ on function l of node j.
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This decomposition describes the regression coefficient function from two aspects, i.e., (1)

the basis set of a node and (2) the variables of a node, separately. Besides, it also improves

estimation stability.

By plugging the representation of Eq. (4) and (5) into Eq. (3), for function l in node

j, we could obtain:

Kj∑
k=1

x
(n)
jlkβjk(t) =

∑
j′∈Aj

Kj∑
k=1

Lj′∑
l′=1

Kj′∑
k′=1

∫ 1

0

cj′jk′k · cj′jl′lx(n)
j′l′k′βjk(t)β

2
j′k′(s)ds+ εjl(t). (6)

By integrating this equation over s, and combining all the parameters x
(n)
jlk into a vector,

i.e., x
(n)
j = vec(x

(n)
jlk) ∈ RLjKj , where [x

(n)
j ]i represents the [(i − 1) mod Kj] + 1 coefficient

of the function ⌊(i− 1)/Kj⌋+ 1 in node j, Eq. (6) can be re-written as:

x
(n)
j =

∑
j′∈Aj

(CL
j′j ⊗CK

j′j)
Tx

(n)
j′ + ξ

(n)
j . (7)

Here CL
j′j ∈ RLj′×Lj with [CL

j′j]l′l = cj′jl′l,C
K
j′j ∈ RKj′×Kj with [CK

j′j]k′k = cj′jk′k. ⊗ is the

Kronecker product. ξj ∈ RLjKj is the noise of xj, where [ξj](l−1)Kj+1 to [ξj]lKj
are the

projection of ε
(n)
jl (t) on its corresponding basis set for j = 1, . . . , P, l = 1, . . . , Lj. Here we

assume ξ
(n)
j ∼ N (0,Ωj) with Ωj ∈ RLjKj×LjKj . For brevity, we simply assume Ωj has a

diagonal form, i.e., Ωj = diag(ω2
j).

Lastly, we use a linear SEM to interpret our MultiFun-DAG. We denote C ∈ RM×M

with its (j, j′) block as C(j′,j) = Cj′j, Cj′j = CL
j′j ⊗ CK

j′j if (j, j′) ∈ E , otherwise we have

C(j′,j) = 0Lj′Kj′×LjKj
. Then for x(n) = [x

(n)
1 , . . . ,x

(n)
P ] ∈ RM , a linear SEM interpretation

is:

x(n) = CTx(n) + ξ(n). (8)

Here M =
∑P

j=1 LjKj, ξ(n) = [ξ
(n)
1 , . . . , ξ

(n)
P ] ∼ N (0,Ω) is the noise vector. Ω =

diag(Ω1, . . . ,ΩP ).
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In reality, Yjl(t) can only be measured at certain discrete observation points. In this

paper, without loss of generality, we assume that, for all the nodes, the sampling points

are equally spaced as t1, . . . , tT . Then we define X = [x(1)T , . . . ,x(N)T ]T ∈ RN×M ,Y
(n)
jl =

[Y
(n)
jl (t1), . . . , Y

(n)
jl (tT )]. By abusing the notation Y(n) = [Y

(n)
jl , j = 1, . . . , P, l = 1, . . . , Lj]

and Y = [Y(1), . . . ,Y(N)] for convenience, we can write the joint likelihood of the generative

model as:

f(X,Y) =
N∏
i=1

p(x(n))p(Y(n)|x(n)), (9)

where p(x(n)) and p(Y(n)|x(n)) are computed by Eqs. (1), (4) and (8). It is to be noted

that our model can also be applicable to functional nodes measured at distinct observation

points with different lengths, with trivial notation modifications.

3.2 Non-identifiability and equivalence class

In reality, the graph structure is unknown and to be estimated. This can be transferred

to infer whether the weight CL
j′j and CK

j′j equals 0 for certain blocks. In particular, the

parameters to be estimated in our model includes 1) the weights CL
j′j and CK

j′j for nodes

j, j′ = 1, . . . , P ; 2) the variance of functional noise, denoted as r = [r211, r
2
12, ..., r

2
PLP

] ∈ RM ;

3) the variance of xj, i.e., Ω1,Ω2, ...,ΩP , denoted as Ω[1:P ]; 4) the basis functions Bj(t) =

[βj1(t), βj2(t), ..., βjKj
(t)]T for node j = 1, . . . , P . It is to be noted that in reality, we only

need to estimate Bj = [Bj(t1)
T , . . . ,Bj(tT )

T ]T , denoted as B = [B1,B2, . . . ,BP ]. For other

observation points, we can adopt Kernel smoothing to estimate them easily.

The parameters Θ = (C,B, r,Ω[1:P ]) are statistically nonidentifiable without further

constraints. Based on our model structure, the marginal distribution of Y follows a Gaus-

sian distribution with mean 0 and covariance function ΣY(Θ), which is determined by the
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parameters Θ, i.e.,

ΣY(Θ)jl,j′l′ =


Bj[(I−C)−TΩ(I−C)−1]jl,jlB

T
j + r2jlIT (j, l) = (j′, l′)

Bj[(I−C)−TΩ(I−C)−1]jl,j′l′B
T
j′ o.w.

. (10)

We aim to estimate the model parameters Θ based on the information from the observed

covariance matrix ΣY. However, it turns out that the mapping from Θ to ΣY(Θ) is not

one-to-one, i.e., one ΣY can correspond to multiple sets of model parameters Θ. Denote the

true covariance matrix as Σ∗
Y = ΣY(Θ

∗), where Θ∗ is the true underlying parameters. We

define the set of all Θ whose ΣY(Θ) equals Σ∗
Y as the equivalence class D corresponding

to Σ∗
Y, i.e.,

D = {Θ|Σ∗
Y = ΣY(Θ)}.

Without additional restrictions, we can only find one Θ ∈ D based on the observation

data. However, infinite combinations of parameters exist in the equivalence class and cannot

provide us with useful information regarding the causal structure. The most common

solution for Gaussian noise is to assume Condition 1, which can be viewed as an extension

of the equal variance condition in Van de Geer and Bühlmann (2013).

Condition 1. In the true DAG, all latent variables have equal variance, i.e., Ω = ω2
0I

It is a common condition for ensuring the identifiability of a linear structural causal

model with Gaussian noise. With it, all the graphs with Θ ∈ D will have the same causal

structure.

3.3 Regularized EM estimation

Under Condition 1, we rewrite the parameter set as Θ = {C,B, r, ω2
0}. Since the coefficients

X are unknown, we estimate x(n), n = 1, . . . , N by treating them as latent variables and
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using a regularized EM algorithm for estimation (Yi and Caramanis, 2015). The regularized

EM algorithm consists of an Expectation-step and a regularized Maximization-step. In each

iteration, the operatorMn of the regularized EM is denoted as follows:

Mn(Θ
′) = argmax

Θ
Qn(Θ;Θ′)− λR(C)

s.t. G is a DAG,

(11)

where

Qn(Θ;Θ′) = EX|Y;Θ′ log f(X,Y ; Θ) =

∫
log f(X,Y ; Θ′)p(X|Y ; Θ′)dX, (12)

log f(X,Y ; Θ) =− 1

2

(
N∑

n=1

( P∑
j=1

Lj∑
l=1

(Y
(n)
jl −Bjx

(n)
jl )

T r−2
jl (Y

(n)
jl −Bjx

(n)
jl )

+
P∑

j=1

(x
(n)
j − x(n)Cj)

Tω−2
0 (x

(n)
j − x(n)Cj) +

P∑
j=1

Lj∑
l=1

T log r2jl

+M logω2
0

))
+ constants, (13)

and R(C) is the sparse penalty, to penalize the model complexity.

To represent the DAG constraint in Eq. (11) to a mathematical form, we define the

adjacency matrix W ∈ RP×P corresponding to the edge set E for the DAG G. Consider

W as a measure of causal effects and it fuses the information of Cij in a scalar. We have:

[W]ij ̸= 0⇔ Cij ̸= 0LiKi×LjKj
. (14)

Then in this work, we give an intuitive and valid definition for W as

[W]ij
.
= ∥Cij∥F . (15)

Consequently, to ensure C is a DAG, we adopt Notears constraints (Zheng et al., 2018) for

the adjacency matrix W that h(W) := tr(exp(W ◦W))− P and we have:

h(W) = 0⇔ G is a DAG. (16)
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Finally, for a large graph, it is usually assumed the edges are sparse, and penalize the

l1 norm of W. Therefore, we set R(C) = ∥C∥l1/F =
∑P

i=1

∑P
j=1 ∥Cij∥F , and λ adjusts the

strength of the penalty.

Expectation-step is to calculate Qn(Θ;Θ′). It can be derived by calculating the

posterior likelihood p(X|Y ; Θ′), which can be estimated in a forward and backward way.

Proposition 1. For any parameter set Θ′, the posterior distribution can be decomposed as

p(X|Y ; Θ′) =
∏N

i=1 p(x
(n)|Y(n); Θ′). p(x(n)|Y(n); Θ′) follows a multivariate normal distri-

bution N (û
(n)

Θ′,Y(n) , Σ̂Θ′) with mean û
(n)

Θ′,Y(n) ∈ R1×P and variance Σ̂Θ′ ∈ RP×P , where ûΘ,Y

is a linear combination of Y depending on Θ while Σ̂Θ only depends on Θ.

Proof. Proposition 1 is straightforward by following the procedure in Appx. B.3.

Maximization-step is to solve the maximization problem of Eq. (11) based on the

calculated Qn(Θ,Θ′) in the Expectation-step, and update the model parameters Θ. The

parameters can be decoupled into two sub-groups. The first sub-group isBj(t), j = 1, . . . , P

and r, which are directly related to the observations Y . The second sub-group contains the

important C and ω2
0, which determine the causal relationship of different nodes, namely,

the DAG structure.

For the first sub-group: denote Fn(B,Θ′) as the part of the quadratic loss in Eq.

15



(11) related to B. Minimizing Fn is equivalent to maximizing Qn respecting to B:

B̂1, B̂2, . . . , B̂P
.
= argmin

B1,...,BP

N∑
n=1

P∑
j=1

Lj∑
l=1

Ex(n)|Y(n),Θ′

(
(Y

(n)
jl −Bjx

(n)
jl )

T r−2
jl (Y

(n)
jl −Bjx

(n)
jl )
)

∝ 1

N

N∑
n=1

P∑
j=1

Lj∑
l=1

(
∥Y(n)

jl −Bjûjl;Θ′,Y(n)∥22 + tr(BjΣ̂jB
T
j )
)

.
= Fn(B,Θ′)

s.t. BT
j Bj = I ∀j = 1, . . . , P.

(17)

To solve Eq. (17), we can utilize the polar decomposition. We first calculate A =

1
N

∑N
n=1

∑Lj

l=1Y
(n)
jl ûT

jl;Θ′,Y(n) , and then perform the polar decomposition on A to obtain

A = VB̂j, where V is a symmetric matrix, and B̂j is the matrix we are interested in.

For estimating r̂, it can be solved in a closed form as:

r̂2jl =
1

N

N∑
n=1

(
(Y

(n)
jl − B̂jûjl;Θ′,Y(n))(Y

(n)
jl − B̂jûjl;Θ′,Y(n))T + B̂jΣ̂jB̂

T
j )
)
,∀j = 1, . . . , P, l = 1, . . . , Lj .

(18)

For the second sub-group: the key is to infer C, which represents the struc-

ture of DAG. Denote Gn as the loss part in Qn(Θ,Θ′) related to C. Maximizing Eq. (11)

is equivalent to the following:

ĈK , ĈL = argmin
CK ,CL

N∑
n=1

P∑
j=1

Ex(n)|Y(n),Θ′

(
(x

(n)
j − x(n)Cj)

Tω−2
0 (x

(n)
j − x(n)Cj)

)
+ λ∥C∥l1/F

∝ 1

N

N∑
n=1

Ex(n)|Y(n),Θ′∥x(n) − x(n)C∥22 + λ∥C∥l1/F

=
1

N

N∑
n=1

(
∥ûΘ′,Y(n) − ûΘ′,Y(n)C∥22 + tr((I−C)T Σ̂Θ′(I−C))

)
+ λ∥C∥l1/F

.
= Gn(C,Θ′) + λ∥C∥l1/F

s.t. h(W) = 0,

(19)
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Algorithm 1 EM algorithm

Input: data Y , tolerances ϵ0

Initialize Θ(0) = vec(B(0),CK(0),CL(0),R(0), ω2(0)), s = 0.

repeat

s← s+ 1

û
(n)

Θ(s−1),Y(n) , Σ̂Θ(s−1) ← Forward filtering & backward smoothing(Θ(s−1)) via Appx. B.3

B(s) ← argmin
B

Fn(B,Θ(s−1)) via Polar decomposition.

CK(s),CL(s) ← argmin
CK ,CL

Gn(C; Θ(s−1)) + λ∥C∥l1/F via Algorithm 2

Update ω
2(s)
0 by Eq. (21)

Θ(s) ← vec(B(s),CK(s),CL(s),R(s), ω
2(s)
0 )

until D(Θ(s),Θ(s−1)) < ϵ0

where CK is a
∑

j Kj ×
∑

j Kj matrix with its (j, j′) block as CK
(j,j′) = CK

j′j, C
L is a L×L

matrix with its (j, j′) block as CL
(j,j′) = CL

j′j, Cj′j = CL
j′j ⊗CK

j′j.

We can convert Eq. (19) into an unconstrained problem using the Lagrangian dual

method:

ĈK , ĈL ∈ argmin
CK ,CL

max
b>0

G̃n(C,Θ′) + λ∥C∥l1/F , (20)

where

G̃n(C,Θ′) = Gn(C,Θ′) + bh(W) +
a

2
h(W)2.

b ∈ R is dual variable and a ∈ R is the coefficient for quadratic penalty. We solve the

Lagrangian dual problem by the dual ascent method. Due to the non-smoothness of l1/F

norm, we use the proximal gradient method for group lasso penalty. We summarize the

algorithm in Algorithm 2.

17



After obtaining the transition matrix Ĉ, ω̂2
0 can be solved in a closed form as

ω̂2
0 =

1

NM

N∑
n=1

(
∥ûΘ′,Y(n) − ûΘ′,Y(n)Ĉj∥22 + tr((I− Ĉ)T Σ̂Θ′(I− Ĉ))

)
. (21)

Combine Eqs. (17), (18), (19) and (21), we can update Θ and replace Θ′ by the updated

Θ.

We repeat the Expectation-step and Maximization-step iteratively until convergence,

i.e., the difference between the estimated parameters

D(Θ,Θ′) =
√
∥C−C′∥2F + ∥B−B′∥2F + ∥r− r′∥22 + ∥ω2

0 − ω2′
0 ∥2F

is smaller than a threshold ϵ0. We summarize the regularized EM algorithm in Algorithm

1, where Θ = {C,B, r, ω2
0} and Θ′ = {C′,B′, r′, ω2′

0 }.

4 Theoretical Properties

In the following, we prove that when certain model assumptions hold, the estimated param-

eters can converge to those of the true model. Assuming for the true model, its parameter

set is denoted as Θ∗ = {C∗,B∗, ω2∗
0 , r∗}. Condition 2 gives the upper and lower bounds of

the variances that ensure the data covariance matrix is not degenerate, i.e.,

Condition 2. All the eigenvalues of Σ∗ = (I−C∗)−Tω2∗
0 (I−C∗)−1 should be greater than

a constant ηΣ∗ > 0 and finite, and ∀j ∈ 1, . . . P and l = 1, . . . , Lj, we assume r2jl <∞.

Condition 3 ensures the identifiability of decomposition on Y.

Condition 3. The number of latent variables is smaller than the number of sampling points

for each function, i.e., Kj < T, ∀j = 1, . . . , P .

By combining these three conditions, we can obtain the good property for all the models

in the equivalent class D in Theorem 1.
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Algorithm 2 Algorithm for Largrangian dual problem

Input: posterior distribution û
(n)

Θ(s−1),Y(n) , Σ̂Θ(s−1) , tolerance htol, learning rate lr, γ.

Initialize CK ,CL, a← 1, b← 0.

repeat

Update CK ,CL by minimizing G̃n by gradient method.

b← b+ ah(W)

a← lr ∗ a

until h(W) < htol

for i from 1 to P do

for j from 1 to P do

if ∥Cij∥F > γλ then

CL
ij ← CL

ij − γλ
CL

ij

∥Cij∥F

else

CL
ij ← 0

end if

end for

end for

Theorem 1 (Equivalence class). Define the equivalence class of the true parameters Θ∗

as D. Under Conditions 1 to 3, for any parameters Θe = {C,B, r, ω2
0} ∈ D, it can be

represented by the following form:

Bj = B∗
jQj,

rjl = r∗jl,

ω2
0 = ω2∗

0 ,

Cj′jl′l = QjC
∗
j′jl′lQ

T
j′ ,
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where Qj ∈ RKj×Kj is an orthogonal matrix satisfying QT
j Qj = QjQ

T
j = I. This states

that the equivalence class of the true solution is only the set of orthogonal transformations

of Θ∗.

Proof. The proof is in Appx. A.1

Intuitively speaking, this indicates though we choose different orthogonal basis functions

to map Yjl, the spaces spanned by these orthogonal functional basis spaces are the same.

Therefore, we can obtain the true causal structure once we get any equivalent solution

Θe ∈ D.

Next, we aim to prove that our regularized EM algorithm is capable of discovering the

true causal order and parameters when the initial parameters Θ(0) are close to the true

parameters Θ∗. We give the definition of population analogs of Fn and Gn in Definition 1.

Definition 1 (Population analogs). Define F and G as the population analogs of Fn and

Gn respectively, i.e.,

F (B,Θ′) =

∫ P∑
j=1

Lj∑
l=1

Ex|Y;Θ′∥Yjl −Bjxjl∥22p(Y; Θ∗)dY,

G(C,Θ′) =

∫
Ex|Y;Θ′∥x− xC∥22p(Y; Θ∗)dY.

Using the Strong Law of Large Numbers, we can observe that as n approaches infinity, the

results Fn and Gn converge almost surely to F and G respectively.

Theorem 2 shows the true parameters Θ∗ can maximize the population log-likelihood

function and satisfy the self-consistency property (McLachlan and Krishnan, 2007).

Theorem 2 (Self-consistency). When Conditions 1 and 2 hold, we can obtain Θ∗ by min-

imizing G(·,Θ∗) and F (·,Θ∗).

Proof. The proof is in Appx. A.2.
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Next, we introduce the theorem related to causal structure. We define the causal order

π in Definition 2.

Definition 2. Since W is the adjacency matrix of a DAG G, the nonzero entries of W

define the causal order of graph π ∈ SP , which can be represented by a permutation over

1, 2, ..., P . π(i) represents the position of node i in the order. A causal order π is consistent

with a DAG G if and only if:

Wij ̸= 0⇒ π(i) < π(j). (22)

With abusive use of notation, we denote C(π) to address this C is consistent with

causal order π. Then define C(π) as the set of C(π) that has the same causal order π, i.e.,

C(π) ∈ C(π). Denote C∗
Θ(π) = argmin

C(π)∈C(π)
G(C(π),Θ). Let Π∗

0 be the set of all causal orders

consistent with C∗. Since Theorem 2 holds, we have C∗
Θ∗(π0) = C∗,∀π0 ∈ Π∗

0.

Condition 4 (Omega-min). Under Conditions 1 and 2, for all π /∈ Π∗
0,∃η1 > 0 that:

G(C∗,Θ∗)−G(C∗
Θ∗(π),Θ∗) < −η1. (23)

Condition 4 assumes that if we restrict our model to a wrong causal order π′ /∈ Π∗
0,

G(C∗
Θ∗(π′),Θ∗) will increase by at least η1. This is similar to the Omega-min condition in

Van de Geer and Bühlmann (2013), and is used to justify the precision of our true model.

Lemma 1. Under Condition 2 and 3, ∃r̃1, the following inequalities hold for Θ ∈ B2(Θ
∗, r̃1):

(1) max
Θ∈B2(Θ∗,r̃1)

EYEx|Y;Θ(∥x∥82) <∞;

(2) max
Θ∈B2(Θ∗,r̃1)

max
j,l

EYEx|Y;Θ(∥Yjlû
T
jl,Θ,Y∥4F ) <∞;

(3) min
Θ∈B2(Θ∗,r̃1)

minEig(Cov(ûΘ∗,Y) + Σ̂Θ∗) > 0;

(4) min
Θ∈B2(Θ∗,r̃1)

min
j,l

σmin(EYEx|Y;Θ(Yjlû
T
jl,Θ,Y)) > 0;
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where minEig(·) is the minimum eigenvalue of the matrix. σmin(A) is k-th maximum

singular value of the matrix for A ∈ RT×k, where σmin(·) > 0 shows that the matrix is

column full rank. B2(Θ
∗, r) := {Θ|D(Θ,Θ∗) ≤ r}.

Proof. The proof is in Appx. A.3.

Lemma 1 shows that the posterior distribution p(x|Y; Θ) is not degraded and has

bounded variance when Θ ∈ B2(Θ
∗, r̃1). We denote

sup
Θ∈B2(Θ∗,r̃1)

EYEx|Y;Θ(∥x∥82) = x8sup,

sup
Θ∈B2(Θ∗,r̃1)

sup
j,l

EYEx|Y;Θ(∥Yjlû
T
jl,Θ,Y∥4F ) = y4sup,

inf
Θ∈B2(Θ∗,r̃1)

minEig(Cov(ûΘ,Y) + Σ̂Θ) = sinf ,

inf
Θ∈B2(Θ,r̃1)

min
j,l

σmin(EYEx;Θ(Yjlû
T
jl,Θ,Y)) = binf ,

where x8sup, y
4
sup, ssup, binf > 0 are universal constants depended on r̃1.

Lemma 2. Under Condition 4, ∃r̃2,∀Θ ∈ B2(Θ
∗, r̃2), denote Π

∗
Θ = {π|π = argminπ′ G(C∗

Θ(π
′),Θ)}

and C∗
Θ = argmin

C∗
Θ(π)

G(C∗
Θ(π); Θ). We have:

(1) Π∗
Θ = Π∗

0,

(2) For all π /∈ Π∗
Θ,∃0 < η2 < η1 that:

G(C∗
Θ,Θ)−G(C∗

Θ(π),Θ) < −η2. (24)

Proof. The proof is in Appx. A.4.

Lemma 2 extends Condition 4 from Θ∗ to all Θ ∈ B2(Θ
∗, r̃2). It states that when Θ

is close to Θ∗, we can still identify the true causal order by minimizing G(C,Θ). Taking

r̃ = min(r̃1, r̃2), Lemma 3 and 4 provide the lower bound for the error when estimating Ĉ

and B̂, in a single iteration of the regularized EM iteration.
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Lemma 3. Under Conditions 1, 2, 4 and suppose that we solve the optimization of Eq. (19)

with specified regularization parameters λ and Θ ∈ B2(Θ
∗, r̃). Since B2(Θ

∗, r̃) is a contact

set, we denote csup
.
= sup

Θ∈B2(Θ∗,r̃)

sup
π
∥C∗

Θ(π)∥l1/F and d4sup = sup
Θ∈B2(Θ∗,r̃)

sup
π
∥I − C∗

Θ(π)∥4F . If

the following conditions are satisfied for ϱ1, ϱ2, ϱ3 ∈ (0, 1), δ1 ∈ (0, 1/2):

η2 > 2

√
d4supx

4
sup

ϱ1N
+ λ(2δ1 + 1)csup,

d2supx
4
sup

λ2Nδ21
< 1,

1− 2ϱ1 − P !Mϱ2 − ϱ3 > 0,

sinf >

√√√√x4sup

N
+

√
x8sup

ϱ3N
.

Denote Ĉ and π̂ as the matrix and corresponding causal order by solving Eqs. (19) with

Θ′ = Θ. Then the following statements hold true:

(1) With probability at least 1− 2ϱ1 − P !Mϱ2, π̂ ∈ Π∗
0;

(2) With probability at least 1− 2ϱ1 − P !Mϱ2 − ϱ3,

∥Ĉ−C∗
Θ∥2F ≤

2
√

d4supx
4
sup

ϱ1N
+ λ(2δ1 + 1)csup

sinf −
√

x4sup
N

+
√

x8sup
ϱ3N

.

Proof. The proof is in Appx. A.5.

Lemma 4. Under Condition 2 and 3, denote B∗
Θ as the matrix that minimizes F (·,Θ)

with BT∗
ΘjB

∗
Θj = I,∀j and B̂ as the optimal solution to Fn(·,Θ) with B̂T

j B̂j = I,∀j. Then

if for ϱ4, ϱ5 ∈ (0, 1):

1− Pϱ4 − Pϱ5 > 0, and binf −

√√√√y2sup

N
+

√
y4sup

ϱ5N
> 0,

with probability at least 1− Pϱ4 − Pϱ5, we have:

∥B̂−B∗
Θ∥2F ≤

P

(
y2sup
N

+
√

y4sup
ϱ4N

)
(
binf −

√
y2sup
N

+
√

y4sup
ϱ5N

)2 .
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Proof. The proof is in Appx. A.6.

Next, we aim to derive an upper bound for the total error bound of our regularized EM

algorithm, i.e., D(Θ(S),Θ∗) for total S iterations in the regularized EM algorithm. Under

certain conditions (seeing Conditions 5 and 6 in Appendix. B.2), Theorem 3 and Corollary

1 establish the convergence properties and error analysis of our regularized EM algorithm.

These results hold when the initial solution Θ(0) is in proximity to the true solution, en-

compassing scenarios of both finite N and as N approaches infinity. Furthermore, this

property still holds when replacing Θ∗ with any equivalent solution Θe ∈ D. As Theorem

1 states, any Θe ∈ D has the same causal structure as Θ∗. Therefore, we show that our

regularized EM algorithm can effectively learn the correct causal structure locally.

Theorem 3. Assume Conditions 1 to 6 and the conditions in Lemmas 3 and 4 are satisfied,

and the EM estimator M(Θ)
.
= argmax

Θ′
Q(Θ′; Θ)− λR(C) is contractive with parameters

κ ∈ (0, 1) in the ball B2(Θ
∗, r̃). Denote S as the total iterations of the regularized EM

algorithm, we have

D(Θ(S),Θ∗) ≤ κSD(Θ(0),Θ∗) +
1

1− κ
ϵ(δ/S,N/S, r̃),

where

δ/S = 2ϱ1 +MP !ϱ2 + ϱ3 + Pϱ4 + Pϱ5 +Mϱ6,

ϵ(δ/S,N/S, r̃) =


2
√

d4supx
4
supS

ϱ1N
+ λ(2δ1 + 1)csup

sinf −
√

x4supS

N
+
√

x8supS

ϱ3N

+

P

(
y2supS

N
+
√

y4supS

ϱ4N

)
(
binf −

√
y2supS

N
+
√

y4supS

ϱ5N

)2


1/2

+O((N/S)−1/2).

Proof. According to Lemma 3 and 4 above, together with Lemma 11 and 12 which gives the

error bound of r and ω2
0 in each EM iteration as O((N/S)−1/2) with probability 1−Mϱ6,

we can prove Theorem 3 following the procedures in Theorem 5 in Balakrishnan et al.

(2017).
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Corollary 1 (Asymptotic property). Based on Theorem 3, we have the following two

corollaries:

(1) As N → ∞, by setting λ ∼ N−1/2+ν with ν ∈ (0, 1/2), the conditions in Lemma 3

hold. Then ϵ(δ/S,N/S, r̃) = O((N/S)(−1+2ν)/4), and the total estimation error after S EM

iterations can be described as D(Θ(S),Θ∗) ≤ κSD(Θ(0),Θ∗) +O((N/S))(−1+2ν)/4).

(2) Under S →∞, N →∞ and N/S →∞, we have Θ(S) → Θ∗ with probability 1.

5 Numerical study

To evaluate the performance of our methodology and selection of λ, we apply our MultiFun-

DAG to solve a synthetic graphical model. We show the performance of our algorithm on

tasks of different combinations (N,P, L0, K0), where ∀j = 1, . . . , P , we have Lj = L0 and

Kj = K0.

In each experiment, the graphs are generated by Erdös-Rényi random graph model,

where the functional data of the different nodes have the same Fourier basis ν1(t), ν2(t),

..., νK(t):

νk(t) =



1, k = 1,

cos(2πut), k = 2u,

sin(2πut), k = 2u+ 1,

∀u ∈ Z, u ≥ 1.

By combining Eq. (1), Eq. (4) and Eq. (8), we can write the representation of each

functional data. The generated transition matrix is Cj′j = cj′j1Lj′×Lj
⊗ IK , where cj′j is

independently and identically generated from a uniform distribution U(−2, 0.5) ∪ (0.5, 2).

The variance of noise is set by ω2
0 = 1 and r2jl = 0.01,∀j = 1, . . . , P .

For model comparison, we select two methods from the literature and another two

variants of our MultiFun-DAG. The baselines compared in this paper are introduced below.
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Since they cannot be directly used for DAG with nodes as multivariate functions, we modify

these methods by concatenating multivariate functions as long univariate functions for

analysis.

• FDGM S: The functional directed graph model proposed by Sun et al. (2017). To

deal with multivariate functional data for each node, we concatenate Lj functional

data of each node as long functional data with Lj ∗ T observation points.

• FDGM G: The functional directed graph model proposed by Gómez et al. (2020).

To deal with multivariate functional data for each node, we concatenate Lj functional

data as long univariate functional data with Lj ∗ T observation points.

• MFGM: This baseline provides a two-stage method to model the multivariate func-

tional DAG. It first implements FPCA for each node separately to obtain their PC

scores. Then it treats these scores as X and uses the same structural learning method

as MultiFun-DAG to estimate the causal structure, i.e.,

min
CK ,CL

1

N
∥X−XC∥2F + λ∥C∥l1/F ,

s.t. tr(exp(W ◦W))− P = 0,

where W and λ have the same meaning as our method.

• NoTears: It first implements FPCA for the functional data of each node, where all

the nodes share a common set of K bases. After FPCA, the causal relationships

between each PC score of each original node are learned by NoTears (Zheng et al.,

2018). Then the causal relationships between all the PC scores from two nodes are

merged as the final causal relationship between these two nodes.

In this experiment, we aim to test the effectiveness of different methods to recover the

true DAG structures. For brevity, we give the F1 score of the arcs to represent model
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Figure 3: F1 score of the edges with 95% confidence intervals: F1 score with different

numbers of (a) samples N ; (b) nodes P ; (c) functions L0; (d) bases K0.

performance, i.e.,

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

.

In Fig. 3, we see that our MultiFun-DAG has the best performance among all the

baselines. The performance increases as the number of samples N increases. MFGM has

a similar performance to MultiFun-DAG but performs worse when the number of function

data L0 increases. This justifies the importance of our joint estimation of X and C.

Meanwhile, by comparing MFGM with NoTears, we verify the benefit of learning the

DAG with vector-value nodes over the DAGs with scalar-value nodes. The difference in

performance between MFGM and NoTears increases as the number of nodes increases or

the number of functions increases. This is due to model complexity, i.e., the search space

of causal order in NoTears is much larger than that in MFGM.

Table 1 compares the result of our estimated parameters and the true parameters. In
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(a) Ground truth C (b) (N, λ) = (800, 0) (c) (N, λ) = (800, 0.1)

(d) (N, λ) = (20, 0) (e) (N, λ) = (20, 0.1)
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Figure 4: Heatmap of C∗ and the estimated C̃ by MultiFun-DAG. Titles of the subplots

represent the results under different experiment settings of (N, λ).

this case, we rotate the matrix B̂ to the true matrix B∗. The rotation equation is given by

Theorem 1: B∗
j = B̂jQj and C̃jk = CL

jk ⊗ (QT
j C

K
jkQk), where Qj is an orthogonal matrix.

The rotation process maintains the structure of DAG. Then we compare C̃ and C∗, by

∥C̃−C∗∥2F . Furthermore, MSEest and MSEtrue measures the l2 loss of Y for the estimated

model and the true model, which can be computed by:

MSEest =
1

NLT

N∑
n=1

P∑
j=1

Lj∑
l=1

Ex(n)|Y,Θ̂∥Y
(n)
jl − B̂x̂

(n)
jl ∥22,

MSEtrue =
1

NLT

N∑
n=1

P∑
j=1

Lj∑
l=1

∥Y(n)
jl −B∗x

(n)
jl ∥22.

When MSEest < MSEtrue, overfitting occurs. When MSEest > MSEtrue, underfitting occurs.

A smaller |MSEest−MSEtrue|, which is denoted by |∆|, indicates a smaller difference between

the estimated and true parameters. Besides, a smaller N needs a larger λ to prevent

overfitting, and on the contrary, a larger N needs a smaller λ to prevent underfitting.
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Table 1: Estimated parameters v.s. True parameters.

N λ ∥C̃−C∗∥2F MSEest MSEtrue |∆|

800 0 1.21 1.99 2.013 0.02

800 0.1 47.20 2.29 2.013 0.28

20 0 238.40 0.99 2.006 1.02

20 0.1 107.74 1.46 2.006 0.55

This might be because large λ increases the bias and robustness of our algorithm. Fig.

4 visualizes the estimated C̃ (the structure) under different experiment scenarios and its

ground truth. With (N, λ) = (800, 0), we could faithfully recover the structure.

6 Case study

In this section, we illustrate how our method can be applied to real-world urban traf-

fic data for root cause analysis of traffic congestion. We focus on three types of traffic

variables (nodes). (1) The real-time traffic setting variables, such as the real-time

Origin-Destination (OD) demand, turning probability, the cycle time of the traffic light,

etc., denoted as S(t) = [S1(t),S2(t), ...,SPs(t)]. (2) The real-time traffic condition vari-

ables, such as the occupancy of each lane, the average speed of each lane, the average

waiting time of each lane, the number of vehicles in each lane, the number of halting ve-

hicles in each lane, etc., denoted as Y(t) = [Y1(t),Y2(t), ...,YPy(t)]. (3) The real-time

traffic congestion root cause variables, such as long/short cycle time of traffic lights,

phase imbalance, irrational guide lane, irrational phase sequence, imbalance of entrance,

etc., denoted as R(t) = [R1(t), . . . ,RPr(t)]. Table 2 summarizes the abbreviations and

descriptions of each node.

We use the Simulation of Urban MObility (SUMO) (Krajzewicz et al., 2002) to syn-
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thesize the real-time traffic data. We collect data from S(t) and Y(t) every five min-

utes and simulate for 60 minutes. Therefore, each functional data has T = 12 obser-

vation points. For each node of Yj(t), t = 1, . . . , T , it has four functions, defined as

Yj ∈ R4×T , j = 1, . . . , Py. For each node of Sj(t) and Rj(t), it is a univariate function,

defined as Sj ∈ RT , j = 1, . . . , Ps and Rj ∈ RT , j = 1, . . . , Pr. We set Rj(t) ∈ {0, 1}. Here

Rj(t) = 1 indicates that the j-th type of congestion appears at time t, which is decided by

rule-based algorithms in transportation. Its data is also collected every five minutes, with

the same sampling grids as the other two types of traffic variables.

Table 2: Abbreviation and the description of traffic data

Node Name Description

S1 ∈ RT OD-A OD demand of all direction

S2 ∈ RT OD-S OD demand of certain direction

S3 ∈ RT T-A Turning probability of all direction

S4 ∈ RT T-S Turning probability of certain direction

S5 ∈ RT CT Cycle time of traffic light

Y1 ∈ R4×T OC Occupancy of each of 4 lanes

Y2 ∈ R4×T MS Mean speed of each of 4 lanes

Y3 ∈ R4×T MW Mean waiting time of each of 4 lanes

Y4 ∈ R4×T NV # of vehicles in each of 4 lanes

Y5 ∈ R4×T NH # of halting vehicles in each of 4 lanes

R1 ∈ RT Cycle-L Long cycle time of traffic light

R2 ∈ RT Cycle-S Short cycle time of traffic light

R3 ∈ RT Phase-imb Phase imbalance

R4 ∈ RT lanes-irr Irrational guide lane

R5 ∈ RT Entrance-imb Imbalance of entrance

R6 ∈ RT Cycle-irr Irrational phase sequence
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In the experiment, we set 11 levels on S1, 3 levels on S2, 3 levels on S3, 4 levels on S4

and 4 levels on S5. Therefore, we have 11× 3× 3× 4× 4 = 1584 treatment combinations.

We run a single experiment on each treatment. In each experiment of S, we collect the

traffic situation variables Y and the congestion indicator variables R, and treat them as

one sample [S(n),Y(n),R(n)] for n = 1, 2, ..., 1584.

Then we use MultiFun-DAG to learn the causal relationships between traffic setting

variables and traffic congestion root cause variables. Based on domain knowledge, traffic

setting variables have effects on the root cause variables, and different types of root cause

variables will affect traffic condition variables. Therefore we assume the one-way connection

from S toR and fromR toY. Moreover, we assume that there are no interior edges between

nodes in S and nodes in Y. However, we assume that some types of congestion will lead

to other types of congestion, i.e., there can be interior edges between nodes in R.

The causal relationships between the variables in MultiFun-DAG are illustrated in Fig.

5, and the probability interpretations are provided. The explainable insights about traffic

congestion can be derived. For example, the edges Lanes-irr → Phase-imb and Cycle-S

indicate that the irrationality of the guide lane could lead to the imbalanced traffic flow in

different traffic signal phases, with some directions having long traffic queues and relatively

short phase cycle. Thus, the guide lane should be better planned and the cycle time should

be extended. In reality, the conditional probability P (Ri|S,Y) could also be used to predict

the root cause probability in reality.

7 Conclusion

This paper presents a new framework for DAG with nodes as heterogeneous multivariate

functional data. It simultaneously conducts functional decomposition for each node and
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Figure 5: The causal structure of traffic data.

uses the decomposition coefficients to represent the linear causal relationships between

different nodes. By conducting a tailored regularized EM algorithm, the DAG structure

together with other model parameters can be estimated based on a score-based structural

learning algorithm with continuous acyclic constraint. The effectiveness of our algorithm is

demonstrated by both theoretical proofs and numerical studies. Some future works include

extending the current MultiFun-DAG model to graphs with multi-mode data with both

functional nodes and vector nodes. It is also interesting to conduct root causal analysis

based on MultiFun-DAG for anomaly detection in multivariate functional data.
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Van de Geer, S. and Bühlmann, P. (2013). ℓ0-penalized maximum likelihood for sparse

directed acyclic graphs. The Annals of Statistics, 41(2):536–567.

35



Velikova, M., van Scheltinga, J. T., Lucas, P. J., and Spaanderman, M. (2014). Exploiting

causal functional relationships in bayesian network modelling for personalised healthcare.

International Journal of Approximate Reasoning, 55(1):59–73.

Wang, Z., Gu, Q., Ning, Y., and Liu, H. (2015). High dimensional em algorithm: Statis-

tical optimization and asymptotic normality. Advances in neural information processing

systems, 28.

Wu, H., Zhang, C., and Li, Y.-F. (2022). Monitoring heterogeneous multivariate profiles

based on heterogeneous graphical model. Technometrics, 64(2):210–223.

Yi, X. and Caramanis, C. (2015). Regularized em algorithms: A unified framework and

statistical guarantees. Advances in Neural Information Processing Systems, 28.

Zapata, J., Oh, S.-Y., and Petersen, A. (2022). Partial separability and functional graphical

models for multivariate gaussian processes. Biometrika, 109(3):665–681.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). Dags with no tears: Con-

tinuous optimization for structure learning. Advances in Neural Information Processing

Systems, 31.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E. (2020). Learning sparse

nonparametric dags. In International Conference on Artificial Intelligence and Statistics,

pages 3414–3425. PMLR.

36



Appendix

A Proof of theoretical property

A.1 Proof of Theorem 1

Proof. Denote Θ1 := {C(1),B(1), r(1), ω
2(1)
0 } and Θ2 := {C(2),B(2), r(2), ω

2(2)
0 } are two so-

lution in the equivalence class D. Denote Σ(1) = (I − C(1))−Tω
2(1)
0 (I − C(1))−1 and

Σ(2) = (I−C(2))−Tω
2(2)
0 (I−C(2))−1 are the covariance matrices of x determined by Θ1 and

Θ2. Then the following equations hold true:

B
(1)
j Σ

(1)
jl,jlB

(1)T
j + r

2(1)
jl IT = B

(2)
j Σ

(2)
jl,jlB

(2)T
j + r

2(2)
jl IT ∀j, l, (25)

B
(1)
j Σ

(1)
jl,jlB

(1)T
j′ = B

(2)
j Σ

(2)
jl,j′l′B

(2)T
j′ ∀(j, l) ̸= (j′, l′). (26)

For the Eq. (25), we have:

B
(1)
j Σ

(1)
jl,jlB

(1)T
j −B

(2)
j Σ

(2)
jl,jlB

(2)T
j = (r

2(2)
jl − r

2(1)
jl )IT , (27)

If r
2(2)
jl − r

2(1)
jl ̸= 0 in Eq. (27), the rank of the right-hand side is T , while the rank of the

left-hand side is less than or equal to Kj < T , so the equation does not hold. Therefore, we

have r
2(2)
jl − r

2(1)
jl = 0, and B

(1)
j Σ

(1)
jl,jlB

(1)T
j′ = B

(2)
j Σ

(2)
jl,j′l′B

(2)T
j′ ,∀j, j′, l, l′. This implies that

B
(1)
j = B

(2)
j Qj with orthogonal matrixQj. From Eq. (26), we obtainΣ

(1)
jl,j′l′ = QjΣ

(2)
jl,j′l′Q

T
j′ .

The optimality and uniqueness of the solution are proved in Lemma 5.1 in Aragam et al.

(2015) under the assumption of equal variances (Condition 1). It is shown that for any

given Σ(1), there exists a unique solution of C(1). We can show that for any Σ(2) satisfying

Σ
(1)
jl,j′l′ = QjΣ

(2)
jl,j′l′Q

T
j′ , C

(2) satisfying QjC
(2)
j′jl′lQ

T
j′ = C

(1)
j′jl′l is also the unique solution for

Σ(2).
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A.2 Proof of Theorem 2

Proof. It is equivalent to prove that the optimal points to F (·,Θ∗) and G(·,Θ∗) are unique

since r̂ and ω̂2
0 are determined on B̂ and Ĉ. The uniqueness of F (·,Θ∗) is guaranteed by

the uniqueness of polar decomposition. As for G(·,Θ∗), the uniqueness is proved by Lemma

5.1 in Aragam et al. (2015).

A.3 Proof of Lemma 1

Proof. Proposition. 1 shows that the mean of posterior distribution ûΘ,Y can be represented

by ûΘ,Y = AΘvec(Y) and the covariance is represented by Σ̂Θ. It is easy to show that

AΘ and Σ̂Θ are continuous functions of Θ by following the forward & backward update in

Appx. B.3. Therefore, (1) and (2) are hold.

For (3), from Lemma 5, we have:

minEig(Cov(ûΘ∗,Y) + Σ̂Θ∗) = minEig(Σ∗) > ηΣ∗ .

Because AΘ and Σ̂Θ are continuous for Θ, for some 0 < sinf < ηΣ∗ and ϵ1 = 1
c1
(ηΣ∗ −

sinf),∃r̃a that ∀Θ ∈ B2(Θ
∗, r̃a), we have:

∥(Cov(ûΘ∗,Y) + Σ̂Θ∗)− (Cov(ûΘ,Y) + Σ̂Θ)∥F ≤ c1ϵ1.

From Lemma 6, we have

|minEig(Cov(ûΘ,Y) + Σ̂Θ)−minEig(Cov(ûΘ∗,Y) + Σ̂Θ∗)| < c1ϵ1,

and we have:

minEig(Cov(ûΘ,Y) + Σ̂Θ) > ηΣ∗ − c1ϵ1 > sinf .

Then (3) is hold.
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For (4), ∀j ∈ 1, . . . , P and l ∈ 1, . . . , Lj, we have

EYEx|Y;Θ∗(Yjlû
T
jl,Y,Θ∗) = Ex|Θ∗(B∗

jxjlx
T
jl) = B∗

jΣ
∗
jl

where B∗
jΣ

∗
jl is column full rank since B∗

j is column full rank and Σ∗
jl is full rank. Therefore,

we have σmin(B
∗
jΣ

∗
jl) > 0. Because AΘ and Σ̂Θ are continuous to Θ, for some 0 < binf <

minj,l σmin(B
∗
jΣ

∗
jl) and ϵ2 =

1
c2
(σmin(B

∗
jΣ

∗
jl)− binf),∃r̃b,jl that ∀Θ ∈ B2(Θ

∗, r̃b,jl), we have:

∥EYEx|Y;Θ∗(Yjlû
T
jl,Y,Θ∗)− EYEx|Y;Θ(Yjlû

T
jl,Y,Θ)∥F < c2ϵ2.

From Lemma 7, we have

σmin(EYEx|Y;Θ(Yjlû
T
jl,Y,Θ)) > σmin(B

∗
jΣ

∗
jl)− c2ϵ2 > binf > 0.

Let r̃b = minj,l r̃b,jl, then (4) is hold.

Finally, we set r̃1 = min(r̃a, r̃b) to obtain (1) to (4).

A.4 Proof of Lemma 2

Proof. Since G(C,Θ) is a continuous function of Θ, ∀η1, η2,C, ∃r̃2 that ∀Θ ∈ B2(Θ
∗, r̃2),

we have |G(C,Θ)−G(C,Θ∗)| < 1
2
(η1 − η2), for some 0 < η2 < η1.

And from Condition 4, ∀π /∈ Π∗
0, we have

G(C∗,Θ∗)−G(C∗
Θ∗(π),Θ∗) < −η1. (28)

Then ∀π /∈ Π∗
0, we have

G(C∗,Θ)−G(C∗
Θ(π),Θ) ≤ |G(C∗,Θ)−G(C∗,Θ∗)|

+G(C∗,Θ∗)−G(C∗
Θ∗(π),Θ∗)

+ |G(C∗
Θ(π),Θ)−G(C∗

Θ(π),Θ
∗)|

<
1

2
(η1 − η2)− η1 −

1

2
(η1 − η2)

= −η2.
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Therefore, ∀π /∈ Π∗
0, we have:

G(C∗
Θ,Θ)−G(C∗

Θ(π),Θ) ≤ G(C∗,Θ)−G(C∗
Θ(π),Θ) < −η2.

This shows that C∗
Θ(π) is not the minimum solution of G(C,Θ), and we simultaneously

obtain (1) and (2).

A.5 Proof of Lemma 3

For Lemma 3 (1):

Proof. For a fixed Θ ∈ B2(Θ
∗, r̃), let Ĉ be the estimator that minimizes Gn(C,Θ) +

λ∥C∥l1/F and is consistent with causal order π̂. We have

1

N
EX|Y;Θ∥XC∗

Θ(π̂)−XĈ∥2F + λ∥Ĉ∥l1/F

≤ 1

N
EX|Y;Θ(∥X−XC∗

Θ∥2F − ∥X−XC∗
Θ(π̂)∥2F )

+
2

N
EX|Y;Θ⟨X−XC∗

Θ(π̂),X(Ĉ−C∗
Θ(π̂))⟩+ λ∥C∗

Θ(π̂)∥l1/F

≤ (I) + (II) + λ∥C∗
Θ(π̂)∥l1/F ,

(29)

where ⟨·, ·⟩ denotes the inner product, and ∥ · ∥F denotes the Frobenius norm. Next, we

will gives the upper bound for terms (I) and (II).

Bound (I):

(I) = Gn(C
∗
Θ,Θ)−Gn(C

∗
Θ(π̂),Θ)

≤ |Gn(C
∗
Θ,Θ)−G(C∗

Θ,Θ)|+G(C∗
Θ,Θ)−G(C∗

Θ(π̂),Θ) + |Gn(C
∗
Θ(π̂),Θ)−G(C∗

Θ(π̂),Θ)|.

We have the following statements, which show that the term Gn(C,Θ)−G(C,Θ) has

expectation 0 and bounded variance:

(1) EY(Gn(C,Θ)−G(C,Θ)) = 0;

(2) Var(Gn(C,Θ)−G(C,Θ)) = 1
N
Var(Ex|Y;Θ∥x− xC∥2F ) ≤

∥I−C∥4F x4sup
N

.
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By Chebyshev’s inequality, we have:

P

|Gn(C,Θ)−G(C,Θ)| >
√
∥I−C∥4Fx4sup

ϱ1N

 < ϱ1 (30)

Using Eq. (30) in (I), we obtain the following inequality with probability at least

1− 2ϱ1:

(I) ≤ G(C∗
Θ,Θ)−G(C∗

Θ(π̂),Θ) +

√
∥I−C∗

Θ∥4Fx4sup
ϱ1N

+

√
∥I−C∗

Θ(π̂)∥4Fx4sup
ϱ1N

(31)

Bound (II):

To bound the second term, we aim to show that the following equation holds true with

high probability for δ1 ∈ (0, 1/2):

1

N
EX|Y;Θ⟨X−XC∗

Θ(π̂),X(Ĉ−C∗
Θ(π̂))⟩

≤ δ1
2N

EX|Y;Θ∥X(Ĉ−C∗
Θ(π̂))∥2F + δ1λ∥Ĉ−C∗

Θ(π̂)∥l1/F
(32)

Let ej(π) ∈ RN as the j-th column of matrix X − XC∗
Θ(π̂) and β ∈ RM as the j-th

column of matrix Ĉ−C∗
Θ(π̂). Denote Ej is the event:

Ej :=
{

sup
β∈RM

1

N
EX|Y;Θ⟨ej(π̂),Xβ⟩ − δ1

2N
EX|Y;Θ∥Xβ∥22 − δ1λ∥β∥l1/l2 ≤ 0

}
, (33)

where β = [β1,β2, . . . ,βP ] for βi ∈ RLiKi and ∥β∥l1/l2 =
∑

i ∥βi∥2.

Therefore, to prove Eq. (32), it suffices to show that for any given column j and causal

order π̂, the event E hold with a high probability.

We can then express Ej as:

Ej ⊆
{

sup
β∈RM

1

2N
EX|Y;Θ∥

ej(π̂)

δ1
∥22 −

1

2N
EX|Y;Θ∥

ej(π̂)

δ1
−Xβ∥22 + λ∥β∥l1/l2 ≤ 0

}

=

{
0 ∈ argmin

β∈RM

1

2N
EX|Y;Θ∥

ej(π̂)

δ1
−Xβ∥22 + λ∥β∥l1/l2

}

Event Ej is correspond to the Null-consistency of group lasso problem, we use Lemma
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8 to find the solution β and w,

β = 0,

w =
1

λN
EX|Y;Θ(X

T ej(π̂)

δ1
).

Next we proof that ∥w∥l∞/l2 ≤ 1 holds with a high probability, where ∥w∥l∞/l2 =

maxi=1,...,P ∥wi∥2 and wi is the gradient corresponds to βi. To proof this, we bound the

variance of ∥w∥2.

We first prove that the expectation of w is 0 from Lemma 9, and we have

∥w∥22 ≤
1

λ2N2δ21
EX|Y,Θ∥

N∑
n=1

x(n)Te
(n)
j (π̂)∥22

=
1

λ2N2δ21

N∑
n=1

Ex(n)|Y(n),Θ∥x(n)Te
(n)
j (π̂)∥22

≤ 1

λ2N2δ21

N∑
n=1

Ex(n)|Y(n),Θ∥x(n)Tx(n)(I−C∗
Θ(π))∥2F

≤ ∥I−C∗
Θ(π)∥2F

λ2N2δ21

N∑
n=1

Ex(n)|Y(n),Θ∥x(n)∥42,

where,

EY

(
N∑

n=1

Ex(n)|Y(n),Θ∥x(n)∥42

)
≤ Nx4sup,

Var

(
N∑

n=1

Ex(n)|Y(n),Θ∥x(n)∥42

)
≤ Nx8sup.

Suppose we have
∥I−C∗

Θ(π)∥2F x4sup
λ2Nδ21

< 1. By Chebyshev’s inequality, we have

P (∥w∥22 ≥ 1) ≤
∥I−C∗

Θ(π)∥4F
λ4N3δ41

x8
sup(

1− ∥I−C∗
Θ(π)∥2F x4sup
λ2Nδ21

)2 ≤ d4sup
λ4N3δ41

x8
sup(

1− d2supx
4
sup

λ2Nδ21

)2 := ϱ2

Since ∥w∥l∞/l2 ≤ ∥w∥2, we have:

P (∥w∥l∞/l2 ≥ 1) ≤ ϱ2.
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Thus, with probability 1 − ϱ2, event Ej holds true. Taking uniform control over all

possible j = 1, 2, . . . ,M and π̂, we conclude that with probability 1 −MP !ϱ2, Eq. (32)

holds true.

Finally, for Lemma 3(1), suppose π̂ /∈ Π∗
0, then G(C∗

Θ,Θ) − G(C∗
Θ(π̂),Θ) < −η2, and

we back to Eq. (29). With probability 1− ϱ1 −MP !ϱ2, we have:

1

N
EX|Y;Θ∥XC∗

Θ(π̂)−XĈ∥2F + λ∥Ĉ∥l1/F

≤ −η2 +
√
∥I−C∗

Θ∥4Fx4sup
ϱ1N

+

√
∥I−C∗

Θ(π̂)∥4Fx4sup
ϱ1N

+
δ1
N
EX|Y;Θ∥X(Ĉ−C∗

Θ(π̂))∥2F + 2δ1λ∥Ĉ−C∗
Θ(π̂)∥l1/F + λ∥C∗

Θ(π̂)∥l1/F .

(34)

For δ1 ∈ (0, 1), we have:

1

N
EX|Y;Θ∥XC∗

Θ(π̂)−XĈ∥2F

≤ −η2 +
√
∥I−C∗

Θ∥4Fx4sup
ϱ1N

+

√
∥I−C∗

Θ(π̂)∥4Fx4sup
ϱ1N

+ λ(2δ1 + 1)csup.

It contradicts with the condition that:

η2 > 2

√
d4supx

4
sup

ϱ1N
+ λ(2δ1 + 1)csup.

For Lemma 3(2): we denote that ∆ = Ĉ−C∗
Θ(π̂), we have:

1

N
EX|Y;Θ∥X∆∥2F =

1

N

N∑
n=1

∥ûΘ,Y(n)∆∥2F + tr(∆T Σ̂Θ∆)

= tr(∆T (
1

N

N∑
n=1

ûT
Θ,Y(n)ûΘ,Y(n))∆) + tr(∆T Σ̂Θ∆)

≥ ∥∆∥2FminEig

(
1

N

N∑
n=1

ûT
Θ,Y(n)ûΘ,Y(n) + Σ̂Θ

)
.

Denote ΦΘ := 1
N

∑N
n=1 û

T
Θ,Y(n)ûΘ,Y(n) + Σ̂Θ and denote Φ̄Θ := EY(ΦΘ). From Lemma
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1, we have minEig(Φ̄Θ) > sinf , and

∥ΦΘ − Φ̄Θ∥2F = ∥ 1
N

N∑
n=1

ûT
Θ,Y(n)ûΘ,Y(n) − Φ̄Θ∥2F

=
1

N2

N∑
n=1

∥ûT
Θ,Y(n)ûΘ,Y(n) − Φ̄Θ∥2F

=
1

N2

N∑
n=1

∥ûT
Θ,Y(n)ûΘ,Y(n) −

N∑
n′=1

(ûT
Θ,Y(n′)ûΘ,Y(n′))∥2F .

where,

E

(
N∑

n=1

∥ûT
Θ,Y(n)ûΘ,Y(n) −

N∑
n′=1

(ûT
Θ,Y(n′)ûΘ,Y(n′))∥2F

)
≤ Nx4

sup,

Var

(
N∑

n=1

∥ûT
Θ,Y(n)ûΘ,Y(n) −

N∑
n′=1

(ûT
Θ,Y(n′)ûΘ,Y(n′))∥2F

)
≤ Nx8

sup.

By Chebyshev’s inequality, we have:

P

∥ΦΘ − Φ̄Θ∥2F ≥
x4sup

N
+

√
x8sup

ϱ3N

 < ϱ3,

P

|minEig(ΦΘ)−minEig(Φ̄Θ)| ≥

√√√√x4sup

N
+

√
x8sup

ϱ3N

 < ϱ3,

P

minEig(ΦΘ) ≥ sinf −

√√√√x4sup

N
+

√
x8sup

ϱ3N

 > 1− ϱ3.

Then, with at least probability 1− 2ϱ1 − P !Mϱ2 − ϱ3, we have π̂ ∈ Π∗
0, therefore:

∥∆∥2F ≤
1
N
EX|Y;Θ∥X∆∥2F

sinf −
√

x4sup
N

+
√

x8sup
ϱ3N

≤
2
√

d4supx
4
sup

ϱ1N
+ λ(2δ1 + 1)csup

sinf −
√

x4sup
N

+
√

x8sup
ϱ3N

.

44



A.6 Proof of Lemma 4

Proof. Because B̂T
j B̂j = I, tr(B̂T

j Σ̂jlB̂j) = tr(Σ̂jl) is a constant unrelated to B̂j. For a

fixed j, the estimator of B̂j is given by:

B̂j = argmin
Bj

1

NLj

N∑
n=1

Lj∑
l=1

∥Y(n)
jl û

(n)T

jl;Θ,Y(n) −Bj∥2F

s.t. BT
j Bj = I.

We denote Z = 1
NLj

∑N
n=1

∑Lj

l=1Y
(n)
jl û

(n)T

jl;Θ,Y(n) and Z̄ = EY(Z). We consider Z is a small

perturbation of Z = Z̄+E and use the perturbation theory of Polar decomposition. From

Li (1993), we obtain that:

∥B̂j −B∗
Θj∥F ≤

∥Z− Z̄∥F
min{∥Z+∥−1

2 , ∥Z̄+∥−1
2 }

, (35)

where ∥Z+∥−1
2 and ∥Z̄+∥−1

2 is smallest singular value of Z and Z̄ greater than 0. Next,

we bound the numerator and denominator of RHS of Eq. (35).

For the numerator, we have

∥E∥2F = ∥ 1

NLj

N∑
n=1

Lj∑
l=1

Y
(n)
jl û

(n)T

jl;Θ,Y(n) − Z̄∥2F

=
1

N2

N∑
n=1

∥ 1
Lj

Lj∑
l=1

(Y
(n)
jl û

(n)T

jl;Θ,Y(n))− Z∥2F ,
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where

EY

 N∑
n=1

∥ 1
Lj

Lj∑
l=1

(Y
(n)
jl û

(n)T

jl;Θ,Y(n))− Z∥2F


=NEY

∥ 1
Lj

Lj∑
l=1

(Yjlû
T
jl;Θ,Y)− Z∥2F


=
N

L2
j

EY

∥ Lj∑
l=1

(Yjlû
T
jl;Θ,Y − Z)∥2F


≤N

Lj

EY

 Lj∑
l=1

∥Yjlû
T
jl;Θ,Y∥2F


≤Ny2sup

and

Var

 N∑
n=1

∥ 1
Lj

Lj∑
l=1

(Y
(n)
jl û

(n)T

jl;Θ,Y(n))− Z∥2F

 ≤ Ny4sup.

then by Chebyshev’s inequality, we have:

P

∥Z− Z̄∥2F ≥
y2sup

N
+

√
y4sup

ϱ4N

 < ϱ4. (36)

For the denominator, from Lemma 1(3). By Chebyshev’s inequality, we have:

P

∥Z+∥−1
2 ≤ binf −

√√√√y2sup

N
+

√
y4sup

ϱ5N

 < ϱ5. (37)

Combine Eq. (36) and Eq. (37), at least probability 1− ϱ4 − ϱ5, we have:

∥B̂j −B∗
Θj∥2F ≤

y2sup
N

+
√

y4sup
ϱ4N(

binf −
√

y2sup
N

+
√

y4sup
ϱ5N

)2 . (38)

Finally, we take the uniform control for all nodes j = 1, 2, . . . , P , then with probability
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1− Pϱ4 − Pϱ5, we have:

∥B̂−B∗
Θ∥2F ≤

P

(
y2sup
N

+
√

y4sup
ϱ4N

)
(
binf −

√
y2sup
N

+
√

y4sup
ϱ5N

)2 .

B Minor Lemma and Derivation

B.1 Minor Lemma

Lemma 5. EY(ûΘ∗,Y) = 0 and Cov(ûΘ∗,Y) + Σ̂Θ∗ = (I−C∗)−Tω2∗
0 (I−C∗)−1.

Proof. We have

EYEx|Y;Θ∗(x) = Ex|Θ∗(x) = 0,

CovEx|Y;Θ∗(x) + EYCovx|Y;Θ∗(x) = Covx|Θ∗(x) = (I−C∗)−Tω2∗
0 (I−C∗)−1.

Lemma 6. For any positive definite matrix A and B,minEig(A)−minEig(B) ≤ ∥A−B∥F .

Proof. It is straightforward from Li (1994) that we have√∑
i

(λA,i − λB,r(i))2 ≤ ∥A−B∥F ,

where λA and λB are the eigenvalues of matrix A and B.

Lemma 7. For any matrix A and B, we have σmin(A)− σmin(B) ≤ ∥A−B∥F

Proof. It is straightforward from Mirsky (1960) that we have:√∑
i

(σA,i − σB,i)2 ≤ ∥A−B∥F ,

where σA and σB are the singular values of matrix A and B.
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Lemma 8. The β = 0 is the optimal solution of the penalized Lasso with l1/l2 penalty

1
2N

EX|Y;Θ∥ej(π̂)δ1
−Xβ∥+ λ∥β∥l1/F if the following condition is hold:

w ∈ ∂∥β∥l1/F ,
1

2N
EX|Y;ΘX

T (
ej(π̂)

δ1
−Xβ) + λw = 0,

∥w∥l∞/l2 < 1.

Proof. It is straightforward by following Lemma 1 in Aragam et al. (2015).

Lemma 9. ∀Θ and π, denote ej(π) is the j-th column of X−XC∗
Θ(π). We have EYEX|Y,Θ(X

Tej(π)) =

0,∀j.

Proof. Since ej(π̂) is the j-th column of X−XC∗
Θ(π). Therefore, C

∗
Θ satisfies

∂G(C∗
Θ,Θ)

∂C
= 0,

EYEx|Y;Θ(x(xj − xC∗
Θ(π̂)j)) = 0,∀j,

EYEx|Y;Θ(xej(π))) = 0.

Therefore, we have EYEx|Y,Θ(X
T ej(π)

δ1
) = 0.

Lemma 10 (Balakrishnan et al. (2017)). For radius r̃ > 0 and pair (γ, β) satisfying

0 ≤ γ < β, suppose that the function Q(·,Θ∗) is globally β-strongly concave, and the

Condition 6 holds on the ball B2(Θ
∗, r̃). Then the EM operator is contractive over B2(Θ

∗, r̃),

in particular with:

D(M(Θ),Θ∗) ≤ γ

β
D(Θ,Θ∗)

Lemma 11. Denote the r̂2∗jl,Θ as the variance determined by B∗
Θ and r̂ as the variance

determined by B̂ from Eq. (18). Under Lemma 4, we have

∥r̂2 − r̂2∗jl,Θ∥22 ≤
My4sup

Nϱ6
+O(

1

N2
)

with probability 1−Mϱ6.
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Proof. We have

r̂2jl =
1

N

N∑
n=1

Ex(n)|Y(n),Θ∥Y(n)
jl − B̂x

(n)
jl ∥22

=
1

N

N∑
n=1

Ex(n)|Y(n),Θ∥Y(n)
jl − B̂∗

Θx
(n)
jl + B̂∗

Θx
(n)
jl − B̂x

(n)
jl ∥22

=
1

N

N∑
n=1

Ex(n)|Y(n),Θ(∥Y(n)
jl − B̂∗

Θx
(n)
jl ∥22 + ∥B̂∗

Θx
(n)
jl − B̂x

(n)
jl ∥22 + 2⟨Y(n)

jl − B̂∗
Θx

(n)
jl , B̂

∗
Θx

(n)
jl − B̂x

(n)
jl ⟩).

Denote er = r̂2jl − 1
N

∑N
n=1 Ex

(n)
jl |Y(n),Θ

∥Y(n)
jl − B̂∗

Θx
(n)
jl ∥22, we have

er =
1

N

N∑
n=1

E
x
(n)
jl |Y(n),Θ

(∥B̂∗
Θx

(n)
jl − B̂x

(n)
jl ∥22 + 2⟨Y(n)

jl − B̂∗
Θx

(n)
jl , B̂

∗
Θx

(n)
jl − B̂x

(n)
jl ⟩)

≤ δB
N

(x2sup + 2∥B∗
Θ∥Fx2sup + 2ysup).

Denote e′r = r̂∗2jl,Θ − 1
N

∑N
n=1 Ex

(n)
jl |Y(n),Θ

∥Y(n)
jl − B̂∗

Θx
(n)
jl ∥22, we have

E(e′r) = 0,

Var(e′r) ≤
1

N
y4sup.

Therefore, using Chebyshev’s inequality, with probability ϱ6, we have

P

e′r >

√
y4sup

Nϱ6

 < ϱ6.

and with 1− ϱ6, we have

|er|+ |e′r| ≤
δB
N

(x2sup + 2∥B∗
Θ∥Fx2sup + 2ysup) +

√
y4sup

Nϱ6
.

Thus,

(r̂2jl − r̂∗2jl,Θ)
2 ≤ y4sup

Nϱ6
+O(

1

N2
)

Taking uniform control of all j, l that, with probability 1−Mϱ6 we have

∥r̂2 − r̂2∗jl,Θ∥22 ≤
My4sup

Nϱ6
+O(

1

N2
)
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Lemma 12. Denote the ω̂∗2
0 is the variance determined by C∗

Θ and ω̂2
0 is the variance

determined by Ĉ from Eq. (21). Under Lemma 3, we have

ω̂∗2
0 − ω̂2

0 ≤
√

d4supx
4
sup

ϱ1N
+ λ(2δ1 + 1)csup

with probability 1.

Proof. From Eq. (21), we have

ω2
0 =

1

NM

N∑
n=1

Ex(n)|Y(n)∥x(n) − x(n)Ĉ∥22

≤ 2

√
d4supx

4
sup

ϱ1N
+ λ(2δ1 + 1)csup

B.2 Conditions to ensure the convergence of EM algorithm

To utilize the theorem proposed by Wang et al. (2015) and Balakrishnan et al. (2017), we

denote Q as the population analog of Qn. Condition 5 and 6 are common conditions to

satisfy the convergence of EM algorithm.

Q(Θ;Θ′) = EYEx|Y;Θ′ log f(x,Y; Θ)

=

∫
p(Y; Θ∗)

∫
p(x|Y; Θ′) log f(x,Y; Θ)dxdY.

Condition 5 (Concavity-Smoothness). For any Θ1,Θ2 ∈ B2(Θ
∗, r̃), Q(· ; Θ∗) is α-

smooth, i.e., denote the θ1, θ2 are the vector form of parameter set Θ1,Θ2, we have

Q(Θ1,Θ
∗) ≥ Q(Θ2,Θ

∗) + (θ1 − θ2)
T▽Q(Θ2; Θ

∗)− α

2
∥θ2 − θ1∥2,

and β-strongly concave, i.e.,

Q(Θ1,Θ
∗) ≤ Q(Θ2,Θ

∗) + (θ1 − θ2)
T▽Q(Θ2; Θ

∗)− β

2
∥θ2 − θ1∥2.
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Condition 6 (Lipschitz-Gradient). For the true parameter Θ∗ and any Θ ∈ B2(Θ
∗, r),

denote θ, θ∗ are the vector form of parameter set Θ,Θ∗, we have:

∥▽Q(M(Θ);Θ∗)− ▽Q(M(Θ);Θ)∥2 ≤ γ∥θ − θ∗∥2 (39)

B.3 Computing Expectation

B.3.1 Forward filtering

When using forward filtering in DAG, we need to know source of the noise, this process is

implement by the matrix G and H, which record the coefficients of the noise from Eq. (7)

and Eq. (1).

We, denote:

• X : X = [X1, . . . ,XP ] with size N ×∑LjKj, which is the distribution of X before

forward filtering.

• X̃ : X̃ = [X̃1, . . . , X̃P ] with size N ×∑LjKj, which is the distribution of X after

forward filtering.

• X̂ : X̂ = [X̂1, . . . , X̂P ] with size N ×∑LjKj, which is the distribution of X after

backward smoothing.

• ξ : ξ = [ξ1, . . . , ξP ] with size N ×∑LjKj, which is the noise from Eq. (7).

• ε : ε = [ε11(t1), ε11(t2), ..., εPLp(tT )] with size N ×∑LjT , which is the noise from Eq.

(1).

• G : Coefficient of noise (from Eq. (7)) with size
∑

LjKj ×
∑

LjKj.

• H : Coefficient of noise (from Eq. (1)) with size
∑

LjKj ×
∑

LjT .
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• G̃ : Posterior coefficient of noise (from Eq. (7)) with size
∑

LjKj ×
∑

LjKj.

• H̃ : Posterior coefficient of noise (from Eq. (1)) with size
∑

LjKj ×
∑

LjT .

• Ĝ : Coefficient of noise after backward smoothing (from Eq. (7)), with size
∑

LjKj×∑
LjKj.

• Ĥ : Coefficient of noise after backward smoothing (from Eq. (1)) with size
∑

LjKj×∑
LjT .

Then X, X̃, X̂ have following representation:

x(n) = u(n) +Gξ(n) +Hε(n)

x̃(n) = ũ(n) + G̃ξ(n) + H̃ε(n)

x̂(n) = û(n) + Ĝξ(n) + Ĥε(n)

where û, ũ and û represent the mean of x, x̃ and x̂.

Update for prior:

x
(n)
j = x̃(n)Cj + ε

(n)
j

=
∑
k∈paj

CT
kjũk +

∑
k∈paj

CT
kjG̃kξ

(n)

+
∑
k∈paj

CT
kjH̃kε

(n) + ε
(n)
j
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Therefore, x
(n)
j ∼ N (u

(n)
j ,Σj), where:

u
(n)
j =

∑
k∈paj

CT
kjũ

(n)
k

Gj =
∑
k∈paj

CT
kjG̃k + IG(j)

Hj =
∑
k∈paj

CT
kjH̃k

Σj = ω2
0GjG

T
j +Hjdiag(r)H

T
j

where IG(j) is a
∑

LjKj ×
∑

LjKj matrix with the identity matrix in the submatrix

corresponding to node j, IG(j)jj = ILjKj×LjKj
.

Update for posterior: We estimated the posterior distribution of x in n-th sample,

Y
(n)
jl = Bjx

(n)
jl + ε

(n)
jl

= Bj(u
(n)
jl +Gjlξ

(n) +Hjlε
(n)) + ε

(n)
jl

Therefore, Y
(n)
jl ∼ N (Bju

(n)
jl ,BjΣjlB

T
j + r2jlIT ), where: And we have: x

(n)
jl

Y
(n)
jl

 ∼ N

 û

(n)
jl

Bju
(n)
jl

 ,

 Σjl ΣjlB
T
j

BjΣjl BjΣjlB
T
j + r2jlIT




The posterior xjl|Yjl ∼ N (ũjl, Σ̃jl), where

ũ
(n)
jl = u

(n)
jl +ΣjlB

T
j (BjΣjlB

T
j + r2jlIT )

−1(Yjl −Bju
(n)
jl )

G̃jl = Gjl −ΣjlB
T
j (BjΣjlB

T
j + r2jlIT )

−1BGjl

H̃jl = Hjl −ΣjlB
T
j (BjΣjlB

T
j + r2jlIT )

−1(BHjl + IH(j, l))

where IH(j, l) is a
∑

LjT ×
∑

LjT matrix with the identity matrix IT in the submatrix

corresponding to the l-th function in node j, IH(j, l)jl,jl = IT .
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B.3.2 Backward smoothing

For k and the descendants j, we derive the covariance of nodes j, k:

Σ̃j,k = ω2
0G̃jG̃

T
k + H̃jD(r)H̃T

k x̃
(n)
k

x̃
(n)
de(k)

 ∼ N

 ũ

(n)
k

ũ
(n)
de(k)

 ,

 Σ̃k Σ̃k,de(k)

Σ̃
T
k,de(k) Σ̃de(k)


 (40)

Derive p(x̃k|x̃de(k),Y):

û
(n)
k = ũ

(n)
k + Σ̃k,de(k)Σ

−1
de(k)(û

(n)
de(k) − ũ

(n)
de(k))

Ĝk = G̃k − Σ̃k,de(k)Σ
−1
de(k)(G̃de(k) − Ĝde(k))

Ĥk = H̃k − Σ̃k,de(k)Σ
−1
de(k)(H̃de(k) − Ĥde(k))

Finally, posterior mean of x is û and the posterior variance is:

Σ̂ = ω2
0ĜĜT + Ĥdiag(r)ĤT
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