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ON A CONJECTURE OF GROSS, MANSOUR AND TUCKER FOR ∆-MATROIDS

RÉMI COCOU AVOHOU

ABSTRACT. Gross, Mansour, and Tucker introduced the partial-duality polynomial of a
ribbon graph [Distributions, European J. Combin. 86, 1–20, 2020], the generating func-
tion enumerating partial duals by Euler genus. Chmutov and Vignes-Tourneret wondered
if this polynomial and its conjectured properties would hold for general delta-matroids,
which are combinatorial abstractions of ribbon graphs. Yan and Jin contributed to this
inquiry by identifying a subset of delta-matroids–specifically, even normal binary ones–
whose twist polynomials are characterized by a singular term. Building upon this founda-
tion, the current paper expands the scope of investigation to encompass even non-binary
delta-matroids, revealing that none of them have width-changing twists.

1. INTRODUCTION

Chmutov introduced partial duality, a generalization of geometric duality for ribbon
graphs, inspired by the Bollobás-Riordan and Jones-Kauffman polynomials [Chm09].
Partial duality allows one to dualize only some edges of a ribbon graph, and obtain a
partial dual. Gross, Mansour, and Tucker defined the partial-dual genus polynomial as
a generating function that enumerates the partial duals of a ribbon graph by their genus
[GMT20]. This polynomial has a counterpart for delta-matroids, which are combinatorial
models of ribbon graphs.

Delta-matroids, introduced by Bouchet [Chm09], are a generalization of matroids that
capture the essence of graph theory. A delta-matroid has feasible sets, analogous to bases
of a matroid, which can have different sizes but satisfy the Symmetric Exchange Ax-
iom. Delta-matroids can also encode information about how a graph is embedded on
a surface. Bouchet [Bou89] showed that ribbon graphs, which are graphs with cyclic
ordering of edges around each vertex, have delta-matroids that reflect their properties.
For example, quasi-trees, which are subgraphs with one boundary cycle, are the same as
spanning-trees, which are genus-zero spanning ribbon subgraphs. The edge set and the
spanning quasi-trees of a ribbon graph form a delta-matroid, as a surprising result. A
key connection between the two theories is the twist operation on delta-matroids, which
corresponds to partial duality on ribbon graphs. This operation has many implications
for the delta-matroid polynomial, which is a generalization of the Tutte polynomial.

Some graph polynomials, such as the Tutte polynomial, are better viewed as matroid
polynomials, since they depend only on the matroid structure of the graph. Recently,
there has been a lot of interest in extending the Tutte polynomial to graphs embedded
on surfaces. Three such extensions are the Las Vergnas polynomial, the Bollobás-Riordan
polynomial, and the Kruskal polynomial, which are defined for embedded graphs. These
polynomials have been further generalized to delta-matroids as delta-matroid polynomi-
als Gross, Mansour, and Tucker [GMT20] defined the partial-dual Euler genus polynomi-
als and the partial-dual orientable genus polynomials for ribbon graphs, which count
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2 RÉMI COCOU AVOHOU

their partial duals by their genus. They conjectured that no orientable ribbon graph
has a non-constant partial-dual polynomial with one non-zero term. This conjecture
was refuted by an infinite family of counterexamples in [YJ21]. Chmutov and Vignes-
Tourneret [CVT21] showed that these are the only counterexamples, and raised the ques-
tion of whether the partial-dual polynomials and conjectures make sense for general
delta-matroids. Yan and Jin [YJ22] introduced the twist polynomials for delta-matroids,
which are analogous to the partial-dual polynomials for ribbon graphs. They also char-
acterized the even normal binary delta-matroids with one term twist polynomials, and
solved the odd normal binary case in [QY22]. They partially answered the question for
normal binary delta-matroids, and left open the question for non-binary delta-matroids.

We organize the paper as follows. In Section 2, we recall the definitions and properties
of delta-matroids, partial-duality polynomials of ribbon graphs and delta-matroids, and
some other basic concepts. In Section 3, we prove our main result for even normal non-
binary delta-matroids: none of them has a non-constant twist polynomial with one non-
zero term.

2. PRELIMINARIES

Let D be a ∆-matroid with a finite ground set E and a collection F of subsets of E
called feasible sets, which satisfy the following condition:

(SEA) For any F1, F2 ∈ F and x ∈ F1∆F2, we have F1∆x, y ∈ F whenever y ∈ F2∆F1.
Note that x = y is allowed.

Given a delta-matroid D = (E,F), the largest feasible sets of D form the bases of the
upper matroid, while the smallest feasible sets of D form the bases of the lower matroid.
These are two matroids that are contained in D.

Every ∆-matroid D = (E,F) has a dual ∆-matroid D⋆ = (E,F⋆), where F⋆ =
E \ F |F ∈ F . An element of E that belongs to no feasible set of D is a loop of D, while an
element of E that belongs to no feasible set of D⋆ is a coloop of D. Observe that the lower
(upper) matroid of D is dual to the upper (lower) matroid of D⋆.

Definition 1 (Elementary minors). Let D = (E,F) be a delta-matroid. The elementary
minors of D at e ∈ E, are the delta-matroids D − e and D/e defined by:

D − e =
(

E − e,
{

F |F ⊆ E − e, F ∈ F
}

)

,

if e is not a coloop, and

D/e =
(

E − e,
{

F |F ⊆ E − e, F ∪ e ∈ F
}

)

,

if e is not a loop. In case e is a loop or a coloop, we set D/e = D − e. The delta-matroid
D − e is called the deletion of D along e, and D/e the contraction of D along e.

A minor of D is a ∆-matroid that is obtained from a ∆-matroid D by a (potentially
empty) sequence of contractions and deletions.

Assume that A[W ] = (avw : v,w ∈ W ) for W ⊆ E and that A = (avw : v,w ∈ E) is a
symmetric binary matrix. D(A) = (E, {W : A[W ] has an inverse}) is a ∆-matroid if and
only if A[∅] has an inverse.

Definition 2 (Twist). Let D = (E,F) be a set system. For A ⊆ E, the twist of D with
respect to A, denoted by D ⋆ A, is given by (E, {A∆X|X ∈ F}).
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We recall that D⋆ = D ⋆ E is the dual D⋆ of D.

Definition 3 (Binary delta-matroid [Bou89, BD91]). A delta-matroid D = D(E,F) is said
to be binary if there exists F ∈ F and a symmetric binary matrix A such that D = D(A) ⋆
F .

A series of contractions and deletions results in the minor of a delta-matroid D. The
following proposition where introduced in [Bou89, BD91]

Proposition 1. If D is a binary delta-matroid, then every elementary minor of D is also a binary
delta-matroid.

Proposition 2. A delta-matroid is binary if it has no minor isomorphic to a twist of S1, S2, S3,
S4, or S5, where

S1 =
(

{1, 2, 3},
{

∅, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

)

,

S2 =
(

{1, 2, 3},
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}
}

)

,

S3 =
(

{1, 2, 3},
{

∅, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}
}

)

,

S4 =
(

{1, 2, 3, 4},
{

∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
}

)

,

S5 =
(

{1, 2, 3, 4},
{

∅, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3, 4}
}

)

.(1)

We will only focus on even delta-matroids and will be restricted to S4 and S5 because
the minor of an even delta-matroid is always even.

Proposition 3. For any delta-matroid D = D(E,F), e ∈ E and F ⊂ E, we have

(1) (D ⋆ F )/e = (D/e) ⋆ F if e /∈ F ,

(2) (D ⋆ F )/e = (D \ e) ⋆ (F \ e) if e ∈ F ,

(3) (D ⋆ F ) \ e = (D \ e) ⋆ F if e /∈ F ,

(4) (D ⋆ F ) \ e = (D/e) ⋆ (F \ e) if e /∈ F .

Definition 4 (Partial-dual orientable polynomial for delta-matroids [GMT20]). Let D =
(E,F) be a delta-matroid. The partial-dual Euler-genus polynomial for D is the generat-
ing function

∂ΓD
(z) =

∑

A⊆E

zw(D⋆A).(2)

3. MAIN RESULTS

Theorem 1. Let E be a finite set and F the set of subsets of E with even cardinality. The pair
D = (E,F) is a ∆-matroid.
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Proof. Let F1 and F2 be two sets in F that are symmetrically different, i.e., F1∆F2 6= ∅.
We want to find another set F3 in F that is obtained by swapping two elements between
F1 and F2. To do this, we pick any x in F1∆F2 and look for a y in F1∆F2 such that y 6= x.
Then we define F3 as F1∆{x, y}. This means that we either remove or add x and y to F1,
depending on whether they belong to F1 or not. We can show that F3 is always in F by
considering three cases:

• If x and y are both in F1, then F3 = F1 \ {x, y}, which is in F because F3 is even.
• If x and y are both in F2, then F3 = F1 ∪ {x, y}, which is in F because F3 is even.
• If x is in F1 but not in F2, and y is in F2 but not in F1, then F3 has the same cardinality

as F1, which is even by assumption. Therefore, F3 is in F because F only contains sets of
even cardinality.

Note that we cannot have F1∆F2 = {x} for some x, because that would imply that F1

and F2 differ by only one element, which is impossible since they have even cardinality.
Hence, we can always find a y in F1∆F2 that is different from x. �

Let’s call the delta-matroid in Theorem 1 Dn, where the empty set is a feasible set, the
ground set has n elements, and n is an odd number.

Theorem 2. Let Dn = (E,F) be the delta-matroid defined above and A ⊆ E.

(1) If A has even number of elements then r ((Dn⋆A)min) = 0 and r ((Dn⋆A)max) = n−1.

(2) Otherwise, r ((Dn ⋆ A)min) = 1 and r ((Dn ⋆ A)max) = n.

Proof. Let us start with the first point. If A ⊆ E has even number of elements then A ∈ F
and Dn ⋆ A has the empty set as feasible and then r ((Dn ⋆ A)min) = 0. The set E \ A is
odd and for x ∈ E \ A, (E \ A) − x ∈ F and therefore A∆(E \ A) − x ∈ F and contains
n− 1 elements. This ends the proof of 1).

We now turn to the case where A is odd. In this case A /∈ F and then the smallest
feasible set in Dn⋆A is non-empty and for any x ∈ A, {x} ∈ F(Dn⋆A) because A−x ∈ F .
Therefore r ((Dn ⋆ A)min) = 1. Since A is odd then E \A ∈ F because it contains an even
number of elements and thereforeA∆(E\A) = E ∈ Dn⋆A. Hence r ((Dn⋆A)max) = n �

Let us denote by w(Dn) = r (Dn
min)− r (Dn

max), the width of Dn. The following results
are immediate.

Corollary 1. The evaluation of the partial-dual polynomial on the delta-matroids Dn is ∂ΓD
(z) =

2nz
n−1

2 .

This corollary demonstrates that the delta-matroids Dn serve as natural expansions
to the set of counterexamples presented in [YJ21].

Proposition 4. Let D = (E,F) be a delta-matroid and A ⊂ E. The delta-matroid D⋆A obtained
by taking a twist of D by A is even (resp odd) if and only if D is even (resp odd). In the same way,
a minor of D is even (resp odd) if D is even (resp odd).

Proposition 5. Let D = (E,F) be a delta-matroid in which the emptyset is a feasible satisfying
w(D) = w(D ⋆ A) for any A ⊆ E.

(1) If D is even then there is no element x in E that belongs to every F ∈ Fmax. Furthermore,
if {a, b} ∈ F , then for any F ∈ Fmax, a ∈ F or b ∈ F .

(2) If E ∈ F , then F = P(E).
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The first item of this proposition shows that the feasible set F contains all the two
elements subsets {a, b} such that there is F ∈ Fmax and a ∈ F or b ∈ F .

Proof. If there is an element x ∈ E such that x ∈ F for any F ∈ Fmax, then w(D ⋆ {x}) =
w(D) − 2 because {x} /∈ F and there is no feasible of size |F | − 1 in F . In case there is
{a, b} ∈ F and F ∈ Fmax such that a, b /∈ F then w(D ⋆ {a, b}) = w(D) + 2.

Assume that E ∈ F . If A ⊂ E such that A /∈ F then w(D ⋆A) = |E| − k < |E| = w(D)
with k = r((D ⋆ A)min) > 0. Therefore F = P(E). �

Lemma 1. Let’s consider a matroid M = (E,B) defined by its base set. For a base F ∈
B, elements x, x′ ∈ F , and elements y, y′ ∈ E \ F , we observe that if F∆{x, y} and
F∆{x′, y′} are in B, then we encounter two scenarios: either F∆{x, y}∆{x′, y′} is in B,
or both F∆{x, y′} and F∆{x′, y} are in B. Additionally, if B includes a set of the form
F∆{x, y}∆{x′, y′}, then for any α, β ∈ {y, y′}, the sets F∆{x, α} and F∆{x′, β} are also
in B.

Proof. Examining F∆{x, y} and F∆{x′, y′} as members ofB, and noting that x′ ∈ F∆{x, y}\
F∆{x′, y′}, we deduce the existence of an element a ∈ F∆{x′, y′} \ F∆{x, y} such that
the symmetric difference (F∆{x, y})∆{x′, a} is in B. Consequently, a must be either x or
y′, leading to the conclusion that either F∆{x′, y} or F∆{x, y}∆{x′, y′} is in B. Similarly,
since x ∈ F∆{x′, y′}\F∆{x, y}, there must be an element b ∈ F∆{x, y}\F∆{x′, y′} such
that the symmetric difference F∆{x′, y′}∆{x, b} is in B; here, b can be either x′ or y. This
implies that either F∆{x, y′} or F∆{x, y}∆{x′, y′} is in B.

This argument completes the proof of the first part of the lemma. The proof of the
second part follows a similar logic, considering the sets F and F∆{x, y}∆{x′, y′} within
B and applying the Symmetric Exchange Axiom (SEA). �

Remark 1. • It is not hard to see that for i = 1, · · · 5, there is a subset A of the ground set
for which w(Si ⋆ A) 6= w(A).

• Remark that the feasible sets of the minimal delta-matroids S4 and S5 ⋆{1, 3} are re-
spectively of the form: {∅, F, F∆{1, 3}, F∆{2, 4}, F∆{1, 4}, F∆{2, 3}, F∆{1, 3}∆{2, 4}};
and {F,F∆{1, 3}, F∆{2, 4}, F∆{1, 4}, F∆{2, 3}, F∆{1, 3}∆{2, 4}} for F = {1, 2}. There-
fore if S4 or S5 is a minor of a delta-matroid D = (E,F) then it contains feasibles of the
form F , F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2} where

x1, x2 ∈ F and x′1, x
′
2 ∈ E \ F .

Proposition 6. Let D = (E,F) be delta-matroid and e ∈ E.

i) If the delta-matroids D\e or D/e contain feasibles of the form F , F∆{x1, x
′
1}, F∆{x2, x

′
2},

F∆{x1, x
′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2} with x1, x2 ∈ F and x′1, x

′
2 ∈ E \ F ,

the delta-matroid D contain feasibles of the same form. Furthermore if F is of maximum
size in D \ e or D/e, its correspondence in D belongs to Dmax.

ii) If the delta-matroids D \ e or D/e is isomorphic to a twist of Si; i = 4, 5, then there is a
subset A of E such that D⋆A contains feasibles of the form F , F∆{x1, x

′
1}, F∆{x2, x

′
2},

F∆{x1, x
′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2} with x1, x2 ∈ F and x′1, x

′
2 ∈ E \ F .

Proof. We first consider D \ e and suppose that it contains feasible sets of the form F ,
F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2} with x1, x2 ∈ F
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and x′1, x
′
2 ∈ E \ F . Definition 1 implies that none of these sets contains e and they all

belong to F and there are bases of Dmax if and only if F is of maximum size in D \ e.
Let us turn to the case of D/e and assume that it contains feasibles of the form F ,

F∆{x1, x
′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2} with x1, x2 ∈ F

and x′1, x
′
2 ∈ E \ F . Applying the definition of contraction it results that D contains the

feasibles: F ′, F ′∆{x1, x
′
1}, F ′∆{x2, x

′
2}, F ′∆{x1, x

′
2}, F ′∆{x2, x

′
1}, F ′∆{x1, x

′
1}∆{x2, x

′
2};

F ′ = F ∪ {e} x1, x2 ∈ F and x′1, x
′
2 ∈ E \ F . There are clearly bases of Dmax if and only if

F is of maximum size in D/e. This ends the proof of the first item.
For the second item, if D\e is isomorphic to a twist of Si; i = 4, 5, then there is a subset

A of E\e such that D\e is isomorphic to Si⋆A. Proposition 3 implies that (D\e)⋆A = (D⋆
A)\e is isomorphic to Si. Using the result in the first item, D⋆A contains the feasible sets
of the form: F , F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2};

x1, x2 ∈ F and x′1, x
′
2 ∈ E \ F . We obtain same result by replacing the deletion by a

contraction. �

The results in Proposition 6 also applies for any minor M associated to a given delta-
matroid D. Meaning that if M contains feasible sets of the formF , F∆{x1, x

′
1}, F∆{x2, x

′
2},

F∆{x1, x
′
2}, F∆{x2, x

′
1}, F∆{x1, x

′
1}∆{x2, x

′
2}; x1, x2 ∈ F and x′1, x

′
2 ∈ E \F , then D also

has feasible sets of the same form. Furthermore they belong to Dmax if there correspon-
dence in M belong to Mmax where Mmax is the upper matroid associated to M .

Theorem 3. There is no even non binary ∆-matroid D = (E,F) in which the emptyset is a
feasible satisfying w(D) = w(D ⋆ A) for any A ⊆ E.

Proof. We assume for simplicity that every x ∈ E is in some feasible set of D. Otherwise,
for any x ∈ E such that x /∈ F for all F ∈ F , we have w(D ⋆ A) = w(D ⋆ (A \ {x})) for
any subset A of E that includes x.

• If |E| = 1, then F = P(E), which cannot be, since (E,P(E)) is not an even ∆-
matroid.

• Let E = {x1, x2}. If r(Dmax) = 1, we use the previous result. Otherwise, Fmax has
all the subsets of E with one element and w(D) = 1 6= 2 = w(D ⋆ {x1}). Fmax cannot
have a subset of size 2, because then the second point in Proposition 5 would imply that
F = P(E), which is not an even ∆-matroid.

• Let E = {x1, x2, x3}. As in the previous case, Fmax cannot have sets of size 3, or
else F = P(E). Now suppose that r(Dmax) = 2. The only non-binary ∆-matroid is S2,
but w(S2∆{1}) = 3, which is impossible.

• Let E = {x1, x2, x
′
1, x

′
2}. Assume that r(Dmax) = 2. Since D is an even non-binary,

it has feasible sets of the form S4 or S5, but w(S4) = 2 6= 4 = w(S4 ⋆ 1, 2) and w(S5) = 4 6=
0 = w(S5 ⋆1, 3). In fact, if r(Dmax) = 2, then D has feasible sets of the form F = {x1, x2},
F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1} and F∆{x1, x

′
1}∆{x2, x

′1}, which is
isomorphic to S4. If r(Dmax) = 4, then D must be P(E), which is not an even ∆-matroid.

• Now let E = {x1, x2, x3, x4, x
′
1}. If r(Dmax) = 2, the previous case applies and

works for any delta-matroid with more than four elements in the ground set. We as-
sume that r(Dmax) = 4. From Proposition 5, F = {∅, {x1, x2}, {x1, x3}, {x1, x4}, {x1, x4},
{x1, x

′
1}, {x2, x3}, {x2, x4}, {x2, x

′
1}, {x3, x4}, {x3, x

′
1}, {x4, x

′
1}, F, F∆{x1, x

′
1}, F∆{x2, x

′
1},

F∆{x3, x
′
1}, F∆{x4, x

′
1}} with F = {x1, x2, x3, x4}, but this delta-matroid is binary.

• Suppose that E = {x1, x2, x3, x4, x
′
1, x

′
2} and r(Dmax) = 4 with F = {x1, x2, x3, x4} ∈

Fmax. Since D is non-binary, it has feasible sets of the form F , F∆{x1, x
′
1}, F∆{x2, x

′
2},

F∆{x1, x
′
2}, F∆{x2, x

′
1} and F∆{x1, x

′
2}∆{x2, x

′
2}. According to Proposition 5, xj ; j =
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3, 4 does not belong to a feasible set in Fmax. This leaves us with two options based on the
SEA: 1) F∆{x3, x

′
1}, F∆{x4, x

′
1} are feasible sets or 2) F∆{x3, x

′
1}, F∆{x4, x

′
2} ∈ F . The

same proposition implies that {x′1, x
′
2}, {x1, x

′
2}, {x2, x

′
1}, {x1, x

′
1}, {x2, x

′
2} and {x1, x2}

/∈ F .
The first case leads to the fact that {x′2, x1}, {x′2, x3} and {x′2, x4} /∈ F , which shows

that F∆{x2, x
′
2} = {x1, x

′
2, x3, x4} cannot be a feasible set, because it violates the SEA

on the empty set and {x1, x
′
2, x3, x4}. Since Dmax is a matroid, applying Lemma 1 on

the second case gives: F∆{x3, x
′
2}, F∆{x4, x

′
1} ∈ F (which goes back to the first case)

or F∆x3, x
′
1∆x4, x

′
2 ∈ F . We consider the case where only F∆{x3, x

′
1}∆{x4, x

′
2} ∈

F , which implies that {x3, x4} /∈ F . Applying Lemma 1 again on F∆{x3, x
′
1} and

F∆{x1, x
′
2} or F∆{x2, x

′
2}, we return to the first case or we get F∆{x3, x

′
1}∆{x1, x

′
2} ∈ F

and F∆{x3, x
′
1}∆{x2, x

′
2} ∈ F , which implies that {x3, x1}, {x3, x2} /∈ F . This contra-

dicts the fact that the SEA between F and the empty set should give at least one of the
following: {x3, x1}, {x3, x2}, {x3, x4} ∈ F .

• We now assume that E = {x1, x2, x3, x4, x
′
1, x

′
2, x

′
3} and r(Dmax) = 4 with F =

{x1, x2, x3, x4} ∈ Fmax. Since D is non binary, its has feasible set of the form: F , F∆{x1, x
′
1},

F∆{x2, x
′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1} and F∆{x1, x

′
2}∆{x2, x

′
2}. Applying Proposition 5

and the SEA, we have the following possibilities: 1) F∆{x3, x
′
1}, F∆{x4, x

′
1} ∈ F , 2)

F∆{x3, x
′
1}, F∆{x4, x

′
2} are feasible sets, 3) F∆{x3, x

′
3}, F∆{x4, x

′
3} ∈ F or 4) F∆{x3, x

′
1},

F∆{x4, x
′
3} ∈ F . The same proposition implies that no pair in {x′1, x

′
2, x

′
3}, {x1, x

′
2, x

′
3},

{x2, x
′
1, x

′
3}, {x1, x

′
1, x

′
3}, {x2, x

′
2, x

′
3} and {x1, x2, x

′
3} belongs to F . Proceeding in a similar

way as earlier, each of these cases breaks the SEA.
If r(Dmax) = 6, the result follows the same analysis made in the case |E| = 5,

r(Dmax) = 4.
• ConsiderE = {x1, x2, x3, x4, x5, x6, x

′
1, x

′
2} and r(Dmax) = 4with F = {x1, x2, x3, x4}

element of Fmax. Since D is non binary, it has feasible sets of the form: F , F∆{x1, x
′
1},

F∆{x2, x
′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1} and F∆{x1, x

′
2}∆{x2, x

′
2}. Since F∆{x1, x

′
1} and

F∆{x2, x
′
2} belong to F , then {x1, x5}, {x2, x5} /∈ F . Otherwise W (D ⋆ {x1, x5}) =

W (D)+2 = W (D⋆{x2, x5}) because of the following relations (F∆{x1, x
′
1})∆{x1, x5} =

F ∪{x5, x
′
1} and (F∆{x2, x

′
2})∆{x2, x5} = F ∪{x5, x

′
2}. Using Proposition 5 and the SEA,

F∆{x3, α}, F∆{x4, α} ∈ F for α = x5, x6, x
′
1, x

′
2. The case F∆{x3, α}, F∆{x4, α} ∈ F for

α = x′1, x
′
2 is already studied in the previous case. Now assume that F∆{x3, x5} ∈ F and

F∆{x4, x6} ∈ F . This is impossible because F∆{x4, x6} ∈ F implies that {x5, x4} /∈ F
and therefore contradict the fact that F∆{x3, x5} ∈ F since the SEA between the empty
set and F∆{x3, x5} implies that there should exist α = x1, x2, x4 such that {x5, α} ∈
F . If instead we have F∆{x3, x5}, F∆{x4, x5} ∈ F then it contradicts the fact that
F∆{x1, x

′
1}∆{x2, x

′
2} ∈ F because {x′2, x

′
1}, {x

′
2, x3}, {x

′
2, x4} /∈ F from the fact that F ∈

F and F∆{x3, x5}, F∆{x4, x5} ∈ F . If otherwise we have F∆{x3, x5}, F∆{x4, x
′
1} ∈ F

and F∆{x3, x5}∆{x4, x
′
1} /∈ F then F∆{x3, x

′
1}, F∆{x4, x5} ∈ F which has just been

studied earlier. Otherwise if F∆{x3, x5}∆{x4, x
′
1} ∈ F then {x4, x

′
1}, {x3, x

′
1} /∈ F .

Furthermore {x′2, x
′
1} /∈ F contradicts the fact that F∆{x1, x

′
1}∆{x2, x

′
2} ∈ F . This

is obtained by applying the SEA between the empty set and F∆{x1, x
′
1}∆{x2, x

′
2} =

{x′1, x
′
2, x4, x4}.

Let’s assume that r(Dmax) = 6. Given that D is non-binary, we have the feasible sets
F , F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, and F∆{x1, x

′
2}∆{x2, x

′
2} within F ,

where F is given by F = {x1, x2, x3, x4, x5, x6}. It follows that none of the sets {x′1, x
′
2},
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{x1, x
′
2}, {x2, x

′
1}, {x1, x2}, {x1, x

′
1}, or {x2, x

′
2} are in F . According to Proposition 5 and

the SEA, for each i = 3, 4, 5, 6 and α = x′1, x
′2, the set F∆{xi, α} is in F . We can consider

two cases without loss of generality:
1) The sets F∆{x3, x

′
1}, F∆{x4, x

′
1}, F∆{x5, x

′
1}, and F∆{x6, x

′
2} are feasible.

2) The sets F∆{x3, x
′
1}, F∆{x4, x

′
1}, F∆{x5, x

′
1}, and F∆{x6, x

′
2} are in F .

In the first case, this means that the sets {x3, x
′
2}, {x4, x

′
2}, {x5, x

′
2}, and {x6, x

′
1}

are not in F , which implies that {x6, x
′
2} must be in F because the symmetric differ-

ence F∆{x2, x
′
2} results in {x1, x

′
2, x3, x4, x5, x6} and and the empty set belong to F .

However, having both F∆{x6, x
′
2} and F∆{x1, x

′
1} in F would necessitate that either

F∆{x6, x
′
1} is in F (which cannot be since {x6, x

′
2} is in F) or the symmetric difference

F∆{x6, x
′
2}∆{x1, x

′
1}, which equals {x′1, x2, x3, x4, x5, x

′
2}, is in F . The latter is also not

possible because none of the sets {x′2, α} for α ∈ {x′1, x2, x3, x4, x5} are in F .
Now, let’s explore the more general case where E = {x1, . . . , xm, x′1, . . . , x

′
p}, meaning

|E| = m+ p, and F = {x1, . . . , xm}. Since D is non-binary, it includes feasible sets of the
form F , F∆{x1, x

′
1}, F∆{x2, x

′
2}, F∆{x1, x

′
2}, F∆{x2, x

′
1}, and F∆{x1, x

′
2}∆{x2, x

′
2}.

From the assumption we made from the beginning of the proof, there is a feasible set
Fj ∈ F such that x′j ∈ Fj for any j = 3, · · · ,m. The SEA implies that for each i = 1, · · · ,m
there is j = 1, · · · , p such that F∆{xi, x

′
j} ∈ F .

Let’s consider that for each i from 1 to m, there exists a j from 3 to p such that the sym-
metric difference F∆{xi, x

′
j} is included in F . This implies that the set {xi, x

′
1} is not in F

for any i in the range from 1 to m. If it were otherwise, applying the Symmetric Exchange
Axiom (SEA) to {xi, x

′
1} and F∆{xi, x

′
j} would lead to the inclusion of F ∪ {x′1, x

′
j} in F ,

which cannot occur. Moreover, the assertion that {xi, x
′
1} is excluded from F for each i

from 1 to m contradicts the fact that F∆{x1, x
′
1} is a member of F . Furthermore, if for

all i from 1 to m, the set F∆{xi, x
′
1} belongs to F , then the set {xi, x

′
2} must not be in F ,

which would be in conflict with the established fact that F∆{x2, x
′
2} is part of F .

Suppose, without loss of generality, that for some q within the set {1, . . . ,m}, the
set F∆{xq, x

′
2} is in F . However, for all i from 1 to m, excluding q, the set F∆{xi, x

′
1}

is also in F . Considering both F∆{xq, x
′
2} and F∆{xi, x

′
1} for all i not equal to q, and

applying Lemma 1, we find that either F∆{xq, x
′
1} is in F or the symmetric difference

F∆xq, x
′
2∆xi, x

′
1 is in F for any i in the set {1, . . . ,m} excluding q. The former case circles

back to a previously examined scenario. In the latter case, the pair {xq, xi} cannot be in
F for any i not equal to q, which contradicts the SEA applied to the empty set and F .

Next, let’s assume there exist q, r within the set {1, . . . ,m}, excluding {1, 2}, and
distinct from each other, such that both F∆{xq, x

′
2} and F∆{xr, x

′
2} are in F , but for

all i from 1 to m, excluding q and r, the set F∆{xi, x
′
1} is in F . Consequently, the

sets F∆{x1, x
′
2}, F∆{x2, x

′
2}, F∆{xq, x

′
2}, and F∆{xr, x

′
2} are the sole members of F

that can be expressed as F∆{α, x′2}. This means that for each F∆{xi, x
′
1}, where i is

in the set {2, . . . ,m} excluding q and r, and for F∆{x1, x
′
2}, the symmetric difference

F∆{xi, x
′
1}∆{x1, x

′
2} is in F according to Lemma 1. Thus, the pair {x1, xi} is not in F for

any i in the set {2, . . . ,m} excluding q and r. If either F∆{xq, x
′
1} or F∆{xr, x

′
1} is in F ,

we revert to the previous case. If not, considering F∆{x1, x
′
1} and each F∆{xj , x

′
2} for

j = q, r, Lemma 1 implies that the symmetric difference F∆{x1, x
′
1}∆{xj , x

′
2} is in F for

j = q, r, leading to the conclusion that the pair x1, xj is not in F for j = q, r. Ultimately,
no pair of the form {x1, xi}, where i ranges from 2 to m, exists in F , contradicting the
SEA applied to F and the empty set.
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If we proceed inductively, we arrive at the same conclusion if F includes additional
elements of the form F∆{α, x′2}. �
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