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ABSTRACT
In our previous study (Tsukamoto et al. 2023a), we investigated formation and early
evolution of protoplanetary disks with 3D non-ideal magnetohydrodynamics simula-
tions considering dust growth, and found that the modified equations of the conven-
tional steady accretion disk model which consider the magnetic braking, dust growth
and ambipolar diffusion reproduce the disk structure (such as density and vertical mag-
netic field) obtained from simulations very well. The disk structure predicted from the
disk model is described by observationally or experimentally constrainable parameters
such as the mass of central star, mass accretion rate, recombination rate, temperature,
and ionization rate. In this paper, as a sequel of the our previous study, we analytically
investigate the structure and evolution of protoplanetary disks corresponding to Class
0/I young stellar objects using the modified steady accretion disk model combining
an analytical model of envelope accretion. We estimate that the disk radius is sev-
eral AU at disk formation epoch and increases to several 100 AU at the end of the
accretion phase. The disk mass is estimated to be 0.01M⊙ ≲ Mdisk ≲ 0.1M⊙ for a

disk with radius of several 10 AU and mass accretion rate of Ṁdisk ∼ 10−6 M⊙ yr−1.
These estimates seems to be consistent with recent observations. We also found that,
with typical disk ionization rates (ζ ≳ 10−19 s−1) and moderate mass accretion rate

(Ṁdisk ≳ 10−8 M⊙ yr−1), magneto-rotational instability is suppressed in the disk be-
cause of low plasma β and efficient ambipolar diffusion. We argue that the radial profile
of specific angular momentum (or rotational velocity) at the disk outer edge should be
continuously connected to that of the envelope if the disk evolves by magnetic braking,
and should be discontinuous if the disk evolves by internal angular momentum trans-
port process such as gravitational instability or magneto-rotational instability. Future
detailed observations of the specific angular momentum profile around the disk outer
edge are important for understanding the angular momentum transport mechanism
of protoplanetary disks.

Key words: star formation – circum-stellar disk – methods: magnetohydrodynamics
– protoplanetary disk

1 INTRODUCTION

Predicting the structure and evolution of protoplanetary
disks such as surface density and magnetic field profile with
observationally or experimentally constrainable parameters
is a major challenge in theoretical astrophysics. Toward
this end, many studies have been carried out using mul-
tidimensional magnetohydrodynamics (MHD) simulations
that take into account the non-ideal MHD effects (Li et al.
2011; Machida et al. 2011; Tomida et al. 2015; Tsukamoto
et al. 2015b,a; Wurster et al. 2016; Masson et al. 2016;

Tsukamoto et al. 2017a; Zhao et al. 2018; Wurster & Bate
2019; Tsukamoto et al. 2020; Zhao et al. 2020; Xu & Kunz
2021). The consensus from these studies is that non-ideal
MHD effects, especially ambipolar diffusion, play a crucial
role in disk evolution. Because the strength of non-ideal
MHD effects, magnetic resistivity strongly depends on the
microscopic physics (such as the cosmic-ray ionization, the
gas-phase recombination, and the adsorption rate of charged
particles on the dust grains), various studies have also been
carried out to investigate the impact of the microscopic
physics on the disk evolution (Zhao et al. 2016; Wurster
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2 Tsukamoto et al

et al. 2018; Tsukamoto et al. 2020; Kuffmeier et al. 2020;
Marchand et al. 2021, 2023; Kobayashi et al. 2023).

While it is wonderful that such multidimensional,
microphysics-aware simulations are now possible and
thereby reveal the formation and evolution of protoplanetary
disks, the high computational costs of such simulations make
it difficult to study the long-term evolution of protoplane-
tary disks over ∼ 106 yr after protostar formation, through
the Class 0 and Class I evolutionary stages, to the Class
II stage. Furthermore, their microscopic and macroscopic
complexities make it seem extremely difficult to achieve the
ultimate goal described above, i.e., to concisely describe the
disk evolution and disk structure in terms of a few parame-
ters.

Recently, Tsukamoto et al. (2023a) (here after TMI23)
investigated the formation and evolution of protoplanetary
disks using dust-gas two-fluid non-ideal MHD simulations
with dust growth. The simulations also take into account the
changes of magnetic resistivity associated with dust growth.
This study proposed the concept of a ”co-evolution of dust
grains and protoplanetary disks”, a process in which the
global evolution of the disk is significantly affected by dust
growth through the changes in the adsorption efficiency of
charged particles onto the dust grains.

TMI23 also found that when the dust grains becomes
sufficiently large (broadly speaking, the maximum dust size
becomes 100 µm to 1 mm; see Tsukamoto & Okuzumi (2022)
for more detailed calculations) and the adsorption of ions
and electrons on the dust grains becomes negligible, the ra-
dial profiles of the disk such as density, magnetic field, radial
velocity, and ambipolar resistivity are well described by the
power laws. TMI23 also showed that a simple extension of
the steady accretion disk model reproduces the disk struc-
ture surprisingly well not only the power law exponent but
also the absolute value.

The disk structure of TMI23 is described in terms of ob-
servationally constrainable (or experimentally measurable,
such as the gas phase recombination rate) parameters, and
is conducive to the ultimate goal described above. Further-
more, because it is written analytically, it can be an impor-
tant tool for understanding long term evolution of the disks
until the end of Class I. Therefore, it is important to clarify
the predictions obtained from the model and give sugges-
tions for future observations.

However, the disk structure derived in TMI23 is not
suitable for the purpose of comparison with observations be-
cause the model employed (simulation-based) assumptions
such as barotropic equation of state to allow the detailed
comparisons with the simulation results. Therefore, in this
paper, we derive a disk structure suitable for comparison to
observations by making simple assumptions on the tempera-
ture structure and gas-phase recombination rate for the disk
model proposed in TMI23. Then we discuss its properties
and, by combining an analytical model of envelope accre-
tion and the disk model, we make observationally testable
predictions. We think that some of the nontrivial predic-
tions for disk mass, radius, and specific angular momentum
profile presented in this paper can be verified by future ob-
servations.

2 GOVERNING EQUATIONS AND THE DISK
STRUCTURE

2.1 Governing equations of disk model

In TMI23, we suggested that the disk structures obtained by
non-ideal MHD simulations are well described by a steady
accretion disk model of,

−2πrvrΣ = Ṁdisk, (1)

vϕ =

√
GMstar

r
≡ rΩ, (2)

H =
cs
Ω
, (3)

Σ(rΩ)vr = −rBzBϕ,s

π
, (4)

Bzvr = −ηA
r
Bz, (5)

ηA
Bϕ,s

H
=

(
H

r

)2

Bzvϕ. (6)

where r is the radius from the central protostar, Σ is the
surface density of the disk, vr is the radial velocity of the
gas, Ṁdisk is the mass accretion rate in the disk which is
assumed to be constant, vϕ is the azimuthal velocity of the
gas, Ω is the angular velocity. Mstar is the protostar mass, cs
is the sound speed, H is the scale height, Bz is the vertical
magnetic field, Bϕ,s is the azimuthal magnetic field at z =
H, ηA is the ambipolar resistivity. Among these quantities,
Ṁdisk and Mstar are constants and do not depend on the
radius and other quantities are functions of the radius. G
is the gravitational constant.

The equation (1) to equation (3) are the same as the
standard viscous accretion disk model and our extension is
expressed in (4) to (6). The equation (4) shows that the
magnetic braking balances the radial angular momentum
advection. The equation (5) shows that the radial magnetic
flux advection balances the radial magnetic field drift by
the ambipolar diffusion. The equation (6) shows that the
azimuthal magnetic field generation by the vertical shear
motion balances the azimuthal magnetic field drift by the
ambipolar diffusion.

Strictly speaking, TMI23 showed that the solutions of
equations (A29) to (A33) in TMI23 which are derived from
perturbation theory reproduce the simulation results well.
However, we have confirmed that the disk structures pre-
dicted by the above equations and those predicted by the
equations used in TMI23 are essentially the same in abso-
lute values as well as in power exponents (for example, the
differences in values of ρ and Bz are about 20%, and the all
power exponents of the physical quantities are completely
the same). So, we use the equations above in this paper be-
cause they are simpler and more intuitive.

To obtain the solution of the equations (1) to (6), we
need a model of ηA and the temperature profile. We showed
in Tsukamoto & Okuzumi (2022) that, as dust growth pro-
ceeds, ηA tends to decrease and converges to the analytic
power law of

ηA =
B2

4πCγρ3/2
∼ B2

z

4πCγρ
3/2
mid

, (7)

even in the disk, which is determined by the balance be-
tween gas phase ionization and gas phase recombination
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Co-evolution of dust grains and protoplanetary disks II: structure and evolution of protoplanetary disks; an analytical approach 3

(Shu 1983). Here, ρmid is the midplane density of the disk.
To derive the right-hand side expression, we assume that the
vertical magnetic field is dominant and the contribution of
the radial and azimuthal magnetic field on the field strength
are negligible. We also assume that the density variation in
the vertical direction is negligible.

Note that, using this formula for ηA, we model that
the dust grains have sufficiently grown in the disk. Broadly
speaking, this formula is justified if the maximum dust size
becomes amax ≳ 100µm in the disk (see, Tsukamoto &
Okuzumi 2022; Lebreuilly et al. 2023, for more detail). The
dust growth to several hundred microns in size can occur
even in young disks. The growth timescale of dust grains
in the disks is estimated to be the order of 103 yr and is
much shorter than the age of Class 0/I young stellar objects
(YSOs) (see Tsukamoto & Okuzumi 2022, for more de-
tailed estimate). Recent simulations actually show that dust
growth and associated resistivity change can proceed in very
young disks (or even in the first core; Tsukamoto et al. 2021;
Marchand et al. 2023; Tsukamoto et al. 2023a). In addition,
signs of dust growth to mm in size even in very young disks
have been revealed by recent high-resolution observations
(Harsono et al. 2018; Carrasco-González et al. 2019). There-
fore, there are theoretical and observational motivations for
using equation (7).

C is given as

C =

√
m2

i ζ

mgβr
, (8)

where mi and mg are the mass of ion and neutral particles.
In this paper, We assume that the major ion is HCO+ and
mi = 29mp where mp is the proton mass. We also assume
mg = 2.34mp. ζ is the ionization rate.

βr is the recombination rate and assumed to be

βr = βr,0

(
T

300 K

)−1

(9)

where βr,0 = 1.1× 10−7 cm3s−1 which is the rate of HCO+

and taken from UMIST database (McElroy et al. 2013).
Note that we adopted older value from RATE99 by Smith
& Adams (1984) to make power law simpler (latest recom-
bination rate (RATE12) of UMIST gives βr ∝ T−0.69).

γ is given as

γ =
⟨σv⟩in

(mg +mi)
, (10)

where ⟨σv⟩in is the rate coefficient for collisional momentum
transfer between ions and neutrals. We assume ⟨σv⟩in =
1.3 × 10−9 cm3s−1 which is calculated from the Langevin
rate (Pinto & Galli 2008).

For temperature, we assume the simple power law,

T (r) = T0

( r

AU

)−1/2

, (11)

and vertically isothermal just for simplicity. However, it is
straightforward to use a more complex temperature struc-
tures.

We assume the sound velocity to be,

cs = 1.9 × 104

(
T

10K

)1/2

cm s−1. (12)

2.2 Assumptions of the model

In our governing equations, we (implicitly) assume that the
internal angular momentum transport mechanisms such as
magneto-rotational instability (MRI), gravitational instabil-
ity (GI) are negligible, and magnetic braking is the mecha-
nism which determines angular momentum evolution of the
disk. The justification for ignoring MRI and GI will be dis-
cussed after the actual disk structure is obtained.

Another important assumption is that the toroidal elec-
tric current is determined by radial gradient of Bz as

Jϕ =
4π

c
(∇×B)ϕ =

4π

c
(
∂Br

∂z
− ∂Bz

∂r
)

∼ −4π

c

∂Bz

∂r
. (13)

This assumption is adopted in e.g., Basu & Mouschovias
(1994); Dapp & Basu (2010); Dapp et al. (2012) and leads
to right hand side term of equation (5).

On the other hand, another possibility is

Jϕ ∼ 4π

c

∂Br

∂z
. (14)

If we further assume Br ∼ Bz at z = H, the equation
(5) is replaced as

Bzvr = −ηA
H
Bz. (15)

We also investigated the solutions with this equation and
found a few times weaker vertical magnetic field at 10 AU
and slightly shallower profile of Bz ∝ r−29/24 because of
the stronger radial diffusion for given magnetic field. On the
other hand, the density and radial velocity do not depend
on the choice of the azimuthal electric current. We do not
use the equation (15) in this paper because the resulting
magnetic field strength does not reproduce the simulation
results in TMI23.

We assume that radial velocity for the magnetic flux
advection (vr in the left hand side term of equation (5))
equals to the (vertically density weighted) radial gas veloc-
ity. We acknowledge that some previous studies show that
the radial velocity at several scale height is much faster than
the radial velocity at the midplane (so called layered accre-
tion; e.g., Gammie 1996; Fleming & Stone 2003; Takasao
et al. 2018; Zhu & Stone 2018). And there are the discus-
sions that vr in the equation (5) (magnetic field transport
velocity) should be different from gas radial velocity (Guilet
& Ogilvie 2012, 2014). On the other hand, in the previous
simulation studies started from cloud cores (Machida 2014;
Machida & Basu 2019), we do not observe such a significant
inward accretion at several scale height rather the gas is sig-
nificantly outflowing from several scale height. We speculate
that the difference of flow pattern at several scale height is
due to the significant difference of the magnetic field struc-
ture/strength in and around the disk among the studies,
and/or whether non-ideal MHD effects are considered. For
example, the layered accretion becomes less pronounced or
disappears when ambipolar diffusion are taken into account
(Gressel et al. 2015; Bai 2017).

The causes of the difference of flow pattern should be
investigated in future studies. At the same time, we think
the validity of the assumptions made in a model should ulti-
mately be verified observationally. In this study, we provide
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4 Tsukamoto et al

the quantitative predictions of the radial profiles, mass, ra-
dius of the disk predicted from our model. This will help to
validate our disk model by future observational studies.

2.3 Disk profiles

By solving the equations (1) to (6) with the model for ηA
(equation (7)) and temperature (equation (11)) assuming
the physical quantities have power law f(r) ∝ rq, we can
derive the physical quantities of disk.

From equation (5) and (6), vr and Bϕ,s can be written
as

vr = −ηA
r
,

Bϕ,s =

(
H3

ηAr2

)
Bzvϕ.

By substituting these expressions into equations (1) and (4),
we obtain

2πηAΣ = Ṁdisk,

H3B2
z = πη2AΣ.

(16)

Using equations (2), (3), (7), (11), and Σ =
√

2πHρmid these
equations are the simultaneous equations for midplane den-
sity and vertical magnetic field. By solving the simultaneous
equations and using the solutions for ρmid and Bz, the disk

radial profiles are given as,

ρmid(r) = 1.6 × 10−12(
Ṁdisk

10−6 M⊙yr−1

) 2
3
(

T0

150 K

)− 4
3

(
Mstar

0.3M⊙

)(
ζ

10−18 s−1

)− 1
3

( r

10 AU

)− 7
3

g cm−3, (17)

Bz(r) = 6.2 × 10−2(
Ṁdisk

10−6 M⊙yr−1

) 2
3
(

T0

150 K

)− 1
3

(
Mstar

0.3M⊙

) 1
2
(

ζ

10−18 s−1

) 1
6

( r

10 AU

)− 4
3

G, (18)

vr(r) = −1.4 × 103(
Ṁdisk

10−6 M⊙yr−1

) 1
3
(

T0

150 K

) 5
6

(
Mstar

0.3M⊙

)− 1
2
(

ζ

10−18 s−1

) 1
3

( r

10 AU

) 1
12

cm s−1, (19)

Bϕ(r, z) = −1.2 × 10−2
( z
H

)
(

Ṁdisk

10−6 M⊙yr−1

) 1
3
(

T0

150 K

) 1
3

(
ζ

10−18 s−1

)− 1
6

( r

10 AU

)− 7
6

G, (20)

ηA(r) = 2.1 × 1017(
Ṁdisk

10−6 M⊙yr−1

) 1
3
(

T0

150 K

) 5
6

(
Mstar

0.3M⊙

)− 1
2
(

ζ

10−18 s−1

) 1
3

( r

10 AU

) 13
12

cm2s−1, (21)

where we assume that Bϕ is linear function of z/H.

Then, the surface density is given as follows,

Σ(r) =
√

2πHρmid = 4.8 × 101(
Ṁdisk

10−6 M⊙yr−1

) 2
3
(

T0

150 K

)− 5
6

(
Mstar

0.3M⊙

) 1
2
(

ζ

10−18 s−1

)− 1
3

( r

10 AU

)− 13
12

g cm−2. (22)

Plasma β and ”Elsasser number” for ambipolar diffu-
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sion Am at midplane are given as

β(r) =
Pgas

Pmag
= 3.0 × 101

(
Ṁdisk

10−6 M⊙yr−1

)− 2
3
(

T0

150 K

) 1
3

(
ζ

10−18 s−1

)− 2
3 ( r

10 AU

)− 1
6
, (23)

and

Am(r) =
v2A
ηAΩ

= 2.7 × 10−1

(
Ṁdisk

10−6 M⊙yr−1

) 1
3
(

T0

150 K

)− 1
6

(
ζ

10−18 s−1

) 1
3 ( r

10 AU

) 1
12
. (24)

Here, Pgas = γρmidc
2
s and Pmag = B2

z/(8π) are the gas and
magnetic pressure, respectively (where γ = 5/3 is specific
heat ratio). vA = Bz/

√
4πρmid is the Alfvén velocity.

Plasma β and Am have a simple relation of,

β(Am) = 2.1Am−2. (25)

Figure 1 shows the radial profile of midplane density
(equation (17)) and surface density of the model (equation
(22)). It shows that the surface density is more or less con-
sistent with the the Minimum Mass Solar Nebula (MMSN)
model (Hayashi 1981) when Ṁdisk ∼ 10−6M⊙ yr−1. We also
plot the surface density of gravitationally unstable disk ΣGI

in the figure calculated from the condition that Toomre’s Q
value is Q = 1 and the temperature profile of equation (11),

ΣGI(r) =
csΩ

πGQ
= 6.8 × 102

(
T0

150 K

) 1
2
(
Mstar

0.3M⊙

) 1
2

( r

10 AU

)− 7
4

g cm−2. (26)

With large mass accretion rate of Ṁdisk ∼ 10−5M⊙ yr−1

which is almost upper limit of mass accretion rate for
low-mass protostar formation, the surface density becomes
ΣGI < Σ in r ≳ 100 AU, and gravitational instability
may develop there even with magnetic braking. On the
other hand, once mass accretion rate becomes Ṁdisk ≲
10−6M⊙ yr−1, the surface density satisfies ΣGI > Σ in
r< 100 AU. Although we will neglect gravitational insta-
bility for our disk model in the rest sections of this paper, it
is important to recognize that gravitational instability can
develop if the disk becomes larger than ∼ 100 AU at a stage
where the mass accretion rate is Ṁdisk ∼ 10−5M⊙ yr−1.

Figure 2 shows the radial profiles of vertical magnetic
field (equation (18)) and plasma β (equation (23)). Our
model predict that, as the protostar evolves and the mass
accretion rate decreases, the vertical magnetic field decreases
as ∝ Ṁ

2/3
disk and midplane plasma β increases as ∝ Ṁ

−2/3
disk .

With the Ṁdisk ∼ 10−6M⊙ yr−1 which is the typical value of
the Class 0/I YSOs, the vertical magnetic field and β at 10
AU are Bz ∼ 60 mG and β ∼ 30, respectively. This indicates
that the disk needs this level of the magnetic field strength to

Figure 1. Radial profiles of midplane density and surface

density. The parameters of Mstar = 0.3M⊙, T0 = 150 K,

ζ = 10−18 s−1 are used. Long dashed (magenta), solid (black),
and short dashed (red) lines show the profile with Ṁdisk =

10−5, 10−6, 10−7 M⊙ yr−1, respectively. dotted-dashed (green)
and dotted (orange) lines show the surface density of gravitation-

ally unstable disk and the Minimum Mass Solar Nebula (MMSN)

model (ΣMMSN = 1.7 × 103(r/AU) g cm−2) (Hayashi 1981), re-
spectively.

cause the sufficient mass accretion of Ṁdisk ∼ 10−6M⊙ yr−1

only by magnetic braking without resorting to other mass
accretion mechanisms such as gravitational instability. Note
that the magnetic field strength are consistent with the disk
formation simulations starting from collapsing cloud cores
(e.g., Masson et al. 2016).

On the other hand, with the Ṁdisk ∼ 10−8M⊙ yr−1

which may be suitable for late Class I YSOs to Class II
objects, the vertical magnetic field and β at 10 AU are Bz ∼
3 mG and β ∼ 650, respectively. This magnetic field profile
may be suitable for the initial conditions of simulations of
isolated star-disk systems just after the envelope is depleted.

Note that our disk model predicts a stronger magnetic
field than the typical initial magnetic field strength of the
simulations that examine the impact of magnetic field in iso-
lated star-disk systems (typically β > 103; Suzuki & Inut-
suka 2014; Gressel et al. 2015; Bai 2017; Zhu & Stone 2018).
By examining the new parameter space predicted from our
disk model with future high-resolution simulations, a new
disk evolution picture is expected to emerge.

Bai & Stone (2011) performed three-dimensional
shearing-box simulations over a wide range of parameter
space, and revealed the parameter space on β-Am plane in
which magnetorotational instability (MRI) operates, corre-
sponding to the requirement that the most unstable vertical
wavelength of MRI should be less than the disk scale height.

© 0000 , 000, 000–000



6 Tsukamoto et al

Figure 2. Radial profiles of vertical magnetic field and plasma β.

The parameters of Mstar = 0.3M⊙, T0 = 150 K, ζ = 10−18 s−1

are used. Long dashed (magenta), solid (black), short dashed
(red), and dotted (blue) lines show the profile with Ṁdisk =

10−5, 10−6, 10−7, 10−8 M⊙ yr−1, respectively.

With the aid of their conditions, we can discuss whether
MRI develops in our disk model, and whether it is reason-
able to neglect MRI.

Figure 3 shows plasma β (equation (23)) of the disk as
a function of Am (equation (24)). In this plot, we consider
the disk radius of 1 AU < r < 100 AU. We derived radius of
given Am from equation (24) and calculate the plasma β at
the obtained radius. Upper left end of each line corresponds
to r = 1 AU, the symbol on the each line corresponds to
r = 10 AU, and lower right end of each line corresponds
to r = 100 AU. The different lines represent the different
mass accretion rate from 10−6M⊙ yr−1 to 10−10M⊙ yr−1.
The figure shows that with our fiducial parameters (Mstar =
0.3M⊙, T0 = 150 K, ζ = 10−18 s−1), MRI becomes active
in r ≲ 100 AU when the mass accretion rate satisfies Ṁdisk ≲
10−10M⊙ yr−1. In this paper, we are interested in Class 0/I
YSOs and the mass accretion rate in this phase is expected
to be larger than 10−9M⊙ yr−1 and neglecting MRI in our
disk model is justified.

This figure indicates that MRI is difficult to develop
during the early evolutionary stage of the disk such as those
with Ṁdisk ≳ 10−9M⊙ yr−1. For MRI to develop, Am and β
must be simultaneously large. However, when Am is large,
the outward transport of magnetic flux by ambipolar diffu-
sion becomes inefficient and the vertical magnetic field of the
disk increases due to the radial advection, and hence β de-
creases. On the other hand, when ambipolar diffusion works
efficiently, the vertical magnetic field is extracted by outward
diffusion and β increases. Because of this self-regulative be-

Figure 3. Plasma β of the disk as a function of Am. The pa-

rameters of Mstar = 0.3M⊙, T0 = 150 K, ζ = 10−18 s−1 are

used. black, red, blue, and cyan lines show the profile of the
disk with Ṁdisk = 10−6, 10−7, 10−8, 10−9 and 10−10 M⊙ yr−1,

respectively. Upper left end of each line corresponds to r = 1 AU
and Lower right end of each line corresponds to r = 100 AU. The

red (or black) point on each line corresponds to r = 10 AU. The

dashed line shows the boundary between whether MRI operates
or not, and in the region below this line, hatched in light red,

MRI does not operate (Bai & Stone 2011).

havior of radial advection and outward diffusion of vertical
magnetic field, the disk evolves towards the upper left direc-
tion on the β-Am plane as the mass accretion rate decreases.

The possible scenario in which MRI develops even with
larger Ṁdisk is the case that cosmic ray are strongly shielded
and the ionization rate in the disk is lowered. Since Am and
β depend on the mass accretion rate and the ionization rate
as Am ∝ (Ṁdiskζ)

1/3 and β ∝ (Ṁdiskζ)
−2/3, respectively,

decreasing the ionization rate by one order of magnitude
and decreasing the mass accretion rate by one order of mag-
nitude have the same impact for Am and β. Thus, for exam-
ple, if ζ decreases to 10−22 s−1 in a disk due to low cosmic-
ray ionization rate and lack of short-lived radionuclides, MRI
can develop in the disk even when Ṁdisk ∼ 10−6M⊙ yr−1

because the orange line can also be regarded as a disk
with Ṁdisk = 10−6M⊙ yr−1 and ζ = 10−22 s−1. In this
case, outer disk would be gravitationally unstable because
Σ ∝ ζ−1/3 and it may become Σ ≳ ΣGI in r ≳ 10 AU (see
figure 1) The another possible scenario in which MRI devel-
ops is the case the electric current is given as Jϕ ∼ Bz/H (as
discussed in §2.2). In this case, the magnetic field becomes
a few times smaller and plasma β increases about one order
of magnitude, and disk can enter the MRI permitted region.

2.4 Mass, magnetic flux, and mass-to-flux ratio of
disk

By radially integrating Σ(r) and Bz(r), we can obtain the
disk mass, disk magnetic flux and mass-to-flux ratio of the

© 0000 , 000, 000–000



Co-evolution of dust grains and protoplanetary disks II: structure and evolution of protoplanetary disks; an analytical approach 7

protostar-disk system.

Mdisk =

∫ rdisk

0

2πrΣ(r)dr = 3.0 × 10−2

(
Ṁdisk

10−6 M⊙yr−1

) 2
3
(

T0

150 K

)− 5
6

(
Mstar

0.3M⊙

) 1
2
(

ζ

10−18 s−1

)− 1
3

( rdisk
100 AU

) 11
12
M⊙, (27)

where rdisk is the disk radius. Note that the radial power
index of Σ is larger than −2 and lower limit of integral does
not contribute to the disk mass and we set it to be zero.

the magnetic flux of the disk is calculated as

Φdisk =

∫ rdisk

0

2πrBz(r)dr = 2.7 × 102

(
Ṁdisk

10−6 M⊙yr−1

) 2
3
(

T0

150 K

)− 1
3

(
Mstar

0.3M⊙

) 1
2
(

ζ

10−18 s−1

) 1
6

( rdisk
100 AU

) 2
3

G AU2. (28)

By assuming that the protostar has the most of the mass
and the disk has the most of the magnetic flux of the system,
the mass-to-flux ratio of the system can be estimated as,

µ ≡
(
Mstar

Φdisk

)
/

(
M

Φ

)
crit

= 2.0 × 101

(
Ṁdisk

10−6 M⊙yr−1

)− 2
3
(

T0

150 K

) 1
3

(
Mstar

0.3M⊙

) 1
2
(

ζ

10−18 s−1

)− 1
6 ( rdisk

100 AU

)− 2
3
, (29)

where we assume
(
M
Φ

)
crit

= 0.53
3π

(
5
G

)1/2
(Mouschovias &

Spitzer 1976).

Figure 4 shows the disk mass and mass-to-flux ratio
µ as a function of mass accretion rate. The disk mass is
0.01M⊙ ≲ M ≲ 0.1M⊙ for mass accretion rates Ṁdisk ≳
10−6M⊙ yr−1 and several 10 AU sized disks. This value is
consistent to the disk mass suggested from observations (To-
bin et al. 2020; Tychoniec et al. 2020). In the figure, we also
plot the mass of gravitationally unstable disk,

MGI,disk =

∫ rdisk

0

2πrΣGI(r)dr = 3.4 × 10−1

(
T0

150 K

) 1
2
(
Mstar

0.3M⊙

) 1
2

( rdisk
100 AU

) 1
4
M⊙. (30)

The mass of gravitationally unstable disk is MGI,disk ≳
0.1M⊙. This value seems not to be consistent to the disk
mass estimated from observations although the disk mass
estimate from the observations also has uncertainties such
as the uncertainty of dust opacity or the optical thickness
(see Tsukamoto et al. 2017b, 2023b).

It is worth noting that the mass of gravitationally un-
stable disk depends weakly on the radius. Since the disk

Figure 4. Disk mass and mass-to-flux ratio as a function of

mass accretion rate. The parameters of Mstar = 0.3M⊙, T0 =

150 K, ζ = 10−18 s−1 are used. Solid (black), dashed (red), and
dotted (magenta) lines show the profile with rdisk = 100, 30, 10

AU, respectively. The gray horizontal lines in the disk mass show
the mass of GI disks (equation (30)).

size has a large dispersion (Maury et al. 2019), it may be
possible to determine whether the disk is gravitationally un-
stable or not by investigating whether the disk mass has a
correspondingly large dispersion.

The mass-to-flux ratio is µ ≳ 10 unless high mass ac-
cretion rate (Ṁdisk ∼ 10−5M⊙ yr−1) and large disk r ∼ 100
AU are realized simultaneously. This value is sufficiently
larger than the mass-to-flux ratio of the molecular cloud
core (µ ∼ 1). In other words, the magnetic flux brought into
the disk by mass accretion from envelope is sufficient to re-
alize Bz shown in equation (18). More precisely, the disk
with size of r ≲ 100 AU cannot hold the all magnetic flux of
the cloud core in it and the magnetic flux piles up around
the disk which may cause the ion-neutral drift around the
disk (Li et al. 2011; Masson et al. 2016; Tsukamoto et al.
2020; Marchand et al. 2020; Zhao et al. 2021). Although the
vertical magnetic field strength of the disk given by equa-
tion (18) may seem very large, it turns out to be very small
compared to the magnetic flux possessed by the molecular
cloud core.

To connect the disk size with the angular momentum
accretion rate from the envelope, we estimate the angular
momentum removal rate by the magnetic torque, which is
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8 Tsukamoto et al

calculated as,

J̇out =

∫ rdisk

0

r
Bϕ,sBz

4πH
2H 2πrdr = Ṁdisk

√
GMrdisk

= 1.5 × 1040

(
Ṁdisk

10−6 M⊙yr−1

)
(
Mstar

0.3M⊙

) 1
2 ( rdisk

100 AU

) 1
2

g cm2 s−2. (31)

This simple form of J̇out is immediately derived from equa-
tions (1) and (4), i.e., the angular momentum removal should
balance with the angular momentum supply by radial ad-
vection at each radius.

If the disk evolves by the magnetic braking and is in a
steady state, the angular momentum removal from the disk
should balance with the angular momentum supply from the
envelope. Thus, we can assume J̇out = J̇env (≡ Ṁenvjenv)
where Ṁenv and jenv are the mass accretion rate from the
envelope to disk and specific angular momentum of the ac-
cretion flow, respectively. By further assuming Ṁdisk = Ṁenv

i.e., the mass accretion rate from the envelope to disk equals
to the mass accretion rate within the disk, we can estimate
the disk size as

rdisk = 160

(
jenv

10−3 km pc s−1

)2 (
Mstar

0.3M⊙

)−1

AU, (32)

which is actually showing that the disk radius is equal to
the centrifugal radius of the accretion flow,

rdisk = rcent ≡
j2env

GMstar
. (33)

This result may seem obvious at first glance. Note, however,
that this does not hold for disks that evolve by internal
angular momentum transport within them (e.g., viscous ac-
cretion due to MRI or GI).

If the disk evolves by internal viscous accretion, the
angular momentum is reserved in the disk and the radius
of the disk is determined by the total angular momentum
having brought into the disk. Thus, the disk radius should
depend on the entire accretion history, not on the instan-
taneous angular momentum accretion from the envelope. In
other words, rdisk should be calculated from the equation∫ rdisk

0

Σ r2Ω 2πrdr =

∫ t

0

Ṁenv(t)jenv(t)dt. (34)

In this case, the specific angular momentum at the outer
edge of the disk is in general different from the specific an-
gular momentum of the envelope accretion at the envelope-
to-disk boundary (see, figure 2 of Takahashi et al. 2016, for
example). This provides an observational test to determine
whether the disk is evolving by magnetic braking or by in-
ternal angular momentum transport. We discuss this point
at the end of the next section.

3 DISK EVOLUTION UNDER THE MASS
AND ANGULAR MOMENTUM
ACCRETION FROM THE ENVELOPE

In this section, we discuss the time evolution of protoplane-
tary disks in Class 0/I phase by combining the disk model

Figure 5. The schematic figure of the system we consider in this

section.

constructed in the previous section with a model of an en-
velope accretion.

Figure 5 shows the schematic picture of envelope-disk
system considered in this section. We assume that mass and
angular momentum accrete to the outer edge of the disk.
This is based on the observations that Class 0/I YSOs com-
monly have bipolar outflows in the normal direction of the
disk, making the accretion from the normal direction diffi-
cult. Furthermore, we assume that the total mass of the disk
and protostar is equal to the enclosed mass inside a certain
radius of the collapsing envelope. By relating the mass and
angular momentum accretion, and enclosed mass of envelope
models to the mass accretion rate in the disk, the angular
momentum extraction rate, and the mass of the central pro-
tostar and disk of our disk model, we can investigate the
time evolution of the disk with the mass accretion from the
envelope.

3.1 Envelope accretion model

For the envelope accretion model, we consider the pres-
sure free spherical symmetric collapse of Vorobyov & Basu
(2005).

The equation of motion of spherical shell is

dvr
dt

= −GM(r)

r2
, (35)

where vr and r are the radial velocity and radius of the
spherical shell. M(r) is the enclosed mass within the r. By
solving this equation with the assumption that vr = 0 at
t = 0, we have√

2G
M(r0)

r30
t = arccos

(√
r

r0

)
+

1

2
sin

(
2 arccos

(√
r

r0

))
,

(36)

where r0 is the radius at t = 0. By solving this equation
for given t and r, we have r0(r, t). Then, the radial veloc-
ity, density, and mass accretion, rate, and specific angular
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momentum can be obtained as,

vr(r, t) =

√
2GM(r0)

(
1

r
− 1

r0

)
, (37)

ρ(r, t) = ρ0(r0)
r20
r2
dr0
dr

, (38)

M(r, t) = M(r0), (39)

Ṁenv(r, t) = 4πr2ρ(r, t)vr(r, t), (40)

jenv(r, t) = ϵmagfJr
2
0Ω0(r0). (41)

where Ω0(r0) is the angular velocity at the equator of the
spherical shell. fJ is the correction factor that arises when
the angular momentum of the rotating spherical shell is de-
scribed by the angular velocity at the equator of the spher-
ical shell. For example fJ = 2/3 if the shell is rigidly ro-
tating (note that the moment of inertia is I = 2/3Mr2 for
the rigidly rotating shell), and fJ = 0.72 if Ω ∝ r−1/2.
For arbitrary angular velocities of Ω ∝ rα, fJ =

√
πΓ(2 +

α/2)/(2Γ(5/2 +α/2)) for α > −4. ϵmag is a factor to mimic
the magnetic braking in the envelope. We assume ϵmag = 1/3
just for simplicity. Note that the early studies have suggest
the ϵmag ∼ 1/3 (Basu & Mouschovias 1994; Tomisaka 2002);
but it may change in the late accretion phase or magnetic
field geometry (e.g., Joos et al. 2012; Marchand et al. 2020).
We believe that determining the value of ϵmag precisely is
one of the major issues for future research.

Here,

dr

dr0
=

r

r0

−

√
G

2M(r0)r0

(
dM(r0)

dr0
− 3M(r0)

r0

)
sin

(
2 arccos

√
r

r0

)
.

(42)

By specifying the initial density and rotation profile, we
obtain M(r, t), Ṁenv(r, t), jenv(r, t). In this paper, we con-
sider the Bonnor-Ebert sphere as the initial density profile,

ρ0(r) = ϱ0ΨBE(r/a) for, (43)

and

a = cs,iso

(
1

4πGϱ0

)1/2

. (44)

where ΨBE is non-dimensional density profile of the crit-
ical Bonnor-Ebert sphere, ϱ0 is the central density, and
Rc = 1.82a is the characteristics radius of the Bonnor-Ebert
sphere.

ΨBE(ξ) ≡ exp(−ψ(ξ)) where ξ ≡ r/a is calculated from
the Lane-Emden equation of isothermal gas with the bound-
ary condition of ψ(ξ) = dψ(ξ)/dξ = 0 at ξ = 0,

d

dξ

(
ξ2
dψ

dξ

)
= ξ2 exp(−ψ). (45)

A Bonnor-Ebert sphere is determined by specifying cen-
tral density ϱ0, the ratio of the central density to density
at Rc, ϱ0/ρ0(Rc). In this study, we adopted the values of
ϱ0 = 2.8 × 10−18 g cm−3, ϱ0/ρ0(Rc) = 14. The enclosed
mass within Rc = 5.3 × 103 AU and 104 AU are 0.53M⊙
and 1M⊙, respectively. We assume a rigid rotation with the
angular velocity of Ω0 = 10−13 s−1, to be consistent with
the observational results (e.g., Tobin et al. 2011).

Figure 6 shows the radial profile of density, enclosed
mass, mass accretion rate, and specific angular momentum
of our envelope model. We can see that enclosed mass, mass
accretion rate, and specific angular momentum are almost
radially constant in r ∼ 100 AU in late accretion phase
(thick solid lines). Thus, we use enclosed mass at r = 100
AU as the total mass of central protostar and disk

M(r = 100AU, t) = Mtot (46)

the mass accretion rate at r = 100 AU as the envelope-to-
disk mass accretion rate,

Ṁenv(r = 100AU, t) = Ṁenv (47)

and the specific angular momentum at r = 100 AU as the
specific angular momentum of accretion flow to the disk.

j(r = 100AU, t) = jenv (48)

Figure 7 shows the time evolution of enclosed mass,
mass accretion rate, and specific angular momentum of our
envelope model at r = 100 AU. In our collapse model, it
takes 2 × 105 yr for the total mass of the central star and
disk Mtot to reach ∼ 1M⊙. During this period, the mass
accretion rate reaches ∼ 10−5M⊙ yr−1 at Mtot = 0.1M⊙
and decreases to ∼ 4 × 10−6M⊙ yr−1 at Mtot = 1M⊙. On
the other hand, the specific angular momentum of the accre-
tion flows continues to increase monotonically and reaches
jenv ∼ 1021 cm2 s−1 at Mtot = 1M⊙.

3.2 Connection between the envelope model and
the disk model

Here, we explicitly specify the relationship between the
quantities of the envelope model and those of the disk model.
To connect the accretion model described in the previous
subsection with our disk model, we assume that the total
mass of central protostar and disk is given as

Mtot = Mdisk +Mstar, (49)

that the mass accretion rate from envelope to be disk mass
accretion rate is given as,

Ṁdisk = Ṁenv, (50)

and that the angular momentum accretion rate from enve-
lope is equal to the angular momentum removal rate,

J̇out = J̇env = Ṁenvjenv. (51)

Hereafter, we refer to this disk-envelope model as ”co-
evolution disk model”.

On the other hand, we also consider a disk that evolves
by internal angular momentum transport due to gravita-
tional instability for comparison. Hereafter, we refer to this
model as ”GI disk model”. In this GI disk model, we assume∫ rdisk

0

ΣGI r
2Ω 2πrdr =

∫ t

0

Ṁenv(t)jenv(t)dt, (52)

instead of equation (51) because total angular momentum in
the disk is not removed by internal viscous accretion process.

To obtain disk mass and protostar mass, we numerical
solve equations (51) (for co-evolution disk model) or (52) (for
GI disk model) and equation (49) to obtain Mdisk and Mstar.
Although the angular velocity of the disk can be different
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Figure 6. Radial profiles of density, enclosed mass, mass ac-
cretion rate, and specific angular momentum of the collapse

model. Thick solid lines show profiles of late accretion phase

and black, red, blue, and cyan lines show the profiles at t =
4× 104, 5× 104, 1× 105, 2× 105 yr, respectively. Thin solid black

line in density profile shows initial density. Dotted lines in density

profile show the profiles of prestellar collapse phase and black, red,
and blue lines show the profiles at t = 3.0×104, 3.1×104, 3.6×104

yr, respectively.

Figure 7. Time evolution of enclosed mass, and specific angular

momentum of the collapse model at r = 100 AU. The mass accre-
tion rate and specific angular momentum are shown as a function

of enclosed mass.

from the angular velocity of the Keplerian rotation when the
disk mass is not negligible compared to the central protostar
mass, we simply assume

Ω =

√
GMstar

r3
, (53)

even for the gravitationally unstable disk.

3.3 Evolution of disk radius

Figure 8 shows the disk radius as a function of the total
mass, which can be regarded as the time evolution of the disk
radius. The co-evolution model predicts the disk radius of
several AU at Mtot ∼ 10−1M⊙ to several 100 AU in Mtot ∼
1M⊙. This relatively compact disk seems to be consistent
with the recent observations of Class 0/I YSOs (Yen et al.
2017; Maury et al. 2019).
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Figure 8. Time evolution of disk radius of the co-evolution

model (black) and GI disk model (red). The temperature for GI

disk model is assumed to be T0 = 150 K.

On the other hand, radius of GI disk model is almost
10 times larger than the co-evolution model and several 10
AU at Mtot ∼ 10−1M⊙ and reaches several 1000 AU at
Mtot ∼ 1M⊙. This radius especially around Mtot ∼ 1M⊙
is very large and seems to be inconsistent with the obser-
vations. Note that, the radius of GI disk is the lower limit
among disks which evolves with the internal angular mo-
mentum transport, because the surface density of GI disk is
the upper limit and given total angular momentum, smaller
surface density causes larger disk radius. Thus, we conclude
in general that disk evolution models in which disks evolve
with internal angular momentum transport mechanisms pre-
dict too large disk radius and at least a certain amount of
angular momentum must be extracted from the disk during
Class 0/I phase.

3.4 Evolution of disk mass

Figure 9 shows the evolution of the mass of disk and proto-
star. The disk mass of co-evolution model predicts the disk
mass of several 10−3M⊙ at Mtot ∼ 10−1M⊙ and mass of
∼ 10−1M⊙ at Mtot ∼ 1M⊙ (which depends on the ioniza-
tion rate as ζ−1/3). The disk mass is much smaller than the
central protostar mass. On the other hand, the disk mass of
GI disk model is very large and it is larger than the central
protostar mass, Mdisk/Mstar ≳ 1. Although Mdisk/Mstar ≳ 1
is actually obtained in the hydrodynamics simulations start-
ing from collapsing cloud core (e.g., Tsukamoto & Machida
2011; Machida et al. 2011), such a extremely massive disk
seems to be inconsistent with the observations.

3.5 Evolution of disk magnetic-flux

Figure 10 shows the time evolution of the mass-to-flux ratio
µ of co-evolution model. With this figure, we investigate
whether the magnetic flux provided by envelope accretion is
sufficient to realize the vertical magnetic field of co-evolution
disk model. If the magnetic flux of the disk is larger than
that of the initial molecular cloud core, the vertical magnetic
field of our disk cannot be realized and our model becomes
inappropriate.

The figure shows that µ ∼ 30 at Mtot ∼ 10−1M⊙. On
the other hand, the mass-to-flux ratio of the cloud core is
µ = O(1) (Crutcher 2012). Thus, it indicate that sufficient

Figure 9. Time evolution of mass of disk (solid lines) and central

protostar (dashed lines) of the co-evolution model (black, blue)

and GI disk model (red). The temperature is assumed to be T0 =
150 K. ζ for black and blue lines is ζ = 10−18 s−1, ζ = 10−17 s−1,

respectively.

Figure 10. Time evolution of mass-to-flux ratio of the disk-

protostar system normalized by
(

M
Φ

)
crit

= 0.53
3π

(
5
G

)1/2
of co-

evolution model. The temperature and ζ are assumed to be T0 =
150 K and ζ = 10−18 s−1, respectively.

magnetic flux is supplied to the disk in the early evolutionary
phase. µ monotonically decreases mainly due to the increase
of the disk radius. When Mtot ∼ 1M⊙ (and rdisk ∼ 300 AU
with our envelope model), µ ∼ 3 which is the same order
of the mass-to-flux ratio of the cloud core. Thus, if the disk
grows to several 100 AU, the disk can reserve the same level
of magnetic flux of the cloud core. Furthermore, if µ of the
core is µ ≳ 3, the magnetic flux of the cloud core is not
sufficient to realize vertical magnetic field of equation (18).
Therefore, we must be careful about applying the disk model
in this paper to model the outer region of several hundred
AU sized disks.

3.6 Specific angular momentum profile from disk
to envelope

So far, we have compared the co-evolution disk model with
the GI disk model, and we pointed out that the co-evolution
disk model predicts the radius and mass of the disk more
consistent with observations than the GI disk model.

Is there any way to more rigorously distinguish these
two disk evolution models from observations? (A more gen-
eralized question would be a way to distinguish the disk

© 0000 , 000, 000–000



12 Tsukamoto et al

models in which the angular momentum removal balances
the angular momentum supply and disk models which evolve
by the internal angular momentum transport mechanism.)
We propose that these two (types of) models can be distin-
guished by examining the radial profile of specific angular
momentum (or rotational velocity) from the envelope to the
disk.

For disks that evolve by angular momentum transfer
within the disk, such as viscous accretion disks, the disk
size is determined by the total angular momentum brought
in during the accretion history, since the total angular mo-
mentum of the disk is conserved (equation (52)). In this case,
the specific angular momentum of the accreting flow at a
given instant does not generally coincide with the specific
angular momentum at the outer edge of the disk. Therefore,
there must be a jump in the specific angular momentum
profile at the envelope-disk boundary.

On the other hand, in a steady accretion disk in which
the angular momentum extraction from the disk is balanced
by the angular momentum supply to the disk, the specific
angular momentum of the accretion gas and that at the
outer edge of the disk do coincide, as seen in equation (33).
In this case, the angular momentum profiles are continuously
connected at the envelope-disk boundary. Therefore, we can
determine whether the disk is evolving according to viscous
evolution by MRI, GI, etc. or by the magnetic braking from
the existence of jumps in the specific angular momentum
profiles.

We show the radial profile of the specific angular mo-
mentum (and rotation velocity) of co-evolution disk model
(solid lines) and GI disk model (dashed lines) in figure 11.
In the co-evolution disk model, the specific angular momen-
tum continuously transit from j ∝ r0 to j ∝ r1/2 (or
equivalently, the rotation velocity continuously transit from
vϕ ∝ r−1 to vϕ ∝ r−1/2) without jump. On the other hand,
in the GI disk, the specific angular momentum increases
about a factor of two at the boundary between the disk and
the envelope throughout the entire accretion phase. The
difference of the disk rotation profiles between two models
at the same epoch are due to the difference of the protostar
masses (we assume Ω =

√
GMstar/r3). Because the specific

angular momentum profile in the disk depends weakly on
radius as j ∝ r1/2, the jump if it exists would be observable
with the observations in which the disk is spatially resolved.

Note that the magnitude of the jump of GI disk in the
figure is a conservative estimate. In the GI disk, the mass of
the central star is much smaller than the mass of the disk,
but we only consider the mass of the central star to calcu-
late Ω. In reality, at the outer edge of the GI disk, the radial
self-gravity of the disk may cause the faster angular veloc-
ity (or shallower radial profile of Ω than Keplerian rotation
profile) (see, e.g., Tsukamoto et al. 2015c). In this case, the
magnitude of the jump is expected to be larger. It is note-
worthy that there is a factor of two increase even with such
a conservative estimate.

4 SUMMARY AND DISCUSSION

4.1 Summary

In this paper, we analytically investigate the disk structure
predicted from ”co-evolution disk model”. In our disk model,

Figure 11. Radial profiles of specific angular momentum and

rotation velocity of co-evolution model (solid) and GI disk model
(dashed) at t = 6×104 (black;co-evolution model, gray;GI model),

8 × 104 (red;co-evolution model, purple;GI model), 1 × 105 yr

(green;co-evolution model, yellow-green;GI model), respectively.
The temperature and ζ are assumed to be T0 = 150 K and ζ =

10−18 s−1, respectively.

we assume that the dust grains have grown sufficiently and
ambipolar resistivity is determined by the balance between
ionization and gas-phase recombination. We also assume
that the disk evolves with magnetic braking rather than
internal viscous accretion. We utilize the equations (1) to
(6) which can be regarded as the modified steady accretion
disk model, and the equation (7) which describes the suffi-
cient dust growth in the disk, to obtain the disk structure.
We have confirmed in our previous paper TMI23 that these
equations describe the disk structures obtained by 3D non-
ideal MHD simulations with dust growth very well (within
a factor of three).

Our disk structure is shown by equation (17) to (21),
and is described as a function of central stellar mass, mass
accretion rate, gas phase recombination rate, gas tempera-
ture, and cosmic ray ionization rate, and does not include
free-parameter such as viscous parameter α. With this disk
model, we discussed whether GI and MRI can develop or
not during Class 0/I phase. Then, by combining an analyt-
ical model of envelope accretion with the disk model, we
made predictions for the disk mass and radius during Class
0/I phase.

Our main findings are summarized as follow.

• Disk radius is estimated to be several AU to ∼ 100 AU
during the accretion phase which is about 10 times smaller
than the disk evolving with angular momentum conserva-
tion.
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• Disk mass is estimated to be several 10−3M⊙ to ∼
10−1M⊙ during the accretion phase which is consistent with
the estimate from the observations.

• With typical disk ionization rates (ζ ≳ 10−18 s−1)
and moderate mass accretion rate (Ṁdisk > 10−8M⊙ yr−1),
magneto-rotational instability is prohibited in the disk.

• Plasma β at midplane depends on the mass accre-
tion rate (i.e., disk evolutionary stage) as β ∝ Ṁ

−2/3
disk ,

and β ∼ 30 at Ṁdisk ∼ 10−6M⊙ yr−1 and β ∼ 700 at
Ṁdisk ∼ 10−8M⊙ yr−1 at r = 10 AU.

• Specific angular momentum (or rotation velocity) pro-
file at the envelope to disk boundary is continuous if the disk
angular momentum evolves only with magnetic braking.

4.2 Discussion

4.2.1 The relation of the disk size and the specific angular
momentum of accretion flow

An important prediction obtained from our analysis of the
disk model is that the disk radius coincides with the cen-
trifugal radius of the accreting flow when the disk evolves
with magnetic braking rather than viscous accretion. This
follows just from the assumption of steadiness of the disk
(i.e., constant Ṁdisk) and the assumption that angular mo-
mentum extraction from the disk is balanced with angular
momentum supply to the disk, and does not depend on the
detail of the assumptions on ηA.

This prediction can be verified by detailed observations
of the specific angular momentum (or rotation velocity) pro-
file around the disk-envelope boundary. If the specific angu-
lar momentum is continuous at the disk-envelope boundary,
it suggests that disk angular momentum evolution is de-
termined by the angular momentum extraction due to the
magnetic braking. On the other hand, if the specific angu-
lar momentum is discontinuous (or has the jump) at the
disk-envelope boundary, it suggests that disk angular mo-
mentum evolution is determined by the internal (viscous)
angular momentum transport (see figure 11).

There have been several observations that investigate
the radial profile of specific angular momentum or rotation
velocity of Class 0/I YSOs. Recent ALMA velocity profile
observations seem to show that rotational velocity profile
from the envelope to disk of the Class 0/I phase seems to
be continuous and no jump at the disk-envelope boundary
(Ohashi et al. 2014; Aso et al. 2015; Yen et al. 2017). If
future high-resolution observations confirm the continuous
connection of the specific angular momentum of the enve-
lope and the outer edge of the disk, this indicates that the
evolution of the angular momentum and radius of the disk
is determined by the extraction of angular momentum from
the disk (i.e., magnetic braking) rather than by internal vis-
cous evolution of the disk.

4.2.2 Caveat of co-evolution disk model and Future
Prospects

In the present study, ambipolar diffusion is assumed to be
the most efficient non-ideal MHD effect. When dust growth
proceeds, it is shown that Ohmic dissipation and Hall effects
are weaker than ambipolar diffusion for cases where the mag-
netic field is relatively strong (Tsukamoto & Okuzumi 2022).

However, when the magnetic field becomes weak, these ef-
fects may possibly play the role. In future studies, we will
examine the disk structure where Ohm dissipation or the
Hall effect play the dominant role. Note, however that, when
Ohm dissipation is dominant, there may not be a unique
steady structure because ηO is independent of the magnetic
field.

In this study, we assumed that the dust grans were well
grown over the entire disk. However, at the edge of the disk,
it is expected that there is a supply of µm sized dust grains
from the envelope. In that case, more efficient magnetic dif-
fusion would be expected at the edge of the disk, and our
approximation for ηA may not be justified. It is important to
study the physical state of the outer edge of the disk in de-
tail in the future studies which consider the dust growth and
envelope-to-disk accretion (e.g., Tsukamoto et al. 2017b).
Note, however, that the above discussion of the specific an-
gular momentum jump at the outer edge of the disk is not
affected by the dust size as long as it evolves with magnetic
braking, since it does not depend on the details of ηA.

We also note that the detailed modeling of dust coagu-
lation and fragmentation and its impact on ηA is important
because the dust fragmentation can cause a variety of dust
size distributions (Birnstiel et al. 2011). As shown in Le-
breuilly et al. (2023), dust fragmentation can changes ηA
profile especially in the high density region. Once a model
of ηA that takes into account the effects of dust coagula-
tion/fragmentation is obtained, it would be possible to pre-
dict the disk structure according to the dust growth model
and resulting ηA using the equations in this paper.

Although there are issues to be solved in the future as
described above, we believe that our co-evolution disk model
provides a new perspective on the structure and evolution
of protoplanetary disks.
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Commerçon, B. 2016, A&A, 587, A32
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