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We study stochastic thermodynamics of over-damped Brownian motion in a flowing fluid. Unlike
some previous works, we treat the effects of the flow field as a non-conservational driving force
acting on the Brownian particle. This allows us to apply the theoretical formalism developed in a
recent work for general non-conservative Langevin dynamics. We define heat and work both at the
trajectory level and at the ensemble level, and prove the second law of thermodynamics explicitly.
The entropy production (EP) is decomposed into a housekeeping part and an excess part, both of
which are non-negative at the ensemble level. Fluctuation theorems are derived for the housekeeping
work, the excess work, and the total work, which are further verified using numerical simulations.
A comparison between our theory and an earlier theory by Speck et. al. is also carried out.

I. INTRODUCTION

The theory of Brownian motion [1, 2] is not Galilean
invariant, even though the underlying microscopic New-
tonian dynamics does have this symmetry. The reason
for the lack of Galilean symmetry is obvious: the ambi-
ent fluid is macroscopically at rest only in one particular
inertial frame. It is only in this frame that the effects of
fluid can be modeled as friction and random force as in
the classical theory of Brownian dynamics. If the fluid is
in global motion with a uniform velocity v, one can trans-
form to the co-moving frame (where the fluid is at rest)
and apply the usual theory of Brownian motion. Trans-
lating back into the lab frame, the friction force becomes
−γ(ẋ− v), which is proportional to the velocity relative
to the fluid, whereas the random force remains the same.
Now consider a fluid that is shearing or compressing, with
a position (and possibly time) dependent velocity v(x, t).
The above chain of argument is not as compelling, since
the co-moving frame is constantly deforming and there-
fore is not an inertial frame. Nonetheless, as long as the
flow field is small, it is reasonable to assume that the
friction force is approximately −γ(ẋ− v(x, t)).

Stochastic thermodynamics [3–9] fuses stochastic dy-
namics with thermodynamics to form a unified frame-
work for non-equilibrium statistical mechanics. In the
standard theory of stochastic dynamics, the environment
is usually assumed to be an equilibrium fluid at rest. In a
pioneering work [10], Speck et. al. applied the above idea
of Galilean transform to study stochastic thermodynam-
ics of over-damped Brownian motion in a moving fluid. In
the co-moving frame, the heat is defined as the work done
by the friction and the random force, as in the standard
theory of stochastic thermodynamics. Further defining
the external potential as the fluctuating internal energy
of the Brownian particle, they sketched a framework
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of stochastic thermodynamics for over-damped Brown-
ian motion in moving fluid. This work was followed by
several later works [11–16], which carried out more de-
tailed analyses and simulations of fluctuation theorems
in shearing fluid. Three peculiar features are coming out
of this theory. (For details, see Sec. IV of the present
work.) Firstly it leads to fluctuation theorems for the in-
tegrated work only if the non-equilibrium processes start
from equilibrium states where the flow field is completely
turned off. The theory is therefore inapplicable to pro-
cesses happening in steady flow. Secondly, the entropy
production (EP) is positive only for incompressible flow.
Finally, the EP in this theory cannot be decomposed into
two positive parts. Hence no separate fluctuation theo-
rem can be established for the housekeeping part and the
excess part of the total EP. This is at odds with the ba-
sic structure of stochastic thermodynamics for systems
lacking instantaneous detailed balance, as established by
Jarzynski and Esposito, van den Brock et. al. [17–21].

It is well known that heat in stochastic thermodynam-
ics is related to the time reversal of non-equilibrium pro-
cesses through the condition of local detailed balance. It
turns out that in the theory of Ref. [10], time reversal
means reversal of both the time axis and the flow field.
Since the environment, i.e. the shearing fluid has a well-
defined temperature, the heat is further related to the
environmental entropy change via ∆Senv = −βQ. It is
important to note, however, that the entropy change cal-
culated this way is a microscopic quantity, whereas the
true entropy change of the environment is extensive in the
size of the shear fluid. Hence the EP calculated in the
theory of Ref. [10] can only be a tiny part of the physical
EP in the joint system of Brownian particle and shearing
fluid. This subtlety is shared by all models of stochastic
thermodynamics embedded in dissipative backgrounds,
such as Brownian motion in temperature gradients [22].
With this subtlety carefully remembered, the fluctuation
theorems, when formulated in terms of integrated work,
are nonetheless valuable tools for understanding of the
statistical properties of non-equilibrium processes.
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In this work, we shall try an alternative approach to
the problem. Instead of transforming to the co-moving,
we shall stay in the lab frame and treat the effects of
the flow field as a non-conservative force acting on the
Brownian particle. This allows us to apply the general
framework of stochastic thermodynamics developed in
Ref. [21] for non-conservative Langevin systems. In our
theory, the time reversal of process means the reversal
of only the time-axis, but not of the flow field. Conse-
quently, the heat defined in our theory is inequivalent to
that defined in Ref. [10]. As discussed in great detail in
Ref. [21], in the absence of instantaneous detailed bal-
ance, there are also ambiguities in the definition of sys-
tem energy. Different definitions of energy lead to differ-
ent (but equivalent) formulations of stochastic thermody-
namics. The situation is not unlike the gauge redundancy
in electromagnetism. We shall adopt the so-called Gibbs
gauge where the instantaneous non-equilibrium steady
state (NESS) has the form of Gibbs-Boltzmann distribu-
tion, which leads to great simplification of the theoretical
formalism.

The key results of the present work can be summarized
as follows: (i) The EP at the ensemble level that emerges
from our theory is positive definite for arbitrary flow field.
(ii) The EP can be decomposed into a housekeeping part
and an excess part, both of which are positive. (iii) At
the trajectory level, both the housekeeping work and the
excess work obey a fluctuation theorem. (iv) These fluc-
tuation theorems are applicable for arbitrary processes
starting from arbitrary non-equilibrium NESSs, includ-
ing equilibrium states as special cases. Overall, therefore,
the present theory has a wider range of applicability than
that of Ref. [10].

The remaining of this work is organized as follows. In
Sec. II we formulate the Langevin equation for Brownian
motion in a following fluid. In particular, in Sec. II B we
discuss the adjoint Brownian dynamics, in Sec. II C we
perturbatively calculate the Gibbs gauge representation.
In Sec. III we develop the theory of stochastic thermo-
dynamics and derive fluctuation theorems for the house-
keeping EP, the excess EP, and the total EP. In Sec. IV,
we discuss the differences between our theory and the
theory of Ref. [10]. In Sec. V we present numerical ver-
ifications of all fluctuation theorems. Finally in Sec. VI
we draw concluding remarks and project future research
directions.

II. BROWNIAN DYNAMICS IN A FLOW

A. Langevin equation

For simplicity, we examine two-dimensional Brownian
dynamics in a fluid with time-independent flow. Gen-
eralization to three-dimensional time-dependent flow is
straightforward. The velocity field of the fluid is

v(x) = vx(x) êx + vy(x) êy, (2.1)

where êx, êy are respectively the unit vectors along x
and y directions, and x = x êx + y êy. Assuming that
the Brownian particle is further confined by an exter-
nal potential V (x), its motion can be described by the
following over-damped Ito-Langevin equations:

−γ(dx− vxdt)− ∂xV dt+
√

2γT dWx = 0,

−γ(dy − vydt)− ∂yV dt+
√
2γT dWy = 0,

(2.2)

where γ is the friction constant, T is the temperature,
and dWx, dWy are the standard Wiener noises, which
have the following basic properties:

⟨dWi⟩ = 0, (2.3a)

⟨dWidWj⟩ = dt δij . (2.3b)

Note that the first term in each of Eqs. (2.2) is the
friction force multiplied by dt.

Equations (2.2) can be rewritten into:

dxi +
T

γ
(∂iU

0 − φ0
i )dt =

√
2T

γ
dWi, (2.4)

where U0,φ0 are given respectively by

U0(x) = β V (x) + C0, (2.5a)

φ0(x) = βγ v(x) = φ0
i (x)êi, (2.5b)

where C0 is an irrelevant normalization constant. We
do not need to distinguish superscripts from subscripts
because we will only use Cartesian coordinate systems.
Equation (2.4) is a special case of the following covariant
nonlinear Ito-Langevin equation with non-conservative
forces [21] (with all repeated indices summed over):

dxi + Lij(∂jU
0 − φ0

j )dt− ∂jL
ijdt = biαdWα(t), (2.6)

where all variables are even under time reversal, and the
2×2 matrices Lij and biα are given respectively by

b =

√
2T

γ

(
1 0
0 1

)
, (2.7)

L = LT =
T

γ

(
1 0
0 1

)
=

1

2
bbT . (2.8)

Since both T and γ are constants, ∂jL
ij in Eq. (2.6) van-

ishes identically. We shall call U0 and φ0
i respectively the

generalized potential and the non-conservative force [27].

The Langevin equation (2.4) is equivalent to the fol-
lowing covariant Fokker-Planck equation (FPE):

∂tp− ∂i
T

γ
(∂i + ∂iU

0 − φ0
i )p = 0, (2.9)

which can also be written in the form of:

∂tp+ ∂kjk = 0, (2.10)
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where jk is the probability current:

ji = −T
γ
(∂i + (∂iU

0)− φ0
i )p. (2.11)

It is easy to see that the following transformation:

U0 → U = U0 + ψ, (2.12a)

φ0
i → φi = φ0

i + ∂iψ, (2.12b)

leaves the combination ∂iU
0 − φ0

i invariant, and hence
also leaves the Langevin equation (2.6) and the Fokker-
Planck equation (2.9) as well as the probability current
(2.11) invariant. Inspecting Eqs. (2.5a) and (2.5b), we
see that the transform (2.12) may be understood as a si-
multaneous change of the external potential and the flow
field that preserves the Brownian motion. We shall call
it a gauge transformation. A particular decomposition of
the combination ∂iU − φi into ∂iU and φi shall then be
called a gauge.

The most convenient gauge is the Gibbs gauge [21],
where U is related to the NESS via

pss(x) = e−U(x). (2.13)

Substituting this back into Eq. (2.11), we find the NESS
probability current is then given by

jssi (x) =
T

γ
e−U(x)φi(x). (2.14)

which is proportional to φi. The fact that φi is non-
vanishing characterizes the non-equilibrium nature of the
NESS. Substituting Eq. (2.14) into the steady state FPE
∇ · jss = 0, we obtain the Gibbs gauge condition:

∂iφi − (∂iU)φi = 0, (2.15)

which, using Eq. (2.12), can be further rewritten into:

∂i(φ
0
i + ∂iψ)− (φ0

i + ∂iψ)∂i(U
0 + ψ) = 0. (2.16)

In Sec. II C, we solve this nonlinear differential equation
for the case of simple shear flow and harmonic confining
potential, and use Eqs. (2.12) to determine U,φi for the
Gibbs gauge.

In the Gibbs gauge, the Langevin equation and the
FPE are given by

dxi +
T

γ
(∂iU − φi) dt =

√
2T

γ
dWi, (2.17a)

∂tp−
T

γ
∂i(∂i + ∂iU − φi) p = 0. (2.17b)

Equation (2.17a) will be called the Gibbs representation
of the Langevin dynamics, whereas Eqs. (2.2) and (2.4)
will be called the natural representation of the Langevin
dynamics.

B. Adjoint Langevin dynamics

We now define the adjoint Langevin dynamics, which is
related to the original dynamics (2.17) via the following
transform in the Gibbs gauge:

UAd = U, φAd
i = −φi. (2.18)

Using Eqs. (2.13) and (2.14), we see that the adjoint pro-
cess has the same NESS pdf and opposite NESS proba-
bility current as the original process:

pAd,ss(x) = e−U(x) = pss(x). (2.19)

jAd,ss
i (x) = −T

γ
e−U(x)φi(x) = −jssi (x). (2.20)

Just as the original dynamics, the adjoint dynamics
can also be realized by many different combinations of
flow field and confining potential, each characterized by

a pair {U0,Ad, φ0,Ad
i } that is related to {UAd,φAd} via a

gauge transformation:

U0,Ad → UAd = U0,Ad + ψAd, (2.21a)

φ0,Ad
i → φAd

i = φ0,Ad
i + ∂iψ

Ad, (2.21b)

which is the counterpart of Eqs. (2.12). The gauge func-
tion ψAd is arbitrary. The most convenient choice is:

ψAd = −ψ. (2.22)

Substituting this back into Eqs. (2.21), we may express

{U0,Ad, φ0,Ad
i } in terms of {UAd,φAd, ψ}. Combining

these results with Eqs. (2.18), we obtain:

U0,Ad = U0 + 2ψ; (2.23a)

φ0,Ad
i = −φ0

i . (2.23b)

Substituting these into Eqs. (2.5), we find the confining
potential and the flow field for the adjoint process:

V Ad(x) = T (U0 + 2ψ − C0)

= V (x) + 2T ψ(x), (2.24a)

vAd(x) = −T
γ
φ = −v(x). (2.24b)

Hence the flow field of the adjoint dynamics is the oppo-
site of that of the original process.

The Gibbs representation of the adjoint Langevin
dynamics can be obtained by using Eq. (2.18) in
Eq. (2.17a), whereas the natural representation of the
adjoint Langevin dynamics can be obtained by using
Eqs. (2.23) in Eq. (2.4), or, equivalently, by using
Eqs. (2.24) in Eqs. (2.2).

C. Harmonic potential and simple shear flow

For numerical simulations (to be detailed in Sec. V),
we shall only consider a harmonic confining potential and
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FIG. 1: Schematics: red disk is the Brownian particle, blue
arrows represent the simple shear flow, whereas the red wiggly
line represents the harmonic potential. The orange ellipse is
a contour line of the NESS pdf. θ is the angle between the
major axis and the y axis, or equivalently the angle between
the minor axis and the x axis.

a simple shear flow:

V (x) =
K

2
(x− x0)

2, (2.25a)

v(x) = y ζ êx. (2.25b)

Using Eqs. (2.5) we find

U0 =
βK

2
(x− x0)

2 + C0, (2.26a)

φ0(x) = βγζ y êx, (2.26b)

Note that ζ has the dimension of inverse time, and γ ζ is
even under time reversal. The dimension of φ is inverse
of length, and hence also even under time reversal. The
shear flow and the confining potential are illustrated in
Fig. 1, together with a contour line of the NESS pdf.

We define a dimensionless parameter ϵ ≡ γ ζ/K, which
characterizes the relative importance of the flow field
compared with the confining potential. For colloidal par-
ticles in shearing fluid under typical experimental condi-
tions, this parameter is expected to be much less than the
unity, hence we expect that the flow field only leads to a
small perturbation of the equilibrium distribution of the
Brownian particle. Therefore we may solve Eq. (2.16)
by expanding ψ in terms of ϵ, and subsequently use
Eqs. (2.12) to find U and φ. Since the calculation is
rather straightforward, we skip all details and directly
present the second order results:

ψ =
βKϵ

2
(−xy − xy0 + x0y)

+
βKϵ2

8
(−x2 + y2 + 2x0x+ 2y0y), (2.27a)

U = C + U0 + ψ, (2.27b)

φ =
βKϵ

2
[(y − y0)êx + (−x+ x0) êy]

+
βKϵ2

4
[(−x+ x0)êx + (y + y0) êy] , (2.27c)

where the constant C is such that Eq. (2.13) is normal-
ized. We shall not need the concrete expression for C.
The reader may verify directly that Eqs. (2.27a) does
satisfy the Gibbs gauge condition (2.15) up to o(ϵ2).

If ϵ is not small, Eqs. (2.27) are not good approxi-
mations. Nonetheless, it is easy to see from Eq. (2.16)
that, due to the quadratic nature of U0 and the linear
nature of φ0

i , ψ is quadratic in x. Consequently, U is also
quadratic in x, and φ is linear in x. Contour lines of U
are therefore all ellipses, one of them being illustrated in
Fig. 1. We can therefore set

U = Ax2 +Bxy + Cy2 +Dx+ Ey + F, (2.28)

and numerically find all coefficients A,B,C,D,E. F is
determined by the condition of normalization. The nu-
merical method is explained in App. A 1.

III. STOCHASTIC THERMODYNAMICS

In Ref. [21], we developed a unified theory of stochas-
tic thermodynamics for Langevin systems driven by non-
conservative forces and coupled to a single heat bath with
temperature T . The Langevin dynamics Eq. (2.6) is a
special case of this unified theory, with all variables and
control parameters being even under time reversal, and
the kinetic matrix L being symmetric and constant. We
shall therefore follow the procedure developed in Ref. [21]
(especially Sec. VI, which treats symmetric models) to
develop the theory of stochastic thermodynamics.

It is important to emphasize that by formulating the
Langevin equation into Eq. (2.17), we are taking the
viewpoint that the effects of the flow field is treated as
a non-conservative force field. The dissipation caused by
the shearing fluid, which is extensive in the size of the
fluid, is not a concern to us, since we are only interested
in the dynamics of the Brownian particle.

In this work, we shall assume that the flow field is
fixed and consider non-equilibrium processes where the
force constant K and the equilibrium position x0 of the
confining potential (2.25a) are systematically varied. For
simplicity, we introduce the notations λ = {K,x0}, and
λt = {K(t),x0(t)}. It then follows that V,U0 as well as
U,φ, ψ all depend parametrically on λt. We will there-
fore use the notations V (x;λt), U

0(x;λt) etc.. In princi-
ple, the theory we develop is also applicable to processes
where the flow field is also systematically varied. Exper-
imentally, however, it is much more difficult to vary the
flow field in a precisely controlled way.

A. Work, heat and EP

We define the fluctuating internal energy as

H(x;λ) ≡ TU(x;λ) = T (U0 + ψ), (3.1)

where U(x;λ) is the generalized potential in Gibbs gauge,
to be found by solving Eq. (2.15). The NESS distribution
Eq. (2.13) can then be rewritten as

pss(x;λ) = e−βH(x;λ) = e−U(x;λ). (3.2)
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To realize such a NESS, one only needs to hold the shear
flow and the control parameter λ fixed for a sufficiently
long period of time. The equilibrium free energy F (λ) is
defined as

F (λ) ≡ −T log

∫
x

e−βH = −T log 1 = 0, (3.3)

where in the second step we used the fact that pss(x)
is properly normalized. Hence our definition (3.1) of en-
ergy guarantees that the equilibrium free energy vanishes
identically. This leads to certain simplification of the
fluctuation theorems, as we shall see below.

We define differential heat at the trajectory level as

d̄Q ≡ dxH − T φ ◦ dx
= T (dxU −φ ◦ dx), (3.4)

where dxH means differential of H due to variation of x,
and ◦ is the stochastic product in Stratonovich’s sense:

φ ◦ dx ≡ φi(x+ dx/2) dxi. (3.5)

The differential work at the trajectory level is defined as

d̄W ≡ dλH + T φ ◦ dx.
= T (dλU +φ ◦ dx), (3.6)

where dλH is the differential of H due to variation of λ.

The above defined heat and work can be decomposed
into a housekeeping part and an excess part:

d̄Q = d̄Qhk + d̄Qex, (3.7)

d̄W = d̄W hk + d̄W ex, (3.8)

where d̄Qhk, d̄W hk are respectively housekeeping heat
and housekeeping work, whereas d̄Qex, d̄W ex are respec-
tively excess heat and excess work, defined as

d̄Qhk ≡ −T φ ◦ dx, (3.9a)

d̄Qex ≡ T dxU, (3.9b)

d̄W hk ≡ T φ ◦ dx = −d̄Qex, (3.9c)

d̄W ex ≡ T dλU. (3.9d)

The first law of thermodynamics at the trajectory level
is given by either of the following two forms:

dH = d̄Q + d̄W = d̄Qex + d̄W ex. (3.10)

Note that the housekeeping heat and housekeeping work
exactly cancel each other.

Heat and work at the ensemble level can be obtained by
averaging the corresponding quantities at the trajectory
level over both noises and the pdf of x. To obtain a well-
defined continuum limit, these differential quantities at
the ensemble level must be computed up to the first order
in dt. It is important to remember that the Wiener noises
are square root of dt, and hence according to Eq. (2.17a),

dx contains parts scaling with
√
dt. Consequently, we

need to expand these differential quantities up to the
second order of dx, to keep all terms linear in dt.

As an example, let us compute the excess heat at the
ensemble level:

d̄Qex = ⟨⟨d̄Qex⟩⟩, (3.11)

where ⟨⟨ · ⟩⟩ means double average over Wiener noises and
over probability distribution of x. First we use Eq. (3.9b)
to expand d̄Qex up to the second order in dx:

d̄Qex = T∂iUdx
i +

T

2
∂i∂jUdx

idxj , (3.12)

where all products are in Ito’s sense. We now use the
Langevin equation (2.17a) to express dx in terms of dt
and dW . All terms in the form of dt2 and dtdWi can be
neglected, since they are higher order than dt. Then we
average over the Wiener noises dW . Finally we multiply
the result by the pdf p(x; t) and integrate over x, and
obtain the differential excess heat at the ensemble level:

d̄Qex = −T
2 dt

γ
⟨∂iU(∂iU − φi)− ∂i∂iU⟩ , (3.13)

where ⟨ · ⟩ means average over the pdf p(x, t) of x:

⟨ · ⟩ =
∫
x

· p(x, t). (3.14)

Similarly, the differential housekeeping heat at the en-
semble level is given by

d̄Qhk = −T
2 dt

γ
⟨φi(∂iU − φi)− ∂iφi⟩ . (3.15)

Further using the Gibbs gauge condition (2.15) we may
rewrite the above result as

d̄Qhk = −T
2 dt

γ

∫
x

p(φi)
2 ≤ 0, (3.16)

which is non-positive definite.

The differential housekeeping and excess work at the
trajectory level can be similarly computed:

d̄W hk = −d̄Qhk =
T 2 dt

γ

∫
x

p(φi)
2 ≥ 0, (3.17)

d̄W hk = T

∫
x

p dλU (3.18)

The total heat and work at the ensemble level are then
the sum of the corresponding housekeeping parts and ex-
cess parts:

d̄Q = ⟨⟨d̄Q⟩⟩ = d̄Qhk + d̄Qex, (3.19)

d̄W = ⟨⟨d̄W ⟩⟩ = d̄W hk + d̄W ex. (3.20)

The system entropy is:

S[p] = −
∫
x

p log p, (3.21)
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whose differential can be calculated using the Fokker-
Planck equation:

dS = −dt
∫
x

log pL p

= −dt
∫
x

log p ∂i
T

γ
(∂i + ∂iU − φi)p

=
dt T

γ

∫
x

1

p
(∂ip)(∂i + ∂iU − φi)p, (3.22)

where in the last step we have integrated by parts.

The EP is defined as

dStot ≡ dS + dSenv = dS − β d̄Q, (3.23)

where dSenv ≡ −β d̄Q is defined as the environmental
entropy change. As explained previously, dSenv is only
the part of environmental entropy change that can be
captured by our theory of stochastic thermodynamics.
This can be further decomposed into a housekeeping EP
and an excess EP :

dStot = dShk + dSex, (3.24)

dShk = −βd̄Qhk =
T dt

γ

∫
x

p(φi)
2 ≥ 0, (3.25)

dSex = dS − β d̄Qex. (3.26)

In particular, in the NESS, the excess EP vanishes iden-
tically, whereas the housekeeping EP reduces to

dShk

dt
=
T dt

γ

∫
x

e−U (φi)
2 =

γ

T

∫
x

eU (jssi )
2
, (3.27)

where jssi is the NESS current given in Eq. (2.14).

Further using Eqs. (3.22) and (3.13), as well as the
Gibbs gauge condition (2.15), we may rewrite the excess
EP in the following apparently positive form:

dSex =
T dt

γ

∫
x

1

p
[(∂i + ∂iU)p]

2 ≥ 0. (3.28)

Hence EP is the sum of a positive housekeeping part and
a positive excess part, a general feature of Markov sys-
tems with even variables and parameters that lack in-
stantaneous detailed balance [17–20].

Finally we may also define non-equilibrium free energy:

F [p] ≡
∫
x

p(H + T log p). (3.29)

It is then easy to verify the following differential forms:

dF [p] = d̄W ex + d̄Qex − T dS, (3.30)

which may be further rewritten as

dSex = dS − β d̄Qex = β(d̄W ex − dF [p]) ≥ 0. (3.31)

B. Transition probability

To study fluctuation theorems, it is necessary to know
the short-time transition probability of the Langevin pro-
cess defined by Eq. (2.17a). Let x,x1 = x + dx be re-
spectively the initial position and the final position of
an infinitesimal transition taking place during dt, and let
x1/2 = x+ dx/2 be the mid-point. A general expression
for the short-time transition probability pφ(x1|x; dt) of
the Langevin equation (2.6) was derived in Eqs. (A4) of
Ref. [21], using the general result of time-slicing path
integral in Ref. [23]. Specializing to the Langevin dy-
namics Eq. (2.17a), we find [28] (Note that the notations
are slightly different here)

pφ(x1|x; dt) =
γ

4πT dt
e−Aφ(dx;x1/2,dt), (3.32a)

where the action Aφ(dx;x1/2, dt) is given by

Aφ(dx;x1/2, dt) =
γ

4T dt
(dxi +

T

γ
(∂iU − φi)dt)

2
1/2

− T dt

2γ
(∂2i U − ∂iφi)1/2 + o(dt),

(3.32b)

where the subscript 1/2 in Eq. (3.32b) means that all
functions inside the bracket are evaluated at x1/2. The
action is expanded up to the first order in dt, which is
sufficient to guarantees a correct continuum limit. In
fact it is ok to evaluate the second term in the r.h.s. of
Eq. (3.32b) at any point, the resulting error is of higher
order than dt, and hence is negligible in the continuum
limit. Note that we show explicitly the dependence of
the action on the non-conservative force φ.

Let us supply a heuristic explanation for Eqs. (3.32).
First we note that the Wiener noises are infinitesimal
Gaussian with basic properties (2.3). Using these we can
readily construct their pdf:

p(dW ) =
1

2πdt
exp

(
−
dW 2

x + dW 2
y

2dt

)
. (3.33)

Now given x, the Langevin equation (2.17a) may be un-
derstood as a linear relation between dW and the in-
finitesimal displacement dx. Hence we may obtain the
pdf for dx directly from Eq. (3.33):

p(dx) =
γ

4πT dt
e−

γ
4πT dt (dx

i+T
γ (∂iU−φi)dt)

2

. (3.34)

Note that the action appearing in the exponent above is
formally identical to the first term in the action (3.32b).
It is important to note however as a basic property of
Ito-Langevin equation, the function (∂iU−φi) in (2.17a),
which also appears in Eq. (3.34) is evaluated at the initial
point x. This should be contrasted with Eqs. (3.32),
where the same function is evaluated at the mid-point
x1/2. Because of the dt appearing in the denominator
of the actions, however, this difference is qualitatively
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important and is compensated by the second term in the
action (3.32b).

Using Eq. (3.32a), we can also compute the backward
transition probability from x1 to x. All we need is to
swap x1 and x in Eq. (3.32a). Note that x and x1 ap-
pear in Eq. (3.32a) only in the combinations dx and x1/2,
which are respectively odd and even under the swap.
Hence to obtain p(x|x1; dt) we only need to flip the sign
of dx. This leads to

pφ(x|x1; dt) =
γ

4πT dt
e−Aφ(−dx;x1/2,dt), (3.35a)

Aφ(−dx;x1/2, dt) =
γ

4T dt
(−dxi + T

γ
(∂iU − φi)dt)

2
1/2

− T dt

2γ
(∂2i U − ∂iφi)1/2 + o(dt).

(3.35b)

Recall the adjoint process defined in Sec. II B is related
to the original process by changing the sign of φ. We can
construct the corresponding transition probability for the
adjoint process from Eqs. (3.32):

p−φ(x1|x; dt) =
γ

4πT dt
e−A−φ(dx;x1/2,dt), (3.36a)

A−φ(dx;x1/2, dt) =
γ

4T dt
(dxi +

T

γ
(∂iU + φi)dt)

2
1/2

− T dt

2γ
(∂2i U + ∂iφi)1/2 + o(dt),

(3.36b)

The backward transition probability of the adjoint pro-
cess can be similarly obtained from Eqs. (3.35):

p−φ(x|x1; dt) =
γ

4πT dt
e−A−φ(−dx;x1/2,dt), (3.37a)

A−φ(−dx;x1/2, dt) =
γ

4T dt
(−dxi + T

γ
(∂iU + φi)dt)

2
1/2

− T dt

2γ
(∂2i U + ∂iφi)1/2 + o(dt).

(3.37b)

Using Eqs. (3.32) and Eqs. (3.35)-(3.37), we readily
obtain the following ratios:

pφ(x1|x; dt)
pφ(x|x1; dt)

= e−(∂iU−φi)◦dxi

. (3.38a)

Similarly, with the aid of Gibbs gauge condition
Eq. (2.15), we may also prove

pφ(x1|x; dt)
p−φ(x1|x; dt)

=
p−φ(x|x1; dt)

pφ(x|x1; dt)
= eφ◦dx, (3.38b)

pφ(x1|x; dt)
p−φ(x|x1; dt)

=
p−φ(x1|x; dt)
pφ(x|x1; dt)

= e−dxU . (3.38c)

Equations (3.38) may be called the conditions of local
detailed balance.

C. Four processes

We keep the flow field fixed, and vary parameters λt =
{K(t),x0(t)} systematically, which fully determines the
Langevin dynamics. We call {U(x;λt),φ(x;λt)} the dy-
namic protocol in the Gibbs gauge, and {V (x;λt),v(x)}
the dynamic protocol in the natural gauge. A dynamic
process is determined by the initial pdf of p(x, t = 0)
together with the dynamic protocol either in the Gibbs
gauge or in the natural gauge. Transformation between
two dynamic protocols are given by Eqs. (2.12) and (2.5).

We define four processes as below, all of which start
from t = 0 and end at t = τ :

1. Forward process: The dynamic protocol is

UF = U(x, λt), (3.39a)

φF = φ(x, λt). (3.39b)

The initial pdf is pss(x;λ0), defined in Eq. (3.2).

2. Backward process: The dynamic protocol is

UB = U(x, λτ−t), (3.40a)

φB = φ(x, λτ−t). (3.40b)

The initial pdf is pss(x;λτ ).

3. Adjoint process: The dynamic protocol is

UAd = U(x, λt), (3.41a)

φAd = −φ(x, λt). (3.41b)

The initial pdf is pss(x;λ0).

4. Adjoint backward process: The protocol is

UAdB = U(x, λτ−t), (3.42a)

φAdB = −φ(x, λτ−t). (3.42b)

The initial pdf is pss(x;λτ ).

Note that each of these processes starts from the NESS
corresponding to the initial control parameter of the dy-
namic protocol. Such an initial state can be realized eas-
ily in experiments. Note also that in general, the system
is not in a NESS at the end of any of these processes.

The protocols of all these processes are displayed in
the second and third columns of Table I. We may also
express these protocols in the natural gauge, in terms of
the confining potential and the flow field. The results are
displayed in fourth and fifth columns of Table I.

A pivotal property of these processes is that the back-
ward process, the adjoint process, and the adjoint back-
ward process are all uniquely determined by the forward
process. Furthermore, the backward of the backward pro-
cess is the forward process. Likewise, the adjoint of the
adjoint process is the forward process; the adjust back-
ward of the adjoint backward process is also the forward
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Process:
Generalized

potential

Non-conservative

force
Confining potential Velocity field

Forward U(x, λt) φ(x, λt) V (x;λt) v(x)

Backward U(x, λτ−t) φ(x, λτ−t) V (x;λτ−t) v(x)

Adjoint Forward U(x, λt) −φ(x, λt) V (x;λt) + 2T ψ(x;λt) −v(x)

Adjoint Backward U(x, λτ−t) −φ(x, λτ−t) V (x;λτ−t) + 2T ψ(x;λτ−t) −v(x)

TABLE I: Dynamic protocols of all four processes. Column 2 and 3 show the protocols in the Gibbs gauge, whereas Column
4 and 5 show the protocols in the natural gauge.

process. Additionally, the adjoint of the backward pro-
cess is the same as the backward of the adjoint process,
which is also the same as the adjoint backward process
etc. The mappings from any process to its backward pro-
cess, and that to its adjoint process, as well as that to its
adjoint backward process, are all involutions.

Consider a trajectory and its backward trajectory:

γ = {x(t), t ∈ [0, τ ]}, (3.43)

γ̂ = {x(τ − t), t ∈ [0, τ ]}. (3.44)

The notation γ (boldface) for trajectory should be care-
fully distinguished from γ for the friction coefficient. We
introduce the notations γ0 = x(0) and γ̂0 = x(τ) to de-
note the initial state of γ, γ̂, respectively. For each of the
four processes defined above, we can construct its pdf of
trajectory as the product of conditional pdf given the ini-
tial state and the pdf of the initial state. For example,
for the forward process, we have

pF[γ] = pF[γ|γ0] p
ss(x(0);λ0). (3.45a)

Similarly, we also have for the other three processes:

pB[γ̂] = pB[γ̂|γ̂0] p
ss(x(τ);λτ ), (3.45b)

pAd[γ] = pAd[γ|γ0] p
ss(x(0);λ0), (3.45c)

pAdB[γ̂] = pAdB[γ̂|γ̂0] p
ss(x(τ);λτ ). (3.45d)

Let WF[γ],QF[γ] (WB[γ̂],QB[γ̂]) be the integrated
work and heat along γ (γ̂) in the forward (backward)
process. They can be obtained by integrating Eqs. (3.6)
and (3.4) along the forward (backward) trajetory:

WF[γ] = −WB[γ̂] = T

∫
γ

(dλU +φ ◦ dx), (3.46a)

QF[γ] = −QB[γ̂] = T

∫
γ

(dxU −φ ◦ dx). (3.46b)

We can similarly construct the same quantities for the
adjoint process and the adjoint backward process:

WAd[γ] = −WAdB[γ̂] = T

∫
γ

(dλU −φ ◦ dx), (3.46c)

QAd[γ] = −QAdB[γ̂] = T

∫
γ

(dxU +φ ◦ dx). (3.46d)

The integrated work and heat may be decomposed into
a housekeeping part and an excess part. For the work of

the forward process, we have:

WF[γ] = W hk
F [γ] + W ex

F [γ], (3.47a)

W hk
F [γ] = T

∫
γ

φ ◦ dx, (3.47b)

W ex
F [γ] = T

∫
γ

dλU. (3.47c)

The heat of the forward process can be decomposed in a
similar way. Same decompositions can also be obtained
for work and heat of the backward process, the adjoint
process, and the adjoint backward process.

Combining, we obtain

W hk
F [γ] = −W hk

B [γ̂] = −W hk
Ad [γ] = W hk

AdB[γ̂]

= T

∫
γ

φ ◦ dx, (3.48)

W ex
F [γ] = −W ex

B [γ̂] = W ex
Ad[γ] = −W ex

AdB[γ̂]

= T

∫
γ

dλU. (3.49)

Finally, adding up Eqs. (3.46a) and (3.46b), we obtain
the first law along γ:

U(x(τ);λτ )− U(x(0);λ0) = WF[γ] + QF[γ]. (3.50)

D. Fluctuation theorems

Because of the Markov property, pF[γ|γ0] and pB[γ̂|γ̂0]
can be calculated using the time-slicing method. Further
using Eq. (3.38a) for each pair of time-slices, we have

log
pF[γ|γ0]

pB[γ̂|γ̂0]
= −

∫
γ

(dxU −φ ◦ dx) = −βQF[γ], (3.51)

where in the second equality we have used Eq. (3.46b).

Let us define the following functional:

ΣF[γ] ≡ log
pF[γ]

pB[γ̂]
. (3.52)

Using Eqs. (3.45a), (3.45b), and (3.51), we obtain:

ΣF[γ] = log
peq(x(0);λ0)

peq(x(τ);λτ )
− βQF[γ]. (3.53)
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If the final state pdf p(x(τ), τ) of the forward process
is the NESS corresponding to λτ , we may also write
Eq. (3.53) into

ΣF[γ] = − log
p(x(τ), τ)

p(x(0), 0)
− βQF[γ], (3.54)

which is the stochastic entropy production along the tra-
jectory γ in the forward process. If the system is not in
the NESS at the end of the forward process, however, the
physical meaning of ΣF[γ] is more subtle.

Further taking advantage of Eq. (3.2) as well as
Eqs. (3.50) and (3.46a), we may rewrite Eq. (3.53) into:

ΣF[γ] = log
pF[γ]

pB[γ̂]
= βWF[γ] = −βWB[γ̂]. (3.55)

Taking the log ratio of Eqs. (3.45a) and (3.45c) we find

log
pF[γ]

pAd[γ]
= log

pF[γ|γ0]

pAd[γ|γ0]
. (3.56)

The r.h.s. can be calculated using the time-slicing
method and Eq. (3.38b). The result is

log
pF[γ]

pAd[γ]
=

∫
γ

φ ◦ dx. (3.57)

Similarly we may also obtain:

log
pAdB[γ̂]

pB[γ̂]
= log

pAdB[γ̂|γ̂0]

pB[γ̂|γ̂0]
=

∫
γ

φ ◦ dx. (3.58)

Combining the preceding two equations, and further us-
ing Eq. (3.48), we obtain

log
pF[γ]

pAd[γ]
= log

pAdB[γ̂]

pB[γ̂]
= βW hk

F [γ] = −βW hk
Ad [γ];

(3.59)

Finally using similar methods, we may also prove

log
pF[γ]

pAdB[γ̂]
= log

pAd[γ]

pB[γ̂]
= βW ex

F [γ] = −βW ex
AdB[γ].

(3.60a)

Let us now define the pdf of WF[γ],W hk
F [γ],W ex

F [γ] for
the forward process as:

pF(W ) ≡
∫
Dγ δ (W − WF[γ]) pF[γ], (3.61a)

pF(W
hk) ≡

∫
Dγ δ

(
W hk − W hk

F [γ]
)
pF[γ], (3.61b)

pF(W
ex) ≡

∫
Dγ δ (W ex − W ex

F [γ]) pF[γ], (3.61c)

where
∫
Dγ means functional integration in the space of

dynamic trajectories. This functional integral should be
computed using time-slicing, similar to the path integral

in quantum mechanics. Similar pdfs can also be defined
for the work, the housekeeping work, and the excess work
in the backward process, the adjoin process, and the ad-
joint backward process.

Taking advantage of the symmetries (3.55), (3.59), and
(3.60a), and using standard methods of stochastic ther-
modynamics, we can prove the following fluctuation theo-
rems for the work, the housekeeping work, and the excess
work:

pF(W ) = eβW pB(−W ), (3.62a)

pF(W
hk) = eβW hk

pAd(−W hk), (3.62b)

pF(W
ex) = eβW ex

pAdB(−W ex). (3.62c)

IV. ALTERNATIVE THEORY

Here we briefly review the theory of Speck e. al. [10],
which was established on the same Langevin dynamics
(2.2). We shall compare two theories and highlight their
differences.

Noticing that the concepts of heat in stochastic ther-
modynamics is not Galilean invariant, the authors of
Ref. [10] argue that one should transform to the co-
moving frame and implement the usual formalism of
stochastic thermodynamics. For obvious reasons, let us
call this theory the theory of co-moving frames. The heat
is therefore defined as negative the work done by the fric-
tion and random forces in the co-moving frame. Using
the Langevin equation (2.2), we find:

d̄Qcm ≡ −
[
γ

(
dx

dt
− v

)
−
√
2γTdW

]
◦ (dx− vdt)

= ∇V ◦ (dx− vdt) (4.1)

≡ dxV − v ◦∇V dt,

where the superscript cm denotes co-moving. Note how-
ever, for a shear flow, the co-moving frame is not an
inertial frame.

The heat at the ensemble level can be computed using
the same method as we used in Sec. III A. The result is

d̄Qcm = ⟨⟨d̄Qcm⟩⟩

= −dt
∫
x

(∂iV )
T

γ
(∂i + β∂iV )p. (4.2)

The EP in the co-moving theory is:

dScm,tot = dSsys − βd̄Qcm (4.3)

=
Tdt

γ

∫
x

1

p
(∂ip+ βp ∂iV )2 + dt

∫
x

(∇ · v)p,

where we have used Eq.(3.22). Whereas the first term in
the r.h.s. of Eq. (4.3) is non-negative, the second term
does not have a definite sign, and vanishes only if the fluid
is incompressible. Hence if the fluid is compressible, the
EP in the co-moving theory is not necessarily positive.
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Assuming that the fluid is incompressible, Eq. (4.3)
becomes

dScm,tot =
Tdt

γ

∫
x

1

p
(∂ip+ βp ∂iV )2 ≥ 0. (4.4)

Note that this EP vanishes identically if the pdf is Gibbs-
Boltzmann with respect to the external potential: p ∼
e−βV . Such a state, however, is not the NESS of the
Langevin dynamics.

The fluctuating internal energy is defined as the exter-
nal potential V . By imposing the first law of thermody-
namics:

dV = d̄W cm + d̄Qcm, (4.5)

one finds that the work at the trajectory level is

d̄W cm = dV − d̄Qcm

= dλV + v ◦∇V dt, (4.6)

The conditions of local detailed balance (3.38), which
relate the transition probabilities of the forward and
backward processes to the heat exchange between the
system and the environment, play an essential role in the
theory of stochastic thermodynamics. It turns out that
the heat defined by Eq. (4.1) is also related to a similar
condition concerning a different definition of backward
process. This backward process is characterized by the
reversal of both the time-variable and the flow field. In
other words, the backward process in the co-moving the-
ory is defined such that the dynamic protocol is λτ−t,
whereas the flow field is −v(x;λτ−t). The probability
of the backward transition in the backward process, de-
noted using the superscript ∗, is then

p∗(x0|x1, dt) = e−A∗(x1|x0,dt), (4.7)

A∗(x0|x1, dt) =
1

4Tγdt
(−γdxi + γvidt+ ∂iV dt)

2

− 1

2γ
(∂2i V − ∂iγvi) dt. (4.8)

If we take the ratio of the transition probabilities of the
forward and backward processes, we obtain

log
p(x1|x0, dt)

p∗(x0|x1, dt)
= −βd̄Qcm, (4.9)

where d̄Qcm is defined by Eq. (4.1). This is the condi-
tion of local detailed balance for the theory of co-moving
frame.

If we choose the initial states of the forward process
and the backward process to be equilibrium states (with
the flow field completely turned off):

p(x, 0) = e−βV (x,λ0)+βF (λ0), (4.10a)

p∗(x, 0) = e−βV (x,λ(τ))+βF (λτ ), (4.10b)

where F (λ) = −T log
∫
x
e−βV (x,λ) is the equilibrium free

energy, a fluctuation theorem can be derived for

Σcm[γ] ≡ − log
p∗(x(τ), 0)

p(x(0), 0)
− βQcm[γ], (4.11)

using the standard method of stochastic thermodynam-
ics. Taking advantage of the first law

W cm[γ] + Qcm[γ] = ∆V [γ], (4.12)

one can then prove the following identities:

log
p[γ]

p∗ [γ̂]
= Σcm[γ] = βW cm[γ]− β∆F, (4.13)

where ∆F = F (λτ )−F (λ0) is the equilibrium free energy
difference between the final state and the initial state.
This allows us to express the fluctuation theorem solely
in terms of integrated work:

p(W cm) = eβ(W
cm−∆F )p∗(−W cm). (4.14)

Let us now comment on the differences between our
theory and the theory of co-moving frame. Firstly, the
entropy production in the theory of co-moving frame is
positive definition only for incompressible fluids, whereas
that in our theory is positive definite for arbitrary fluids.
Also, unlike the EP in our theory, the EP (4.4) in the
theory of co-moving frame cannot be decomposed into
a positive housekeeping part and a positive excess part.
This also implies that, with heat defined as Eq. (4.1),
there can be no separate fluctuation theorems for house-
keeping EP and for excess EP in the theory of co-moving
frame. Secondly, the fluctuation theorem (4.14) derived
in the theory of co-moving frame applies only to processes
starting from equilibrium states, whereas the fluctuation
theorems in our theory apply to all processes starting
from non-equilibrium states, which include equilibrium
states as a special case. Thirdly, the flow field of the fluid
plays a very different role in the two theories. Whereas in
our theory, the term γvdt is treated as a non-conservative
driving force, treated separately from friction and exter-
nal confining potential, in the theory of co-moving frame,
this term is treated as an inseparable part of friction
force. For uniform flow with a constant velocity field,
it is clearly more natural to describe the physics in the
co-moving frame. For flow fields with shear, however,
the co-moving frame is not a Galilean frame, and it is
not obvious which theory is conceptually more appeal-
ing. Finally, by comparing Eqs. (4.9) with (3.38a), we
see that the difference between the two theories may be
understood as the difference in the definition of time re-
versal of non-equilibrium processes. The system we study
in the present work is an example of systems embedded
in dissipative backgrounds. For these systems, there is
no unique way of defining the time reversal of dynamic
processes. This results in an ambiguity in the definition
of heat, and hence also in the definition of EP. Different
definitions yield different theories of stochastic thermo-
dynamics.
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V. NUMERICAL SIMULATIONS

In this section, we simulate all four processes as de-
fined in Sec. III C, and and verify all fluctuation theo-
rems (3.62). To the best of our knowledge, except for
a few partial results [24, 25], there has been no system-
atic verification of fluctuation theorems for housekeeping
work and excess work in systems without instantaneous
detailed balance.

A. Computing U and φ

To construct various processes defined in Sec. III C,
we need U,φ. If ϵ≪ 1, they are approximately given by
Eqs. (2.27). If ϵ is not small, we need to solve the Gibbs
gauge condition Eq. (2.16) numerically to find ψ and use
it in Eqs. (2.12) to find U,φ. The numerical method is
explained in App. A 1.

FIG. 2: (a) The eccentricity e and (b) the inclination an-
gle θ of the contour ellipse of the generalized potential U .
The red dots are obtained by simulating Langevin Dynamics.
Dashed lines are the analytical result Eqs. (2.27). Solid lines
are obtained by numerically solving the Gibbs gauge condi-
tion Eq. (2.16).

To test the accuracy of this method, we calculate a
contour line (an ellipse) of thus computed U , and plot
its eccentricity e and inclination angle θ, i.e., the angle
between the major axis and the y-axis. The results are
shown in Fig. 2 as the solid lines (Numeric). Also shown
there are the corresponding results computed using di-
rect simulation of the Langevin dynamics Eq. (2.2) (red
dots, Langevin), as well as the analytical results given
by Eqs. (2.27) (dashed lines, Theory). As one can see
there, the numeric results agree with the Langevin re-
sults for all values of ϵ, which establishes the accuracy of
the methods presented in App. A 1 for computation of U
and φ. By contrast, the analytical results are accurate
only for small value of ϵ.

More numerical testings of our computation methods
are supplied in App. A 1.

B. Verification of FTs

To verify FTs (3.62), we numerically simulate each of
the four processes defined in Sec. III C. We generate a

process
control parameters duration

τK x0, y0

(a) 0.01 −10 + 20 t
τ

200, 100, 10, 1

(b) 0.01 + 0.02 t
τ

0 200, 100, 10, 1

(c) 0.03− 0.02| 2t−τ
τ

| 0 200, 100, 10, 1

TABLE II: Protocols simulated for verifications of FTs for
W and W ex. T = 1, γ = 1, ζ = 0.01.

large number of trajectories for each process, using the
recipe discussed in App. A 3, compute the total work, the
housekeeping work, and the excess work for each trajec-
tory in each process, and thereby obtain the distributions
of these works. The numerical method for computation of
work at the trajectory level is explained in Appendix. A 4.
In all simulations discussed here, ϵ = 1. More simulations
with different values of ϵ are presented in App. B.

We first verify Eq. (3.62a), which may be rewritten as

log
pF(W )

pB(−W )
= βW . (5.1)

FIG. 3: Verification of FT (5.1). (a), (b), (c): Histograms of
the total work W , where all processes are defined in Table II.
In all legends F, B mean forward and backward respectively.
Numbers are durations τ . (d): Verification of Eq. (5.1), where
the vertical axis is log pF(W )/pB(−W ). The black straight-
line is Eq. (5.1). Circles, triangles, and squares are respec-
tively data from panels (a), (b), (c), whereas numbers are
durations of processes. Inset: The fitting slopes and error
bars for each process.

We simulate three processes that are shown in Table II.
The duration τ of each process is varied systematically, as
shown in the last column of the table. For each protocol,
we sample 105 trajectories and compute the distribution
of work. We then simulate the backward process, and
compute the corresponding distribution of work. These
work distributions are displayed in Fig. 3 (a), (b), and
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FIG. 4: Verification of FT (5.2). (a), (b), (c): Histograms of
the housekeeping work W hk, where all processes are defined
in Table III. In all legends F, Ad mean forward and backward
respectively. Numbers are durations τ . (d): Verification of
FT, where the vertical axis is log pF(W

hk)/pAd(−W hk). The
black straight-line is the FT (5.2). Circles, triangles, and
squares are respectively data from panels (a), (b), (c), whereas
numbers are durations of processes. Inset: The fitting slopes
and error bars for each process.

(c). Finally we use these distributions to verify the FT
(5.1). As shown in Fig. 3 (d), all data collapse to the
black straight-line as predicted by our theory.

Now we verify Eq. (3.62b), which may be rewritten as

log
pF(W hk)

pAd(−W hk)
= βW hk. (5.2)

We simulate three types of forward processes that are
shown in Table III. The duration τ of each process is
varied systematically, as shown in the last column of the
table. For each protocol, we sample 105 trajectories and
compute the distribution of work. We then do the same
for the adjoint processes. All work distributions are dis-
played in Fig. 4 (a), (b), and (c). Finally, we use these
distributions to verify the FT (5.2). As shown in Fig. 4
(d), all data collapse to the black straight-line as pre-
dicted by our theory.

Now we verify Eq. (3.62c), which may be rewritten as

log
pF(W ex)

pAdB(−W ex)
= βW ex. (5.3)

We simulate the same processes as shown in Table II,
and compute the distributions of excess work. We then
do the same for the adjoint backward processes. All work
distributions are displayed in Fig. 5 (a), (b), and (c).
Finally, we use these distributions to verify the FT (5.3).
As shown in Fig. 5 (d), all data collapse to the black
straight-line as predicted by our theory.

process
control parameters duration

τK x0, y0

(a) 0.01 20− 25| 2t−τ
τ

| 200, 100, 10, 1

(b) 0.03− 0.02| 2t−τ
τ

| 0 200, 100, 10, 1

(c) 0.01 0 200, 100, 10, 1

TABLE III: All protocols for verifications of FTs for the
housekeeping work. The other parameters are all fixed T =
1, γ = 1, ζ = 0.01.

FIG. 5: Verification of FT (5.3) for the excess work. (a),
(b), (c): Histograms of the excess work W ex, where all pro-
cesses are defined in Table II. In all legends F, AdB mean
forward and backward respectively and numbers are dura-
tions τ . (d): Verification of FT, where the vertical axis is
log pF(W

ex)/pAdB(−W ex). The black straight-line is the FT
(5.3). Circles, triangles, and squares are respectively data
from panels (a), (b), (c), whereas numbers are durations of
processes. Inset: The fitting slopes and error bars for each
process.

VI. CONCLUSION

In this work, we have developed a theory of stochas-
tic thermodynamics for over-damped Brownian motion
in a flowing fluid. To the best of our knowledge, this is
the first concrete example of non-equilibrium small sys-
tems for which fluctuation theorems of the total work,
the housekeeping work, and the excess work are explic-
itly established and verified. The analytic and numerical
methods we employed here should be valuable for study
of other non-equilibrium systems.

The authors acknowledge support from NSFC
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ipal Science and Technology Major Project (Grant
No.2019SHZDZX01).
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Appendix A: The Numerical Methods

1. Computation of U and φ

Here we explain how to compute the coefficients A,B,C,D,E in the expansion Eq. (2.28). We consider slightly
more general forms of quadratic confining potential and linear incompressible velocity field:

U0 = βV = a0x
2 + b0xy + c0y

2 + d0x+ e0y + f0, (A1)

φ0 = βγ v = βγ (yζx êx + xζy êy). (A2)

Using Eq. (2.12), we may rewrite the Gibbs gauge condition (2.16) as

∂i(φ
0
i + ∂i(U − U0))− (φ0

i + ∂i(U − U0))∂iU = 0. (A3)

Note that the l.h.s. is also a quadratic form of x.

We insert Eqs. (A1), (A2), and (2.28) into Eq. (A3) and compare all coefficients of the quadratic form, we find
following set of nonlinear equations:

x2 : 4A(a0 −A) +B(b0 −B − βγζy) = 0, (A4a)

y2 : 4C(c0 − C) +B(b0 −B − βγζx) = 0, (A4b)

xy : B(a0 −A) +A(b0 −B − βγζx) +B(c0 − C) + C(b0 −B − βγζy) = 0, (A4c)

x : 2D(a0 −A) + 2A(d0 −D) + E(b0 −B − βγζy) +B(e0 − E) = 0, (A4d)

y : D(b0 −B − βγζx) +B(d0 −D) + 2E(c0 − C) + 2C(e0 − E) = 0, (A4e)

o(1) : 2(a0 −A) + 2(c0 − C)−D(d0 −D)− E(e0 − E) = 0. (A4f)

Notice that only five of these equations are independent, since there are only five unknowns A,B,C,D,E appearing
in these equations.

2. Testing of numerical methods

FIG. 6: (a): Contour plots of NESS probability density function (PDF). (b): NESS probability currents. Relevant parameters:
ζ = 0.01, K = 0.01, x0 = y0 = 0, T = 1, γ = 0.3, and ϵ = 0.3.

Here we supply more testing of the analytic results (2.27) as well as the numerical results for U,φ, obtained using
the method discussed in Eq. (A 1).

We simulate the Langevin dynamics (2.2) with the confine potential and flow field given by Eqs. (2.25), and compute
the NESS pdf and probability current. We do the same thing for the adjoint dynamics, where the confining potential
and the flow field are given by Eqs. (2.24).

Firstly we let ϵ = 0.3, so that the analytical results (2.27) are expected to be good.
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FIG. 7: (a): Contour plots of NESS probability density function (PDF). (b): NESS probability currents. Relevant parameters:
ζ = 0.01, K = 0.01, x0 = y0 = 0, T = 1, γ = 0.3, and ϵ = 1.

In Fig. 6(a) we plot the contour lines of the NESS pdfs both for the original dynamics and the adjoint dynamics,
computed using simulation data. In the same figure we also show the contour lines of the NESS pdf given by analytic
results, i.e., Eqs. (2.13) and (2.27). As one can see there, all results agree with each other up to high precision.

In Fig. 6(b), we plot the NESS probability currents of both the original dynamics and the adjoint dynamics. As
one can see, the probability current of the forward process is the opposite of that of the adjoint process. Additionally,
theoretical results agree with numerical results.

Now we let ϵ = 1, so that the analytical results (2.27) are not expected to be good. We will then use the numerical
method discussed in App. A 1 to compute U,φ.

In Fig. 7(a) we plot the contour lines of the NESS pdfs both for the original dynamics and the adjoint dynamics,
computed using simulation data. In the same figure we also show the contour lines of the NESS pdf computed using
the method discussed in App. A 1. As one can see there, all results agree with each other up to high precision.

In Fig. 7(b), we plot the NESS probability currents of both the original dynamics and the adjoint dynamics,
computed both using direction simulation of the Langevin dynamics, and using the method discussed in App. A 1. As
one can see, the probability current of the forward process is the opposite of that of the adjoint process. Additionally,
simulation results agree with numerical results.

3. Numerical integration of Langevin dynamics

To numerically solve Langevin equation(2.2), we use the first-order Euler-Maruyama scheme [26].

First we discretize t with step size = 0.001:

∆t = tn+1 − tn, (A5)

λn ≡ λ(tn), (A6)

∆xn+1 ≡ x(tn+1)− x(tn), (A7)

so that Eq. (2.2) is discretized as follows:

∆xn+1 =

[
v(tn) +

F (tn)

γ

]
∆t+

√
2T∆t

γ
ξ(tn), (A8)

where ξ = (ξ1, ξ2) is a 2d vector of normalized Gaussian random variables, and F (tn) and v(tn) are respectively the
discretized force and fluid velocity:

F (tn) = −∂xV (x(tn), λn) êx − ∂yV (x(tn), λn) êy, (A9)

v(tn) = ζ y(tn) êx. (A10)

Note that the potential V (x, λ) and the flow field v(x) are given in Eqs. (2.25).

We then numerically solve the discretized equations (A8).
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4. Calculation of Work

The total work dW along a trajectory γ is given in Eq. (3.46a). It can be discretized as

W [γ] =

n=N∑
n=0

T (λn+1 − λn) ∂λU(xn, λn) +

n=N∑
n=0

Tφ(xn+1/2, λn) ·∆xn+1. (A11)

where ∆xn+1 is defined in Eq. (A7), and U is given in Eq.(2.28), whereas xn+1/2 is defined as

xn+1/2 =
x(tn) + x(tn+1)

2
. (A12)

It is important to evaluate φ at xn+1/2 rather than any other place, in order to correctly compute the Stratonovich
product in Eq. (3.46a).

The housekeeping work and excess work, defined in Eqs.(3.47a) can be similarly discretized:

W hk[γ] =

n=N∑
n=0

Tφ(xn+1/2, λn) ·∆xn+1. (A13)

W ex[γ] =

n=N∑
n=0

T (λn+1 − λn) ∂λU(xn, λn). (A14)

Appendix B: FT with Other parameter

1. Small Shear Rate

In this part, we also verify FTs (3.62). In all simulations discussed here, we set parameter T = 1, γ = 0.3, ζ = 0.01,
and ϵ = 0.3.

We first verify Eq. (3.62a), which may be rewritten as in Eq. (5.1). We simulate three processes that are shown in
Table II. The duration τ of each process is varied systematically, as shown in the last column of the table. For each
protocol, we sample 105 trajectories and compute the distribution of work. We then simulate the backward process,
and compute the corresponding distribution of work. These work distributions are displayed in Fig. 8 (a), (b), and
(c). Finally we use these distributions to verify the FT (5.1). As shown in Fig. 8 (d), all data collapse to the black
straight-line as predicted by our theory.

Then we verify Eq. (3.62b), which may be rewritten as in Eq. (5.2). We simulate three types of forward processes
that are shown in Table III. The duration τ of each process is varied systematically, as shown in the last column
of the table. For each protocol, we sample 105 trajectories and compute the distribution of work. We then do the
same for the adjoint processes. All work distributions are displayed in Fig. 9 (a), (b), and (c). Finally, we use these
distributions to verify the FT (5.2). As shown in Fig. 9 (d), all data collapse to the black straight-line as predicted
by our theory.

Finally we verify Eq. (3.62c), which may be rewritten as in Eq. (5.3). We simulate the same processes as shown
in Table II, and compute the distributions of excess work. We then do the same for the adjoint backward processes.
All work distributions are displayed in Fig. 10 (a), (b), and (c). Finally, we use these distributions to verify the FT
(5.3). As shown in Fig. 10 (d), all data collapse to the black straight-line as predicted by our theory.

2. Larger Shear Rate

In this part, we also verify FTs (3.62). In all simulations discussed here, we set parameter T = 1, γ = 1, ζ = 0.03,
and ϵ = 3.

We first verify Eq. (3.62a), which may be rewritten as in Eq. (5.1). We simulate three processes that are shown in
Table II. The duration τ of each process is varied systematically, as shown in the last column of the table. For each
protocol, we sample 105 trajectories and compute the distribution of work. We then simulate the backward process,
and compute the corresponding distribution of work. These work distributions are displayed in Fig. 11 (a), (b), and
(c). Finally we use these distributions to verify the FT (5.1). As shown in Fig. 11 (d), all data collapse to the black
straight-line as predicted by our theory.
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FIG. 8: Verification of FT (5.1). (a), (b), (c): Histograms of the total work W , where all processes are defined in Table II. In
all legends F, B mean forward and backward respectively. Numbers are durations τ . (d): Verification of Eq. (5.1), where the
vertical axis is log pF(W )/pB(−W ). The black straight-line is Eq. (5.1). Circles, triangles, and squares are respectively data
from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The fitting slopes and error bars for each process.

FIG. 9: Verification of FT (5.2). (a), (b), (c): Histograms of the housekeeping work W hk, where all processes are defined in
Table III. In all legends F, Ad mean forward and backward respectively. Numbers are durations τ . (d): Verification of FT,
where the vertical axis is log pF(W

hk)/pAd(−W hk). The black straight-line is the FT (5.2). Circles, triangles, and squares are
respectively data from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The fitting slopes and error bars
for each process.

Then we verify Eq. (3.62b), which may be rewritten as in Eq. (5.2). We simulate three types of forward processes
that are shown in Table III. The duration τ of each process is varied systematically, as shown in the last column
of the table. For each protocol, we sample 105 trajectories and compute the distribution of work. We then do the
same for the adjoint processes. All work distributions are displayed in Fig. 12 (a), (b), and (c). Finally, we use these
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FIG. 10: Verification of FT (5.3) for the excess work. (a), (b), (c): Histograms of the excess work W ex, where all processes
are defined in Table II. In all legends F, AdB mean forward and backward respectively and numbers are durations τ . (d):
Verification of FT, where the vertical axis is log pF(W

ex)/pAdB(−W ex). The black straight-line is the FT (5.3). Circles,
triangles, and squares are respectively data from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The
fitting slopes and error bars for each process.

FIG. 11: Verification of FT (5.1). (a), (b), (c): Histograms of the total work W , where all processes are defined in Table II. In
all legends F, B mean forward and backward respectively. Numbers are durations τ . (d): Verification of Eq. (5.1), where the
vertical axis is log pF(W )/pB(−W ). The black straight-line is Eq. (5.1). Circles, triangles, and squares are respectively data
from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The fitting slopes and error bars for each process.

distributions to verify the FT (5.2). As shown in Fig. 12 (d), all data collapse to the black straight-line as predicted
by our theory.

Finally we verify Eq. (3.62c), which may be rewritten as in Eq. (5.3). We simulate the same processes as shown
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FIG. 12: Verification of FT (5.2). (a), (b), (c): Histograms of the housekeeping work W hk, where all processes are defined
in Table III. In all legends F, Ad mean forward and backward respectively. Numbers are durations τ . (d): Verification of FT,
where the vertical axis is log pF(W

hk)/pAd(−W hk). The black straight-line is the FT (5.2). Circles, triangles, and squares are
respectively data from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The fitting slopes and error bars
for each process.

in Table II, and compute the distributions of excess work. We then do the same for the adjoint backward processes.
All work distributions are displayed in Fig. 13 (a), (b), and (c). Finally, we use these distributions to verify the FT
(5.3). As shown in Fig. 13 (d), all data collapse to the black straight-line as predicted by our theory.
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FIG. 13: Verification of FT (5.3) for the excess work. (a), (b), (c): Histograms of the excess work W ex, where all processes
are defined in Table II. In all legends F, AdB mean forward and backward respectively and numbers are durations τ . (d):
Verification of FT, where the vertical axis is log pF(W

ex)/pAdB(−W ex). The black straight-line is the FT (5.3). Circles,
triangles, and squares are respectively data from panels (a), (b), (c), whereas numbers are durations of processes. Inset: The
fitting slopes and error bars for each process.
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