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Toward Robust LiDAR based 3D Object Detection via
Density-Aware Adaptive Thresholding
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Abstract—Robust 3D object detection is a core challenge
for autonomous mobile systems in field robotics. To tackle this
issue, many researchers have demonstrated improvements in 3D
object detection performance in datasets. However, real-world
urban scenarios with unstructured and dynamic situations
can still lead to numerous false positives, posing a challenge
for robust 3D object detection models. This paper presents
a post-processing algorithm that dynamically adjusts object
detection thresholds based on the distance from the ego-vehicle.
3D object detection models usually perform well in detecting
nearby objects but may exhibit suboptimal performance for
distant ones. While conventional perception algorithms typically
employ a single threshold in post-processing, the proposed
algorithm addresses this issue by employing adaptive thresholds
based on the distance from the ego-vehicle, minimizing false
negatives and reducing false positives in urban scenarios. The
results show performance enhancements in 3D object detection
models across a range of scenarios, not only in dynamic urban
road conditions but also in scenarios involving adverse weather
conditions.

I. INTRODUCTION

3D object detection is one of the fundamental compo-
nents of autonomous mobile systems in field robotics. This
system often handles the unstructured and dynamic real-
world environments that invoke unpredictable situations [1—
3]. However, 3D object detectors trained in datasets perform
less in various real-world environments than in datasets,
leading to system malfunction.

Robust 3D object detection is crucial to function for their
purpose in highly dynamic environments like urban roads,
where dynamic objects, unpredictable obstacles, and sensor
noise present significant challenges. While urban roads might
seem structured, they are also one of the key environments
that field robotics must handle because they are dynamic
and challenging [4]. These environments are filled with
moving vehicles, pedestrians, and ghost obstacles worsened
by adverse weather [5, 6]. This leads to numerous false
positives, potentially causing sudden stops and fatal acci-
dents. Therefore, developing a robust perception module that
minimizes false positives on urban roads is a key research
focus in field robotics.

Traditionally, 3D object detection usually utilizes LiDAR,
offering high precision and efficient 3D environmental data
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Fig. 1: The dynamic environment involves moving vehicles, pedes-
trians, and obstacles such as bushes and road signs (RGB image).
3D object detection using a single threshold misclassifies the bushes
as vehicles, which results in false positives (single threshold). Our
method significantly improves the robustness of 3D object detec-
tion in complex urban scenarios by effectively minimizing false
detections, thus enhancing autonomous driving systems’ overall
performance and safety (ours).

for robust perception. LiDAR-based 3D object detection
models [7-13] use 3D point clouds to predict an object’s
class, location, and confidence scores, which are then refined
by confidence score-based post-processing using a single
threshold hyper-parameter. Detection accuracy varies with
object distance due to sensor characteristics like resolution
and range and training dataset diversity. Objects near the ego-
vehicle have higher accuracy and confidence due to the in-
creased density of point clouds, whereas distant objects have
lower recall and confidence scores due to the corresponding
decrease in point cloud density. These observations indicate
that for autonomous mobile systems to drive safely on real
roads, it is more suitable to prioritize precision for objects
closer and recall for objects farther away. Consequently,
employing a single threshold in post-processing is inadequate
for autonomous mobile systems operating across diverse real-
world environments.

While existing methods on the post-processing algorithm
utilized adaptive thresholding [14, 15] have explored adaptive
thresholding techniques, their focus has remained on 2D
image processing, which does not fully satisfy 3D object
detections. To tackle this issue, our work introduces a novel
adaptive thresholding algorithm specifically designed for 3D
object detection, making it better suited for implementation
in autonomous mobile systems. This innovation also offers a
straightforward integration process that does not require extra
training or add unnecessary complexity to existing detection
frameworks. By optimizing the balance between minimiz-
ing false positives for nearby objects and lowering missed
detections for distant objects, our approach enhances the
overall efficacy of 3D object detection in datasets and real-
world scenarios. This contributes to safer and more reliable
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Fig. 2: Framework of the proposed algorithm. 3D Detectors [7—13] normally apply the post processing using the single threshold. In

contrast, the adaptive thresholding.

autonomous navigation, as demonstrated in our qualitative
analysis presented in Fig. 1.

Differing from previous methods, our method presents the
following contributions:

« By applying adaptive thresholding based on the distance
from the ego-vehicle in the post-processing of 3D
object detection models, we significantly reduce false
positives and false negatives according to distance. This
improvement strengthens the robustness of models and
makes the model more suitable for autonomous mobile
systems by enabling more stable driving.

o The proposed algorithm simplifies the integration into
various 3D object detection frameworks and effectively
boosts detection performance in terms of mean Average
Precision (mAP) and the balance between Recall and
Precision. Our experiments across multiple frameworks
have confirmed these improvements.

e The reduction in misidentification issues within the
model has been qualitatively validated based on actual
driving data from diverse urban roads and under varying
weather conditions.

II. RELATED WORK

A. Adaptive Thresholding in Object Detection

Previous researches on adaptive thresholding [14, 15]
have been conducted for detecting moving objects in 2D
images. Zhang et al. [14] enhanced detection accuracy by
employing adaptive thresholding based on distance. This was
achieved by detecting objects within an image and subse-
quently estimating the objects’ states and distances through
pixel comparison with previous frames. Lin and Huang [15]
utilizes adaptive thresholding to determine thresholds for
distinguishing between moving and stationary objects during
depth estimation, a critical step in converting images into a
3D representation. This approach involves considering fea-
tures within the image in pairs, with the threshold adjusting
dynamically based on the distance between these features,
thereby facilitating the determination of an object’s motion
status. These studies have focused on 2D images, making
them unsuitable for 3D object detection models required in
autonomous driving, which necessitates representation within
a 3D space for various conditions and object recognition.

B. LiDAR based 3D Object Detection

3D object detection can be categorized into LiDAR-
based, Camera-based, Radar-based, and Sensor-Fusion-based
modalities. This paper is dedicated solely to exploring
LiDAR-based 3D object detection strategies. Within the
spectrum of LiDAR-based methodologies, we classify ap-
proaches into voxel, pillar, and raw point cloud-based.

VoxelNet [7] aggregates and downsamples 3D point clouds
into voxels for feature representation and executes object
detection via 3D convolution operations facilitated by a Re-
gion Proposal Network (RPN) [8]. SECOND [9] introduces
an effective voxel computation strategy for handling the
sparse attributes present in 3D environments. PointPillars
[10] adopts a pillar representation to facilitate 2D convolution
operations, optimizing computational and memory efficien-
cies while ensuring robust performance. PointRCNN [11]
distinguishes objects from the background using raw point
clouds, employing this distinction for object detection to
compromise high precision. PV-RCNN [12] leverages both
raw point clouds and voxels for object detection, preserving
the intrinsic properties of point clouds despite significant
computational requirements, thus demonstrating remarkable
efficiency. These methods rely on anchor-based detection
paradigms. Progressing beyond, Duan et al. [13] proposed
CenterNet, advocating an anchor-free paradigm, thereby
challenging traditional anchor-dependent frameworks.

Most 3D object detection models are trained and evaluated
on specific datasets representing typical, non-adversarial road
environments. However, these models struggle to adequately
address the more diverse and challenging situations au-
tonomous vehicles encounter on actual urban roads. On
actual roads, varying weather conditions such as rain, snow,
and fog can introduce noise into sensor data, and elements
like bushes or road signs may be mistakenly identified as
vehicles or obstacles, leading to false positives. We propose
a method that enables autonomous vehicles to adaptively
handle false positives, ensuring stable driving on real urban
roads.

III. ADAPTIVE THRESHOLDING FRAMEWORK

We illustrate our framework in Fig. 2. The 3D object
detection model that receives the point clouds as input detects
surrounding objects and outputs the class, location, and
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Fig. 3: Confidence score tendency with a single threshold (=0.5).

The red dots represent the score mean values at each distance (10
m), and the green-shaded area indicates the standard deviation.

confidence score. Then, the adaptive thresholding module
receives the distance from the ego-vehicle for each class of
objects and the confidence score as input and finally predicts
the 3D bounding boxes of objects accurately. This study
used PointPillars [10] as our 3D object detection model. We
analyze how distinct single threshold values, such as 0.3,
0.5, and 0.7, impact the distance-based performance results
of the 3D detector within the Kitti 3D object detection dataset
[16]. In analyzing detection performance with a threshold of
0.5, it is observed that the 3D object detection algorithm
effectively identifies objects closer to the ego-vehicle (d <
30m), resulting in the number of detections that surpass the
ground truth counts. However, its performance drops over
extended ranges (d > 30m), where fewer objects are detected
than the ground truth. It highlights a variable recall rate
with higher recall at closer proximities and lower recall at
extended distances. The inverse relationship between Recall
and Precision indicates lower precision at close distances and
higher precision at longer distances. To enhance precision
for objects at closer distances, a higher threshold of 0.7 was
applied, leading to a general decrease in detection counts.
Notably, the detection rate for objects beyond 40m dropped
significantly, resulting in lower recall and increased false
negatives. Conversely, a lower threshold of 0.3 was employed
to increase recall for distant objects, which improved recall
and increased the number of detected objects within the 10 to
40m range beyond the ground truth, thereby reducing overall
precision.

The analytical outcomes, employing single thresholds of
0.5 for proximal distances (below 40m) and 0.3 for more ex-
tended distances (above 40m), facilitated the computation of
the standard deviation across intervals of 10m, as described
in Fig. 2. After an examination of confidence score trends
depicted in Fig. 2, it was inferred that a quadratic function
most appropriately captures the variability of confidence
scores across distances, leading to the formulation of the
distance-based adaptive thresholding equation as described
in Eq. 1.

ad? + Bd+~(0 < d < 6) 1
k(d > 0) M
This equation, d, represents the distance from the ego-
vehicle to the object, measured in meters. The parameters
«, [, and ~y determine the shape of the quadratic curve that
models the variation of confidence scores with distance. ¢ is
the parameter that defines the maximum distance at which
the algorithm is applicable, while k represents the constant
value of the quadratic curve at a distance §. The value of ¢
may vary depending on the detection range capabilities of
the LiDAR and the performance of the 3D object detection
models. To prevent the confidence threshold from decreasing
too much for distances beyond J, thus increasing the risk
of false positives, k is set accordingly. These parameters
enable the application of the algorithm not only to the
PointPillars [10] model but also across various 3D object
detection models.
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Eq. 2 segments the range from 0 to 60 meters into intervals
of 10 meters each, designating each as the d" interval.
Within each interval, the sum of the confidence scores
of detected objects is divided by the number of detected
objects in that interval to calculate the average confidence
score. Similarly, Eq. 3 computes the standard deviation of
confidence scores within each d'* interval, divided by the
interval’s average confidence score. A quadratic trend line
is derived by adjusting the six average confidence scores
obtained from Eq. 2 within the standard deviations specified
in Eq. 3. This process determines the values of the parameters
«, B, v and k for Eq. 1.

IV. EXPERIMENTS
A. Evaluation Metrics

Two distinct datasets were utilized for the evaluation: the
Kitti 3D Object Detection Dataset [16], a publicly available
dataset designed for qualitative assessment of our algorithms,
and the custom urban road dataset specifically gathered for
quantitative analysis.

The custom urban road dataset comprises data acquired
from the Hyundai Elec-city, outfitted with six Velodyne
32CH LiDAR sensors. This vehicle conducted data collection
drives around Blue House and Gyeongbokgung in Seoul,
capturing diverse environmental conditions ranging from
clear to rainy weather scenarios. Additionally, for further
data diversity, the Kia Carnival, equipped with four Velodyne
32CH LiDAR sensors, drove in the foggy and rainy envi-
ronments of Gangneung roads, acquiring a comprehensive
dataset encompassing various weather conditions.
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TABLE I: Recall, Precision and mAP comparison for PointPillars
[10] applying various single threshold and adaptive threshold

Method | Recall | Precision | Trade-Off | mAP

0.3 0.895 0.646 0.249 77.28

Single Threshold | 0.5 0.807 0.847 0.040 77.29
0.7 0.655 0.943 0.288 77.49

Ours | 078 | 0813 | 0025 | 77.29

TABLE II: Recall, Precision and mAP comparison for various 3D
object detection models applying single threshold 0.5 and adaptive
thresholding.

| 3D Detectors | Recall | Precision | Trade-Off | mAP

PointPillars [10] 0.807 0.847 0.040 77.28

Sinele Threshold SECOND [9] 0.808 0.856 0.048 78.62
g PointRCNN [11] 0.899 0.848 0.051 78.74
PV-RCNN [12] 0.969 0.731 0.238 79.25

PointPillars [10] 0.786 0.813 0.023 (-0.015) | 77.28

Our: SECOND [9] 0.792 0.823 0.031 (-0.016) | 78.62

urs PointRCNN [11] 0.849 0.815 0.034 (-0.017) | 78.73
PV-RCNN [12] 0.893 0.792 0.101 (-0.137) | 79.49

B. Quantitative Results

Our algorithm is a car class that accounts for 93% of
Kiti 3D object detection datasets and quantitatively evalu-
ates whether the 3D object detection model is suitable for
autonomous vehicle systems. 3D detector’s suitability for
autonomous vehicles, ensuring safe and efficient driving from
Recall, Precision, and mAP is quantitatively indicated by
stable or improving mAP values with balanced Recall and
Precision. This implies the model’s accurate object detection
and recognition efficiency while minimizing false positives,
ensuring safe vehicle operation. Therefore, Performance met-
rics such as Recall, Precision, their Trade-off, and mAP were
employed to evaluate the algorithm’s impact on 3D detectors
before and after our algorithm’s implementation.

Table. I contrasts the outcomes of implementing diverse
single thresholds on PointPillars [10] with those of the
proposed algorithm. Optimal parameter values were estab-
lished through iterative experimentation. The algorithm’s
parameters, as indicated in Eq. 1, are o = -0.00002, 8 =
-0.0061, v = 0.6828, and k£ = 0.6. Our algorithm resulted
in a decreased trade-off compared to a single threshold,
maintaining comparable mAP performance. This highlights
the algorithm’s ability to fine-tune Recall and Precision for
objects near and far, improving Precision for closer objects
and increasing Recall for those at extended distances.

Further validation of the algorithm’s efficiency was con-
ducted through its implementation to additional LiDAR-
based 3D object detection models: SECOND [9], PointR-
CNN [11], and PV-RCNN [12]. These models were subject
to performance evaluation based on parameters derived from
the PointPillars [10]’s experiment. The outcomes with a
single 0.5 threshold for each model are tabulated in Table. II,
while results leveraging the proposed algorithm are docu-
mented in Table. II. As depicted in Table. II, the proposed
algorithm for various 3D detectors significantly reduced
trade-offs relative to a single threshold, demonstrating that
the algorithm improves prediction performances suited for
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Fig. 4: Results of our algorithm. In challenging urban road scenar-
ios, such as fog and rain, our algorithm enhances the performance
of 3D object detection models by reducing false positives and
accurately distinguishing vehicles from point clouds caused by
adverse weather conditions. This leads to improved overall precision
of object detection, ensuring safer driving for autonomous vehicles.

autonomous driving.

C. Qualitative Results

Using our urban road dataset, we conducted a qualitative
assessment using the PointPillars[10] model to address the
issue of false positives in various real urban roads and
weather conditions.

Fig. 1 shows urban road data acquired in clear weather
conditions near Blue House and Gyeongbokgung in Seoul. In
the RGB image of Fig. 1., bushes exist horizontally along the
right side of the road, from which many point clouds emerge,
resembling the shape of vehicles. This leads the model
to misidentify bushes as vehicles when applying a single
threshold. During actual autonomous driving, such false
positives were mistakenly perceived as vehicles changing
lanes to the driving lane of the ego-vehicle, causing the
vehicle to suddenly stop. When the adaptive thresholding
algorithm proposed in this paper was applied to the model, it
no longer recognized bushes as vehicles while still accurately
detecting vehicles in the left lane and ahead.

Fig. 4’s fog presents urban road data captured in envi-
ronments with heavy fog around Gangneung. In the RGB
image of Fig. 4, vehicles can be observed in the left lane,
indicating the presence of significant fog. A characteristic
of fog data is its appearance at a similar height to LiDAR,
resembling smoke-like point noise. Consequently, when a
single threshold is applied, false positives of densely fogged
areas as floating vehicles in the air can be observed. Our
algorithm does not recognize the falsely identified fog, while
vehicles existing in the left lane continue to be accurately
detected.

Fig. 4’s rain presents urban road data acquired in heavy
rainfall around Blue House and Gyeongbokgung in Seoul.
The RGB image in Fig. 4 indicates a situation with substan-
tial precipitation. Although vehicles exist in the left lane, it
is observed that no vehicles are present in the driving lane
ahead or the right lane. False positives of vehicles occur
due to the large amount of point clouds reflected by the
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heavy rain, and similar to Fig. 1, false positives caused by
bushes on the right can be observed. Our algorithm improves
Precision at close distances for false positives caused by rain
and bushes while vehicles in the left lane remain accurately
detected.

V. CONCLUSION & DISCUSSION

This research presented an adaptive thresholding algorithm
for post-processing in 3D object detection models, which are
pivotal for the perception module of autonomous vehicles,
a key component of Field Robotics. Through comparative
experiments on an open dataset between single thresholds
and our algorithm, we’ve demonstrated that our approach en-
hances the robustness of the perception module. It effectively
minimizes false positives by dynamically adjusting thresh-
olds according to the distance from the autonomous vehicle.
Subsequent experiments demonstrated the algorithm’s effec-
tiveness and adaptability across diverse 3D object detection
frameworks. Additionally, qualitative results in the custom
dataset have verified the algorithm’s practical effectiveness
under dynamic urban roads and adverse weather conditions,
such as fog and rain. This shows our algorithm’s ability to
enhance detection accuracy and robustness for the perception
module of autonomous driving.

For future work, we will extend the applicability of
our methodology beyond LiDAR-based 3D object detection
models to those leveraging cameras, radars, and sensor
fusion, comprehensive studies on the distinct characteristics
of each sensor type. Moreover, this algorithm has the poten-
tial to evolve into a learning-based approach for real-time
adaptation to various scenarios.
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