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ABSTRACT 

Recently, machine-learning approaches have accelerated computational materials design and the 

search for advanced solid electrolytes. However, the predictors are currently limited to static 

structural parameters, which may not fully account for the dynamic nature of ionic transport. In 

this study, we meticulously curated features considering dynamic properties and developed 

machine-learning models to predict the ionic conductivity of solid electrolytes. We compiled 14 

phonon-related descriptors from first-principles phonon calculations along with 16 descriptors 

related to structure and electronic properties. Our logistic regression classifiers exhibit an accuracy 

of 93 %, while the random forest regression model yields a root mean square error of 1.179 S/cm 

and R2 of 0.710. Notably, phonon-related features are essential for estimating the ionic 

conductivity in both models. Furthermore, we applied our prediction model to screen 264 Li-

containing materials and identified 11 promising candidates as potential superionic conductors.  
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Concomitant to the sharp increase in global demand for electric vehicles, mobile electronics, 

and large energy storage, lithium-ion batteries (LIBs) have been intensively and extensively 

studied to improve their performance.1–3 However, organic liquid electrolytes, commonly used in 

LIBs due to their high ionic mobility, pose potential safety risks.4,5 Thermal instability of LIBs 

often arises from the breakage of the separator and electrochemical reactions within the 

electrolytes.  

    Inorganic solid-state electrolytes (SSE) have been investigated to mitigate the safety risks in the 

past decades.6–11 Compared to liquid electrolytes, SSEs are advantageous in electrochemical and 

thermal stability,10 as well as good cycle performance.9,11 It is also possible to operate under high 

voltage and achieve large energy density by use of the metallic lithium anode and the high voltage 

cathode.9,12 Examples include LISICON type (lithium superionic conductor), NASICON type 

(sodium superionic conductor), garnet, perovskites, and argyrodites materials such as 

Li10GeP2S12,13 Li1.3Al0.3Ti1.7(PO4)3,14 Li7La3Zr2O12,15 La0.5Li0.5TiO3,16 and Li6PS5Br.17 However, 

SSEs exhibit relatively low ionic conductivity compared to organic liquid electrolytes, therefore 

many studies have searched for SSEs with high ionic conductivity and electrochemical 

stability.6,18,19  

  Previous studies have suggested various parameters to control the ionic conductivity of solid 

electrolytes or superionic conductors. The static structure parameters6 such as bottleneck size,20,21 

volume,22,23 and anion sublattice23 have been reported to be related to ionic transport and activation 

energy. Not only static properties but also dynamic properties have been suggested as important 

features for ion mobility.6,24–31 For example, low energy optical (LEO) phonons induce a decrease 

in the activation barrier of ionic transport.25 Soft lattice modes related to the octahedral rotation 

are connected to ionic diffusion in Ruddlesden-Popper phase Ln2NiO4+d (Ln = La, Pr, Nd).26 
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Phonon instability and migration profiles of Li2O were discussed under both ambient and 

superionic phases.27 Krauskopf et al. showed that the lattice softness reduces the activation energy 

for Na ion motion in Na3PS4-xSex.28 The average phonon frequency of Li-ion was reported to 

correlate with the enthalpy of migration in LISICON,29 and used as a descriptor for high-

throughput screening.32   

Theoretical approaches to ionic conductivity have traditionally relied on direct methods, such 

as ab initio molecular dynamics (MD),33–35 despite being notably time-consuming. In recent years, 

the field of materials science has experienced a growing interest in the application of machine 

learning (ML) approaches,36–54 aimed at predicting properties based on the accumulated data. 

Consequently, several studies have applied various ML techniques to design potential SSEs.43–54 

For example, Fujimura et al. performed the support vector regression to predict the ionic 

conductivity of LISICON.54 Artificial neural network modeling was used to predict the Li 

diffusion barrier for LiMXO4.47 Sendek et al. developed a classification model using various 

structural types of Li-ion conductors as a training set and proposed 21 promising candidates for 

SSE.48 Unsupervised learning and compositionally restricted attention based networks (CrabNets) 

were also applied to distinguish fast Li-ion conductors.44,45  

In previous ML investigations,45–52 common features based on the atomic structures and 

chemical properties of components were used due to their straightforward quantification and ease 

of data collection. However, features related to lattice dynamics or phonon properties have recently 

shown importance in correlation with ionic diffusion,6,24–31 which have not been employed to 

predict the ion conductivity of the SSEs through ML approaches.  Clarifying the mechanisms of 

ionic conductivities at fixed temperatures, such as room temperature, is challenging due to 

structural complexity and interactions. Therefore, it would be worth developing ML models with 
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features that include both dynamic and structural properties of materials and investigating their 

contribution to ionic conductivity.   

    In this study, we have developed ML models to predict the ionic conductivity of SSEs by 

utilizing the features related to not only static properties such as structural, electronic, and chemical 

features but also lattice dynamics. Figure 1 illustrates the schematic workflow of this work. First, 

we collected experimental ionic conductivity at room temperature (RT) and the corresponding 

crystal structures of Li and Na-based SSE materials from previous literature as shown in Table S1. 

For feature derivation, we performed density functional theory (DFT) calculations and obtained 

thirty features related to the phonon, electronic, and structural properties. The logistic regression 

(LR) classifier and random forest (RF) regression were employed for classification and regression 

models, respectively. The contribution of the features to estimate ionic conductivity is quantified 

by the Gini importance (GI) in the RF model. Furthermore, based on the developed LR model, we 

screened Li-SSE candidates containing O or S anions using the Materials Project (MP) database55 

and the phonon database at Kyoto University.56–58 Among them, 11 materials were identified as 

promising candidates for superionic conductors. 
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Figure 1. Schematic workflow of the ML model for ionic conductivity of Li and Na-based solid-

state electrolytes. 

 

To derive the features of electronic and structural properties, we conducted DFT calculations 

using the Vienna ab initio Simulation Package (VASP) code.59,60 All calculations are performed 

using Perdew-Burke-Ernzerhof (PBE) functional of generalized gradient approximation (GGA)61 

and plane-wave energy cutoff of 650 eV. A k-point density of 5000/atom is used with respect to 

the corresponding system. The crystal structures were referenced from the MP55 and Inorganic 

Crystal Structure Database (ICSD).62  The atomic and lattice structures are fully relaxed until the 

Hellmann-Feynman force is less than 0.001 eV/Å while maintaining the initial symmetry of the 

experimental structures. The disorder structures that have partial occupancies were regenerated in 
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ordered structure using Python Materials Genomics (pymatgen).63  To obtain the phonon properties, 

we used the PHONOPY package, which applies a finite displacement approach and supercell 

calculations.64 The force constants were calculated using the supercells with lattice parameters 

greater than 10 Å.  

We employed LR and RF machine learning algorithms to classify and predict ionic conductivity. 

All models were developed and implemented through the application of the scikit-learn python 

library. We used the leave-one-out cross-validation (LOOCV) and evaluated models to suppress 

overfitting. The metric of accuracy and F1 score, and metrics of the root mean square error (RMSE) 

and coefficient of determination (R2) were utilized for LR classification and RF regression models, 

respectively (See the Supporting information for the detailed information on accuracy and F1 

score). 

The LR model accepts any real value and generates a probability value between 0 and 1 through 

the logistic function P(z) =	 !
!"	$-z. This model is applied in predicting ionic conductivity using the 

equation, so-called z function, 𝑧 = 𝑤% + ∑ 𝑤&𝑥&& , where 𝑤&  and 𝑥&  denote the regression 

coefficient and the value of the feature, respectively. To find the best combination of features, we 

searched all combinations of 30 features, resulting in a total of Σ)'%( * = 1,073,741,824 models.  

We implemented the RF model,65 an ensemble of models using decision trees. By constructing 

a forest comprising numerous decision trees, the RF model generates predictions by averaging the 

outcomes of each tree. The RF is preferred due to its ability to learn intricate non-linear 

dependencies and tolerance to data heterogeneity. The significance of features with respect to the 

output can be determined using GI. To obtain the optimal feature set while managing 

computational load, the backward feature elimination method was utilized. The process began with 

a model using the complete set of n features. Subsequently, all n-1 combinations of features were 
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systematically tested, and the next set was constructed in each iteration by eliminating the least 

significant feature. The model performance at each cycle was determined based on the RMSE of 

the test set. The process terminates when the RMSE reaches its minimum, just before exhibiting 

an increase rate of 10 % in the next iteration.  

 

Table 1. List of 30 features used in this work. The subscripts (superscripts) of M, A, C, Tot, and 

H denote the mobile ions (Li, Na), anion, cation, total atoms, and hybridization. 

Features Description 
<ω>M, <ω>A, <ω>"#$ Phonon band center of mobile ion, anion, and total atoms 

𝑓%&'M , 𝑓%&'A , 𝑓%&'H  Frequency at maximum phonon DOS of mobile ion, anion, and 
hybridization of mobile ion and anion below 30 meV 

𝑃%&'M , 𝑃%&'A , 𝑃%&'H  Maximum phonon DOS below 30 meV per corresponding 
atoms 

𝑓()* The existence of soft mode 

RM/Tot, RA/Tot, RH/Tot 
The ratio of atom-projected phonon DOS per total phonon 
DOS below 30 meV 

S Vibrational entropy at RT 
EG Energy band gap 
∆𝐻+ Heat of formation 

Vf.u, VM , VA, VTot Volume per formula units, mobile ion, anion, and total atoms 

dM-A , dM-M The minimum distance between Li (Na) and anion, Li (Na) and 
Li (Na) 

Nf.u Number of formula units in the conventional cell 
r Density 
m Total mass 
NM Number of mobile ions in formula unit 

M-disorder, A-disorder,  
C-disorder, Tot-disorder 

Site atomic disorder of mobile ion, anion, cation, and total 
atoms 

 

   Firstly, we compiled a list of 45 Li and Na-ion conductors along with their structures and ionic 

conductivity at RT, denoted as s, as detailed in Table S1. Figure S1 shows the histogram of the 

dataset categorized by log(s). Feature selection is one of the most important parts to improve a 

model performance. To consider multifaceted perspectives, we selected features incorporating 

phonon, structural, and electronic properties based on previous literatures.27,29,66–70 and physical 
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intuition. We also defined several features to quantitatively describe specific properties related to 

phonon DOS and disorders. Table 1 summarizes the selected 30 features. 

 

 

Figure 2. Phonon dispersions and density of states (DOS) of (a) Li3P and (b) b-Li3N as 

representatives. The negative phonon frequency indicates the phonon soft mode. (c) Schematic 

phonon DOS. 𝑃)*+M , 𝑃)*+A , and 𝑃)*+H  indicate the maximum phonon DOS below 30 meV for mobile 

ion (Li or Na), anion, and their intersection (hybridization) region. 𝑓)*+M , 𝑓)*+A , and 𝑓)*+H  are the 

corresponding frequencies to 𝑃)*+M , 𝑃)*+A , and 𝑃)*+H , respectively.  
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    To consider features related to lattice dynamics, we analyze phonon bands and include various 

representations of phonon characteristics. Figure 2(a) and (b) show the phonon dispersion curves 

of Li3P (s = 1.0 ´ 10-3 S/cm) and b-Li3N (s = 2.085 ´ 10-4 S/cm), respectively, as representative 

examples. First, we used <w> to denote the average vibrational frequency so-called ‘phonon band 

center’ following the previous study.29 The quantity of <w> is expressed as <ω> = ∫.	×	DOS(.)2.
∫DOS(.)2.

. 

<w>M, <w>A, and <w>Tot correspond to the phonon band centers of mobile ion (Li or Na), anion, 

and total atoms, respectively.        

In previous studies, the glassy Li3P4 phase has been observed to exhibit a lower peak of Li and 

larger overlap with anion spectra than crystalline 𝛾-Li3P4.66 These characteristics were thought to 

enhance ion mobility at low temperatures by promoting the paddlewheel dynamics. However, 

other mechanisms to enhance ion mobility related to such phonon spectra feature have been 

proposed recently,31,71 such as anharmonic phonon coupling. We constructed features that relate 

to the phonon peak position and defined a feature associated with the overlapping phonon DOS of 

Li (Na) and anion. Specifically, the features, 𝑓)*+M  and 𝑓)*+A  correspond to the frequency at the 

maximum phonon DOS of mobile ion and anion, respectively. The frequency at the phonon peak 

for ‘hybridization’, i.e., the overlap region of mobile ion and anion, is denoted as 𝑓)*+H  as shown 

in Figure 2(c). 𝑃)*+M , 𝑃)*+A , and 𝑃)*+H  are defined as phonon DOS values at 𝑓)*+M , 𝑓)*+A , and 𝑓)*+H  per 

corresponding atoms.  

     In addition, we restricted the highest phonon frequency to 30 meV, which is close to the RT 

energy scale of ~25 meV. Phonons with energies higher than the RT energy of 25 meV have 

significantly smaller average number of phonons at RT because the average number of phonons, 
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〈𝑛〉 at fixed temperature follows the Planck distribution, 〈𝑛〉 = !

3+4( ℏ#$%&
5!)		

. This restriction also 

emphasizes the low frequency region that is related to lattice softness. 

    We further selected features that can be associated with lattice softness. The feature 𝑓&67 

denotes the existence of soft mode in the phonon bands since it can be considered a precursor to 

ionic diffusion.27 We designated a value of 0 if there are no imaginary frequencies. Values 1 and 

2 were assigned if soft modes originate from mobile and other ions, respectively. Furthermore, we 

considered additional phonon-related properties such as the phonon DOS of mobile ion, anion, and 

hybridization region per total phonon DOS (RM/Tot, RA/Tot, RH/Tot) below 30 meV, along with 

vibrational entropy, S at RT.70 The ratio of the phonon DOS below 30 meV indicates how the 

phonon DOS is relatively distributed in the low frequency region. The softer lattice tends to exhibit 

higher vibrational entropy.70   

For electronic and structural properties, we selected features, similar to previous literature,47,48 

such as band gap (EG), the heat of formation (∆𝐻8), volume per formula units, mobile ion, anion, 

and total atoms (Vf.u, VM, VA, VTot), the minimum distance between Li (Na) and anion (dM-A), Li 

(Na) and Li (Na) (dM-M), and the number of formula units (Nf.u) in the conventional cell. In addition, 

we included the properties derived from the chemical composition of materials such as density 

(r),46 mass (m), and the number of mobile ions in the formula unit cell (NM).  

    We also incorporated site-disorder properties into the feature set, as activation energies for Li-

ion diffusion are expected to decrease with increasing site-disorder.67–69 We quantified disorders 

using site occupancy and the Wyckoff site number. M-disorder, A-disorder, C-disorder, and Tot-

disorder denote the amount of the mobile ion, anion, cation, and total site-disorder in the given 

structure, respectively. Computational details for quantifying the disorder in an example system 

are described in the Supporting information. 
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Figure 3. Prediction performance of the LR models. (a) The highest accuracy scores according to 

the number of features. (b) The classification performance using 6 features with an accuracy of 

0.933 and an F1 score of 0.927. The blue squares and red dots represent the superionic and non-

superionic materials based on experimental observations, respectively. 
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with more than 20 features, unlike the training set displaying high accuracy, indicating overfitting. 

Using a single feature set, the best model achieves an accuracy of 0.8 with the Nf.u feature. 

Combinations with other features further enhance performance, reaching up to 0.933 with 6 

features. 

Table 2 shows the best predictors with 2 to 6 combinatorial features and their accuracies. Even 

with just four features, the prediction performance presents an accuracy greater than 0.9, as 

depicted in Figure 3(a). The best combinations of 4 features, scoring an accuracy of 0.911, include 

Nf.u, RM/Tot, C-disorder, and NM (Vf.u). Nf.u, RM/Tot, and C-disorder consistently appear in the best 

combinations ranging from 4 to 19 features. The combination of RH/Tot, S, and A-disorder, together 

with Nf.u, RM/Tot, and C-disorder exhibit the highest performance with an accuracy of 0.933. 

Conversely, combinations of 4 and 6 features excluding phonon-related attributes result in 

accuracies of 0.867 and 0.889, respectively. These results suggest the influential role of phonon 

characteristics in enhancing the performance of the ML model.  

 

Table 2. The optimal feature set and its corresponding test accuracy  

with respect to the number of features. 

Number of 
features 

Best Combinations Accuracy 

2 
Nf.u, C-disorder 
Nf.u, A-disorder 
Nf.u, Tot-disorder 

0.822 

3 

Nf.u, C-disorder, EG 

Nf.u, C-disorder, NM 
Nf.u, RM/Tot, 𝑓()*,  
Nf.u, 𝑓%&'A , S 

0.867 

4 Nf.u, RM/Tot, C-disorder, NM  
Nf.u, RM/Tot, C-disorder, Vf.u  0.911 

5 Nf.u, RM/Tot, C-disorder, A-disorder, S 
Nf.u, RM/Tot, C-disorder, dM-M, m 0.911 

6 Nf.u, RM/Tot, RH/Tot, C-disorder, A-disorder, S 0.933 
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Figure 3(b) illustrates the logistic function P(z) obtained using the 6 features of Nf.u, RM/Tot, 

RH/Tot, C-disorder, A-disorder, and S. A value of P(z) greater than (less than) 0.5 indicates the 

prediction of superionic (non-superionic) behavior. Out of the 45 materials, three are misclassified: 

Li4BN3H10, Li6PS5I, and Li2CaN2H2. The confusion matrix is shown in Figure S2. 

𝑧 = −0.427	N8.: + 	4.523	R;/=>? + 2.561	R@/?>? + 1.305	C– disorder	 +

	2.220	A– disorder	 + 	0.007	S − 2.552	 (1) 

Equation (1) presents the z function for the best combinations of 6 features in Table 2. By 

examining the signs of the coefficients 𝑤& in the z function, we can infer their influence on the 

likelihood of superionic behavior. From a structural perspective, crystal structures with fewer 

number of formula units tend to exhibit high ionic conductivity (𝑤Nf.u<	0). The presence of cation 

and anion disorders positively influences fast ionic transport (𝑤C-disorder > 0,	𝑤A-disorder > 0). 

Regarding dynamic properties, softened lattice vibrations of mobile ions (Li or Na) contribute to 

the increased probability of superionic conductivity (𝑤KM/Tot > 0). A larger overlap of mobile ion 

and anion phonon DOS promotes superionic conductor (𝑤KH/Tot > 0 ). Furthermore, higher 

vibrational entropy that is associated with the softness of the lattice enhances the fast ionic 

conduction (𝑤S > 0). The Pearson correlation coefficients of Nf.u, RM/Tot, RH/Tot, C-disorder, A-

disorder, and S to the ionic conductivity are -0.400, 0.357, 0.296, 0.349, 0.238, and 0.493, 

respectively, indicating consistent positive/negative relationships with the LR results (See Table 

S3). 

 Table 3 presents the GI derived from the RF algorithm, which evaluates the significance of each 

feature on the output. Among these six features, RH/Tot, RM/Tot, and Nf.u are the most important 

features for classifying superionic conductors, each with similar GIs of > 0.2. Following closely is 

vibrational entropy with a GI of 0.146. Conversely, disorder-related features contribute minimally 
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to the classification of ionic conductivity. It is noteworthy that features related to phonons exhibit 

high GI values, showing their relevance to fast ion transport.  

 

Table 3. The Gini importance of each feature from the best LR and RF model. 

Rank Classification Regression 
1 RH/Tot  0.236 𝑓%&'A  0.312 
2 RM/Tot 0.235 𝑃%&'M  0.233 
3 Nf.u 0.227 Nf.u 0.216 
4 S 0.146 NM 0.174 
5 C-disorder 0.092 C-disorder 0.065 
6 A-disorder 0.064   

 

 We further developed the ensemble regression model of RF to predict the ionic conductivity and 

assess the contribution of each feature to estimating it. Figure 4(a) shows the prediction 

performance with RMSE and R2 values according to the number of features. Each point represents 

the RMSE and R2 obtained from the best combination of features using the backward feature 

elimination method. Among models with a single feature, the best performance is achieved when 

using 𝑓)*+A , with an RMSE of 1.696 S/cm and R2 of 0.296, respectively. As the number of features 

increases, the RMSE values decrease to 1.179 S/cm and then increase with more than 5 features, 

reaching up to 1.645 S/cm with 30 features. The combination of five features, 𝑓)*+A , 𝑃)*+M , Nf.u, NM, 

and C-disorder, demonstrates the best prediction performance an RMSE of 1.179 S/cm and R2 of 

0.710, as shown in Figure 4(b). The best performance of the RF models is not better than the 

classification model using LR despite a high R2 of 0.96 in the training set. This would be because 

accurately predicting ionic conductivity is more complex than classifying properties.  
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Figure 4. Prediction performance of the RF. (a) RMSE and R2 depending on the number of features. 

(b) Comparison of the predicted and experimental ionic conductivity log (𝜎). 
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dynamic attributes of both mobile ions and anions improves the performance of identifying 

materials with high ionic conductivity. These results are consistent with the previous literature 

reporting the correlation with lattice dynamics on ionic transport,6,24–31 and our results further show 

their statistical significance through ML analysis. Nf.u and C-disorder features are also included in 

the best feature combination as in the LR model, indicating their role in determining ionic 

conductivity. As shown in the GI and z function, the positive influence of disorder-related features 

is consistent with previous studies.67–69 

 

Table 4. Candidates for superionic conductors screened by the LR model. 

MP ID Composition Space group 
4527 Li8SnO6 R-3 
6844 KLi3Si12Sn2O30 P6/mcc 
8610 Li8PtO6 R-3 
14364 Cs2LiAsO4 Cmc21 
16055 KLi3Zr2Si12O30 P6/mcc 
17208 K2Li14Zr3O14 Immm 
18711 LiNdP4O12 C2/c 
504806 K2Li14Pb3O14 Immm 
504810 Rb2Li14Pb3O14 Immm 
774749 RbNa3Li12Ti4O16 I4/m 
753546 Li8TiS6 P63cm 

 

    Finally, we apply our LR model to search for new SSE candidates. All structures and phonon 

data are acquired from the MP55 and phonon database at Kyoto University.56–58 We have screened 

all the Li-based materials from the phonon database with the S or O anions. The materials that 

have a small gap (< 1.0 eV) are eliminated to minimize the electronic conductions as electrolytes. 

We used the materials that satisfy the convex hull energy (Ehull) is 0 eV/atom to prevent sample 
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decomposition.  From these requirements and restrictions, we compiled 259 Li-contained materials 

and added additional 5 materials (LiErSe2, LiHo3Ge2O8F2, LiBiF4, LiCaGaF6, LiInF4) from the 

previous MD report49 for comparison.  

  By screening 264 datasets based on our LR model with six features (Nf.u, RM/Tot, RH/Tot, C-disorder, 

A-disorder, S), we identified 11 materials out of 264 (~4%) that may exhibit superionic characters 

as listed in Table 4. Among the predicted candidates, Li8SnO6 has been explored as an electrode 

material for LIBs due to its high lithium content,72–74 and DFT studies reported the migration 

energy ranging from 0.20 eV to 1.06 eV across different paths and methods.72,73 Other candidates 

listed in Table 4 have not yet been identified through either DFT-MD or experiments to the best 

of our knowledge. To further validate the performance of our model, we compared the results to 

the previous report using the DFT-MD simulations.49 Our prediction matches the calculated ionic 

conductivity with 87.0 % accuracy as shown in Table S4. Although we observed a few false 

negative results compared to the previous MD results, we anticipate that our screening model with 

phonon features has prediction power and will facilitate the discovery of superionic conductors. 

     In conclusion, we have developed ML models utilizing LR and RF algorithms to predict the 

ionic conductivity of SSE materials. Our approach involved careful selection and quantification of 

features from both dynamic and static properties using the DFT calculations and experimental 

structures. The LR model exhibits an accuracy of 93 % with six features: Nf.u, RM/Tot, RH/Tot, C-

disorder, A-disorder, and S. A structure with a small number of formula units, lattice softness 

around Li (Na) ions, a large overlap of phonon DOS in mobile ions and anions, high disorder of 

cations and anions, and high vibrational entropy promote superionic behavior. The RF model 

presents the prediction performance with an RMSE of 1.179 S/m and an R2 of 0.710. Notably, 
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phonon-related features such as 𝑓)*+A  and 𝑃)*+M , along with structure-related features including Nf.u, 

NM, and C-disorder, play crucial roles in predicting ionic conductivity in the RF regression model. 

In both classification and regression models, phonon-related features exhibit higher GI, 

quantitatively indicating their strong relevance to ionic conductivity. Thus, our ML models 

demonstrate the significance of dynamic properties in predicting and understanding the ionic 

conductivity of materials. Finally, based on the developed models, we screened the 264 Li-based 

materials for SSE materials and suggested 11 candidates for superionic conductors. We believe 

that our understanding can guide the future design of advanced superionic conductors.  

 

SUPPORTING INFORMATION 

 List of the training set, which includes composition, ionic conductivity at RT, and space group of 

materials, along with histograms of the dataset, an example for the disorder features, the confusion 

matrix, the Pearson correlation map of the features and conductivity, and ML screened results for 

comparison to previous MD study. 
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