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MAXWELL’S AND STOKES’ OPERATORS ASSOCIATED WITH

ELLIPTIC DIFFERENTIAL COMPLEXES

A.A. SHLAPUNOV, A.N. POLKOVNIKOV, AND V.L. MIRONOV

Abstract. We propose a new technique to generate reasonable systems of par-
tial differential equations (PDE) that could be potential candidates for depict-
ing models in natural sciences related to quasi-linear equations. Such systems
appear within typical constructions of the Homological Algebra as complexes
of differential operators describing compatibility conditions for overdetermined
systems of PDE’s. The related models can be both steady and evolutionary.
Additional assumptions on the ellipticity of the differential complex provide a
wide class of elliptic, parabolic and hyperbolic operators that could be gener-
ated in this way. In particular, it appears that an essentially large amount of
equations related to the modern Mathematical Physics is generated by the de
Rham complex of differentials on the exterior differential forms. These includes
the elliptic Laplace and Lamé type operators; the parabolic heat transfer equa-
tion; the Euler type and Navier-Stokes type equations in Hydrodynamics; the
hyperbolic wave equation and the Maxwell equations in Electrodynamics; the
Klein-Gordon equation in Relativistic Quantum Mechanics; and so on. Our
model generation method covers a broad class of generating systems, especially
in higher spatial dimensions, due to different basic algebraic structures at play.

Introduction

The vast majority of differential equations of modern Mathematical Physics was
constructed with the use of the standard time derivative ∂t = ∂/∂t, gradient op-
erator ∇, the divergence operator div and the infinitesimal circulation operator
curl, known since Hamilton [14] and Maxwell [17]. The operators satisfy familiar
relations

(0.1) curl ◦ ∇ = 0, div ◦ curl = 0,

generating the elliptic Laplace operator

∆ = div ◦ ∇,

which is used in the parabolic heat transfer and duffusion equations (operator ∂t−
∆) and in the hyperbolic wave equations (operator ∂2

t −∆).
Advanced algebraic concepts, such as Dirac matrix algebra, Pauli matrix algebra,

Clifford algebra, quaternionic (octonionic, sedenionic) constructions and so on, were
used within Mathematical Physics in order to express physical laws in more clear
and compact ways, see, for instance, [6], [26], [21], [16] and many others.

In this paper, using Stokes’ system of Hydrodynamics as a model example, we
propose a more general algebraic construction related to Homological Algebra that
helps to describe physical laws in a unified form with the use of elliptic differential
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complexes, see, instance, [34]. The approach does not give a precise description
of the related models, but it suggest dimensions of the corresponding known and
unknown vectors and type of equations up to (both linear and non-linear) pertur-
bations. The other details depend usually on the particular type of the processes
and symmetries behind them.

Of course, there are other ways to generate mathematical models in standardised
ways, for instance, in the frame of General Relativity Theory, see, for example, [28].
But in the present paper, instead explaining how considerations in Physics involve
partial differential equations, we illustrate how a system of PDE’s may generate
more extensive mathematical model within Mathematical Physics.

We also indicate simple conditions, providing (Petrovskii or Douglis-Nirenberg)
ellipticity of the related steady Maxwell’s and Stokes’ type systems and, conse-
quently, parabolicity or hyperbolicity of the related time dependent systems. Ac-
tually, this opens a way to construct easily parametrices and fundamental solutions
to Maxwell’ and Stokes’ type operators under the considerations.

1. Differential complexes

Let us shortly recall the notion of differential complex and related matters.

1.1. Differential operators. Let X be a C∞-smooth Riemannian manifold of
dimension n ≥ 2 with a smooth (possibly, empty) boundary ∂X . We tacitly assume

that it is enclosed into a smooth manifold X̃ of the same dimension. Let also
◦

X
denotes the interior of X .

For any smooth C-vector bundles E and F of rangs k and l, respectively, over
X , we write Diffm(X ;E → F ) for the space of all the linear partial differential
operators of order ≤ m ∈ Z+ between sections of the bundles E and F . Then, for

an open set O ⊂
◦

X over which the bundles and the manifold are trivial, the sections
overO may be interpreted as (vector-) functions and A ∈ Diffm(X ;E → F ) is given
as (l × k)-matrix of scalar differential operators, i.e. we have

A = A(x,D) =
∑

|α|≤m

aα(x)∂
α

where aα(x) are (l × k)-matrices of C∞(O)-functions, ∂j = ∂
∂xj

, ∂α = ∂α1
1 . . . ∂αn

1 .

Denote by Ik the identity operator on sections of the bundle E (a unit (k × k)-
matrix in the local situation) and by E∗ the conjugate bundle of E. Any Hermitian
metric (., .)E,x on E gives rise to a sesquilinear bundle isomorphism (the Hodge
operator) ⋆E : E → E∗ by the equality 〈⋆Ev, u〉E,x = (u, v)E,x for all sections u
and v of E; here 〈., .〉E,x is the natural pairing in the fibers of E∗ and E. Pick a
volume form dx on X , thus identifying the dual bundle, the conjugate bundle and
the Lebesgue space L2(E) with the inner product induced by (., .)E,x. Then for
A ∈ Diffm(X ;E → F ) denote by A∗ ∈ Diffm(X ;F → E) the corresponding formal

adjoint operator. Let also D be a bounded domain (i.e. open connected set) in
◦

X.

1.2. Compatibility differential complexes. We recall that a differential oper-
ator A is called overdetermined on X if there is a non-zero differential operator B
over X such that

(1.1) B ◦A ≡ 0.
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An operator B, satisfying (1.1), is called a compatibility operator for A if for

any operator B̃ satisfying B̃ ◦ A ≡ 0 there is an operator C such that B̃ = C ◦ B.
Clearly, a compatibility operator is not uniquely defined; however it gives necessary
solvability conditions to the operator equation

Au = f in D

in a domain D ⊂ X , i.e. Bf = 0. However, a compatibility operator may also
contain addition information on a physical model where the operator A appeared.
Of course, the operator B can also be overdetermined.

Thus, our principal object to discuss will be a complex {Aq, Eq}Nq=0 of partial
differential operators over X (see, for instance, [32], [34]),

(1.2) 0→ C∞(E0)
A0→ C∞(E1)

A1→ C∞(E2)→ . . .
AN−1
→ C∞(EN )→ 0,

where Eq are bundles of rangs kq, respectively, over X and Aq are differential
operators from Diffmq

(X ;Eq → Eq+1) with

(1.3) Aq+1 ◦Aq ≡ 0;

we assume that Aq = 0 for both q < 0 and q ≥ N . Actually, it is often convenient
to consider complex {Aq, Eq}Nq=0 as a graduated operator A· of degree 1 over a

graduated topological vector spaceS· = ⊕N
q=0S

q(Eq) in such a way that A·u = Aqu
for a section u ∈ Sq(Eq) of the bundle Eq.

It may happens, see examples below, that orders mq of the differential operators
Aq are different; so we set m = max

0≤q≤N−1
mq. But the most simple constructions

corresponds to the cases where

(1.4) mj = m for all 0 ≤ j ≤ N − 1.

As above, we fix Hermitian metrics (·, ·)q,x = (·, ·)Eq,x in each fiber Eq,x.
The differential complex {Aq, Eq} is called a compatibility complex for A0 if for

each q ≥ 0 the differential operator Aq+1 is a compatibility operator for Aq. As
the compatibility operator is not unique, the compatibility complex is not unique,
too. The notions of homotopical equivalence of complexes ([34, Definition 1.1.17])
and equivalent operators [34, Definition 1.2.5]) help to improve the situation. In
particular, homotopically equivalent complexes have isomorphic cohomologies over
many standard functional classes, see [34, Proposition 1.24]. According to [34,

Propositions 1.2.7 and 1.2.8], if differential operators A0 and Ã0 are equivalent
and the operator A0 is included into a compatibility complex {Aq, Eq}Ni=0 then for

the operator Ã0 there is a compatibility complex {Ãq, Ẽq}Nq=0 and, moreover, the
corresponding complexes are homotopicaly equivalent.

The algebraic structures lying at the bottom of the theory of differential com-
plexes are rather natural, see [34, Ch. 1], though this depends on the class of
considered operators. Namely, let us consider the two typical cases.

If X = R
n and A = A(D) is an (l×k)-matrix differential operator with constant

coefficients then one may use P-modules of the ring P of all the polynomials with
complex coefficients, see [25], [34, §1.2], or elsewhere. Let us denote by Pk the
direct sum of k copies of the ring P and denote by A(ζ) the polynomial matrix

A(ζ) =
∑

|α|≤m

aα(ιζ)
α, ζ ∈ C

n.
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Then the transposed matrix A′(ζ) naturally defines a mapping A′(ζ) : P l → Pk.
As the ring P is Noetherian, then the P-module Pk/A′(ζ)P l is finitely generated,
i.e. there are natural numbers N , k1, . . . kN and polynomial (ki+1 × ki)-matrices

Aq(ζ) =
∑

|α|≤mq

a(q)α (ιζ)α, 0 ≤ q ≤ N − 1,

such that k0 = k, k1 = l, A0(ζ) = A(ζ), A′
q(ζ) ◦A

′
q+1(ζ) = 0 for all ζ ∈ C, and the

following sequence is exact, see Hilbert Syzygies Theorem, [3, §8],

0← Pk/A′(ζ)P l ← Pk0
A′

0(z)←− Pk1
A′

1(z)←− Pk2 ← . . .
A′

N−1(z)
←− PkN ← 0.

Then the related operators

Aq(D) =
∑

|α|≤mq

a(q)α ∂α

with constant coefficients form the desired compatibility differential complex (1.2)
for A = A0; it is called the Hilbert complex associated with the P-module for A.
Actually, if D is a convex domain in R

n then for any section f ∈ C∞(D, Eq+1)
satisfying Aq+1f = 0 in D there is u ∈ C∞(D, Eq) satisfying Aqu = f in D, i.e. the
Hilbert complex gives both necessary and sufficient conditions for the solvability of
the related operator equations in this particular situation, see, for instance, [25].

In the general case of differential operators with variable coefficients (or even
operators on manifold), to construct a compatibility complex for an operator A is
a more delicate procedure, see [12], [29], [32]. In particular, the related complex
might be not finite. D.C. Spencer [32] granted existence of a (finite) compatibility
differential complex for any ”sufficiently regular” differential operator with infinitely
smooth coefficients, see also [34, §1.3] for a more advanced discussion. To define
the concept ”sufficient regularity” one should consider jets js of sections E and F
over X of finite length s and the prolongations js ◦A of the differential operator A
to the spaces of jets J s(E), see [34, §1.3.2]. More precisely, let η(A) : Jm(E)→ F
be the bundle homomorphism satisfying η(A) ◦ jm = A and

Rs(x) = ker{η(js−m ◦A) : J s(E)x → J
s−m(F )x}, x ∈ X.

The operator A is called ”sufficiently regular” if 1) the dimensions d(s, x) of the
spaces Rs(x) do not depend on x ∈ X for s ≥ m and 2) the natural ”projections”
πs2,s1 : Rs2(x) → Rs1(x) have constant rank for all s2 ≥ s1 ≥ m. Of course, the
operators with constant coefficients are ”sufficiently regular”.

1.3. Elliptic differential complexes. Let π : T ∗X → X be the (real) cotangent
bundle of X and let π∗E be a induced bundle for the bundle E (i.e. the fiber of
π∗E over the point (x, ζ) ∈ T ∗X coincides with Ex). We write σ(A) : π∗E → π∗F
for the principal homogeneous symbol of the order m of the operator A, see, for
instance, [34, §1.1.9]. Of course, in a suitable local chart we have

σ(A)(x, ζ) =
∑

|α|=m

aα(x)(ιζ)
α, x ∈ O, ζ ∈ R

n,

where ι is the imaginary unit. We recall that A is called elliptic onX if k = l and the
mapping σ(A)(x, ζ) : π∗Ex → π∗Fx is invertible for (x, ζ) ∈ T ∗X with ζ 6= 0, see,
for instance, [10, Ch 1, §3, Ch. 2, §2]. Sometimes A is called overdetermined elliptic
if k < l and the mapping σ(A)(x, ζ) : π∗E → π∗F is injective for all (x, ζ) ∈ T ∗X
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with ζ 6= 0, but not surjective for some (x, ζ). A typical operator with injective
symbol is a suitable connection ∇E related to a bundle E, i.e. a first differential
operator of the type E → E ⊗ T ∗X , compatible with Hermitian metric (·, ·)E,x

in each fiber Ex, see, for instance, [37, Ch. III]. In particular, for a trivial vector
bundle E = R

n × C
k we have ∇E = Ik ⊗∇ with the usual gradient operator ∇ in

Rn where M1 ⊗M2 stands for the tensor product of matrices M1 and M2.
Recall that an operator A of an even order m = 2p and of type E → E is called

strongly elliptic, if

ℜ(σ(A)(x, ζ)w,w)E,x > 0 for all (x, ζ) ∈ T ∗X \ {0}, w ∈ Ex \ {0},

where ℜ a is the real part of a complex number a. A typical strongly elliptic operator
of the second order is given by the ’Laplacian’ ∇∗

E∇E . For a trivial vector bundle
E = Rn×Ck we have ∇∗

E∇E = −Ik⊗∆ with the usual Laplace operator ∆ in Rn.
A more general notion of ellipticity was introduced by A. Douglis and L. Niren-

berg, [9] (see also, for instance, [10, Ch. 1, §3] or, [38, §9.2]). Namely, let the
entries of an (k × k)-matrix linear operator A be scalar differential operators

A(p,r) =
∑

|α|≤m a
(p,r)
α (x)∂α with a

(p,r)
α (x) being the components of the functional

(k×k)-matrix a
(p,r)
α (x). Given two vectors ~s,~t ∈ R

k, the (~s,~t)-principal part of the

operator A is the (k × k)-matrix linear operator Ã with components

Ã(p,r) =

{

∑

|α|=sp−tr
a
(p,r)
α (x)∂α, sp ≥ tr,

0, sp < tr.

Then (~s,~t)-principal symbol of A is the (k× k)-matrix σ~s,~t(X)(x, ζ) with the com-
ponents

(

∑

|α|=sp−tr

a(p,r)α (x)ζα
)

.

The operator A is called Douglis-Nirenberg elliptic, if there are two vectors ~s,~t ∈ Zk

such that

detσ~s,~t(X)(x, ζ) 6= 0 for all x ∈ X, ζ ∈ R
n \ {0}.

Next, for the principal symbols of the operators from complex (1.2), we have

(1.5) σ(Aq+1) ◦ σ(Aq) ≡ 0.

Complex (1.2) is called elliptic, if the corresponding symbolic complex,

0→ π∗E0
σ(A0)
→ π∗E1

σ(A1)
→ π∗E2 → . . .

σ(AN−1)
→ π∗EN → 0,

is exact for all (x, z) ∈ T ∗X\{0}, i.e. the range of the mapping σ(Aq) coincides with
the kernel of the mapping σ(Aq+1). In particular, σ(A0) is injective and σ(AN−1)
is surjective for all (x, z) ∈ T ∗X \ {0}. Of course, an operator A0 is elliptic if and
only if the following complex is elliptic:

(1.6) 0→ π∗E0
σ(A0)
→ π∗E1 → 0.

There is also a Douglis-Nirenberg type ellipticity for elliptic complexes, see [2].
For the sake of notations, we set σq = σ(Aq) and δq = σ∗

qσq + σq−1σ
∗
q−1; then

σ∗
q = σ(A∗

q) and according to (1.5), for all 0 ≤ q ≤ N − 1 we have

(1.7) σ∗
q σ

∗
q+1 = 0, δq+1 σq = σq δq = σj σ

∗
q σq, σ

∗
q δq+1 = δq σ

∗
j = σ∗

q σq σ
∗
q .
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Lemma 1.1. Complex (1.2) is elliptic if and only if the mappings δq : π∗Eq →
π∗Eq are bijective for all (x, z) ∈ T ∗X \ {0} and all 0 ≤ q ≤ N .

Denote by ∆q the Hodge’s Laplacians of complex (1.2):

∆q = A∗
qAq +Aq−1A

∗
q−1, 0 ≤ q ≤ N.

Ifmq = mq−1 then δq = σ(A∗
qAq+Aq−1A

∗
q−1). According to Lemma 1.1, if complex

(1.2) satisfies (1.4) then, for the complex to be elliptic, it is necessary and sufficient
that the Laplacians ∆q of the complex are strongly elliptic differential operators of
order 2m for all 0 ≤ q ≤ N .

Next, given a pair µq consisting of formally non-negative self-adjoint differential

operators µ
(0)
q ∈ Diff2m̃q

(X,Eq+1 → Eq+1) and µ
(1)
q ∈ Diff2m̂q

(X,Eq−1 → Eq−1),
0 ≤ q ≤ N , with some numbers m̃q, m̂q ∈ Z+, satisfying 0 ≤ m̃q ≤ m − mq,
0 ≤ m̂q ≤ m−mq−1, we denote by ∆q,µ the steady Lamé type operators

∆q,µ = A∗
qµ

(0)
q Aq +Aq−1µ

(1)
q A∗

q−1.

If orders m̃q and m̂q equal to zero then strong ellipticity means that µ
(0)
q , µ

(1)
q+2

are bijective self-adjoint non-negative mappings. In general, we may produce the

operators µ
(0)
q , µ

(1)
q with the use of connections over Eq+1 and Eq−1, respectively:

µ
(0)
q = (∇∗

Eq+1
∇Eq+1)

m̃q , µ(0)
q = (∇∗

Eq−1
∇Eq−1)

m̂q .

On this way, taking m̃ = m − mq, m̂ = m − mq−1 we may achieve that all the
operators ∆q,µ have the same order 2m. For this reason we will often use the
following assumption.

Assumption 1.2. The formally self-adjoint non-negative operators µ
(0)
j and µ

(1)
j

are strongly elliptic.

Set δq,µ = σ∗
q σ(µ

(0)
q )σq + σq−1 σ(µ

(1)
q )σ∗

q−1.

Lemma 1.3. Let complex (1.2) be elliptic. If 0 ≤ j ≤ N then, under Assumption
1.2, the mapping δj,µ : π∗Ej → π∗Ej is bijective for all (x, z) ∈ T ∗X \ {0}; in
particular, the operator ∆j,µ is strongly elliptic self-adjoint non-negative, too, if we
additionally have mj + m̃j = mj−1 + m̂j.

Remark 1.1. Clearly, the generalized Laplacians can be factorized as follows

(1.8) ∆q,µ =
(

A∗
q , Aq−1µ

(1)
q

)

(

µ
(0)
q Aq

A∗
q−1

)

, 0 ≤ q ≤ N.

As we have noted above, a compatibility complex {Aq, Eq} for an operator A0 is
not uniquely defined. For this reason, formula (1.8) suggests the following natural

conditions for the operators µ
(k)
q :

(1.9) Aq+1 µ
(1)
q+2 µ

(0)
q Aq ≡ 0 for all 0 ≤ q ≤ N − 1.

On the symbolic level this means

(1.10) σq+1 σ(µ
(1)
q+2)σ(µ

(0)
q )σq ≡ 0 for all 0 ≤ q ≤ N − 1.

If the complex {Aq, Eq} consists of the operators with constant coefficients then we

may set µ
(0)
q = (−1)m̃qIkq+1 ⊗∆m̃q , µ

(1)
q = (−1)m̂qIkq−1 ⊗∆m̂q ; in this case,

µ
(0)
q Aq = (−1)m̃qAq(Ikq

⊗∆m̃q ), Aq+2µ
(1)
q+2 = (−1)m̂q(Ikq+3 ⊗∆m̂q )Aq+2,
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and hence (1.9), (1.10) hold true. In general case we should look for suitable

commutative relations between µ
(0)
q , µ

(1)
q+2, Aq and Aq+2 that is not a trivial task.

Finally, if mq+m̃q = mq−1+m̂q, we may consider the Helmholtz-Lamé operators

(1.11) Dq,µ = ∆q,µ +
∑

|α|≤2(mq+m̃q)−1

dα(x)∂
α

that are strongly elliptic if the operators µ
(0)
q , µ

(1)
q are strongly elliptic (Dq corre-

sponds to the case where µ
(0)
q = Ikq+1, µ

(1)
q = Ikq−1).

Note that the most natural part of the low order perturbation of the Laplacian
∆q,µ is usually given as follows:

(1.12) CqAq + C̃qA
∗
q−1 +Mq

with a formally self-adjoint operator Mq ∈ Diff0(X,Eq → Eq), and operators C ∈

Diffmq+2m̃q−1(X,Eq+1 → Eq), C̃ ∈ Diffmq−1+2m̂q−1(X,Eq−1 → Eq).

1.4. The induced complexes and time dependent processes. The construc-
tions considered in the previous subsection are fit for steady models of Mathemati-
cal Physics. To use the differential complexes for time dependent models, one may
introduce the so-called induced complex

0→ C∞(X,E0(t))
A0→ · · · → . . .

AN−1
→ C∞(X,EN (t))→ 0,

where sections of the induced bundles Eq(t) and the coefficients a
(q)
α of the dif-

ferential operators Aq depend on both x and the real parameter t. The induced
complex {Aq, Eq(t)} is elliptic on X × [0, T ) with a (possibly, infinite) time T , if
the corresponding symbolic complex,

0→ π∗E0(t)
σ(A0)
→ π∗E1(t)

σ(A1)
→ π∗E2(t)→ . . .

σ(AN−1)
→ π∗EN (t)→ 0,

is exact for all (x, z) ∈ T ∗X \ {0} and each t ∈ [0, T ). Note that for some kind of
problems one needs a more subtle notion of ellipticity with a parameter, see, for
instance, [1] or [10, Ch 2, §2].

In any case, one may easily introduce the operators

Lq,µ = ∂t +Dq,µ, Hq,µ = ∂2
t +Dq,µ

over X× [0, T ). Note that Lq,µ is strongly parabolic, if Dq,µ is strongly elliptic, see
[11], [10, Ch 1, §3, Ch. 2, §5] and Hq,µ has the ’hyperbolicity’ properties if Dq,µ is
strongly elliptic, see, for instance, [10, Ch 1, §3, Ch. 2, §4].

2. Maxwell’s and Stokes’ type operators for differential complexes

It is well known that Stokes’ system S = S1,µ(d, ∂t),

(2.1) S

(

~v
p

)

=

(

(∂t − µ∆)In ∇
div 0

)(

~v
p

)

=

(

~f
0

)

plays an essential role in mathematical models for incompressible fluid with given
the dynamical viscosity µ > 0 of the fluid under the consideration, the density

vector of outer forces ~f , the search-for velocity vector field ~v and pressure p of the
flow, see, for instance, [33], [15], [36]. Actually, Stokes’ system S and its steady
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version give the principal linear parts of the steady and evolutionary Navier-Stokes
equations in Rn, n ≥ 2, endowed with the non-linear perturbation given by

N1(~v) =

(

(~v · ∇)~v 0
0 0

)

=





( n
∑

j=1

vj∂j

)

~v 0

0 0



 .

It appears, that S can be easily written in the context of the de Rham complex
{∇, curl, div} in R3 at the step q = 1 with

∆1 = −∆I3 = curl∗curl + div∗div = curl curl−∇ div.

A generalisation of Stokes’ type operators for elliptic complex (1.2) was proposed
in [19, formula (1.2)] (cf. [31] for the de Rham complex):

S̃q(A, ∂t) =

(

Lq,µ Aq−1

A∗
q−1 0

)

, 0 ≤ q ≤ N.

It was noted in [31, Proposition 2.2] and [27, formula (0.4)] that for q ≥ 2 one more
natural line should be added to Stokes’ type operator associated with complex (1.2)
that is missed for q = 1:

Ŝq(A, ∂t) =





Lq,µ Aq−1

A∗
q−1 0
0 A∗

q−2



 , 0 ≤ q ≤ N.

Actually the additional operator equation provides some uniqueness for Stokes’
type equations. However, adding this natural equation we see that new operators
becomes overdetermined. This fact may complicate essentially the theory of Stokes’
type equations for the complex (1.2) at the degrees q > 1. To overcome this
difficulty, let us introduce slightly different generalisations of Stokes’ type operators.

2.1. Steady Maxwell’s and Stokes’ type operators for elliptic complexes.

Consider the following steady Maxwell’s and Stokes’ type operators related to com-
plex (1.2) at degrees 0 ≤ q ≤ N . Namely, set rq = (

∑q
j=0 kj), 0 ≤ q ≤ N . By BN

we denote (N + 1)× (N + 1)-block matrix (in fact, it is a (rN × rN )-matrix), such
that each its block bNij is a (kN−i+1 × kN−j+1)-matrix. Let Bj be such a matrix

with bNjj = Ikj
and BN

pq = 0 for p 6= j or q 6= j. Clearly,

(2.2) BjBj = Bj , BiBj = 0 if j 6= i

and all the blocks of the matrix BiB
NBj equal to zero except the block

(BiB
NBj)ij = bNij .

For this reason, if P is an operator of type EN−i+1 → EN−j+1 then we denote by
BiPBj the (N +1)× (N +1)-block matrix with all the block being zero except the
block bNij = P .

Next, set Eq = ⊕q
j=0Ej , 0 ≤ q ≤ N . Given set µ = (µ0, . . . ,µq) of pairs of

differential operators, we introduce the following Maxwell’s type operators acting

on sections UN = (u0, . . . , uN) of the bundle EN : M
(0)
0,µ(A) = 0,M

(1)
0,µ(A) = 0,

(2.3) M(0)
q,µ(A) =

q−1
∑

j=0

(

Bj+1µ
(0)
j AjBj +BjA

∗
jBj+1

)

, 1 ≤ q ≤ N,
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(2.4) M(1)
q,µ(A) =

q−1
∑

j=0

(

Bj+1Ajµ
(1)
j+1Bj +BjA

∗
jBj+1

)

, 1 ≤ q ≤ N.

Obviously,M
(0)
q,µ(A) =M

(1)
q,µ(A), if

(2.5) Ajµ
(1)
j+1 = µ

(0)
j Aj for all 0 ≤ j ≤ q;

consequently, we will write Mq,µ(A) for M
(j)
q,µ(A) in this case. In particular, we

will use the notationMq(A) in the simplest case where µ
(0)
j = Ikj+1 , µ

(1)
j = Ikj−1

for all 0 ≤ j ≤ q.
Similarly, we introduce Stokes’ type operators

(2.6) Sq,a(A,Dµ) =

q
∑

j=0

BjDj,µBj + a

q−1
∑

j=0

(

Bj+1AjBj +BjA
∗
jBj+1

)

,

with a = aq being equal to 0 or 1.

In fact, by the construction, the operatorsM
(i)
q,µ(A), Sq,1(A,Dµ) act on sections

Uq = (u0, . . . , uq) of the bundle Eq and hence we will identify them with the lower
right (rq×rq)-minors of the related full (rN ×rN )-matrices. For instance, in a more
bulky matrix form the operator Sq,1(A,Dµ) may be written as





















Dq,µ Aq−1 0 0 0 0 . . . 0
A∗

q−1 Dq−1,µ Aq−2 0 0 0 . . . 0
0 A∗

q−2 Dq−2,µ Aq−3 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 A∗

2 D2,µ A1 0
0 . . . . . . . . . 0 A∗

1 D1,µ A0

0 . . . . . . . . . . . . 0 A∗
0 D0,µ





















.

More compact notations (2.3), (2.4), (2.6) echo with the sedeonic form of equations
of Mathematical Physics proposed in [20], [21], [22], [23].

Let’s explain the connection between Maxwell’s and Stokes’ type operators.

Lemma 2.1. If (1.9) is fulfilled for all 0 ≤ j ≤ q, then we have

(2.7) M(1)
q,µ(A)M

(0)
q,µ(A) = BqAq−1µ

(1)
q−1A

∗
q−1Bq +

q−1
∑

j=0

Bj∆j,µBj .

In particular, if Dj,µj
= ∆j,µj

for all 0 ≤ j ≤ N , then

Sq,a(A,Dµ) =M
(1)
q,µ(A)M

(0)
q,µ(A) +BqA

∗
qµ

(0)
q AqBq + aMq(A), 0 ≤ q ≤ N.

Next, we note that Stokes’ type operator S0(A,D0,µ) = D0,µ is elliptic and

strongly elliptic on X if the operator µ
(0)
0 is strongly elliptic. As it is known, see,

for instance, [18, Ch. II, §4, Example 1], Stokes’ operator (2.1) is Douglis-Nirenberg
elliptic over Rn. Then the following two statements are rather expectable. To
formulate the statements, we set

σ̃(M(0)
q,µ(A)) =

q−1
∑

j=0

(

Bj+1 σ(µ
(0)
j )σj Bj +Bj σ

∗
j Bj+1

)

,

σ̃(M(1)
q,µ(A)) =

q−1
∑

j=0

(

Bj+1 σj σ(µ
(1)
j+1)Bj +Bj σ

∗
j Bj+1

)

.
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Proposition 2.2. Let complex (1.2) be elliptic, Assumption 1.2 be fulfilled for all
0 ≤ j ≤ N and (1.10) be true for all 0 ≤ j ≤ N . Then the symbolic matrices

σ̃(M
(i)
N,µ(A)), i = 0, 1, are invertible for all (x, ζ) ∈ T ∗X \ {0}. In particular,

• the operators M
(0)
N,µ(A), M

(1)
N,µ(A), N ≥ 1, are elliptic if (1.4) is true for

all 0 ≤ j ≤ N ;
• the operator SN,a(A,Dµ), N ≥ 1, is elliptic for any a if for all 0 ≤ j ≤ N

(2.8) mj + m̃j = mj−1 + m̂j = m;

• under (1.4) the operator SN,1(A,Dµ), N ≥ 1, is elliptic if

(2.9) µ
(0)
j = 0 for all 0 ≤ j ≤ N − 1, µ

(1)
j = 0 for all 1 ≤ j ≤ N.

• the operators M
(0)
N,µ(A), M

(1)
N,µ(A), N ≥ 1, are Douglis-Nirenberg elliptic;

• the operator SN,1(A,Dµ), N ≥ 1, is Douglis-Nirenberg elliptic.

Proof. Indeed, similarly to (2.7), under condition (1.10), for all 0 ≤ q ≤ N we have

(2.10) σ̃(M(1)
q,µ(A))σ̃(M

(0)
q,µ(A)) = Bqσq−1µ

(1)
q σ∗

q−1Bq +

q−1
∑

j=0

Bjδj,µj
Bj .

In particular,

(2.11) σ̃(M
(1)
N,µ(A))σ̃(M

(0)
N,µ(A)) =

N
∑

j=0

Bjδj,µj
Bj .

Hence, as the symbolic matrices δj,µj
are invertible for all (x, ζ) ∈ T ∗X with ζ 6= 0

and all 0 ≤ j ≤ N (see Lemma 1.3), then the matrices σ̃(M
(0)
N,µ(A)), σ̃(M

(1)
N,µ(A))

are invertible for such (x, ζ), too.
If all the operators Aq, 0 ≤ q ≤ N − 1, have the same order m then the orders

of the operators µ
(i)
j equal to zero and hence

σ̃(M
(0)
N,µ(A)) = σ(M

(0)
N,µ(A)), σ̃(M

(1)
N,µ(A)) = σ(M

(1)
N,µ(A)),

i.e. the operatorsM
(0)
N,µ(A)M

(1)
N,µ(A) are elliptic.

Moreover, under (2.8),

σ(SN,a(A,Dµ)) =

N
∑

j=0

Bjδj,µBj

and then SN,a(A,Dµ) is elliptic for any a because of Lemma 1.3.
If (1.4) is fulfilled then

σ(SN,a(A,Dµ)) = a σ(MN,µ(A)).

Thus, in this case the operator SN,a(A,Dµ) is elliptic, too, if a = 1.
If N = 1 (that corresponds to an elliptic operator with symbolic complex (1.6))

then operators M
(0)
1,µ(A), M

(1)
1,µ(A) are always elliptic because the orders of the

operators µ
(i)
0 equal to zero.

If N ≥ 2 and the orders mq of the operators Aq are different, then, we may solve
the following system of 4N equations with respect to 4(N + 1) unknown numbers
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s
(i)
1 , . . . s

(i)
N+1, t

(i)
1 , . . . t

(i)
N+1, i = 0, 1:

(2.12)

{

s
(0)
j − t

(0)
j+1 = mN−j + m̃N−j, s

(0)
j+1 − t

(0)
j = mN−j, 1 ≤ j ≤ N,

s
(1)
j+1 − t

(1)
j = mN−j + m̂N−j, s

(1)
j − t

(1)
j+1 = mN−j, 1 ≤ j ≤ N,

As 4(N + 1)− 4N = 4 we set t
(0)
1 = t

(0)
2 = t

(1)
1 = t

(1)
2 = 0 and then

s
(0)
1 = mN−1 + m̃N−1, s

(0)
2 = mN−1, s

(1)
1 = mN−1, s

(1)
2 = mN−1 + m̂N−1,

and we obtain a recurrent formula:
{

t
(0)
j+1 = s

(0)
j −mN−j − m̃N−j, s

(0)
j+1 = mN−j + t

(0)
j , 2 ≤ j ≤ N,

t
(1)
j+1 = s

(1)
j −mN−j, s

(1)
j+1 = mN−j + t

(1)
j − m̂N−j, 2 ≤ j ≤ N.

Hence we obtain a solution ~s(0), ~t(0), ~s(1),~t(1) to system (2.12) with integer com-
ponents. Then there is a non-negative integer c such that the vectors ~s(j) =

(s
(j)
1 + c, . . . s

(j)
N+1 + c), ~t(j) = (t

(j)
1 + c, . . . t

(j)
N+1 + c), j = 0, 1, are solutions to (2.12)

with non negative components. Assigning the values s
(i)
p , t

(i)
r for each component

of the blockM
(i)
N,µ(A, p, r) in the block matrixM

(i)
N,µ(A) we see that

σ̃(M
(0)
N,µA)) = σ ~s(0),~t(0)

(M
(0)
N,µ(A)), σ̃(M

(1)
N,µA)) = σ~s(1),~t(1)(M

(1)
N,µ(A)).

Thus, Lemma 1.3 and formula (2.11) imply that the operators M
(0)
N,µ, M

(1)
N,µ are

Douglis-Nirenberg elliptic. In particular,MN,µ is Douglis-Nirenberg elliptic, too.
And, finally, under (2.9) we have

σ~s(0),~t(0)(SN,1(A,Dµ)) = σ̃(MN (A)).

Therefore the operator SN,1(A,Dµ) is always Douglis-Nirenberg elliptic. �

Proposition 2.3. Let complex (1.2) be elliptic, (1.10) be true, N ≥ 2 and 0 ≤
q ≤ N − 1. If (2.8) and Assumption 1.2 are fulfilled for all 0 ≤ j ≤ q, then the
Stokes operator Sq,a(A,Dµ) is (Petrovskii) elliptic. If mq + m̃q = mq−1 + m̂q, and
Assumption 1.2 is fulfilled for j = q then Sq,1(A,Dµ) is a Douglis-Nirenberg elliptic
operator.

Proof. For q = 0 we always have S0(A,Dµ) = D0,µ, i.e. it is strongly elliptic if the

differential operator µ
(0)
0 is strongly elliptic on X . Moreover, under the hypothesis

of the first part of this proposition we have

σ(Sq,a(A,Dµ)) =

q
∑

j=0

Bjδj,µBj .

As in this particular case, ∆j,µ are strongly elliptic operators, see Lemma 1.3, we
conclude that the operator Sq,a(A,Dµ) is elliptic, too.

Let us prove the second statement of the proposition. With this purpose, let us
solve the following system of (2q + 1) equations with respect to 2(q + 1) unknown
numbers s1, . . . sq+1, t1, . . . tq+1:

(2.13)

{

s1 − t1 = 2(mq + m̃q) = 2(mq−1 + m̂q),
sj − tj+1 = mq−j , sj+1 − tj = mq−j , 1 ≤ j ≤ q,

As 2(q + 1)− 2q + 1 = 1, we set t1 = 0 and then

s1 = 2(mq + m̃q), t2 = 2(mq + m̃q)−mq−1,
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and we again obtain a recurrent formula:

tj+1 = sj −mN−j, sj+1 = mN−j + tj , 2 ≤ j ≤ N.

Thus, system (2.13) has a solution ~s, ~t with integer components. Then there is a
non-negative integer c such that the numbers s1 + c, . . . sq+1 + c, t1 + c, . . . tq+1 + c
are solutions to (2.13) with non negative components. Again, assigning values sp, tr
for each component of the block Sq,1(A,Dµ), p, r) in the block matrix Sq,1(A,Dµ))
we see that

σ~s,~t(Sq,1(A,Dµ))) = Bqδq,µq
Bq + σ̃(Mq(A)).

Next, using (1.7) we conclude that

δj,µσ
∗
jσ(µ

(0)
j )σj = σ∗

j σ(µ
(0)
j )σjσ

∗
j σ(µ

(0)
j )σj = σ∗

jσ(µ
(0)
j )σjδj,µ

and, if the matrix δj,µ is invertible, then

(2.14) σ∗
jσ(µ

(0)
j )σjδ

−1
j,µ = δ−1

j,µσ
∗
j σ(µ

(0)
j )σj .

Consider the following matrix:

(2.15) N (q)
σ = Bqδ

−1
q,µσ

∗
qσ(µ

(0)
q )σqBq+

Bqσq−1Bq−1 +Bq−1σ(µ
(1)
q )σ∗

q−1Bq −Bq−1σ(µ
(1)
q )σ∗

q−1σq−1Bq−1.

Then, properties (2.2) of matrices Bj and formulae (2.10), (2.14) imply

Bqδq,µBq

(

N (q)
σ +σ̃(Mq−1(A))

)

=Bqσ
∗
qσ(µ

(0)
q )σqBq+Bqσq−1σ(µ

(1)
q )σ∗

q−1σq−1Bq−1,

σ̃(Mq(A))σ̃(Mq−1(A)) = σ̃(Mq−1(A))σ̃(Mq−1(A)),

σ̃(Mq(A))N
(q)
σ = Bqσq−1σ(µ

(1)
q )σ∗

q−1Bq +Bq−1σ
∗
q−1

(

δ−1
q,µσ

∗
qσ(µ

(0)
q )σq

)

Bq+

Bq−1σ
∗
q−1σq−1Bq−1 −Bqσq−1σ(µ

(1)
q )σ∗

q−1σq−1Bq−1+

Bq−2σ
∗
q−2σ(µ

(1)
q )σ∗

q−1Bq −Bq−2σ
∗
q−2σ(µ

(1)
q )σ∗

q−1σq−1Bq−1 =

Bqσq−1σ(µ
(1)
q )σ∗

q−1Bq +Bq
q−1σ

∗
q−1σq−1Bq−1 −Bqσq−1σ(µ

(1)
q )σ∗

q−1σq−1Bq−1.

Thus, we arrive at the following identity:

(2.16) σ~s,~t(Sq,1(A,Dµ))
(

N (q)
σ + σ̃(Mq−1(A))

)

= Bqδq,µBq+

q−1
∑

j=0

BjδjBj +Bq−2σ
∗
q−2σ(µ

(1)
q )σ∗

q−1Bq −Bq−2σ
∗
q−2σ(µ

(1)
q )σ∗

q−1σq−1Bq−1.

Now, if U = (u1, . . . uq) satisfies

σ~s,~t(Sq,1(A,Dµ))
(

N (q)
σ + σ̃(Mq−1(A))

)

U = 0,

then

δq,µuq = 0, δq−1uq−1 = 0, δjuj = 0, 0 ≤ j ≤ q − 3,

σ∗
q−2σ(µ

(1)
q )σ∗

q−1uq − σ∗
q−2σ(µ

(1)
q )σ∗

q−1σq−1uq−1 + δq−2uq−2 = 0.

Immediately we see that uj = 0 for all 0 ≤ j ≤ q, j 6= q−2, because symbolic matri-
ces δq,µ, δj are invertible for all (x, ζ) ∈ T ∗X with ζ 6= 0. Therefore δq−2uq−2 = 0
and then, again uq−2 = 0 for the same reason. Hence the matrices

σ~s,~t(Sq,1(A,Dµ))
(

N (q)
σ + σ̃(Mq−1(A))

)

and σ~s,~t(Sq,1(A,Dµ))
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are invertible for all (x, ζ) ∈ T ∗X with ζ 6= 0, too, i.e. the operator Sq,1(A,Dµ) is
Douglis-Nirenberg elliptic. �

2.2. Maxwell’s and Stokes’ type operators for induced elliptic complexes.

For N ≥ 1 introduce non-steady Maxwell’s type operators

M(i)
q,µ(A,b∂t) =

q
∑

j=0

BjbjBj∂t +M
(i)
q,µ(A), i = 1, 2,

with a vector b = (b1, . . . bq) consisting of complex entries.

Lemma 2.4. Let the coefficients of the operators Aj , 0 ≤ j ≤ N−1, do not depend
on the time variable t. If (1.9) and (2.5) are fulfilled for all 0 ≤ j ≤ q then for any
real vector b we have

M(1)
q,µ(A,−b∂t)M

(0)
q,µ(A,b∂t) =

Bq(Aq−1µ
(1)
q A∗

q−1 − b2q∂
2
t )Bq +

q−1
∑

j=1

Bj

(

∆j,µ − b2j∂
2
t

)

Bj +B0(∆0,µ − b20∂
2
t )B0,

1 ≤ q ≤ N . In particular, Maxwell’s type operators M
(j)
N,µ(A,±b∂t) are elliptic

for N ≥ 1, if b ∈ Rq, mj = 1, |bj | > 0, and Assumption 1.2 is fulfilled for all
0 ≤ j ≤ N .

Next, for b ∈ Cq we set

Sq,a(A,bLµ) =

q
∑

j=0

Bjb
2
j

(

∂t +Dj,µ

)

Bj + aMq(A),

representing models with the leading ’parabolic’ part, and

Sq,a(A,bHµ) =

q
∑

j=0

Bjbj
(

∂2
t +Dj,µ

)

Bj + aMq(A)

corresponding to models with the leading ’hyperbolic’ part (as before, a = aq equals
to 1 or 0). It is worth to note that, similarly to steady case, the main part of the
Stokes operator SN,0(A,Dµ,b∂

2
t ) could be easily factorized if one chooses suitable

operators Dj,µ and numbers bj .

Lemma 2.5. Let the coefficients of the operators Aj , 0 ≤ j ≤ N−1, do not depend
on the time variable t. If for all 0 ≤ j ≤ q identities (1.9) and (2.5) are fulfilled
then for any real vector b ∈ Rq we have

M(1)
q,µ(A,−ιb∂t)M

(0)
q,µ(A, ιb∂t) =

Bqb
2
q

(

∂2
t +Aq−1µ

(1)
q−1A

∗
q−1

)

Bq +

q−1
∑

j=0

Bjb
2
j(∂

2
t +∆j,µj

)Bj .

In particular, if Dj,µ = ∆j,µ for all 0 ≤ j ≤ q, then

SN,0(A,bHµ) =M
(1)
q,µ(A,−ιb∂t)M

(0)
q,µ(A, ιb∂t).

Thus, for the first order complex (1.2) one may treat operatorM
(0)
q,µ(A, ιb∂t) as

the first order ’wave operator’.
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2.3. Parametrices for steady Maxwell’ and Stokes’ operators. At this point
we note that the (both Petrovskii and Douglis-Nirenberg) ellipticity implies the reg-
ularity property for solutions to the operatorsMN,µ(A), Sq,1(A,Dµ) and existence
of parametrices (and even fundamental solutions) for them, see, for instance, [1],
[34, §2.3], [35, §2.2.9, §4.4], [10, Ch. 2], [38, Theorem 8.69]. This actually re-
sults in many useful integral formulae for solutions to related systems of differential
equations, see for instance, [34, §2.4, §2.5].

Let us indicate a way to construct parametrices for Maxwell’s and Stokes’ op-
erators using suitable kernels for the generalized Laplacians ∆j,µ of elliptic com-
plex (1.2). Namely, if ∆j,µ are strongly elliptic operators, each of them admits
a parametrix, say, Φj,µ, i.e. such a pseudo-differential operator on X0 that on
C∞

0 (X,Ej) we have

(2.17) Φj,µ∆j,µ +ΠL
j,µ = I, ∆j,µΦj,µ +ΠR

j,µ = I,

with pseudo-differential operators ΠR
j,µ, Π

L
j,µ of negative orders, where 0 ≤ j ≤ N

and I is the identity operator; in some situation one needs smoothing operators
ΠR

j,µ, Π
L
j,µ, i.e. the pseudo-differential operators of order minus infinity. If ΠL

j,µ = 0

in (2.17) then Φj,µ is a left fundamental solution for ∆j,µ onX ; similarly, if ΠR
j,µ = 0

then Φj is a right fundamental solution for ∆j,µ on X . In particular, if ∆j,µ satisfy
the so-called Uniqueness Condition in small on X then ΠL

j,µ = ΠR
j,µj

= 0, i.e. Φj,µ

is the bilateral fundamental solution for ∆j,µj
on X , see, for instance [35, §4.4].

Theorem 2.6. Let complex (1.2) be elliptic, Assumption 1.2 be fulfilled, (1.10) and
mj + m̃j = mj−1 + m̂j = m for all 0 ≤ j ≤ N . Then the operator

F
(1)
N,µ(A) =M

(0)
N,µ(A)

(

N−1
∑

j=0

BjΦj,µBj

)

,

is a parametrix forM
(1)
N,µ(A). Moreover, if Φj,µ, 0 ≤ j ≤ N , are right fundamental

solutions for ∆j,µ then F
(1)
N,µ(A) is a right fundamental solution toM

(1)
N,µ(A).

Proof. It follows from (2.7) that the operator F
(0)
N,µ(A) is a right parametrix for

M
(1)
N,µ(A) if Φj,µ are parametrices for ∆j,µ, respectively (similarly, a right funda-

mental solution if ΠR
j,µ = 0), 0 ≤ j ≤ N . Finally, we note that for ’elliptic’ operators

a right parametrix is a left parametrix, too, see, for instance, [35, §2.2.9]. �

Similarly, we obtain the following statement.

Theorem 2.7. Let complex (1.2) be elliptic, Assumption 1.2 be fulfilled, (1.10) be
true and mj + m̃j = mj−1 + m̂j = m for all 0 ≤ j ≤ N . Then the operator

F
(0)
N,µ(A) =

(

N−1
∑

j=0

BjΦj,µBj

)

M
(1)
N,µ(A)

is a parametrix for M
(0)
N,µ(A). Moreover, if Φj,µ, 0 ≤ j ≤ N , are left fundamental

solutions for ∆j,µ then F
(0)
N,µ(A) is a left fundamental solution toM

(0)
N,µ(A).
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Finally, let us write down a fundamental solution to Stokes’ operator Sq,1(A,Dµ)

in a particular case. With this purpose, let N (q)(A) be given by
(2.18)

BqΦq,µA
∗
qµ

(0)
q AqBq+BqAq−1Bq−1+Bq−1µ

(1)
q A∗

q−1Bq−Bq−1µ
(1)
q A∗

q−1Aq−1Bq−1.

Theorem 2.8. Let complex (1.2) be elliptic, (1.9) be true, N ≥ 2 and 1 ≤ q ≤

N − 1. Let also mj = m and µ
(i)
j = 0 for all i = 1, 2 and all 0 ≤ j ≤ q − 1,

mq + m̃q = m, Assumption 1.2 be fulfilled for j = q and

(2.19) A∗
q−2µ

(1)
q A∗

q−1 = 0.

If Φj are right fundamental solutions for ∆j , 0 ≤ j ≤ q− 1, and Φq,µ is a bilateral
fundamental solution to ∆q,µ, then the operator

Fq,µ(A) =
(

N (q)(A) +Mq−1(A)
)(

BqΦq,µBq +

q−1
∑

j=0

BjΦjBj

)

is a right fundamental solution to Sq,1(A,∆µ).

Proof. Indeed, as Ai+1 ◦Ai ≡ 0 then we have

(2.20) A∗
i ◦A

∗
i+1 ≡ 0, ∆i+1Ai = Ai∆i = AiA

∗
iAi, A

∗
i∆i+1 = ∆iA

∗
i = A∗

iAiA
∗
i .

Next, using (2.20) we conclude that

∆j,µA
∗
jµ

(0)
j Aj = A∗

jµ
(0)
j AjA

∗
jµ

(0)
j Aj = A∗

jµ
(0)
j Aj∆j,µ

and, if Φj,µ is a bilateral fundamental solution for ∆j,µ, then

(2.21) A∗
jµ

(0)
j AjΦj,µ = Φj,µA

∗
jµ

(0)
j Aj .

Hence calculating as in the proof of Proposition 2.3 (see formulae (2.15), (2.16))
and applying (2.19), we obtain

(2.22) Sq,1(A,∆µ)
(

N (q)(A) +Mq−1(A)
)

= Bq∆q,µBq +

q−1
∑

j=0

Bj∆jBj ,

i.e. Fq,µ(A) is a right fundamental solution for Sq,1(A,∆µ). �

Note that for the de Rham complex the pseudo-differential operator

F1,µ(d) =

(

µ−1ϕ rot rotϕ −ϕ∇
divϕ −µ I

)

is closely related to the so-called steady Ozeen tensor for Stokes’ system Sq,1(d,∆µ)
in 3D-Hydrodynamics, see [24], where ϕ is the standard fundamental solution of

the Laplace operator in R3, µ
(0)
1 = µIn, µ

(1)
1 = µ, µ > 0.

2.4. Parametrices for evolutionary operators. Under very mild assumptions
on the coefficients of the operator Lj,µ, 0 ≤ j ≤ N , it admits the (unique) funda-
mental solution Ψj,µ on X× [0, T ] solving the Cauchy problem for Lj,µ, with initial
data on the plane t = 0, see, for instance, [11], [13, Ch 1, §7 and Ch. 9].

Again, let us write down a fundamental solution to Stokes’ operator Sq,1(A,bLµ)
in a particular case. With this purpose let N (q)(A, t) be given by

BqΨq,µA
∗
qµ

(0)
q AqBq+BqAq−1Bq−1+Bq−1µ

(1)
q A∗

q−1Bq−Bq−1(µ
(1)
q A∗

q−1Aq−1+∂t)Bq−1.
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Theorem 2.9. Let complex (1.2) be elliptic, (1.9) be true, N ≥ 2 and 1 ≤ q ≤
N − 1, and the coefficients of the operators Aj do not depend on t. Let also b =

(0, 0, . . . , 0, 1), mj = m and µ
(i)
j = 0 for all i = 1, 2 for all 0 ≤ j ≤ q − 1,

mq + m̃q = m, Assumption 1.2 be fulfilled for j = q and (2.19) hold true. If Φj

are right fundamental solutions for ∆j, 0 ≤ j ≤ q − 1, and Φq,µ, Ψq,µ are bilateral
fundamental solution to ∆q,µ, (∂t +∆q,µ), respectively, then the operator

Fq,µ(A, t) =
(

N (q)(A, t) +Mq−1(A)
)(

BqΦq,µBq +

q−1
∑

j=0

BjΦjBj

)

is a right fundamental solution to Sq,1(A,b(∂t +∆µ)).

Proof. Indeed, similarly to (2.21), if the coefficients of the operators Aj do not
depend on t and Ψj,µ is a bilateral fundamental solution to (∂t +∆j,µ), then

(2.23) A∗
jµ

(0)
j AjΨj,µ = Ψj,µA

∗
jµ

(0)
j Aj .

Hence calculating as in the proof of Theorem 2.8 (see formulae (2.18), (2.22)) and
applying (2.19) and (2.23), we obtain

Sq,1(A, ∂t +∆µ)
(

N (q)(A, t) +Mq−1(A)
)

= Bq∆q,µBq +

q−1
∑

j=0

Bj∆jBj ,

i.e. Fq,µ(A, t) is a right fundamental solution for Sq,1(A, ∂t +∆µ). �

2.5. Natural perturbations. In order to define suitable perturbations of Stokes’
type systems S̃q(A) (and Ŝq(A)) related to the Navier-Stokes equations, [27] pro-
posed to introduce two bilinear mappings Qq,j , satisfying

(2.24) Qq,1,x : Eq+1,x ⊗ Eq,x → Eq,x, Qq,2,x : Eq,x ⊗ Eq,x → Eq−1,x,

at each point x ∈ X . Then one may set for a sufficiently differentiable section v of
the vector bundle Eq:

(2.25) Nq(v)(x) = Qq,1,x((Aqv)(x), v(x)) +Aq−1Qq,2,x(v(x), v(x)).

For the de Rham complex at the degree q = 1, corresponding to the classical Navier-
Stokes equations, this leads to the so-called Lamb form (see [15, §15] for n = 3) of
the related non-linear part:

N1(v) = ⋆(⋆d1v ∧ v) + d0 ⋆ (v ∧ ⋆v)/2 = ((curl~v)× ~v + (1/2)∇|~v|2 for n = 3),

where ⋆ : Λq → Λn−q is the Hodge ⋆-operator, ∧ is the exterior product of the

differential forms (and ~c× ~d stands for the vector product of 3-vectors ~c and ~d).
Apparently Stokes’ type systems Sq,a(A,Dµ) have a more complicated structure.

In the simplest case where all the ordersmj are the same for all 0 ≤ j ≤ q we suggest
to introduce multi-linear differential operators of order (m− 1):

Qq,1 : (⊕q+1
i=1Ei)⊗ (⊕q

i=0Ei)→ ⊕
q
i=0Ei, Qq,2 : (⊕q

i=0Ei)⊗ (⊕q
i=0Ei)→ ⊕

q−1
i=0Ei,

and to set the following natural non-linear perturbations

Nq(Uq) = Qq,1(A
·Uq, Uq) +A·Qq,2(Uq, Uq),

of the differential operator
∑q

j=0 BjDj,µBj acting on sections Uq = (u0, . . . , uq) of

the bundle Eq = ⊕
q
j=0Ej , 0 ≤ q ≤ N .
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3. Maxwell’s and Stokes’ type operators for the de Rham complex

3.1. The de Rham complex. Let T ∗
C
X be the complexified tangential bundle of

X and let Λq = ΛqT ∗
C
X be the bundle of complex valued exterior differential forms

of degree q, 0 ≤ q ≤ n, over X . In each coordinate neighbourhood O on X any
differential form u admits local representation

u|O(x) =
∑

#I=q

uI(x)dxI

where, for #I = q, we consider I = (i1, . . . iq) as a multi-index with 1 ≤ i1 < · · · <
iq ≤ n, dxI = dxi1 ∧ · · · ∧ dxn, {dxj}nj=1 is a basis in T ∗

C
X and ∧ is the exterior

product of differentials satisfying

(3.1) dxi ∧ dxj = −dxj ∧ dxi.

Then the exterior differential operator dq is defined by local representations

dqu|O(x) =

n
∑

i=1

∑

#I=q

∂iuI(x)dxi ∧ dxI .

Using (3.1) we easily conclude that

(3.2) dq+1 ◦ dq = 0

and then we obtain the de Rham complex

(3.3) 0→ C∞(X,Λ0)
d0→ C∞(X,Λ1)

d1→ C∞(X,Λ2)→ . . .
dn−1
→ C∞(X,Λn)→ 0,

of exterior differentials on the differential forms, see, for instance, [4, Ch 3, §2.5], [5],
[34, §1.2.6]. Of course, for X = Rn the bundle Λq may be identified with Rn ×Ckq

with kq =
(

n
q

)

and its sections can be treated as vector-columns of functions with

kq components. Then the de Rham complex is the Hilbert compatibility complex
degenerated by the gradient operator ∇ = d0. In this case, in addition to (3.2), we
also have

∆q = d∗qdq + dq−1d
∗
q−1 = −∆Ikq

, 0 ≤ q ≤ n,

where ∆ is the usual Laplace operator in Rn.
For three dimensional space, more familiar within classical Physics, we may

interprete the de Rham complex as follows:

(3.4) d0 = ∇, d1 = curl =





0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0



 , d2 = div =
(

∂1, ∂2, ∂3

)

.

However we still may define the compatibility de Rham complex in R3 with the use
of the classical algebraic constructions:

d1u = ∇× ~u, d2v = ∇ · ~v

for vector fields ~u, ~v (here ~c · ~d means the inner product of vectors ~c and ~d). In the
higher dimensions the standard algebraic constructions do not work in general.

As N = n, Stokes’s operator Sq(d,∆) over the field R has dimension rq =
∑q

j=0

( n
j

)

; in particular, r0 = 1, r1 = 1 + n, rn−1 = 2n − 1, rn = 2n. Of course,

the dimension rq,C over the field C equals to 2rq; in particular, rn,C = 2n+1.
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3.2. Maxwell’s and Stokes’ type systems in R3. For the de Rham complex
over R3 we have: r0 = 1, r1 = 4, r2 = 7, r3 = 8; in particular, rn,C = 16. Thus,
our method echoes with the sedeonic approach by V.L. Mironov and S.V. Mironov,
see [20], [21], [22], [23], for compact symmetric formulations of the Laws of classical
Physics in R

3.
The typical form of Stokes’ system S0(d,Lµ) is the following:

S0(d,Lµ) = ∂t +D0,µ = ∂t − divµ
(0)
0 ∇+ ~a0 · ∇+M0,

with a self-adjoint functional matrix µ
(0)
0 , a scalar function M0 and a functional

vector ~a0, see (1.11), (1.12), that is a standard second order equation of the Math-
ematical Physics.

Next, according to (1.11), (1.12), we have

D1,µ = curlµ
(0)
1 curl−∇µ

(1)
1 div + C1 curl + ~a1 div +M1

with self-adjoint functional (3× 3) matrices µ
(0)
1 , M1, a functional (3× 3)- matrix

C1, a functional 3-vector ~a and a scalar function µ
(1)
1 . Then the typical steady

Stokes’ type system S1(d,Dµ) is given by

(3.5) S1,1(d,Dµ) =

(

D1,µ ∇
−div D0,µ

)

.

Similarly, at the second step of the de Rham complex over R3 we have:

D2,µ = −∇µ
(0)
2 div + curlµ

(1)
2 curl + C2 curl + ~a2 div +M2

with self-adjoint functional (3 × 3) matrices µ
(1)
2 , M2, a functional (3 × 3)-matrix

C2, a functional 3-vector ~a2 and a scalar function µ
(0)
2 . Consequently,

S2,1(d,Dµ) =





D2,µ curl 0
curl D1,µ ∇
0 −div D0,µ



 .

Finally, at the third step we have

D3,µ = −divµ
(1)
3 ∇+ ~a3 · ∇+M3,

with a self-adjoint functional matrix µ
(1)
3 , a scalar function M3 and a functional

vector ~a3. Then

(3.6) S3(d,Dµ) =









D3,µ div 0 0
−∇ D2,µ curl 0
0 curl D1,µ ∇
0 0 −div D0,µ









.

Of course, we may double the dimension of the related matrices Sq(d,Dµ) and
change signs of entries outside the diagonal with the use of the imaginary unit.

Let us interprete these Stokes’ type operators within classical models of the
Mathematical Physics. We consider three model examples only, because much
more equations, that fit into our scheme, could be found in [20], [21], [22], [23].

Example 3.1. We begin with the equations of electromagnetic field. Let c stand
for the speed of light. Then the Maxwell’s type operator ιM3(A,b∂t) gives us the



STOKES TYPE OPERATORS 19

classical Maxwell equations for electromagnetic field in a vacuum:

(3.7) ι









c−1∂t div 0 0
∇ c−1∂t curl 0
0 −curl c−1∂t ∇
0 0 div c−1∂t

















0
~H
~E
0









= ι









0
0

−4πc−1~je
4πρe









,

where ~E, ~H represent the electric and magnetic field strengths, ρe is the volume
density of electric charge and ~je is the volume density of electric current (here the
number ι is introduced for the related matrices to be self-adjoint).

Taking into account the magnetic charges and currents in the Dirac monopoles
[7], [8] and Schwinger dyons [30] models, the equation (3.7) can be rewritten in
more symmetric form

(3.8) ι









c−1∂t div 0 0
∇ c−1∂t curl 0
0 −curl c−1∂t ∇
0 0 div c−1∂t

















0
~H
~E
0









= ι









4πρm
−4πc−1~jm
−4πc−1~je

4πρe









,

where ρm is the volume density of magnetic charge and ~jm is the volume density
of magnetic current. Significantly, Lemma 2.5 immediately gives us the so-called
wave equations for the field’s strength related to model (3.8). Indeed, if we denote
the d’Alembert operator as

D̂ =

(

1

c2

∂2

∂t2
−∆

)

,

then we get

(3.9)









D̂ 0 0 0

0 D̂ 0 0

0 0 D̂ 0

0 0 0 D̂

















0
~H
~E
0









=









f1
f2
f3
f4









,

where









f1
f2
f3
f4









=









c−1∂t −div 0 0
−∇ c−1∂t −curl 0
0 curl c−1∂t −∇
0 0 −div c−1∂t

















4πρm
−4πc−1~jm
−4πc−1~je

4πρe









.

The matrix equation (3.9) is equivalent to the following system


































(

1

c2

∂2

∂t2
−∆

)

~E = −4π∇ρe −
4π

c2

∂~je
∂t
−

4π

c

[

∇×~jm

]

,

(

1

c2

∂2

∂t2
−∆

)

~H = −4π∇ρm −
4π

c2

∂~jm
∂t

+
4π

c

[

∇×~je

]

,

∂ρm
∂t

+
(

∇ ·~jm
)

= 0,
∂ρe
∂t

+
(

∇ ·~je
)

= 0,

where the last two relations are the laws of conservation of electric and magnetic
charges.
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Example 3.2. Let us discuss the matrix representation of the hydrodynamic equa-
tions. As we noted at the beginning of §2, the Euler and the Navier-Stokes’ equa-
tions for incompressible fluid fit perfectly to this scheme with Maxwell’s type oper-
ator operator M1(d, ∂t) and Stokes’ type operator S1(d,∆, ∂t) as principal linear
parts, respectively, for instance, [15],

{

∂t~v + (~v · ∇)~v + ρ−1∇p = ~f,

div~v = 0,

{

(∂t − µ∆)~v + (~v · ∇)~v + ρ−1∇p = ~f,

div~v = 0,

where ~v is a local flow velocity, p is a pressure, ρ is a fluid density, µ is viscosity

and ~f is the vector of outer forces. Next, as is known [15], the vortex-less free fluid
is described by the following system of equations

(3.10)











∂t~v + (~v · ∇)~v + ρ−1∇p = 0,

∂tρ+ (~v · ∇)ρ+ ρ div~v = 0,

curl~v = 0,

with the same entries as above.
Let us assume that the flow is isentropic (i.e., the entropy s is a constant). Using

the thermodynamic relation for enthalpy h per unit mass

d h = Tds+ ρ−1dp

we can introduce new function u according to the following relations

du =
1

cs
dh =

1

csρ
dp =

cs

ρ
dρ,

where cs is the speed of sound (c2s = (∂p/∂ρ)s = const). Then taking into account
that the total time derivative is given as

dt = ∂t + (~v · ∇),

we rewrite the system (3.10) in the following symmetric form










c−1
s dt~v +∇u = 0,

c−1
s dtu+ div~v = 0,

curl ~v = 0,

or in the following matrix form

(3.11) ι





c−1
s dt div 0
∇ c−1

s dt curl
0 −curl c−1

s dt









u
~v
0



 =





0
0
0



 ,

where the principal linear part matches with the introduced above Maxwell’s type
operator ιM2(d, c

−1
s ∂t).

In order to interprete Maxwell’s type operator ιM3(d, c
−1
s ∂t), we rewrite (3.11):

(3.12) ι









c−1
s dt div 0 0
∇ c−1

s dt curl 0
0 −curl c−1

s dt ∇
0 0 div c−1

s dt

















u
~v
0
0









=









0
0
0
0









.

Next, to consider the vortex flow we introduce two new functions ξ(~r, t) and ~w(~r, t)
which describe the field of vortex tubes. The value ~w is proportional to the angle
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vector of tube rotation, while ξ characterizes the twisting of vortex tubes [22]. Then
the equation (3.12) for vortex flow is written as

(3.13)









c−1
s dt div 0 0
∇ c−1

s dt curl 0
0 −curl c−1

s dt ∇
0 0 div c−1

s dt

















u
~v
~w
ξ









= 0.

Finally, taking into the account the dissipation we obtain the related equations of
viscous vortex flow, including the Stokes’ type operator ιS3,1(d, c

−1
s ∂t + ∆µ) with

µ
(0)
0 = µ, µ

(0)
1 = µ

(1)
1 = µI3, µ

(1)
2 = µ as the principal linear part:

ι









c−1
s (dt − µ∆) div 0 0

∇ c−1
s (dt − µ∆) curl 0

0 −curl c−1
s (dt − µ∆) ∇

0 0 div c−1
s (dt − µ∆)

















u
~v
~w
ξ









= 0,

where the parameter µ represents kinematic viscosity. This matrix equation is
equivalent to the following system, see [22]:























c−1
s (∂t + (~v · ∇)− µ∆)~v + curl ~w +∇u = 0,

c−1
s (∂t + (~v · ∇)− µ∆)u+ div ~v = 0,

c−1
s (∂t + (~v · ∇)− µ∆) ~w − curl ~v +∇ξ = 0,

c−1
s (∂t + (~v · ∇)− µ∆) ξ + div ~w = 0.

Example 3.3. Consider the quadrupling of the imaginary de Rham complex over
R3: A0 = ι I4 ⊗∇, A1 = ι I4 ⊗ curl, A2 = ι I4 ⊗ div. Then, for a real number M ,
we have A∗

0 = ι I4 ⊗ div, A∗
1 = −ι I4 ⊗ curl, A∗

2 = ι I4 ⊗∇, (ιM)∗ = −ιM .

Set µ
(0)
0 = 0, µ

(0)
1 = 0, µ

(1)
1 = 0,

D0,µ = ι









0 0 0 −M
0 0 M 0
0 −M 0 0
M 0 0 0









, D1,µ = ι









0 −curl 0 −M
curl 0 M 0
0 −M 0 curl
M 0 −curl 0









;

in particular, the operators D0,µ, D1,µ are formally self-adjoint. Then Stokes’
operator S0,ιc−1(A,Dµ, ∂t) coincides with ιc−1(∂t +D0,µ).

Next, Stokes’ system S1,ιc−1(A,Lµ) matches with the operator related to equa-
tions for the vector and scalar field’s strengths in sedeonic field theory for the case
of fields with non-zero mass of quantum m0 [20],[23]:

(

ιc−1∂t +D1,µ ι I4 ⊗∇
ι I4 ⊗ div ιc−1∂t +D0,µ

)

.
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This leads us to the following matrix equation



























∂̂t 0 0 −M div 0 0 0

0 ∂̂t M 0 0 div 0 0

0 −M ∂̂t 0 0 0 div 0

M 0 0 ∂̂t 0 0 0 div

∇ 0 0 0 ∂̂t −curl 0 M

0 ∇ 0 0 curl ∂̂t −M 0

0 0 ∇ 0 0 M ∂̂t curl

0 0 0 ∇ −M 0 −curl ∂̂t





















































g1
g2
g3
g4
~G1

~G2

~G3

~G4



























=



























q1
q2
q3
q4
~J1
~J2
~J3
~J4



























,

which is equivalent to the following system (see [20]):



























































































c−1∂tg1 + div ~G1 −Mg4 = 4πρ1,

c−1∂tg2 + div ~G2 +Mg3 = 4πρ2,

c−1∂tg3 + div ~G3 −Mg2 = 4πρ3,

c−1∂tg4 + div ~G4 +Mg1 = 4πρ4,

c−1∂t ~G1 +∇g1 − curl ~G2 +M ~G4 = −
4π

c
~j1,

c−1∂t ~G2 +∇g2 + curl ~G1 −M ~G3 = −
4π

c
~j2,

c−1∂t ~G3 +∇g3 + curl ~G4 +M ~G2 = −
4π

c
~j3,

c−1∂t ~G4 +∇g4 − curl ~G3 −M ~G1 = −
4π

c
~j4.

Here gi and ~Gi are scalar and vector field strengths; qi = 4πρi (where ρi are

volume densities of charges); ~Ji = −
4π
c

~ji (where ~ji are volume densities of currents);

(i ∈ {1, 2, 3, 4}); ∂̂t = c−1∂t; M = m0c/~, see [23].
The approach predicts two more Stokes’ operators related to this mathematical

model. One may conjecture that µ
(i)
2 = 0, µ

(1)
3 = 0 and D2,µ, D3,µ are given by

D2,µ=









0 γ2curl 0 α2M
γ2curl 0 β2M 0

0 β2M 0 δ2curl

α2M 0 δ2curl 0









, D3,µ=









0 0 0 α3M
0 0 β3M 0

0 β3M 0 0
α3M 0 0 0









,

respectively, with complex numbers αj , βj , γj , δj (highly likely, ±ι) and then

S2,c−1ι(A, ∂t +Dµ) =





ιc−1∂t +D2,µ ι I4 ⊗ curl 0
−ι I4 ⊗ curl ι∂t +D1,µ ι I4 ⊗∇

0 ι I4 ⊗ div ι∂t +D0,µ



 ,

S3,ι(A,Lµ)= ι









∂t +D3,µ I4 ⊗ div 0 0
I4 ⊗∇ c−1∂t +D2,µ I4 ⊗ curl 0

0 −I4 ⊗ curl c−1∂t +D1,µ I4 ⊗∇
0 0 I4 ⊗ div c−1∂t +D0,µ









.
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4. Some typical elliptic differential complexes

Consider some other typical examples of elliptic complexes.

Example 4.1. A large part of complexes represents the so-called Koszul complexes.
Namely, let A0 be a column of scalar differential operators (Q1, . . . QN)T over an
open set X ⊂ Rn, 1 ≤ N ≤ n, satisfying the following commutation assumptions:

(4.1) QiQj = QjQi for all 1 ≤ i < j ≤ N.

Setting Eq = X × Ckq with kq =
( N

q

)

we may define differential operators

Aq =
∑

#I=q

Qi(x)dyi ∧ dyI , x ∈ X ⊂ R
n,

where y = (y1, . . . , yN ) are coordinates in RN . Again Aq+1 ◦ Aq = 0 and hence
we obtain a differential complex {Aq, Eq}Nq=0, see [34, §1.2.8], that is usually called
Koszul complex associated with the set (Q1, . . .QN ).

According to [34, Proposition 1.2.51] this complex is elliptic if and only if the

principal symbol of the operator A0 =
∑N

i=1 Qi(x)dyi is injective; of course we may
interpret Aj as matrix differential operators:

A0 =





Q1

. . .
QN



 , . . . , AN−1 =
(

Q1, . . . , QN

)

In particular, for operators with constant coefficients we have Q∗
jQi = QiQ

∗
j and

∆q =
(

N
∑

i=1

Q∗
iQi

)

Ikq
.

If the operators Qi has the same order then the Laplacians ∆q are strongly elliptic.
Unfortunately the Koszul complexes are not always compatibility complexes.

For operators with constant coefficients one may use [34, Proposition 1.2.52] giving
a simple sufficient condition providing the compatibility property: the dimension
of the algebraic variety

N (A0) = {z ∈ C
n : Q1(z) = · · · = QN(z) = 0}

is no more than (n −N). Again, for N = 3 with the use of the classical algebraic
constructions we obtain:

A0h = (Q1h,Q2h,Q3h)
T , A1~u = A0 × ~u, A2~v = A0 · ~v,

for (vector-)functions h(x), ~u(x), ~v(x) of n variables x = (x1, . . . xn) with n ≥ 3.
Of course, the initial operator A0 may be non-homogeneous.

Example 4.2. Let X = R
n and p ∈ N, p ≥ 2. For a q-differential form u we set

A(p)
q u(x) =

n
∑

i=1

∑

#I=q

∂p
i uI(x)dxi ∧ dxI .

Using (3.1) we easily conclude that

(4.2) A
(p)
q+1 ◦A

(p)
q = 0
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and then we obtain a Koszul complex {A
(p)
q ,Λq}. In this case N = n and the

algebraic variety N (A
(p)
0 ) is trivial, i.e. {A

(p)
q ,Λq} is a compatibility complex for

the operator A
(p)
0 =





∂p
1

. . .
∂p
n



, see Example 4.1 above. Of course, in addition to

(4.2), we also have ∆
(p)
q = (A

(p)
q )∗A

(p)
q + A

(p)
q−1(A

(p)
q−1)

∗ = (−1)p
(

∑n
j=1 ∂

2p
j

)

Ikq
,

0 ≤ q ≤ n. Again we still may define this compatibility complex in R3 with the use

of the classical algebraic constructions: A
(p)
1 u = A

(p)
0 × u, A

(p)
2 v = A

(p)
0 · v.

Example 4.3. Consider the differential operator

A =









0 −∂3
∂3 0
−∂2 ∂1
−∂1 −∂2









in R3, that is closely related to the de Rham complex on the plane Ox1x2:

d0 = ∇2 =

(

∂1
∂2

)

, d1 = curl2 = (−∂2, ∂1), d
∗
0 = −div2 = −(∂1, ∂2).

Alledgedly, the related system of equations

(4.3)















∂3v1 = 0,
∂3v2 = 0,
curl2~v = −∂2v1 + ∂1v2 = f1,
−div2~v = −∂1v1 − ∂2v2 = f2,

was pointed out by L. Euler for the description of the velocity ~v = (v1, v2) of a
plane-parallel flow on layers {x3 = const} with given ’plane rotation’ f1 and ’plane
source’ f2 in the case where the flow does not depend on the layer. Taking a
complex valued functions ṽ(x1, x2) = −ι(v1 − ιv2), f̃(x1, x2) = f1 − ιf2 one easily
reduces the last two equations in (4.3) to the non- homogeneous Cauchy-Riemann

system ∂ṽ = f̃ on the plane Ox1x2.
Clearly, for the differential operator

B =

(

∂2 −∂1 0 −∂3
∂1 ∂2 ∂3 0

)

we have B ◦A ≡ 0. Passing to the polynomial matrices, we see that if a differential
operator B̃ satisfies B̃ ◦A ≡ 0 then for B̃(ζ) = (b1(ζ), b2(ζ), b3(ζ), b4(ζ)) we have

(4.4) ζ3b2 − ζ2b3 − ζ1b4 = 0, −ζ3b1 + ζ1b3 − ζ2b4 = 0,

and hence
|ζ|2b3 = ζ1ζ3b1 + ζ2ζ3b2, |ζ|

2b4 = −ζ2ζ3b1 + ζ1ζ3b2.

In particular, this means that there are polynomials c1(ζ), c2(ζ) such that

b3(ζ) = ζ3c1(ζ), b4(ζ) = ζ3c2(ζ)

and then, taking into account (4.4),

B̃(ζ) = (ζ1c1 − ζ2c2, ζ1c2 + ζ1c2, ζ3c1, ζ3c2) =
(

− c2, c1
)

B(ζ).

Thus, {A0 = A,A1 = B} is a compatibility complex. Moreover, as the related
Laplacians have the following form: ∆0 = −∆I2, ∆1 = −∆I4, ∆2 = −∆I2, where
∆ is the usual Laplace operator in R

3, we conclude that this complex is elliptic.
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For system (4.3) the compatibility conditions induced by the operator B just
mean that the data f1, f2 do not depend on the variable x3:

∂3f1 = ∂3f2 = 0.

Situation becomes more complicated if we consider the system

(4.5)















∂3v1 = g1(x1, x2, x3),
∂3v2 = g2(x1, x2, x3),
curl2~v = ∂1v2 − ∂2v1 = f1(x1, x2, x3),
−div2~v = −∂1v1 − ∂2v2 = f2(x1, x2, x3),

i.e. we are looking for ’planar’ velocity ~v = (v1, v2) of the flow on each layer
{x3 = const} with given ’plane rotation’ f1 and ’plane source’ f2 in the case where
the flow depends on the layers. Then the compatibility conditions are the following:

{

curl2 ~g = ∂1g2 − ∂2g1 = ∂3f1(x1, x2, x3),
−div2 ~g = −∂1g1 − ∂2g2 = ∂3f2(x1, x2, x3).

The related linear Maxwell’ type operatorsMj(A, ∂t) are the following:

M1(A, ∂t) =

















∂t 0 0 0 0 −∂3
0 ∂t 0 0 ∂3 0
0 0 ∂t 0 −∂2 ∂1
0 0 0 ∂t −∂1 −∂2
0 −∂3 ∂2 ∂1 ∂t 0
∂3 0 −∂1 ∂2 0 ∂t

















,

M2(A, ∂t) =

























∂t 0 ∂2 −∂1 0 −∂3 0 0
0 ∂t ∂1 ∂2 ∂3 0 0 0
−∂2 −∂1 ∂t 0 0 0 0 −∂3
∂1 −∂2 0 ∂t 0 0 ∂3 0
0 −∂3 0 0 ∂t 0 −∂2 ∂1
∂3 0 0 0 0 ∂t −∂1 −∂2
0 0 0 −∂3 ∂2 ∂1 ∂t 0
0 0 ∂3 0 −∂1 ∂2 0 ∂t

























.

Now, taking into the account the following relation between the two-dimensional
and the three-dimensional rotation operators, curl2(v1, v2) = curl3(v1, v2, 0), we see
that the related Maxwells’ system M1(A, ∂t) is reduced to system M2(d, ∂t) for
the de Rham complex with ~v = (v1, v2, v3) truncated to (v1, v2, 0) that corresponds
to one line missing in (3.11):

−∂2w1 + ∂1w2 + ∂3u+ dtv3 = 0.

The similar fact is valid for Stokes’ operators S1(A,Dµ, ∂t) and S2(d,Dµ, ∂t) with
the missing line in the corresponding non-linear perturbation of S2(d,Dµ, ∂t):

−∂2w1 + ∂1w2 + ∂3u+ (dt − µ∆)v3 = 0.

Significantly, M2(A, ∂t) coincides with M3(d, ∂t) up to the order of lines and
columns, and similarly for S2(A,Dµ, ∂t) and S3(d,Dµ, ∂t), i.e. the missing compo-
nent v3 and the missing lines are restored automatically on the last step.
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Example 4.4. Let X = R2 and

A =





∂1 0
∂2 ∂1
0 ∂2



 .

Then its principal symbol is injective because

A∗A = −

(

∆ ∂1∂2
∂1∂2 ∆

)

, det(σ(A∗A)(ζ)) = |ζ|4 − ζ21 ζ
2
2 > 0 for all ζ ∈ R

2 \ {0}.

Clearly, for the polynomial vector B(ζ) = (ζ22 ,−ζ1ζ2, ζ
2
1 ) we have B(ζ)A(ζ) ≡ 0. If

a vector B̃(ζ) = (b1(ζ), b2(ζ), b3(ζ)) satisfies B̃(ζ)A(ζ) ≡ 0 then

b1(ζ)ζ1 + b2(ζ)ζ2 = b2(ζ)ζ1 + b3(ζ)ζ2 = 0.

Hence b1ζ
2
1 = b3ζ

2
2 , and for the polynomial p(ζ) = b3/ζ

2
1 we have B̃(ζ) = p(ζ)B(ζ),

i.e. the differential operator B = (∂2
2 ,−∂1∂2, ∂

2
1) is a compatibility operator for A.

As the mapping B(ζ) : P3 → P is surjective for ζ ∈ Rn \ {0}, we see that any
polynomial C(ζ), satisfying C(ζ)B(ζ) = 0, is identically zero. Thus operators A
and B form a compatibility differential complex.

Moreover, if w = (w1, w2, w3)
T is a complex vector, satisfying

B(ζ)w = ζ22w1 − ζ1ζ2w2 + w3ζ
2
1 = 0

then there is a complex vector v = (v1, v2)
T such that w = A(ζ)v if ζ ∈ R2 \ {0}:

w1 = 0, v1 =
w2

ζ2
, v2 =

w3

ζ2
if ζ1 = 0, ζ2 6= 0,

w3 = 0, v1 =
w1

ζ1
, v2 =

w2

ζ1
if ζ1 6= 0, ζ2 = 0,

w2 =
ζ22w1 + w3ζ

2
1

ζ1ζ2
, v1 =

w1

ζ1
, v2 =

w3

ζ2
if ζ1 6= 0, ζ2 6= 0.

Thus, the range of the mapping A(ζ) : C2 → C3 coincides with the kernel of the
mapping B(ζ) : C3 → C1 if ζ ∈ R2 \ {0}. As the mapping A(ζ) is injective and the
mapping B(ζ) is surjective, we conclude that the related complex is elliptic.

However, the operators in the complex have different orders and, unfortunately,
we can not decrease the order of B. Of course, ∆2 = ∆2−∂2

1∂
2
2 is a strongly elliptic

operator, but taking µ
(0)
0 = −∆I2, µ

(1)
1 = −∆I3 we obtain

∆0,µ0
=

(

∆2 ∂1∆∂2
∂1∆∂2 ∆2

)

,∆1,µ1
=





∆2 − ∂2
1∂

2
2 ∂3

1∂2 ∂2
1∂

2
2

∂3
1∂2 ∆2 + ∂2

1∂
2
2 ∂1∂

3
2

∂2
1∂

2
2 ∂1∂

3
2 ∆2 − ∂2

1∂
2
2



 ,

strongly elliptic non-negative self-adjoint operators.

Example 4.5. Consider the compatibility complex for the multidimensional Cau-
chy-Riemann operator ∂ in Cn ∼= R2n, n > 1, i.e. for n-vector column with the
components ∂

∂zj
, 1 ≤ j ≤ n, where, as usual, zj = x2j−1 + ιx2j , zj = x2j−1 − ιx2j ,

∂

∂zj
=

1

2

(

∂

∂x2j−1
− ι

∂

∂x2j

)

,
∂

∂zj
=

1

2

(

∂

∂x2j−1
+ ι

∂

∂x2j

)

, 1 ≤ j ≤ n.

Then the Dolbeault complex is the elliptic compatibility Koszul complex related to

the column ∂, see [34, §1.2.7] or Example 4.1 above. As ∂
∗
= −

(

∂
∂z1

, . . . , ∂
∂zn

)

,
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then we easily calculate the related Laplacians ∆q = (−1/4)∆Ikq
, 0 ≤ q ≤ n, where

∆ is the usual Laplace operator in R
2n and kq =

(

n
q

)

.

The simplest related Stokes’ type operators arising in C2 ∼= R4 with the coordi-
nates (z1, z2) = (x1 + ιx2, x3 + ιx4) ∼= (x1, y1, x2, y2) can be written as follows:

S1(∂, ∂t +∆µ) =













∂t − µ∆ 0 0 0 curlx1,x2

0 ∂t − µ∆ 0 0 divx1,x2

0 0 ∂t − µ∆ 0 curlx3,x4

0 0 0 ∂t − µ∆ divx3,x4

curl∗x1,x2
−∇x1,x2 curl∗x3,x4

−∇x3,x4 (∂t − µ∆) I2













,

where µ is a positive real number and

curlx2j−1,x2j = (−∂2j , ∂2j−1), divx2j−1,x2j = (∂2j−1, ∂2j).
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