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The study of decoherence plays a key role in our understanding of the transition from the
quantum to the classical world. Typically, one considers a system coupled to an external
bath which forms a model for an open quantum system. While most of the studies pertain
to a position coupling between the system and the environment, some involve a momentum
coupling, giving rise to an anomalous diffusive model. Here we have gone beyond existing
studies and analysed the quantum Langevin dynamics of a harmonically oscillating charged
Brownian particle in the presence of a magnetic field and coupled to an Ohmic heat bath
via both position and momentum couplings. The presence of both position and momentum
couplings leads to a stronger interaction with the environment, resulting in a faster loss
of coherence compared to a situation where only position coupling is present. The rate of
decoherence can be tuned by controlling the relative strengths of the position and momentum
coupling parameters. In addition, the magnetic field results in the slowing down of the loss
of information from the system, irrespective of the nature of coupling between the system
and the bath. Our results can be experimentally verified by designing a suitable ion trap
setup.

1. INTRODUCTION

Decoherence plays a crucial role in understanding the transition from the quantum to the clas-
sical domain [1]. An isolated quantum system can exist in a coherent superposition of a number of
possible states. A coupling between such a quantum system and an environment leads to destruc-
tion of coherence and emergence of classical probabilities where only one of various possible states
can occur. This is the process of environment induced decoherence [2, 3]. The theoretical ideas
related to environment-induced decoherence date back to the sixties [1, 2]. In recent years, it has
turned out to be of great technological relevance as it poses a major obstacle to implementation
of large-scale quantum computing [4, 5]. The process of decoherence has been analysed to study
various aspects of open quantum systems [1]. Many of the studies involve a Brownian particle cou-
pled to an external heat bath [3]. The random motion of a charged particle coupled to a heat bath
has been studied in detail via the Langevin equation which has both deterministic and stochastic
forces and captures the effect of interaction between the system and the environment [6, 7]. In [8],
the two dimensional master equation for a Brownian particle in the presence of a magnetic field
on a non-commutative plane was derived and decoherence was investigated via the rate of linear
entropy in a non-commutative plane. Further, the effect of electric field on the decoherence of a
charged Brownian particle was studied in terms of the non-Markovian master equation determined
by two coupled Green’s functions [8]. Apart from its fundamental relevance to understanding the
issue of quantum to classical transition, decoherence is of great experimental relevance. In recent
years the effect of decoherence has been reported in cavity quantum electrodynamics (QED) [9],
qubit-superconducting systems [10, 11], matter-wave interferometry [12], and ion traps [13, 14]. In
addition, decoherence has been experimentally detected in quantum dots [15], quantum mechanical
resonators [16] and in Bose-Einstein condensates (BEC) [17].
In one of our earlier works [18], we have analyzed decoherence for a charged harmonically oscil-
lating Brownian particle in the presence of a magnetic field and coupled to an external heat bath
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characterised by Ohmic and non-Ohmic spectral densities. In [18] we had considered a coupling
via position coordinates between the system and bath. There have been studies of anomalous
dissipative models, involving a momentum coupling between the system and heat bath [19–23].
The generalized Caldeira Leggett (GCL) Model was used in [21], where all types of position and
momentum couplings were considered to derive the mean squared velocity and the velocity corre-
lation functions corresponding to an anomalous diffusive model. Furthermore, the non-Markovian
master equation was derived and analysed for position-momentum coupling and the enhancement
of dissipation in the presence of momentum coupling was highlighted [23]. In [24] the study of
anomalous dissipation has shown the emergence of a ‘pseudo Langevin’ equation where the damp-
ing constant involves a second derivative of the potential term. For the harmonic potential the
quantum Langevin equation is reduced to the standard form, but the damping coefficient retains
system dependent terms apart from bath dependent terms obtained in the case of normal diffusion
[24]. This type of dissipation can be physically observed when the effect of electromagnetic black
body radiation on Josephson junction is considered [19, 25]. Moreover, the concept of ‘mixed diffu-
sion’ was also put forward by the author in [24], in the context of a liquid-filled cylinder suspended
by a highly non-linear torsion thread, where the diffusion appears to be normal or anomalous
depending on the ‘collision-less’ or ‘hydrodynamic’ limits of the equation of motion respectively.
There have been subsequent studies of anomalous diffusion and the non-Markovian dynamics of a
Brownian particle coupled to a heat bath through position-momentum coupling has been analysed
within the framework of anomalous dissipation [23]. In this paper, we have used a modified form
of the generalized Caldeira Leggett model used in [21], where only the position-position and the
momentum-momentum coupling terms are retained. Applying this anomalous diffusion model, we
have derived the quantum Langevin equation and the noise correlation for a Brownian particle in
the presence of a magnetic field and coupled to an Ohmic heat bath. In addition, we have made
use of the noise correlation and analysed the decoherence for this model, within the framework of
non-Markovian dynamics, which ensures that the environment preserves the memory of its collision
with the Brownian particle. However, we have assumed the validity of the Born approximation
in our analysis [26]. Further, we have extended our analysis to highlight the effect of the mag-
netic field on the system which plays a significant role in shaping the rate of decoherence and the
Quantum-Classical transition in the open quantum system.
The paper is arranged as follows: in Section-II we have formulated the quantum Langevin equa-
tion for a harmonically oscillating charged Brownian particle in the presence of a magnetic field
and coupled to a heat bath through position and momentum coordinate couplings. The quantum
Langevin equation pertains to an Ohmic heat bath with an abrupt cut-off model for the spectral
density of the bath. In Section-III we have derived a non-Markovian master equation for a charged
particle coupled to a heat bath and decoherence for the open quantum system has been studied in
Section-IV. The numerical results and the plots are shown in Section-V and the paper is concluded
with some discussions and concluding remarks in Section-VI.

2. FORMULATION OF THE QUANTUM LANGEVIN EQUATION

The Hamiltonian for a charged Brownian particle harmonically oscillating in the presence of a
magnetic field and coupled to an external heat bath through position and momentum coordinate
couplings is given by:

H =
1

2m

(
p⃗− qA⃗

c

)2

+
1

2
mω2

0r
2 +

N∑
j=1

[
1

2mj

(
p⃗j − gj p⃗+

gjq

c
A⃗
)2

+
1

2
mjω

2
j (q⃗j − dj r⃗)

2

]
(1)
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Here, m, q, r⃗, p⃗ are the mass, charge, position and momentum coordinates of the Brownian particle
respectively and q⃗j , p⃗j , gj and dj represent the position coordinate, momentum coordinate, strength
of the coupling between the momentum and position coordinates of the particle and the momentum
and the position coordinates of the jth bath oscillator respectively. A⃗(r) represents the vector
potential pertaining to the applied magnetic field B⃗ and ω0 is the harmonic oscillator frequency of
the system particle.
As expected, Eq.(1) reduces to the position coupling Hamiltonian in the limit of the coupling
strength gj between the momentum variables going to zero and we recover the momentum coupling
Hamiltonian for dj = 0. The quantum Langevin dynamics of a charged particle in a magnetic field
and coupled to the bath via momentum variables has been reported earlier in the literature [27, 28].
In this work, we go beyond earlier studies and introduce both position and momentum system-bath
couplings, study the Langevin dynamics and then analyze the process of decoherence.
We derive the velocity and the momentum of the Brownian particle by applying the Heisenberg
equations of motion :

v⃗ = ˙⃗r =
1

iℏ
[r⃗, H] =

1

m

(
p⃗− qA⃗

c

)
−

N∑
j=1

gj
mj

(
p⃗j − gj p⃗+

gjq

c
A⃗
)

(2)

and in a similar way the equation for the α-th component of the particle momentum appears as

ṗα =
1

iℏ
[pα, H] =

1

2miℏ

pα,(p⃗− qA⃗

c

)2
−mω2

0rα +
∑
j

mjω
2
jdj (qjα − djrα) (3)

Hence, the equation for the particle momentum in vector form can be written as

˙⃗p =
q

c
(v⃗ × B⃗) +

q

c
(v⃗.∇⃗)A⃗+

iℏq
2mrc

∇⃗(∇⃗.A⃗)−mω2
0 r⃗ +

∑
j

mjω
2
jdj(q⃗j − dj r⃗) (4)

where, α denotes the x and y components of the position and momentum coordinates r⃗ and p⃗.
Then we use the Heisenberg equation for the vector potential A⃗ as a function of the position
coordinate r⃗.

Ȧα =
1

iℏ
[Aα, H] = vβ(∂βAα) +

iℏ
2mr

∂β∂βAα (5)

˙⃗
A(r) = (v⃗.∇⃗)A⃗+

iℏ
2mr

∇2A⃗ (6)

From Eq.(2) we get the time derivative of the particle momentum as:

˙⃗p =mr
¨⃗r +

q

c
˙⃗
A+

N∑
j=1

gjmr

mj

˙⃗pj (7)

where mr is the renormalized mass defined by:

mr = m/

1 + N∑
j=1

g2jm

mj

 (8)

We now eliminate the momentum variables from Eqs.(4) and (7) by replacing
˙⃗
A in Eq.(7) by Eq.(6)

and equating Eqs.(4) and (7):

mr
¨⃗r = −mω2

0 r⃗ +
q

c
(v⃗ × B⃗) +

N∑
j=1

gjmrω
2
j q⃗j +

N∑
j=1

mjω
2
jdj(q⃗j − dj r⃗)−

N∑
j=1

gjmrω
2
jdj r⃗ (9)
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where,

ṗj = −mjω
2
j (q⃗j − dj r⃗) (10)

We then derive the quantum Langevin equation by using the retarded solution of the bath co-
ordinates qj and by plugging it into Eq.(9).
The equations of motion for the bath co-ordinates are given by:

˙⃗qj =
1

iℏ
[q⃗j , H] (11)

=
1

mj

(
p⃗j − gj p⃗+

gjqA⃗

c

)
(12)

˙⃗pj = −mjω
2
j (q⃗j − dj r⃗) (13)

From Eqns. (12) and (13) we derive the time evolution equation for the position coordinate as:

mj
¨⃗qj =

(
˙⃗pj − gj ˙⃗p+

gjq

c
˙⃗
A
)

(14)

Using Eqs.(4), (6) and (13)in Eq.(14), we get:

mj
¨⃗qj = −mjω

2
j (q⃗j − dj r⃗)−

gjq

c

(
v⃗ × B⃗

)
+ gjmω2

0 r⃗ − gj

N∑
l=1

mlω
2
l dl (q⃗l − dlr⃗) (15)

mj
¨⃗qj = −mjω

2
j (q⃗j − dj r⃗)−

gjq

c

(
v⃗ × B⃗

)
+ gjmω2

0 r⃗ +Kj r⃗ + Q⃗j(t) (16)

where, Kj and Q⃗j represent the weighted sum of the spring constants and the weighted sum
of the harmonic forces acting on the bath oscillators individually oscillating with frequency ωj

respectively:

Kj = gj

N∑
l=1

mlω
2
l d

2
l (17)

Q⃗j(t) = −gj

N∑
l=1

dlmlω
2
l q⃗l(t) (18)

The retarded solution for q⃗j is given by:

q⃗j(t) = q⃗hj (t) +
1

mjω2
j

∫ t

0
dt′Q⃗(t′) sin

[
ωj

(
t− t′

)]
+

gjmω2
0 + djmjω

2
j +Kj

mjω2
j

[r⃗(t)− r⃗(0) cos (ωjt)]−

gjmω2
0 + djmjω

2
j +Kj

mjω2
j

∫ t

0
dt′ ˙⃗r(t′) cos

[
ωj

(
t− t′

)]
− gjeωj

cmjω2
j

Γ

∫ t

0
dt′ ˙⃗r(t′) sin

[
ωj

(
t− t′

)]
(19)

where q⃗hj (t) denotes the solution of the homogeneous equation corresponding to the time evolution
equation for the bath oscillators (Eq.(16)).
Inserting Eq.(19) in Eq.(9) we get:

mr
¨⃗r − q

c

(
v⃗ × B⃗

)
+

∫ t

0
dt′ ˙⃗r(t′)µ

(
t− t′

)
+ µd(t)r⃗(0) +m1ω

2
0 r⃗ = F⃗1(t) + F⃗2(t) (20)
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where F⃗1(t) and F⃗2(t) are random forces pertaining to quantum noise. The memory function
µ(t) has both diagonal and off-diagonal terms. F1(t), F2(t) and µ(t) are given by the following
expressions:

F⃗1(t) =

N∑
j=1

(gjmr + djmj)ω
2
j q⃗

h
j (t)Θ(t− t′) (21)

F⃗2(t) =
N∑
j=1

(gjmr + djmj)

mjω2
j

∫ t

0
dt′Q⃗(t′) sin

[
ωj

(
t− t′

)]
Θ(t− t′) (22)

µ(t− t′) = µd(t− t′) + µod(t− t′) (23)

µd(t− t′) =
N∑
j=1

(gjmr + djmj)
gjmω2

0 + djmjω
2
j +Kj

mj
cos
[
ωj(t− t′)

]
Θ(t− t′) (24)

µod(t− t′) =
N∑
j=1

−gjeΓ
(
gjmrω

2
j + djmjω

2
j

)
cmωj

sin
[
ωj(t− t′)

]
Θ(t− t′) (25)

and m1 in Eq.[20] is

m1 =−
N∑
j=1

[(
gjmω2

0 + djmjω
2
j +Kj

mjω2
j

+ dj

)
(gjmr +mjdj)

]
ω2
j

ω2
0

+m (26)

Θ(t− t′) represents the Heaviside Theta function [29] and µd(t− t′) and µod(t− t′) represent the
diagonal and off-diagonal parts of µ respectively [18]. The force F⃗2 retains the oscillatory sine term
and becomes negligible at long times. Hence the system is driven by the random noise originating
primarily from the force F⃗1.

⟨F1α(t)⟩ = 0 (27)

1

2
⟨{F1α(t),F1β(0)}⟩ =

ℏδαβ
2π

∫ ∞

−∞
dωRe[µd(ω)]

ω3(mr +mb)(
mω2

0 +mbω2 +K
) coth( ℏω

2kBT

)
e−iωt (28)

Here we have considered equal coupling strengths for all the bath oscillators that yields dj = d
and gj = g. In Eq.(28), we choose d = g = 1 which confirms the equal weightage to the position
and momentum coordinate couplings in the system. Further we have taken the approximation that
the masses of the bath harmonic oscillators are equal: mj = mb for all values of j. Within this
approximation Kj becomes j independent and is denoted by K. This noise correlation function
derived in Eq.(28) is used to calculate the decoherence factors in the subsequent sections.

3. MASTER EQUATION FOR A CHARGED PARTICLE IN A MAGNETIC FIELD

We set up a master equation for a system coupled to an external heat bath considering the
coupling between the system and the bath to be weak and the environment to be sufficiently
large for the Born Approximation to hold true [30, 31]. Within this framework, the memory-free
environment and the time-local evolution equations give the Born-Markovian Master equation for
the total density operator in the interaction picture as [30, 31]:

∂

∂t
ρ(I)(t) =

1

iℏ

[
Hint(t), ρ

(I)(t)
]

(29)
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where Hint(t) represents the time dependent interaction Hamiltonian.
Using the Liouville-von Neumann equation (Eq.(29)), one can derive the general Born-Markov
master equation as [32, 33]:

∂

∂t
ρs(t) = − i

ℏ
[Hs, ρs(t)]−

1

ℏ2
{[S,Bρs(t)] + [ρs(t)C, S]} (30)

where,

Bα =

∫ ∞

0
dτ
∑
β

Cαβ(τ)S
(I)
β (−τ) (31)

Cα =

∫ ∞

0
dτ
∑
β

Cβα(−τ)S
(I)
β (−τ) (32)

The operators with superscript (I) are in the interaction picture and the remaining operators are
Schrödinger picture operators and τ = t− t

′
, which gives a measure of the time through which the

environment retains the memory of the interaction with the system.
In the non-Markovian limit [3, 23, 26, 34–37] the form of the master equation is the same, however,
the operators Bα and Cα are time dependent.

Bα(t) =

∫ t

0
dτ
∑
β

Cαβ(τ)S
(I)
β (−τ) (33)

Cα(t) =

∫ t

0
dτ
∑
β

Cβα(−τ)S
(I)
β (−τ) (34)

Cαβ and Cβα representing the environmental self correlation functions and Sβ is the system oper-
ator [18].
It is to be noted that in the non-Markovian derivation of the master equation, the Born Approxi-
mation is assumed to hold true (weak coupling limit) [30].

4. DECOHERENCE IN THE PRESENCE OF A MAGNETIC FIELD AND A
HARMONIC OSCILLATOR POTENTIAL

In this section, we derive the Born Markovian master equation for an open quantum system
corresponding to a harmonically oscillating charged Brownian particle in the presence of an external
magnetic field. The Hamiltonian in Eq.(1) can be modelled in the form of a system environment
(bath) interaction Hamiltonian as:

H = HS +HE +HSE (35)

where,

HS =
1

2m

(
p⃗− qA⃗

c

)2

+
1

2
mω2

0(x
2 + y2) (36)

HE =
∑
i

p2i
2mi

+
1

2
miω

2
i q

2
i (37)

and the interaction Hamiltonian HSE is modeled as [18]:

HSE = x⊗
∑
i

qix + y ⊗
∑
i

qiy + px ⊗
∑
i

pix + py ⊗
∑
i

piy (38)
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x, y, px, py represent the position and the momentum coordinates of the Brownian particle and qix,
qiy, pix, piy represent the position and momentum coordinates of the ith bath oscillator respectively.
Now we solve the equations of motion for the system Hamiltonian (Eq.(36)) and arrive at the
following expressions for the position coordinates of the Brownian particle in the interaction picture:

x(τ) =
1

2
√

4ω2
0 + ω2

c

[{(
−ωc +

√
4ω2

0 + ω2
c

)
cosh(Aτ)+(

ωc +
√

4ω2
0 + ω2

c

)
cosh(Bτ)

}
X +

{
2ω2

0

(
sinh(Aτ)

A
− sinh(Bτ)

B

)}
Y+{(

ωc +
√

4ω2
0 + ω2

c

)
sinh(Aτ)

mA
+

(
−ωc +

√
4ω2

0 + ω2
c

)
sinh(Bτ)

mB

}
Px+{

2

m
(− cosh(Aτ) + cosh(Bτ))

}
Py

]
(39)

y(τ) =
1

2
√

4ω2
0 + ω2

c

[{
2ω2

0

(
sinh(Bτ)

A
− sinh(Aτ)

B

)}
X−{(

−ωc +
√
4ω2

0 + ω2
c

)
cosh(Aτ) +

(
ωc +

√
4ω2

0 + ω2
c

)
cosh(Bτ)

}
Y+{

2

m
(cosh(Aτ)− cosh(Bτ))

}
Px +

{(
ωc +

√
4ω2

0 + ω2
c

)
sinh(Aτ)

mA
+(

−ωc +
√

4ω2
0 + ω2

c

)
sinh(Bτ)

mB

}
Py

]
(40)

where ωc = qB/m is the cyclotron frequency and

A =

√
−2ω2

0 − ω2
c − ωc

√
4ω2

0 + ω2
c√

2
(41)

B =

√
−2ω2

0 − ω2
c + ωc

√
4ω2

0 + ω2
c√

2
(42)

X = x(0), Y = y(0), Px = mẋ(0), Py = mẏ(0) (43)

X and Y are the position operators in the Schrödinger picture and Px, Py are the momentum in
the x and y directions respectively, representing the Schrödinger picture momentum operators.
Using Eqs.(39) and (40) for the system operators in the generalized master equation Eq.(30) and
retaining only the decoherence terms, one gets:

∂ρs
∂t

=− 1

ℏ

∫ t

0
dτν(τ)F1(τ) [X, [X, ρs(t)]]−

1

ℏ

∫ t

0
dτν(τ)F1(τ) [Y, [Y, ρs(t)]]−

1

ℏ

∫ t

0
dτν(τ)F2(τ) [X, [Y, ρs(t)]] +

1

ℏ

∫ t

0
dτν(τ)F2(τ) [Y, [X, ρs(t)]]−

1

ℏ

∫ t

0
dτν(τ)f1(τ) [X, [Px, ρs(t)]]−

1

ℏ

∫ t

0
dτν(τ)f1(τ) [Y, [Py, ρs(t)]]−

1

ℏ

∫ t

0
dτν(τ)f2(τ) [X, [Py, ρs(t)]] +

1

ℏ

∫ t

0
dτν(τ)f2(τ) [Y, [Px, ρs(t)]] (44)

ν(τ) in the master equation represents the random noise kernel that captures the effect of the
environment (heat bath) on the system. It is dependent on the spectral density of the environmental
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oscillators and can be obtained from Eq.(28), derived from the Quantum Langevin dynamics [18,
38, 39]:

ν(τ) =

∫ ∞

0
dωJ(ω)

ω2(mr +mb)(
mω2

0 +mbω2 +K
) coth(ω

Ω

)
cos(ωτ) (45)

J(ω) is the spectral density of the bath and Ω is the temperature dependent thermal frequency
given by Ω = 2kBT

ℏ [40]. Here we present an analysis for the Ohmic bath model where the spectral
density varies linearly with frequency ω and the proportionality constant γ represents the damping
coefficient for the Brownian system. Here one upper cut-off frequency Λ has been chosen such that
above this value the density of the bath oscillators abruptly goes to zero.

J(ω) =

{
γω, for ω < Λ

0, ω ≥ Λ
(46)

So, the time evolution equation for the density matrix ρs (Eq.(44)) can be written as:

∂ρs
∂t

=−D1 [X, [X, ρs(t)]]−D1 [Y, [Y, ρs(t)]]−D2 [X, [Y, ρs(t)]] +D2 [Y, [X, ρs(t)]]−

D1 [X, [Px, ρs(t)]]− D1 [Y, [Py, ρs(t)]]− D2 [X, [Py, ρs(t)]] + D2 [Y, [Px, ρs(t)]] (47)

where, we have considered ℏ = 1 and the decoherence factors D1(2) and D1(2) are:

D1(2)(t) =

∫ t

0
dτν(τ)F1(2)(τ) (48)

D1(2)(t) =

∫ t

0
dτν(τ)f1(2)(τ) (49)

and

F1(τ) =

(
−ωc +

√
4ω2

0 + ω2
c

)
cosh(Aτ) +

(
ωc +

√
4ω2

0 + ω2
c

)
cosh(Bτ)

2
√
4ω2

0 + ω2
c

(50)

F2(τ) =
ω2
0 (B sinh(Aτ)−A sinh(Bτ))

AB
√

4ω2
0 + ω2

c

(51)

f1(τ) =

(
ωc +

√
4ω2

0 + ω2
c

)
B sinh(Aτ) +

(
−ωc +

√
4ω2

0 + ω2
c

)
A sinh(Bτ)

2ABm
√

4ω2
0 + ω2

c

(52)

f2(τ) =
− cosh(Aτ) + cosh(Bτ)

m
√

4ω2
0 + ω2

c

(53)

It is to be noted that in Eq.(47) the first four terms represent the Lindblad double commutator form
of spatial decoherence, whereas the last four terms denote decoherence originating from anomalous
diffusion [18, 26]. The contributions of the anomalous diffusion terms are negligible in comparison
to the terms involving D1 and D2, at long times, even in the low temperature regime [41]. Further,
the Lindblad double commutators involving the x and y cross terms cancel one another and hence
the decoherence in this system is primarily governed by the first and second Lindblad double
commutator terms on the right in Eq.(47) and these depend on the decoherence factor D1.
F1 and f1 are plotted in Fig.(1) which proves our statement regarding F1 dominating over f1
throughout the entire time range, leading to the dominance of the decoherence factor D1 over D1

in the decay of the off-diagonal terms of the density matrix.
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FIG. 1: (a) F1, f1 versus time for ω0 = 10 and ωc = 1

Using Eq.(48) in Eq.(47), one arrives at the following form for the decay of the off-diagonal
elements of the density matrix :

ρs(x, x
′, y, y′, t) = ρs(x, x

′, y, y′, 0) exp [−D(t)] (54)

where D(t) is given by:

D(t) =
{
(∆x)2 + (∆y)2

}∫ t

0
D1(t

′)dt′ (55)

Here, ∆x = x− x
′
, ∆y = y − y

′
and

D1(t) =

∫ t

0
dτν(τ)F1(τ) (56)

5. RESULTS AND DISCUSSIONS

In Fig.(2), we have displayed the magnetic field dependence of the decoherence factor D(t) at
high and low temperatures for different values of the damping parameter γ and harmonic frequency
ω0. Fig.(3) shows a comparison of decoherence in the presence of both position and momentum
coordinate couplings and decoherence in the presence of only position coordinate and momentum
coordinate couplings separately.
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FIG. 2: Decoherence factor D(t) (at t=10) versus ωc with m = 1, K = 102, mb = 10−2, mr = 10−3,
Λ = 103, ∆x = ∆y = 1: (a) High temperature (Ω = 103), ω0 = 10, γ = 1; (b) Low temperature
(Ω = 10−2), ω0 = 10, γ = 1; (c) High temperature (Ω = 103), ω0 = 1, γ = 10; (d) Low temperature
(Ω = 10−2), ω0 = 1, γ = 10.
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FIG. 3: ρ/ρ0 versus time for the (a) position coupling (d = 1, g = 0, K = 0); (b) momentum
coupling (d = 0, g = 1, K = 102) and (c) position and momentum coupling (d = 1, g = 1,
K = 102) cases with m = 1, ω0 = 10, ωc = 1, mb = 10−2, mr = 10−3, Λ = 103, ∆x = ∆y = 1.

Notice that in Fig.(2), an increase in the cyclotron frequency (due to an increase in the applied
magnetic field) leads to a reduction in the decoherence factor D at all temperature regimes. The
reduction in the decoherence factor leads to a slower fall off of the off-diagonal elements of the
reduced density matrix in the open quantum system [18]. This is consistent with the observation
that the cyclotron frequency associated with a magnetic field leads to coherent oscillations , which
play a vital role in delaying the loss of information to the environment, as discussed in several
earlier papers [8, 18, 42–44]. At a given temperature, one notices that the under-damped case
(ω0 > γ) (Fig.(2a,c)) displays a stronger dependence on the cyclotron frequency compared to
the over-damped case (γ > ω0) (Fig.(2b,d)), which is consistent with our expectation that the
oscillatory effects of the cyclotron frequency play a crucial role in shaping the dynamics of the
system at low damping.
In Fig.(3), we have plotted ρ/ρ0, the off-diagonal element of the reduced density matrix as a
function of time, which measures the extent of decoherence stemming from interaction with the
environment. The Figures show that the rate of decoherence is very low in Fig.(3a), where the
the system and the bath are coupled only through position coordinates and the loss of coherence
is much faster in Fig.(3b), pertaining to a momentum coordinate system-bath coupling. Fig.(3c)
which corresponds to a case where both position and momentum couplings are present, exhibits a
rate of decoherence between these two extreme cases (position coupling and momentum coupling).
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It therefore follows that position coupling slows down the loss of information from the system to the
environment and the two coupling parameters can be tuned to get the desired rate of decoherence
in real physical systems. It is evident from all the plots that a rise in temperature leads to a
faster decay of ρ/ρ0, resulting in a faster Quantum-to-Classical transition in the high temperature
domain, consistent with earlier studies [3].

6. CONCLUSION

In this paper, we have considered the Hamiltonian for an open quantum system where a har-
monically oscillating charged Brownian particle is coupled to an Ohmic heat bath via both position
and momentum coordinates, in the presence of a magnetic field. We have derived the correspond-
ing quantum Langevin equation for the system following the Ford, Lewis and O’ Connell’ (FLO)
approach [39]. In the subsequent sections, we have formulated the non-Markovian master equation
involving normal and anomalous diffusion terms. We study the temporal decay of the off-diagonal
elements of the reduced density matrix for the Brownian motion model which corresponds to the
destruction of superposition of states leading to a Quantum-to-Classical transition. It has been
shown analytically and numerically (see Fig.(1)) that the contributions of the anomalous diffusion
term D1 is negligible in comparison to the normal decoherence factor D1. The process of decoher-
ence is faster in the high temperature regime compared to the low temperature regime as quantum
noise correlations slow down the process of loss of coherence in the quantum domain [18, 41].
Moreover, the presence of a cyclotron frequency, originating from the applied magnetic field, re-
sults in an oscillatory behaviour of the Brownian particle and consequently the loss of information
is delayed, as seen in Fig.(2). In one of our earlier works we have shown that decoherence occurs
at a slower rate in the presence of a high magnetic field [18]. Similar effects are seen in the context
of a single spin associated with a nitrogen vacancy defect in diamond, where one notices that the
magnetic field has a confining effect on the system and delays the onset of decoherence [45]. Fur-
thermore, the loss of information from the system occurs at a higher rate when there are multiple
channels of interaction between the system and the environment. We have shown that decoherence
occurs at a slower rate for a Brownian particle coupled to a heat bath through position coordi-
nates only, which is the case for most of the earlier studies on decoherence [8, 42–44]. However
in the present analysis we have considered the coupling between the system and the environment
via both position and momentum coordinates. In some earlier works, the Langevin equation for
a Brownian particle was derived for the momentum coupling case and the noise correlation was
seen to be drastically different from the position coupling case [28, 38]. Similarly the inclusion of
both position and momentum couplings induces a variation in the noise kernel (Eq.45) that results
in the change in the rate of decoherence (see Fig.(3)). The loss of information occurs at a faster
rate in the presence of momentum coupling, as the effect of environment-induced random noise
is more pronounced when the momentum of the Brownian particle and the bath oscillators are
coupled. However, the off-diagonal terms of the reduced density matrix in the presence of both
position and momentum coupling exhibit a rate of decay that lies between the decay rates per-
taining to the position coupling and the momentum coupling cases. Thus it can be inferred that
the position coupling lowers the rate of decay of ρ/ρ0, whereas, the momentum coupling enhances
the loss of information from the system. This result is it agreement with that of [23], where the
authors have shown that the effect of dissipation is more pronounced in the presence of momentum
coupling which leads to an accelerated relaxation to equilibrium and a faster decoherence in an
anomalous diffusive system. Thus our analysis indicates a way to modulate the rate of decoher-
ence in a controlled manner by tuning the position and the momentum coupling parameters ‘d’
and ‘g’ respectively. Such a system involving anomalous momentum coupling can be physically
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realized in the study of effect of the electromagnetic black body radiation on Josephson junctions
[19, 46–48]. In several real physical systems, both momentum and position coordinates contribute
to the environmental couplings and are analyzed in detail to control the two channels of decay of
the off-diagonal terms of the reduced density matrix [47, 48]. Moreover, the results can also be
utilized to investigate the non-Markovian dynamics of molecular compounds, mesoscopic islands
coupled to fluctuating charges, and the transport of charged particles moving under the influence
of random magnetic fields [22].
Decoherence was first experimentally tracked by creating a mesoscopic superposition of quantum
states involving radiation fields with classically distinct phases and its progressive decoherence was
observed. The experiment involved Rydberg atoms interacting one at a time with a few photon
coherent field trapped in a high Q microwave cavity [49]. However, some modern experimental
techniques have gone beyond this study and investigated decoherence in the presence of a large
number of atoms in a background gas resulting in a suppression of interference with increasing
pressure of the gas [50]. The decoherence of a gas of strongly interacting bosons in an optical
lattice exposed to near-resonant light and spontaneous emission was studied in [51]. Our results
for the study of decoherence in the presence of both position and momentum coordinate couplings
are of current relevance and can be tested by designing a suitable cold atom-ion experimental
setup[52].
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