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Abstract

Memory accounts for 33-50% of the total cost of ownership
(TCO) in modern data centers. We propose TierScape to tame
memory TCO through the novel creation and judicious man-
agement of multiple software-defined compressed memory
tiers.

As opposed to the state-of-the-art solutions that employ a
2-Tier solution, a single compressed tier along with DRAM,
we define multiple compressed tiers implemented through a
combination of different compression algorithms, memory
allocators for compressed objects, and backing media to store
compressed objects. These compressed memory tiers repre-
sent distinct points in the access latency, data compressibility,
and unit memory usage cost spectrum, allowing rich and flex-
ible trade-offs between memory TCO savings and application
performance impact. A key advantage with TierScape is that
it enables aggressive memory TCO saving opportunities by
placing warm data in low latency compressed tiers with a
reasonable performance impact while simultaneously placing
cold data in the best memory TCO saving tiers. We believe
TierScape represents an important server system configuration
and optimization capability to achieve the best SLA-aware
performance per dollar for applications hosted in production
data center environments.

TierScape presents a comprehensive and rigorous analyti-
cal cost model for performance and TCO trade-off based on
continuous monitoring of the application’s data access profile.
Guided by this model, TierScape takes informed actions to dy-
namically manage the placement and migration of application
data across multiple software-defined compressed tiers. On
real-world benchmarks, TierScape increases memory TCO
savings by 22%—-40% percentage points while maintaining
performance parity or improves performance by 2%—-10%
percentage points while maintaining memory TCO parity
compared to state-of-the-art 2-Tier solutions.
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Figure 1: Memcached on a 2-Tier system (DRAM + a single
compressed tier): conservatively placing 20% cold data in the
compressed tier limits the memory TCO savings to 11% with
a9.5% slowdown. Placing around 50% of data (including cold
and some warm data) in the compressed tier results in 16%
memory TCO savings and 13.5% slowdown. An aggressive
approach that places around 80% of data (including cold and
most of the warm data) in the compressed tier results in 32%
memory TCO savings and 20% slowdown.

1 Introduction

Memory accounts for 33—50% of the total cost of ownership
(TCO) in modern data centers [2, 50]. This cost is expected
to escalate further in order to serve the growing data demands
of modern AI/ML applications whose working set already
breaks the terabyte barrier [23, 45, 48], thus making it imper-
ative to tame the data center’s memory TCO.

The current state-of-the-art software-based solutions com-
press and place data in a compressed second-tier memory
such as zswap in Linux to reduce memory TCO [36] (we
refer to them as 2-Tier systems). Placing data in a compressed
memory tier reduces the memory footprint of applications. As
a result, systems can be provisioned with less memory, thus
reducing the memory TCO in a data center. However, mem-
ory TCO savings with compressed tiers is not free as the data
stored in such a tier must be decompressed before an applica-
tion can access it, resulting in a performance penalty. Hence,



to trade-off memory TCO savings and performance penalties,
data center providers only place infrequently accessed or cold
data in the compressed tier [36].

We highlight the following critical observations and key
limitations of the state-of-the-art 2-Tier systems. @ On an
average, 20-30% of the data are cold in production sys-
tems [26, 36, 39, 40, 50] and hence placing only cold data in
second-tier compressed memory has limited memory TCO
saving potential. @ Aggressively placing more data pages
in a compressed second tier can increase memory TCO sav-
ings but results in a significantly higher and unacceptable
performance penalty [26] (see Figure 1). ® Given the high
cost of accessing data from a compressed tier, existing 2-Tier
solutions do not compress warm pages, which accounts for
50-60% [40, 50] of the data pages, thus leaving significant
memory TCO reduction opportunities on the table.

In this paper, we seek to exploit memory TCO-saving op-
portunities beyond the cold data pages with an acceptable
performance penalty. We propose TierScape, a novel solu-
tion with multiple software-defined compressed memory tiers
(which we refer to as N-Tier systems) that dynamically man-
ages placement and migration of data across compressed tiers
to strike the best balance between memory TCO savings and
application performance. The compressed tiers can be a com-
bination of different compression algorithms (e.g., 1zo-rle,
deflate, 1z4), memory allocators for compressed objects (e.g.,
zsmalloc, zbud, z3fold), and backing media to store com-
pressed objects (e.g., DRAM, non-volatile main memory [3],
CXL-attached memory [25, 27, 41]). TierScape’s compressed
tiers are distinct in access latency, unit memory usage cost,
and capacity savings (compression ratio), enabling a holistic
and flexible option space for hot/warm/cold data placement to
balance memory TCO savings and application performance.
TierScape thus compares very favorably to the rigid and re-
stricted data placement and optimization space available in
today’s state-of-the-art 2-Tier systems.

TierScape, through its multiple compressed tiers, enables
aggressive memory TCO saving opportunities by placing
warm data pages in low-latency compressed tiers with rea-
sonable performance impact while simultaneously placing
cold data in the best memory TCO saving tiers. TierScape
applies different placement and migration policies for war-
m/cold data based on the application’s dynamic data access
profile. For example, in our conservative model, which we
refer to as the waterfall model (§5.1), warm pages are initially
placed in a low latency tier and eventually moved or aged to
tiers with better TCO savings, thus progressively achieving
better memory TCO savings.

TierScape introduces an advanced analytical model (§5.2)
that periodically recommends scattering pages across multi-
ple compressed tiers based on the access profile of the pages.
The recommendations to move specific groups of pages to spe-
cific tiers are based on the usage patterns of the application’s
different memory regions, the relative costs of page access in

different tiers, and the real-time memory TCO cost per tier in-
curred by the application. TierScape’s multi-objective global
optimization across application performance and memory
TCO enables superior placement and control of hot/warm/-
cold page sets and calibrated maximization of performance-
per-dollar metrics critical for data center operators.

The key contributions of the paper are as follows:

¢ To the best of our knowledge, we are the first to propose
and demonstrate memory TCO savings for warm data
with an acceptable performance impact.

 Highlight the limitations with the state-of-the-art 2-Tier
systems in saving memory TCO. Specifically, the limited
TCO savings with cold data and its incapability to tap
TCO saving opportunities for warm data with a reason-
able performance penalty.

* Demonstrate the benefits of defining multiple com-
pressed memory tiers in the software that offer a rich
and flexible trade-off between memory TCO savings and
application performance impact.

* Judiciously manage page placement across tiers with
waterfall and analytical models.

2 Background

2.1 Memory compression

Linux kernel’s zswap [14, 33, 36] supports memory compres-
sion where pages are compressed and placed in a compressed
pool. Whenever a compressed page is accessed, zswap decom-
presses the data from the compressed pool and places it in the
main memory [15]. The Linux implementation of zswap has
two key components: (i) the compression algorithm and (ii)
the pool manager.

Compression algorithms. The Linux kernel supports dif-
ferent compression algorithms such as deflate, 1z4, 1zo, and
1zo-rle that differ in algorithmic complexity and the ratio
of data compression achieved. However, zswap is flexible
enough to add new compression algorithms as required. The
deflate compression algorithm offers the best compression
ratio but consumes comparatively higher CPU cycles to com-
press and decompress the data [5, 6, 31]. On the other hand,
1z4 is a fast compression algorithm but has relatively low data
compressibility [6]. 1zo (and its evolved variant 1zo-rle) offers
a balance between compression ratio and decompression over-
heads [5, 7, 13]. In addition, many compression algorithms
such as 1z4 have a “level of effort” parameter that can trade
compression speed and compression ratio.

Pool managers: A pool manager manages how compressed
pages are stored in zswap. A pool is created in physical mem-
ory to store compressed data pages by allocating pages us-
ing the buddy allocator [1]. The pool dynamically expands



to store more compressed objects by allocating more pages
or contracts as required. To manage compressed objects in-
side the pool a custom memory allocator is used. Linux
supports three pool memory allocators: zsmalloc, zbud, and
z3fold [12, 14, 24].

zsmalloc employs a complex memory management tech-
nique that densely packs compressed objects in the pool and
thus has the best space efficiency. However, it has relatively
high memory management overheads [24]. zbud is a simple
and fast pool management technique that stores a maximum
of two compressed objects in a 4 KB region. Due to this, the
total space saved with zbud cannot be more than 50% [14].
But, because of its simple object management, zbud has a rel-
atively low memory management overhead. z3fold is similar
to zbud, but instead of two compressed objects, it can store
three compressed objects in a 4 KB region [12].

Linux allows users to pick a compression algorithm and
a pool manager to manage zswap. However, Linux supports
only one active zswap pool at a given time [14]. If a different
compression algorithm or a pool manager is dynamically con-
figured, the kernel creates a new pool and uses it to place com-
pressed pages. The old pool is kept around till all data present
in it is either faulted back to memory or invalidated [14].

3 Motivation

Missed opportunities for warm pages. Data center operators
report that around 10-20% of the data are hot and 20—30%
of data are cold [26, 36, 39, 40, 50]. This implies that around
50-70% of the data pages are neither hot nor cold but can
be considered as warm pages. These warm pages can be
(i) pages with relatively fewer accesses than hot pages or
(ii) pages that are transitioning from hot to cold as hot data
does not become cold instantaneously but rather follows a
gradual process where it ages itself to cold. However, a cold
or warm page can instantaneously become hot, depending on
the access pattern of the application. Existing 2-Tier solutions
do not consider exploiting warm pages for compression, thus
missing significant memory TCO-saving opportunities.

Drawbacks with aggressive data placement. A naive ap-
proach to aggressively place more data in the compressed
second-tier memory to increase memory TCO savings re-
sults in a significantly higher and unacceptable performance
penalty (Figure 1). However, replacing a highly compressible
tier with a low compression, low access latency tier (due to
low decompression latency) can enable aggressive data place-
ment in the compressed tier. However, it severely impacts the
memory TCO savings due to low compression ratio.
Employing page prefetching [36] that prefetches or de-
compresses pages from compressed memory can mitigate
high-performance penalty to the extent of prefetching accu-
racy. However, pages that the prefetcher fails to identify for
prefetching still incur high access latency when accessed, and
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Figure 2: Data placement options in 2-Tier and N-Tier systems

incorrectly prefetched pages results in decreased memory
TCO savings. Nevertheless, prefetching can be additionally
employed in an N-Tier memory context and we note it as a
future work of interest for the systems community.

Limited placement choices. To reiterate the central obser-
vation here: the key limitation with 2-Tier systems is the
binary decision options they face for data placement — either
in DRAM or in the compressed second tier (Figure 2). This
severely limits the flexibility and choices for page placement
towards a better balance between application performance
and memory TCO.

Summary. To conclude, the current 2-Tier approaches fail
to exploit the temperature gradient that naturally manifests
across a large population of the application’s pages over time
to simultaneously achieve better TCO and performance.

4 Concept

The core concept behind our proposal is to define multiple
compressed tiers in the software. Each compressed tier is de-
fined through a combination of (i) compression algorithms,
(i1) memory allocator for the compressed pool, and (iii) differ-
ent backing media — each providing a different access latency
and memory cost per byte, as we discuss below.

Compression algorithms. Compression algorithms with low
compression ratio and, consequently, a low decompression
latency are suitable for low latency tiers, but they provide only
marginal memory TCO savings. Whereas other compression
algorithms, such as deflate with high compression ratio and,
consequently, high decompression latency, are suitable for
high memory TCO savings tiers but with significantly high
memory access latency.

Pool allocators. As zsmalloc densely packs compressed ob-
jects in the pool, it is suitable for high memory TCO saving
tiers, but it has high memory management overheads, thus
impacting the decompression latency. zbud, with its simple
and fast pool management, is suitable for low latency tiers
but is less space efficient, resulting in tiers with low memory
TCO savings.

Physical media. The access latency of the storage medium
where the compressed pages are stored is crucial for the per-



Table 1: Different options available in Linux for setting up a
compressed tier

Backing media
DRAM, CXL-attached
memory, NVMM

Allocators
zsmalloc,
zbud, z3fold

Compression algorithm
Deflate, LZO, LZO-RLE,
LZ4, Zstd, 842, LZAHC

formance of the tier. Storing compressed pages on DRAM
offers the lowest possible media access latency [52] and hence
suits low latency tiers. But doing so also reduces the overall
memory TCO savings potential. Using cheaper and denser
memory, such as NVMMs or CXL-attached memory, to store
compressed pages increases memory TCO savings but adds
to decompression latency, rendering them attractive for use
as high memory TCO saving tiers.

The key idea for enabling aggressive memory TCO savings
is to use tiers with low latency for warm pages that can save
memory TCO at moderate performance overheads. Mean-
while, tiers with high compression ratios and high access
latency are used for cold pages.

4.1 Characterization of compressed tiers

We start by comparing the access latencies and memory TCO
benefits of compressed tiers with different configurations in
Linux. The Linux kernel offers only two configuration pa-
rameters for a zswap compressed tier (compression algorithm
and pool manager) but does not offer any control over where
the pool is allocated, i.e., the kernel cannot be instructed to
allocate the pool on DRAM or NVMM. We modify zswap to
add a configuration parameter — backing media, that specifies
from which hardware media the pages for a particular com-
pressed pool are to be allocated. This allows us to construct
tiers specifying backing media.

The latency of decompressing a page from zswap is primar-
ily dominated by the compression algorithm, pool manager,
and backing media. With the available choices in Linux (as
shown in Table 1), we can create a total of 63 different zswap
compressed tiers (C] * C; + C3). In addition, the compress-
ibility ratio and decompression latency of a given tier also
depend on the compressibility of the input data.

In order to allow for multiple operating points in the space
of access latency and memory TCO savings, we define 12
tiers configured based on widely used compression algorithms
and pool managers. We initialize 10 GB of data in memory,
compress and place them in a compressed memory tier and
then access them. We repeat this experiment for all 12 tiers.
To characterize with different input data, we use two data sets
from the Silesia corpus [11], nci and dickens, with the former
being more compressible [22]. We measure the access latency
and compression ratio.
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Figure 3: Characterization results for 12 different software-
defined compressed tiers for dicken and nci data sets. En-
coding: ZS, ZB refers to zsmalloc and zbud pool managers,
respectively. L4, LO, DE refers to 1z4, 1zo, and deflate com-
pression algorithms, respectively. DR, OP: refers to DRAM
and Optane [3] as the backing storage media, respectively.

4.1.1 Access latency

Figure 3a shows the access latency for both nci and dickens
data sets. Access latency with the 1z4 algorithm is the fastest,
followed by 1zo, and lastly, deflate. As expected, the perfor-
mance of zbud pool manager is also better than zsmalloc. This
is because zbud employs a simple algorithm that enables faster
page lookup. Finally, the access latency of DRAM-backed
tiers is better than those backed by the Optane [3] due to the
higher media access latency in the latter [20].

4.1.2 Memory TCO savings

Figure 3b shows the normalized memory TCO savings of
compressed tiers relative to uncompressed data in DRAM.
Total TCO savings depend on data compressibility, compres-
sion algorithm, and backing media. The cost per gigabyte for
storing data on Optane is typically 1/3 ~ 1/2 of the cost of
storing data on DRAM [43]. Hence, the memory TCO for
Optane-backed tiers is lower than that of DRAM-backed tiers.

Furthermore, for tiers using the same compression algo-
rithm and backing media the TCO savings depend on the
memory allocator for the compressed pool manager. For ex-



ample, a tier using zsmalloc as its pool manager has a lower
memory TCO than a tier using zbud. This is because zsmalloc
can pack compressed objects more tightly. Finally, the deflate
compression algorithm offers the best compression ratio.

4.2 Tiers selection methodology

In order to illustrate the flexibility and robustness of the Tier-
Scape proposal, we select five compressed tiers (C1, C2, C4,
C7, and C12) that we define in the software.

We pick C1 and C12 as they offer the best performance
configuration and best memory TCO savings configuration,
respectively. Other tiers with deflate compression algorithms
offer a similar performance latency without additional TCO
benefits, and hence we do not select any other deflate-based
tiers. We select C2 as it offers the lowest latency for an Optane-
backed compressed tier. C1 and C2 use zbud and 1z4 as their
pool manager and compression algorithm — restricting the
compression ratio to 2. Hence, we select C4, which uses a
fast compression method (1z4), tightly packs compressed ob-
jects (due to zsmalloc), and is stored on low-cost Optane.
Finally, we select C7, which fills the gap between access la-
tency and memory TCO savings. We use this set of tiers for
our experiments to demonstrate rich and flexible placement
opportunities.

S Data placement in TierScape

In this section, we present two distinct data placement models
that fully exploit the benefits of N-Tier systems. Note that we
develop these models to show rich and flexible data placement
options to tame memory TCO. However, we believe that
having multiple software-defined compressed tiers opens up
a plethora of exploration opportunities for innovative data
placement policies.

For ease of our discussion, we assume the system is con-
figured with DRAM + N compressed tiers. Furthermore, the
tiers are ordered from low latency to high latency (and, con-
sequently, low TCO savings to high TCO savings), i.e., Tier 1
offers the best performance but with the least memory TCO
savings. In contrast, Tier N offers the best memory TCO sav-
ings with high performance impact.

5.1 Waterfall model

A 2-Tier memory TCO saving solution uses a hotness thresh-
old (H;,) to decide which pages should be pushed from
DRAM to the compressed tier. As seen before, an aggres-
sive threshold (a high value for H,;) pushes more pages to
the compressed tier saving additional memory TCO but at the
cost of high performance penalty due to multiple high latency
page faults from the compressed tier. The waterfall model
extends this approach naturally to leverage multiple software-
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Figure 4: Page placement with the N-Tier waterfall model

defined tiers available to achieve better memory TCO savings
while limiting the performance penalty.

The model starts by monitoring the pages accessed by an
application for a fixed duration — henceforth referred to as
a profile window. As shown in Figure 4, at the end of each
profile window, all the pages that have a hotness value (access
count) less than the threshold (H;;) are moved from DRAM
to low-latency tier T1. This reduces the total memory TCO
upfront as some data pages have been placed in a compressed
tier (albeit the tier has a low compression ratio). The advan-
tage is that these compressed pages can be decompressed and
placed in DRAM when accessed without high performance
penalty as T1, by design, is a low latency compressed tier.

During the next profile window, some pages will be faulted
back to DRAM from T1 as per the application’s access pattern.
Once the profile window ends, all the pages that are still in
T1 are, in fact, getting colder as they were not accessed in the
last profile window. The model moves (or waterfalls) all the
data from T1 to T2. This further increases the memory TCO
savings as T2 is better than T1 in memory TCO savings.

At the end of each profile window, the model waterfalls all
the data in all the tiers to one tier below it (to a higher TCO
saving tier), except for the last tier. However, pages that are
accessed by the application are decompressed and placed in
DRAM, irrespective of its tier and these pages have to start
the journey again from T1.

Benefits:

Upfront memory TCO savings. The memory TCO savings
start upfront, as all the cold and warm data can be immediately
placed in low latency compressed tiers without significant
performance impact.

Tolerate profiling inaccuracies. Existing profiling tech-
niques such as PMU’s [32] do not provide a 100% accurate
memory access profile [46] which can result in incorrectly
identifying a hot or a warm page as a cold page. The penalty
for placing a hot page incorrectly classified as a cold page in a
2-Tier solution can be significant [26]. As the waterfall model
initially places all pages, including incorrectly classified hot
or warm pages, in low latency compressed tiers, it incurs a
minimal performance penalty when they are accessed.

Gradual convergence to maximum TCO savings. Waterfall
model gradually moves cold pages to better memory TCO
saving tiers with each profile window. Hence, it eventually
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converges to a stable phase where all the cold data pages are
placed in the best memory TCO saving tier, thus maximizing
the TCO savings.

Limitations:

Cold page convergence. Cold pages (i.e., pages with 0 access
count) requires N profile windows (in an N-Tier setup) to
converge to the last or best TCO saving tier. It misses the
opportunity to aggressively place cold pages directly in best
memory TCO saving tiers.

Limited flexibility to fine-tune page placement. Waterfall
model does not offer flexibility to fine-tune page placement.
A hotness threshold parameter fully controls page placement.
For example, users cannot specify placement criteria or re-
quirements to trade off memory TCO savings and perfor-
mance penalties.

5.2 TierScape’s analytical model

We propose an analytical data placement model to address
the limitations of the waterfall model. Analytical model can
directly distribute data ( Figure 5) to different memory tiers
based on the hotness profile of the data. In addition, the model
provides fine control to the users to balance the trade-off
between memory TCO savings and performance penalty by
exposing a user-guided tunable “knob”.

As shown in Figure 6, the range of the knob is [0, 1]. A
value of 1 indicates the model is tuned for maximum per-
formance, which results in zero memory TCO savings as all
data pages are placed in DRAM. On the other hand, a value
towards 0 indicates that the model is tuned to maximize TCO
savings while striving to minimize performance penalty.

5.2.1 Data placement modeling

The analytical model is initiated with a knob value — say o
€ [0,1]. The theoretical memory TCO savings achievable
is the difference between TCO,,,, — when all the data is in
DRAM and TCO,,;, — when all the data is in the last tier. The
maximum TCO savings (or MTS) can be defined as follows:

MTS = TCO,10x — TCOpin (D

The analytical model can be tuned to achieve TCO savings
within [0, MTS ] by configuring o.

E(_ TCO Performance
optmized optmized

All compressed Balanced All-DRAM
Min. performance Some perf loss Max. performance
Max. TCO savigns Some TCO savings No TCO savings

Figure 6: The memory TCO is minimal when all the data
is placed in a highly compressible tier, while it is maximum
when all the data is in DRAM. The difference between the
two is the TCO saving opportunity that is tuned with a knob
in the analytical model.

At the end of each profile window, the model uses o and
the profiled data to solve the following:

minimize perf_ovhyt

subjectto  TCO < (TCOpin + 0Lk MTS) )

In order to solve Equation 2, we start by formally defining
performance overhead (perf_ovhd) and the memory TCO.

5.2.2 Modeling performance overheads

In terms of memory accesses, an application executes opti-
mally when all its load operations are directly from DRAM
(instead of a compressed tier). Let us refer to this performance
as per fopr.

Consider a scenario when a few of the application’s pages
are placed in a single compressed tier 7;. If an application
attempts to read those pages, it will result in Faulty, faults,
with each fault incurring Latyz; latency overheads to decom-
press the data. Once the pages are decompressed, the accesses
are served from DRAM. Hence the performance with a com-
pressed memory tier includes the cost of accessing memory
regions from DRAM:

perf” = perfop +Faulty; * Laty; 3)

U
perf_ovh = perf — perfop 4)
=TFaultrixLaty; 5)

Here, perf_ovh is the performance overhead due to accessing
pages in a compressed memory tier 7; and is equal to the total
time spent serving the faults from Tier 7;.

Generalizing this when N compressed tiers are used, the
performance overhead (perf_ovhyr) can be defined as:

N

perf_ovhyr = Z (Faultry*Latry) (6)
y=1

Here, Faultry is the number of faults the application incurs
from a compressed tier 7;,. However, the model does not have
this information while making the placement decision at the
end of the current profile window, as it cannot estimate the
number of future faults for the application.



In order to estimate the number of faults, the model exploits
the fact that for an application with stable access patterns, the
total number of faults to a data region () in the next profiling
window, if placed in a compressed tier, will be proportional to
the hotness of the data region (Hot,) in the previous profiling
window. Hence, Faultr, is proportional to the sum of the
hotness of all the data regions stored in that tier 7y:

R
Faultyy o ) Hot, 7
r=1

Hence, we use the following equation, which is in terms of
page hotness from the previous profile window, to estimate
the performance overhead:

N R
per foun = Z ( (ky Z Hot,) * LatTy> (8)

y=1 r=I1

Here, ky is a constant factor. For the rest of the paper, we use
ky as 1.

5.2.3 Modeling memory TCO

The memory cost of placing data on a particular tier depends
on the backing media and compressibility of data. The mem-
ory TCO is highest when all the data (measured as 4 KB pages,
P,ot) of an application is in DRAM and is defined as:

TCOmax = Ptor * USDpRAM (9)

Where USDprays is the cost of storing a single 4K page in
DRAM. Similarly, the memory TCO is lowest when all the
data is placed in the best memory TCO savings tier (N):

TCOmin = Pmr * (1/CTN) * USDTN (10)

Where USDy,, is the cost of the media backing the compressed
tier Ty. Cry, is the compressibility ratio of tier Ty defined as:

Cr — Original size of data on Ty (1
v Compressed size of data on Ty

As discussed before, the compressibility of a tier depends on
the compression algorithm, pool manager, and the data.

In an N-Tier system, the memory TCO can be defined as
the sum of the cost to store data in DRAM and the cost to
store data in compressed tiers. It can be defined as:

N

TCONT = PpRAM * USDpram + Y, (P1y * (1/Cry) ¥ USD7y)
y=1

12)

Here, P7y is the number of pages placed in Tier 7;. We use
Equation 8 and Equation 12 to solve Equation 2 as an integer
linear program (or ILP). The number of pages in DRAM
Ppram and pages in each compressed tiers Py, are the opti-
mization variables. The model outputs the final placement of
pages that satisfy the constraints. We then place data on dif-
ferent compressed tiers as per the model’s recommendation.
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Figure 7: A high-level working of TierScape
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5.2.4 Discussion

The model quickly converges to optimal data placement based
on the profiled hotness of the data. Cold data are directly
placed in the most optimal tier as per the constraints instead
of "waterfalling" on multiple tiers. In addition, the user-guided
tunable knob (o) enables fine-tuning memory TCO and per-
formance penalty trade-off.

6 Implementation

6.1 Linux kernel changes

Tier’s backing media: As discussed in Section 4.1, the Linux
kernel configures a compressed memory tier using two param-
eters: the compression algorithm and the pool manager [33].
We augment the zswap subsystem to add a third parameter
to specify a backing media which can be NVMM or CXL-
attached memory. We enhance the kernel to allocate physical
memory only from these backing media when the pool is
created or when the pool dynamically expands to store more
compressed objects.

Multiple active compressed tiers: Linux kernel only sup-
ports a single active zswap tier. Upon creation of a new com-
pressed tier, all new data compression requests are directed to
the newly created tier. The kernel deletes the old tiers if they
are empty. We modify the zswap subsystem to support mul-
tiple active compressed zswap tiers and also allow multiple
compressed tiers to co-exist.

API changes: Once we setup multiple active compressed tiers,
the challenge is to instruct the kernel to send a specific set
of pages to a target tier based on the model recommendation.
For example, the model can recommend placing a few pages
in Tier T2 and a few others in T4. To ensure the placement
of pages in the recommended target tier, we augment the
struct page structure with a tier_id field which is updated
by a modified madvise () function. During page compression,
the zswap module reads this field and places the compressed
page in the intended tier.

The decompression operation remains unchanged. During
a page fault, the handle in the page table entry is used for the
RB-Tree lookup to find the associated swap entry. The swap



entry contains the tier information, including the pool details
and other relevant information to handle the fault [33].

Page migration between tiers: We enhance the kernel to
allow the migration of pages between two compressed tiers.
Currently, we follow a naive approach while migrating pages
between compressed tiers by first decompressing the page
from the source tier and then compressing again and placing
it in the destination tier. This can be further optimized by
skipping the decompression step if the source and destination
tiers use the same compression algorithm.

Tiers statistics: We added support in the zswap subsystem to
collect per-tier statistics such as the number of pages in the
tier, size of the compressed tier, and total faults.

6.2 TS-Daemon

As shown in Figure 7, we implement our TierScape logic as a
daemon (TS-Daemon). TS-Daemon uses the hardware coun-
ters to profile the memory access pattern of an application for
a fixed time window (profile window). Specifically, it uses
Intel PEBS [32] to monitor MEM_INST_RETIRED.ALL_LOADS
and MEM_INST_RETIRED.ALL_STORES. These events report
the virtual address of the page on which the event was gener-
ated [10]. TS-Daemon applies the Waterfall or analytic data
placement model on the collected hotness profile to decide
the destination tiers for the memory regions. Based on the
model’s outcome, TS-Daemon uses the kernel APIs described
above to manage memory placement.

Regions. In order for efficient management of the address
space of an application, TS-Daemon operates at a granularity
of 2 MB regions instead of 4 KB pages as commonly followed
in other memory tiering solutions [46]. The hotness of 2 MB
region is an accumulated value of the hotness of each 4 KB
page in it. TS-Daemon performs data migration to and from
compressed tiers at the granularity of 2 MB regions.

6.3 Data placement models

Waterfall model: We implement the waterfall model in the
TS-Daemon. The input to the model is a hotness threshold
value — Hyj,. The value controls the pages that are to be evicted
from DRAM to Tier 1. TS-Daemon maintains the tier data for
all the regions and uses it to waterfall (demote to the next tier)
the regions at the end of a profile window. A region restarts
its journey from DRAM when it has (or a major portion of it)
been faulted back to DRAM.

Analytical Model We implement the analytical model in
C++ using the OR-Tools from Google [44]. The input to
the model is the hotness profile of the application, tier stats
(e.g., compressibility ratio, cost of the media backing the
compressed tier, and access latency), list of regions, and a
value for the knob (o). The model outputs a recommendation
with a destination tier for each region. We evaluate the model

Table 2: The set of compressed tiers used to evaluate Tier-
Scape.

ID Name Pool manager | Compressor Media
T1 7ZB-L4-DR zbud 1z4 DRAM
T2 ZB-L4-OP zbud 1z4 Optane
T3 ZS-L4-0OP zsmalloc 1z4 Optane
T4 ZS-LO-DR zsmalloc 1zo DRAM
TS ZS-DE-OP zsmalloc deflate Optane

on a separate client system connected via a local network that
uses socket communication to send and receive data.

7 Evaluation

7.1 Configurations

Tiers. For evaluating TierScape, we use DRAM + 5 com-
pressed tiers identified in Section 4.2 — a total of 6 tiers.
Table 2 shows the configuration of the 5 compressed tiers.
For evaluating the 2-Tier system, we use DRAM + one com-
pressed tier, where the configuration for the compressed tier
is the one employed by Google in their production data cen-
ters — zsmalloc as the pool manager, 1zo as the compression
algorithm, and DRAM as the backing storage [36].

TS-Daemon. We use 120 seconds as our profile window du-
ration (as used in the state-of-the-art 2-Tier technique [36]).
We observe that a time window of 120 seconds is sufficient
to stabilize the hotness profile of the pages based on events
generated by the hardware counters. In addition, this time
window provides ample opportunity for TS-Daemon to im-
plement the model’s page placement recommendations with
minimal interruptions to the applications. Each run has a
warm-up window of 100 seconds.

Hotness profile. The hotness of a region is based on the num-
ber of PEBS [32] samples observed during a profile interval.
For the evaluation of 2-Tier system and Waterfall model, we
experiment with three different hotness threshold values (re-
gions with access counts less than the threshold value are
eligible for placement in a compressed tier). The threshold
values are selected to cover around 15-20% (conservative),
40-50% (moderate), and 70-80% (aggressive) of the applica-
tion’s data pages. For example, Memcached uses a threshold
value of 50, 100, and 250, respectively. Hotness statistics are
gathered for pages in DRAM; hotness is not relevant for pages
in compressed pools since they need to be first decompressed
before accessing. For the analytical model, the average hot-
ness value of the region for the past 4 profiling windows is
directly fed into the model.

Model configuration. We use the following 2-Tier and Tier-
Scape configurations for our evaluation.

* 2T (2-Tier system): We experiment with 3 different con-
figurations: conservative (2T-C), moderate (2T-M) and



Table 3: Description of the workloads and configurations.

Workloads Description Input

Memcached [16] | A commercial in-memory object | 44 GB, Value
caching system. size: 4 KB

Redis [17] A commercial in-memory key- | 41 GB, Value
value store. size: 4 KB

BFS [47] Traverse graphs generated by web | Nodes: 100 M
crawlers. Use breadth-first search. Size: 18 GB

PageRank [47] Assign ranks to pages based on pop- | Nodes: 100 M
ularity (used by search engines). Size: 18 GB

XSBench [49] A key computational kernel of the Setting: XL
Monte Carlo neutron transport al- | Size: 119 GB
gorithm

aggressive (2T-A) based on the hotness threshold value.

¢ 6T-WF (6-tier waterfall model): We evaluate with the
same hotness threshold values used above for 2-Tier
setup (6T-WF-C, 6T-WF-M, and 6T-WF-A).

e 6T-AM-« (6-tier analytical model): We evaluate with 3
different values of o: 0.9, 0.5, and 0.1.

7.2 Experiment setup

We use a tiered memory system with Intel Xeon Gold 6252N
with 2 sockets, 24 cores per socket, and 2-way HT for a total
of 96 cores. It has a DRAM-based near-memory tier with
384 GB capacity and a far-memory tier with Intel’s Optane
DC PMM [3] configured in flat mode (i.e., as volatile main
memory) with 1.6 TB capacity. We run Fedora 30 and use a
modified Linux kernel, 5.17.

Table 3 shows the real-world benchmarks and their config-
uration used to evaluate TierScape. We initialize Memcached
and Redis databases with ~42 GB of key-value pairs and then
generate the load in a Gaussian distribution to better mimic
real-life use cases [9]. We use the widely used memtier work-
load generator for load generation [8, 17]. We use PageRank
and BFS from the Ligra suite of graph benchmarks [47]. Input
graphs for both graph workloads are generated using the stan-
dard rMat graph generator [4]. We also use XSBench which is
a key computation kernel of the Monte Carlo neutron transort
algorithm [49]. We use the “XL” setting of the workload,
which generates a memory footprint of 119 GB.

We execute the benchmarks and place the data as recom-
mended by our data placement models. For Memcached and
Redis, we use the throughput and latency numbers reported
by memtier. For PageRank and BFS, we report the geomet-
ric mean of the time taken to execute multiple rounds. For
XSBench, we use the time reported by the benchmark.

To calculate the memory TCO we use Equation 12. We
capture the resident set size (RSS) to compute the cost of
storing pag