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LIPSCHITZ STABILITY FOR AN ELLIPTIC INVERSE
PROBLEM WITH A SINGLE MEASUREMENT

MOURAD CHOULLI AND HIROSHI TAKASE

ABSTRACT. We consider the problem of determining the unknown boundary
values of a solution of an elliptic equation outside a bounded domain B from
the knowledge of the values of this solution on a boundary of an arbitrary
bounded domain surrounding B. We obtain for this inverse problem Lipschitz
stability under an additional hypothesis on the unknown boundary function.
This result can be also interpreted as quantitative uniqueness of continuation
from the Cauchy data on the boundary of the domain surrounding B. Our
analysis also applies to an interior problem.

1. INTRODUCTION AND MAIN RESULTS

Let n be a positive integer. Throughout this text, we use the Einstein summation
convention for quantities with indices. If in any term appears twice, as both an
upper and lower index, that term is assumed to be summed from 1 to n.

Let (gi;) € WH°(R™; R"™™") be a symmetric matrix-valued function satisfying,
for some 6 > 0
(1.1) gi ()8! > Ol @, £ €R™.

Note that (¢*) the matrix inverse to g is uniformly positive definite as well. Let
p € L*(R") and recall that the Laplace-Beltrami operator associated to the metric
tensor g = g;;dx’ ® dx’ is given by

1
V19l
where |g| = det(g).

Let B C R" be a bounded domain with C? boundary. Set B := R™ \ B.
Consider the exterior boundary value problem

{Pu =—-Agu+pu=0 in B,

u = ug on 0B,

Agu = 0; ( |g|gij8ju) ,

(1.2)

where ug € H %(GB). For the sake of generality, we do not assume existence and
uniqueness of solutions of the boundary value problem (L2]). Note however that,
under the assumption p > 0, (L2) admits a unique solution u = u(uo) € H'(B").
This follows by reducing first (L2)) to a boundary value problem with homogeneous
boundary condition and then applying Lax-Milgram lemma to the bilinear form
associated with P. After transforming again (L2) to a boundary value problem
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with homogeneous boundary condition, we apply [4, Theorem 9.25] to obtain that
ue H2(BY).

Let © © B be a bounded domain. We aim to establish Lipschitz stability in-
equality of the determination of the unknown function wg from the measurement
u(ug)jpq- This type of inverse problem setup is common in satellite gravitational
gradiometry, where the gravitational potential of the Earth’s surface is determined
from observations of the gravitational potential and gravity on the satellite orbit
(e.g., Pereverzev-Schock [12] and Freeden-Nashed [8, Chapter 7]).

Besides the fact that B and 0 are disjoint, the main assumption on wug is
|V, up| < M|ug| on OB, for some constant M > 0, where V.. stands for the tangen-
tial gradient. In the general case the best we can expect is a logarithmic stability
(e.g., Choulli [7] and Bellassoued-Choulli [3, Appendix A]). Indeed, it has been
known that the Cauchy problem for elliptic equations is ill-posed in the sense that
there is no hope of obtaining a Lipschitz stability estimate and Hadamard [9] gave
an example in which the stability is exactly logarithmic.

We have similar result for the interior boundary value problem

(1.3)

Pu=0 in B,
u=uy ondB,

when the measurement is made on 0f), with Q € B.

In other settings, Alessandrini-Beretta-Rosset-Vessella [I] and Alessandrini-Rondi-
Rosset-Vessella [2] discuss the logarithmic stability of Cauchy problems for elliptic
equations, which are widely found in inverse boundary value problems modeled by
elliptic equations. Also, Lin-Nakamura-Wang [I1] and Lin-Nagayasu-Wang [10] dis-
cuss the quantitative uniqueness of continuation for elliptic equations with singular
coefficients.

In the following subsection, we state the main theorem for each problem, and its
proof is given in section Bl The proofs are obtained by applying a global Carleman
estimate (see Proposition [Z]) to the boundary value problems. It was originally
developed by Carleman [5] and has a wide range of applications from quantification
of uniqueness of continuation, inverse problems, and control theory for not only
elliptic equations but also evolution equations. Although we do not list all the ref-
erences here, see, for example, Choulli [G] for elliptic Carleman estimates and their
applications to quantification of uniqueness of continuation and inverse problems.

1.1. Main results. Fix M > 0 and define the conditional subset C by
(1.4) C:= {v € H%(BB)’|VTU(:E)| < Mlv(z)| a.e. on BB}.

Theorem 1.1. Let B C R™, Q 3 B be bounded domains with C* boundaries and
set o = (g,p, B,QY, M). Then there exists C = C((p) > 0 such that for any ug € C
we have

ull g1 on ) + ol om)y < C (lullm o) + 19vullz2a0)) »

where u = u(ug) € H*(BY) is a solution of the boundary value problem (LJ) and v
denotes the outer unit normal to 0N2.

Theorem 1.2. Let B C R*, Q € B be bounded domains with C* boundaries and
set o = (g,p, B,Q2, M). Then there exists C = C((p) > 0 such that for any ug € C
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we have
[ull g1 gy + 1ol o3y < C (lullgr ooy + 19vull 200 »

where u = u(ug) € H?(B) is a solution of the boundary value problem (L3J) and v
denotes the outer unit normal to 0N2.

It is worth noting that, under the assumption that 0 is not the eigenvalue of the
operator Au := Pu with domain D(A) = H?(B) N H}(B), [L3) possesses a unique
solution u = u(ug) € H?(B).

2. GLOBAL CARLEMAN ESTIMATE

In this section, we prove a global Carleman estimate with a second large pa-
rameter that can be applied to both exterior problem ([2) and interior problem
([@3). As it was noted by many authors, the role of the second large parameter
is to ensure the so-called Hérmander’s pseudo-convexity condition. The proof is
similar to Choulli [6] in the estimate of terms inside a domain, but the estimate of
boundary terms is original to this paper. For the reader’s convenience, we provide
in this section the detailed proof of our global Carleman inequality.

Let D C R™ be a bounded domain with C* boundary dD and I' C 9D be a
nonempty subboundary. Assume that there exists ¢ € C*(D) satisfying

¢ >0, in D,
d := ming |Ve| > 0.
Let v be the outer unit normal to 0D and recall that the tangential gradient V. is

defined by V,w := Vw — (9,w)v. The surface element on 9D will be denoted by
ds.

Proposition 2.1. Let (; = (g,p, D,T',¢,6), set ¢ := €’® and o := syp. There
exist Y = ¥(C1) > 0, 8% = 84(¢1) > 0 and C = C (1) > 0 such that for any v > s,
s > s. and u € H*(D) we have

C (/ e*a(y|Vul? + yo?|ul*)dz + / 625“"03|u|2d5)
D r

§/ 625“"|Pu|2d:17—|—/ 625“’0(|VU|2+02|U|2)dS+/625“’0|V7u|2d5’.
D dD\T r

Proof. As usual, it suffices to show the inequality when p = 0. For convenience, we
recall the following usual notations

0
6:51-

y 0
= g7 0w —— HY(D
Vow =g 8w8xj’ w e H (D),
[Vowls = (Vyw, Vow) = g” d;wd;jw, w € H' (D),
i 0 i 97V,
vg=(vg)' =—, (vg)' = ===
g ( !]) 8$J ( (]) gkfykyg

Oy, w = (vy, Vow), we H' (D).

;0
Y=Y"—
’ axiv

(X,Y)=g;XY), X=X
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Also, define the tangential gradient V., w with respect to g by
Ve,w = Vow — (9y,w)ry.

We find that |V, w|? = [Vyw|? —|8,,w|* holds.
Let u € H*(D), z := e*fu and Psz := e*?L(e™*?z), where we set L = A,. A

direct calculation yields Pz = P}z + P, z, where

Pfz:= Lz 4 s*|V,0|2z,
P;z:=—25(Vy4p,Vyz) — sLyz.

Let dV,, = \/|g|dz and endow L?(D) with following inner product

(v,w), :z/ uvdVy.
D

The norm associated to this inner product is denoted by || - || -
Hereinafter, the integrals on D are with respect to the measure dV, and those on

0D are with respect to the surface measure dS; = /|g|dS. Integrations by parts
yield

(PSJFZ7P572)Q
:—2/ st(Vggo,ng>—/ sLzLyz
D D
=2 [ TV, V,0) - [ SLelV el
D D
:2/st§go(vgz,vgz)+/Ds<vg<p,vg|vgz|§>+/Dngo|vgz|§
1 .
by [ Vel VolaP)+ [ S dv(Vapl )l - [ LTl
D D D
—2/ s&,gz(Vg(p,ng}—/ s&,gng)z—/ 53|Vgg0|§8yggp|z|2
oD oD oD ’
1
=2 [ V209,59, - 5 [ sl 42 [ S92(T,0. Va0l
D g 2 D D g

—2/ saygz<vg<p,vgz>—/ s&,gngpz—/ 53|Vg<p|§8l,gg0|z|2
oD aD oD ‘

1
—I—/ 58U9¢|ng|§+—/ sy, Ly|z|?,
oD 2 Jop
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and

(P2, —sLip2),
:—/DSLZLQDZ—/DSBL@|VQ@|;2]|Z|2
1
_ /D SL|Vyel2 + 3 /D 5(VyLip, Vol2[?)

—/ S3Lg0|Vg<p|§|z|2—/ 50y,2Lpz
D oD
1
— [ stoi9ys - 5 [ stelal - [ SLoV,oRlP
D D D

1
_/ 38U92L<p2+§/ S@Vngp|Z|2
oD oD

Adding the above equalities yields
(Pf2,P;2)y + (P2, —sLyz),

S

:/Ds[2V§cp(vgz,vgz)+ch|ng|§} —/DSL2(p|Z|2
+ /Ds3 [2V§cp(vgcp, Vo) — ch|Vggo|§} |2|?
—2/ 50,,2(V 4, ng)—2/ sal,gngoz—/ $° Vgl 20y, |27
aD oD aD ‘

—|—/ $0,, 0|V 2|, +/ 0y, Lo|2|.
oD aD
Henceforth, C' = C(¢1) > 0, v+« = 7%(¢1) > 0 and s, = s.((1) > 0 denote generic
constants. By (ZI), we have
IVgolg = C|Ve| = Cd.
Hence
2V20(Vg2,Vgz) + Lo|Vyz|2
=P (2V§¢(ng, ng) + 27|<vg¢7 ng>|2 + L¢|ng|§ + '7|Vg¢|§|v92|§)
>y (2V§¢(nga ng) + L¢|ng|§ + ”Y|Vg¢|§|vgz|§)
> CY%0|Vgzl2, 7 =T,
and
2V0(Vep, Vgp) = Lol Vgoly
= 73903(2V§¢(Vg¢= Vy9) + 7|vg¢|3 - L¢|Vg¢|§)
> 0v®, v 2
In consequence, we get

(P2, Py 2)y + (P2, —sLpz),

S
ZC/ szwIVgZ@JrC/ Sy P =B, v >,
D D
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where

B = 2/ 50,,2(V g0, Vyz) + 2/ 50y,2Lpz
oD oD

+/ 83|Vg<p|§8l,g<p|z|2—/ 58U9¢|ng|§—/ saygL<p|z|2.
oD oD aD

Set
Bap\r := / s {28V92<Vg<p, Vgz) 4 20,,2Lpz
OD\T
+ IV 200, 121 = B0, 01V g2 2 — By, Lipl2l?]
and
Br = /FS {28U92<Vg<p, Vg2) 4 20,,2Lpz
+ 2|V 200, 121 — By, 0 1Vg2 2 — By, Lol2I?]

so that

B = Bap\r + Br.
We check that

Bap\r < C/ s70(IVyzl2 4+ 5°72¢%|2[?).
D\
On the other hand, according to (21I), we have
|ng|§ = |v7—gz|§ + |6ng|27 (Vg,Vgz) = =7¢|V40[40,,z onT

_ V49
and vy = .ol oL I". Whence

Br = /Fs [—27¢|Vg¢|g|8ygz|2 +20,,2Lyz
=270 V40151212 + 19|V lg|Vgzl; — 0, Ll 2]
= [ 5 [=1e1T00lo10n, 2 + 2000, (L0 + 1T g03)2
=570V gol3121% + 19|V golg |V, 2[5 — 80, Lol 2]

< / o [=C|0y,2I* +2(Lo + 7|V 49I3)D,, 22]
I

+ C/ 0|V792|§ +/ [—003 + 0(57390)] |2|?
r r
as s — oo. We note that

2
L¢+7|vg¢|§
—r 17979,

—C0y, 2> + 2(Lo + 7|V y0|2) 0,22 < —C o

20,12
al/gz_ +C’7 |Z|

< 2z

Therefore, we obtain

BF+C/U3|Z|2 < c/(a|ngz|§+sy3¢|z|2)
I I
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and then
BF+C/03|Z|2 < C/0|V792|§, 5> 5.
r r

Combining the estimates above, we get
o ([ otIVys 4102ty + [ o%p)

D r
< (Pf2,P;2)y+ (Pfz,—sLyz), + Bap\r + /F U|V7—QZ|£27
<P+ [ stetlal

D
+/ o(Vy2 2 + 02|2P?) + / o|V. 22 s> s
OD\D r

As the second term in the right-hand side can absorbed by the left-hand side, we

find
o ([ ot19,elz +20%)+ [ 0¥l
D r

<P+ [ VB4 ot + [ olVaalE sz
‘ D\ ‘ r ‘
Since u = e¢™*¢z and V. u = V. z holds by V. ¢ =0, we end up getting
C </ 220 (y|Vul? + vyo?|ul?)dx + / 625“"03|u|2dS)
D r
< [ @oGIVul o) + [ ot lup
D r
S/ e**?| Lul? —|—/ 6255"0(|Vgu|§ + % |ul?) +/e259"0|V79u|3, 5> S,
D D\ r
Equivalently, we have
C </ e*?o(y|Vul? + yo?|u|?)dz + / 625“’03|u|2dS)
D r
< / €2¢| Lu|2de +/ 2% (| Vul? + 02|u[?)dS
D D\
+ / e*%0|V,ul?dS, s> s..
r
The proof is then complete. O

3. PROOFS OF MAIN RESULTS

Before proving Theorem [[.T] and Theorem [[L2] we show that a weight function ¢
satisfying (2.I)) can be constructed for each problem in order to apply Proposition

21
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3.1. Construction of a weight function.

Lemma 3.1. Let B C R” and Q) B be bounded domains with C* boundaries.
Then there exists ¢ € C*(Q\ B) satisfying

$>0, nQ\B

bl =0,

0= minm|v¢| > 0.

Proof. Let Br 2 be an open ball centered at 0 with radius R > 0. Applying [13]
Theorem 9.4.3] for O := Br \ Q C Bg \ B, we obtain the desired function ¢. O

Lemma 3.2. Let B C Ri and Q € B be bounded domains with C* boundaries.
Then there exists ¢ € C*(B) satisfying

>0, inB
¢|BB = 07

Proof. Asin the preceding lemma, we get ¢ with the required properties by applying
[13, Theorem 9.4.3] with O :=Q C B. O

3.2. Proof of Theorem [I.1] and Theorem

Proof of Theorem [ . By Lemma Bl there exist ¢ € C*(Q\ B) such that 1)) is
satisfied for D := Q\ B and I := dB. Fix y > 7., where ~, is given by Proposition
21 Henceforth, C = C(¢y) > 0 denotes a generic constant. Let uy € C and
u = u(up). Applying Proposition 2l to v € H?(D), we get

C(/ 6255"5|Vu|2dx+/ 6255"53|u|2dx+/ 625“’83|u0|2d5’>
D D oB

S/ 625“’(5|Vu|2+53|u|2)d5’+/ e**? 5|V rug|2dS
o9 oB

< O (s 00 + 101l 00y) + M /8 s, sz .

where s, = s.({p) > 0 is a constant.

Upon modifying s,, we may and do assume that Cs> — Ms > 0253. In this case

we have

1
/ e*?s(|Vul* + |ul?)dx + 5/ e*? 5% ug|2dS
D aB

< e (|ullaron) + 10 ullz2o0))?, s> s,

which implies

Cs*(

HUH%P(D) + H’UJOH%%QB) <e lull g a0) + 10vul| L2 (60))?

We complete the proof by using ||Vruol72(55) < Clluoll7z(op)- O
Proof of Theorem[L.4 By Lemma B2} there exist ¢ € C*(B) such that @I is

satisfied for D := B\ Q and I' := dB. The proof completes by applying Proposition
2. as well as the proof of Theorem [I.1} O
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