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LIPSCHITZ STABILITY FOR AN ELLIPTIC INVERSE

PROBLEM WITH A SINGLE MEASUREMENT

MOURAD CHOULLI AND HIROSHI TAKASE

Abstract. We consider the problem of determining the unknown boundary
values of a solution of an elliptic equation outside a bounded domain B from
the knowledge of the values of this solution on a boundary of an arbitrary
bounded domain surrounding B. We obtain for this inverse problem Lipschitz
stability under an additional hypothesis on the unknown boundary function.
This result can be also interpreted as quantitative uniqueness of continuation
from the Cauchy data on the boundary of the domain surrounding B. Our
analysis also applies to an interior problem.

1. Introduction and main results

Let n be a positive integer. Throughout this text, we use the Einstein summation
convention for quantities with indices. If in any term appears twice, as both an
upper and lower index, that term is assumed to be summed from 1 to n.

Let (gij) ∈ W 1,∞(Rn;Rn×n) be a symmetric matrix-valued function satisfying,
for some θ > 0

(1.1) gij(x)ξ
iξj ≥ θ|ξ|2 x, ξ ∈ R

n.

Note that (gij) the matrix inverse to g is uniformly positive definite as well. Let
p ∈ L∞(Rn) and recall that the Laplace-Beltrami operator associated to the metric
tensor g = gijdx

i ⊗ dxj is given by

∆gu :=
1

√

|g|
∂i

(

√

|g|gij∂ju
)

,

where |g| = det(g).

Let B ⊂ R
n be a bounded domain with C2 boundary. Set B

c
:= R

n \ B.
Consider the exterior boundary value problem

(1.2)

{

Pu := −∆gu+ pu = 0 in B
c
,

u = u0 on ∂B,

where u0 ∈ H
3

2 (∂B). For the sake of generality, we do not assume existence and
uniqueness of solutions of the boundary value problem (1.2). Note however that,

under the assumption p ≥ 0, (1.2) admits a unique solution u = u(u0) ∈ H1(B
c
).

This follows by reducing first (1.2) to a boundary value problem with homogeneous
boundary condition and then applying Lax-Milgram lemma to the bilinear form
associated with P . After transforming again (1.2) to a boundary value problem
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with homogeneous boundary condition, we apply [4, Theorem 9.25] to obtain that

u ∈ H2(B
c
).

Let Ω ⋑ B be a bounded domain. We aim to establish Lipschitz stability in-
equality of the determination of the unknown function u0 from the measurement
u(u0)|∂Ω. This type of inverse problem setup is common in satellite gravitational
gradiometry, where the gravitational potential of the Earth’s surface is determined
from observations of the gravitational potential and gravity on the satellite orbit
(e.g., Pereverzev-Schock [12] and Freeden-Nashed [8, Chapter 7]).

Besides the fact that ∂B and ∂Ω are disjoint, the main assumption on u0 is
|∇τu0| ≤ M |u0| on ∂B, for some constant M > 0, where ∇τ stands for the tangen-
tial gradient. In the general case the best we can expect is a logarithmic stability
(e.g., Choulli [7] and Bellassoued-Choulli [3, Appendix A]). Indeed, it has been
known that the Cauchy problem for elliptic equations is ill-posed in the sense that
there is no hope of obtaining a Lipschitz stability estimate and Hadamard [9] gave
an example in which the stability is exactly logarithmic.

We have similar result for the interior boundary value problem

(1.3)

{

Pu = 0 in B,

u = u0 on ∂B,

when the measurement is made on ∂Ω, with Ω ⋐ B.
In other settings, Alessandrini-Beretta-Rosset-Vessella [1] and Alessandrini-Rondi-

Rosset-Vessella [2] discuss the logarithmic stability of Cauchy problems for elliptic
equations, which are widely found in inverse boundary value problems modeled by
elliptic equations. Also, Lin-Nakamura-Wang [11] and Lin-Nagayasu-Wang [10] dis-
cuss the quantitative uniqueness of continuation for elliptic equations with singular
coefficients.

In the following subsection, we state the main theorem for each problem, and its
proof is given in section 3. The proofs are obtained by applying a global Carleman
estimate (see Proposition 2.1) to the boundary value problems. It was originally
developed by Carleman [5] and has a wide range of applications from quantification
of uniqueness of continuation, inverse problems, and control theory for not only
elliptic equations but also evolution equations. Although we do not list all the ref-
erences here, see, for example, Choulli [6] for elliptic Carleman estimates and their
applications to quantification of uniqueness of continuation and inverse problems.

1.1. Main results. Fix M > 0 and define the conditional subset C by

(1.4) C :=
{

v ∈ H
3

2 (∂B)
∣

∣

∣
|∇τv(x)| ≤ M |v(x)| a.e. on ∂B

}

.

Theorem 1.1. Let B ⊂ R
n, Ω ⋑ B be bounded domains with C4 boundaries and

set ζ0 = (g, p, B,Ω,M). Then there exists C = C(ζ0) > 0 such that for any u0 ∈ C
we have

‖u‖H1(Ω\B) + ‖u0‖H1(∂B) ≤ C
(

‖u‖H1(∂Ω) + ‖∂νu‖L2(∂Ω)

)

,

where u = u(u0) ∈ H2(B
c
) is a solution of the boundary value problem (1.2) and ν

denotes the outer unit normal to ∂Ω.

Theorem 1.2. Let B ⊂ R
n, Ω ⋐ B be bounded domains with C4 boundaries and

set ζ0 = (g, p, B,Ω,M). Then there exists C = C(ζ0) > 0 such that for any u0 ∈ C
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we have

‖u‖H1(B\Ω) + ‖u0‖H1(∂B) ≤ C
(

‖u‖H1(∂Ω) + ‖∂νu‖L2(∂Ω)

)

,

where u = u(u0) ∈ H2(B) is a solution of the boundary value problem (1.3) and ν

denotes the outer unit normal to ∂Ω.

It is worth noting that, under the assumption that 0 is not the eigenvalue of the
operator Au := Pu with domain D(A) = H2(B)∩H1

0 (B), (1.3) possesses a unique
solution u = u(u0) ∈ H2(B).

2. Global Carleman estimate

In this section, we prove a global Carleman estimate with a second large pa-
rameter that can be applied to both exterior problem (1.2) and interior problem
(1.3). As it was noted by many authors, the role of the second large parameter
is to ensure the so-called Hörmander’s pseudo-convexity condition. The proof is
similar to Choulli [6] in the estimate of terms inside a domain, but the estimate of
boundary terms is original to this paper. For the reader’s convenience, we provide
in this section the detailed proof of our global Carleman inequality.

Let D ⊂ R
n be a bounded domain with C4 boundary ∂D and Γ ⊂ ∂D be a

nonempty subboundary. Assume that there exists φ ∈ C4(D) satisfying

(2.1)











φ > 0, in D,

φ|Γ = 0,

δ := minD |∇φ| > 0.

Let ν be the outer unit normal to ∂D and recall that the tangential gradient ∇τ is
defined by ∇τw := ∇w − (∂νw)ν. The surface element on ∂D will be denoted by
dS.

Proposition 2.1. Let ζ1 = (g, p,D,Γ, φ, δ), set ϕ := eγφ and σ := sγϕ. There

exist γ∗ = γ∗(ζ1) > 0, s∗ = s∗(ζ1) > 0 and C = C(ζ1) > 0 such that for any γ ≥ γ∗,

s ≥ s∗ and u ∈ H2(D) we have

C

(
∫

D

e2sϕσ(γ|∇u|2 + γσ2|u|2)dx +

∫

Γ

e2sϕσ3|u|2dS

)

≤

∫

D

e2sϕ|Pu|2dx+

∫

∂D\Γ

e2sϕσ(|∇u|2 + σ2|u|2)dS +

∫

Γ

e2sϕσ|∇τu|
2dS.

Proof. As usual, it suffices to show the inequality when p = 0. For convenience, we
recall the following usual notations

〈X,Y 〉 = gijX
iY j , X = X i ∂

∂xi

, Y = Y i ∂

∂xi

,

∇gw = gij∂iw
∂

∂xj

, w ∈ H1(D),

|∇gw|
2
g = 〈∇gw,∇gw〉 = gij∂iw∂jw, w ∈ H1(D),

νg = (νg)
i ∂

∂xj

, (νg)
i =

gijνj
√

gkℓνkνℓ

∂νgw = 〈νg,∇gw〉, w ∈ H1(D).
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Also, define the tangential gradient ∇τgw with respect to g by

∇τgw := ∇gw − (∂νgw)νg .

We find that |∇τgw|
2
g = |∇gw|

2
g − |∂νgw|

2 holds.

Let u ∈ H2(D), z := esϕu and Psz := esϕL(e−sϕz), where we set L = ∆g. A
direct calculation yields Pz = P+

s z + P−
s z, where

{

P+
s z := Lz + s2|∇gϕ|

2
gz,

P−
s z := −2s〈∇gϕ,∇gz〉 − sLϕz.

Let dVg =
√

|g|dx and endow L2(D) with following inner product

(v, w)g :=

∫

D

uvdVg.

The norm associated to this inner product is denoted by ‖ · ‖g.
Hereinafter, the integrals on D are with respect to the measure dVg and those on

∂D are with respect to the surface measure dSg =
√

|g|dS. Integrations by parts
yield

(P+
s z, P−

s z)g

= −2

∫

D

sLz〈∇gϕ,∇gz〉 −

∫

D

sLzLϕz

− 2

∫

D

s3|∇gϕ|
2
gz〈∇gϕ,∇gz〉 −

∫

D

s3Lϕ|∇gϕ|
2
g|z|

2

= 2

∫

D

s∇2
gϕ(∇gz,∇gz) +

∫

D

s〈∇gϕ,∇g|∇gz|
2
g〉+

∫

D

sLϕ|∇gz|
2
g

+
1

2

∫

D

s〈∇gLϕ,∇g|z|
2〉+

∫

D

s3 div(|∇gϕ|
2
g∇gϕ)|z|

2 −

∫

D

s3Lϕ|∇gϕ|
2
g|z|

2

− 2

∫

∂D

s∂νgz〈∇gϕ,∇gz〉 −

∫

∂D

s∂νgzLϕz −

∫

∂D

s3|∇gϕ|
2
g∂νgϕ|z|

2

= 2

∫

D

s∇2
gϕ(∇gz,∇gz)−

1

2

∫

D

sL2ϕ|z|2 + 2

∫

D

s3∇2
gϕ(∇gϕ,∇gϕ)|z|

2

− 2

∫

∂D

s∂νgz〈∇gϕ,∇gz〉 −

∫

∂D

s∂νgzLϕz −

∫

∂D

s3|∇gϕ|
2
g∂νgϕ|z|

2

+

∫

∂D

s∂νgϕ|∇gz|
2
g +

1

2

∫

∂D

s∂νgLϕ|z|
2,
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and

(P+
s z,−sLϕz)g

= −

∫

D

sLzLϕz −

∫

D

s3Lϕ|∇gϕ|
2
g|z|

2

=

∫

D

sLϕ|∇gz|
2
g +

1

2

∫

D

s〈∇gLϕ,∇g|z|
2〉

−

∫

D

s3Lϕ|∇gϕ|
2
g|z|

2 −

∫

∂D

s∂νgzLϕz

=

∫

D

sLϕ|∇gz|
2
g −

1

2

∫

D

sL2ϕ|z|2 −

∫

D

s3Lϕ|∇gϕ|
2
g|z|

2

−

∫

∂D

s∂νgzLϕz +
1

2

∫

∂D

s∂νgLϕ|z|
2

Adding the above equalities yields

(P+
s z, P−

s z)g + (P+
s z,−sLϕz)g

=

∫

D

s
[

2∇2
gϕ(∇gz,∇gz) + Lϕ|∇gz|

2
g

]

−

∫

D

sL2ϕ|z|2

+

∫

D

s3
[

2∇2
gϕ(∇gϕ,∇gϕ)− Lϕ|∇gϕ|

2
g

]

|z|2

− 2

∫

∂D

s∂νgz〈∇gϕ,∇gz〉 − 2

∫

∂D

s∂νgzLϕz −

∫

∂D

s3|∇gϕ|
2
g∂νgϕ|z|

2

+

∫

∂D

s∂νgϕ|∇gz|
2
g +

∫

∂D

s∂νgLϕ|z|
2.

Henceforth, C = C(ζ1) > 0, γ∗ = γ∗(ζ1) > 0 and s∗ = s∗(ζ1) > 0 denote generic
constants. By (2.1), we have

|∇gφ|g ≥ C|∇φ| ≥ Cδ.

Hence

2∇2
gϕ(∇gz,∇gz) + Lϕ|∇gz|

2
g

= γϕ
(

2∇2
gφ(∇gz,∇gz) + 2γ|〈∇gφ,∇gz〉|

2 + Lφ|∇gz|
2
g + γ|∇gφ|

2
g|∇gz|

2
g

)

≥ γϕ
(

2∇2
gφ(∇gz,∇gz) + Lφ|∇gz|

2
g + γ|∇gφ|

2
g|∇gz|

2
g

)

≥ Cγ2ϕ|∇gz|
2
g, γ ≥ γ∗,

and

2∇2
gϕ(∇gϕ,∇gϕ)− Lϕ|∇gϕ|

2
g

= γ3ϕ3(2∇2
gφ(∇gφ,∇gφ) + γ|∇gφ|

4
g − Lφ|∇gφ|

2
g)

≥ Cγ4ϕ3, γ ≥ γ∗.

In consequence, we get

(P+
s z, P−

s z)g + (P+
s z,−sLϕz)g

≥ C

∫

D

sγ2ϕ|∇gz|
2
g + C

∫

D

s3γ4ϕ3|z|2 − B, γ ≥ γ∗,
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where

B := 2

∫

∂D

s∂νgz〈∇gϕ,∇gz〉+ 2

∫

∂D

s∂νgzLϕz

+

∫

∂D

s3|∇gϕ|
2
g∂νgϕ|z|

2 −

∫

∂D

s∂νgϕ|∇gz|
2
g −

∫

∂D

s∂νgLϕ|z|
2.

Set

B∂D\Γ :=

∫

∂D\Γ

s
[

2∂νgz〈∇gϕ,∇gz〉+ 2∂νgzLϕz

+ s2|∇gϕ|
2
g∂νgϕ|z|

2 − ∂νgϕ|∇gz|
2
g − ∂νgLϕ|z|

2
]

and

BΓ :=

∫

Γ

s
[

2∂νgz〈∇gϕ,∇gz〉+ 2∂νgzLϕz

+ s2|∇gϕ|
2
g∂νgϕ|z|

2 − ∂νgϕ|∇gz|
2
g − ∂νgLϕ|z|

2
]

so that

B = B∂D\Γ + BΓ.

We check that

B∂D\Γ ≤ C

∫

∂D\Γ

sγϕ(|∇gz|
2
g + s2γ2ϕ2|z|2).

On the other hand, according to (2.1), we have

|∇gz|
2
g = |∇τgz|

2
g + |∂νgz|

2, 〈∇gϕ,∇gz〉 = −γϕ|∇gφ|g∂νgz on Γ

and νg = −
∇gφ

|∇gφ|g
on Γ. Whence

BΓ =

∫

Γ

s
[

−2γϕ|∇gφ|g|∂νgz|
2 + 2∂νgzLϕz

−s2γ3ϕ3|∇gφ|
3
g|z|

2 + γϕ|∇gφ|g|∇gz|
2
g − ∂νgLϕ|z|

2
]

=

∫

Γ

s
[

−γϕ|∇gφ|g|∂νgz|
2 + 2γϕ∂νgz(Lφ+ γ|∇gφ|

2
g)z

−s2γ3ϕ3|∇gφ|
3
g|z|

2 + γϕ|∇gφ|g|∇τgz|
2
g − ∂νgLϕ|z|

2
]

≤

∫

Γ

σ
[

−C|∂νgz|
2 + 2(Lφ+ γ|∇gφ|

2
g)∂νgzz

]

+ C

∫

Γ

σ|∇τgz|
2
g +

∫

Γ

[

−Cσ3 +O(sγ3ϕ)
]

|z|2

as s → ∞. We note that

−C|∂νgz|
2 + 2(Lφ+ γ|∇gφ|

2
g)∂νgzz ≤ −C

∣

∣

∣

∣

∣

∂νgz −
Lφ+ γ|∇gφ|

2
g

C
z

∣

∣

∣

∣

∣

2

+ Cγ2|z|2

≤ Cγ2|z|2.

Therefore, we obtain

BΓ + C

∫

Γ

σ3|z|2 ≤ C

∫

Γ

(σ|∇τgz|
2
g + sγ3ϕ|z|2)
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and then

BΓ + C

∫

Γ

σ3|z|2 ≤ C

∫

Γ

σ|∇τgz|
2
g, s ≥ s∗.

Combining the estimates above, we get

C

(
∫

D

σ(γ|∇gz|
2
g + γσ2|z|2) +

∫

Γ

σ3|z|2
)

≤ (P+
s z, P−

s z)g + (P+
s z,−sLϕz)g + B∂D\Γ +

∫

Γ

σ|∇τgz|
2
g

≤ ‖Psz‖
2
g +

∫

D

s2γ4ϕ2|z|2

+

∫

∂D\Γ

σ(|∇gz|
2
g + σ2|z|2) +

∫

Γ

σ|∇τgz|
2
g, s ≥ s∗.

As the second term in the right-hand side can absorbed by the left-hand side, we
find

C

(
∫

D

σ(γ|∇gz|
2
g + γσ2|z|2) +

∫

Γ

σ3|z|2
)

≤ ‖Psz‖
2
g +

∫

∂D\Γ

σ(|∇gz|
2
g + σ2|z|2) +

∫

Γ

σ|∇τgz|
2
g, s ≥ s∗.

Since u = e−sϕz and ∇τgu = ∇τgz holds by ∇τgφ = 0, we end up getting

C

(
∫

D

e2sϕσ(γ|∇u|2 + γσ2|u|2)dx+

∫

Γ

e2sϕσ3|u|2dS

)

≤

∫

D

e2sϕσ(γ|∇gu|
2
g + γσ2|u|2) +

∫

Γ

e2sϕσ3|u|2

≤

∫

D

e2sϕ|Lu|2 +

∫

∂D\Γ

e2sϕσ(|∇gu|
2
g + σ2|u|2) +

∫

Γ

e2sϕσ|∇τgu|
2
g, s ≥ s∗.

Equivalently, we have

C

(
∫

D

e2sϕσ(γ|∇u|2 + γσ2|u|2)dx+

∫

Γ

e2sϕσ3|u|2dS

)

≤

∫

D

e2sϕ|Lu|2dx+

∫

∂D\Γ

e2sϕσ(|∇u|2 + σ2|u|2)dS

+

∫

Γ

e2sϕσ|∇τu|
2dS, s ≥ s∗.

The proof is then complete. �

3. Proofs of main results

Before proving Theorem 1.1 and Theorem 1.2, we show that a weight function φ

satisfying (2.1) can be constructed for each problem in order to apply Proposition
2.1.
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3.1. Construction of a weight function.

Lemma 3.1. Let B ⊂ R
n and Ω ⋑ B be bounded domains with C4 boundaries.

Then there exists φ ∈ C4(Ω \B) satisfying










φ > 0, in Ω \B

φ|∂B = 0,

δ := min
Ω\B

|∇φ| > 0.

Proof. Let BR ⋑ Ω be an open ball centered at 0 with radius R > 0. Applying [13,
Theorem 9.4.3] for O := BR \ Ω ⊂ BR \B, we obtain the desired function φ. �

Lemma 3.2. Let B ⊂ R
n and Ω ⋐ B be bounded domains with C4 boundaries.

Then there exists φ ∈ C4(B) satisfying










φ > 0, in B

φ|∂B = 0,

δ := min
B\Ω |∇φ| > 0.

Proof. As in the preceding lemma, we get φ with the required properties by applying
[13, Theorem 9.4.3] with O := Ω ⊂ B. �

3.2. Proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. By Lemma 3.1, there exist φ ∈ C4(Ω \B) such that (2.1) is
satisfied for D := Ω \B and Γ := ∂B. Fix γ > γ∗, where γ∗ is given by Proposition
2.1. Henceforth, C = C(ζ0) > 0 denotes a generic constant. Let u0 ∈ C and
u = u(u0). Applying Proposition 2.1 to u ∈ H2(D), we get

C

(
∫

D

e2sϕs|∇u|2dx+

∫

D

e2sϕs3|u|2dx+

∫

∂B

e2sϕs3|u0|
2dS

)

≤

∫

∂Ω

e2sϕ(s|∇u|2 + s3|u|2)dS +

∫

∂B

e2sϕs|∇τu0|
2dS

≤ eCs(‖u‖2H1(∂Ω) + ‖∂νu‖
2
L2(∂Ω)) +M

∫

∂B

e2sϕs|u0|
2dS, s ≥ s∗,

where s∗ = s∗(ζ0) > 0 is a constant.

Upon modifying s∗, we may and do assume that Cs3 −Ms > Cs3

2 . In this case
we have

∫

D

e2sϕs(|∇u|2 + |u|2)dx +
1

2

∫

∂B

e2sϕs3|u0|
2dS

≤ eCs(‖u‖H1(∂Ω) + ‖∂νu‖L2(∂Ω))
2, s ≥ s∗,

which implies

‖u‖2H1(D) + ‖u0‖
2
L2(∂B) ≤ eCs∗(‖u‖H1(∂Ω) + ‖∂νu‖L2(∂Ω))

2.

We complete the proof by using ‖∇τu0‖
2
L2(∂B) ≤ C‖u0‖

2
L2(∂B). �

Proof of Theorem 1.2. By Lemma 3.2, there exist φ ∈ C4(B) such that (2.1) is
satisfied for D := B \Ω and Γ := ∂B. The proof completes by applying Proposition
2.1 as well as the proof of Theorem 1.1. �
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