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NORMALIZED GROUNDED STATES FOR A COUPLED NONLINEAR
SCHRÖDINGER SYSTEM IN R

3

CHENGCHENG WU

Abstract. We investigate the existence of normalized ground states to system of coupled Schrödinger equa-

tions:

(0.1)







−∆u1 + λ1u1 = µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 in R3,

−∆u2 + λ2u2 = µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2 in R3,

subject to the constraint Sa1 × Sa2 = {u1 ∈ H1(R3)|
∫

R3 u2

1
dx = a2

1
} × {u2 ∈ H1(R3)|

∫

R3 u2

2
dx = a2

2
}, where

µ1, µ2 > 0, r1, r2 > 1, and β ≥ 0. Our focus is on the coupled mass super-critical case, specifically,

10

3
< p1, p2, r1 + r2 < 2∗ = 6.

We demonstrate that there exists a β̃ ≥ 0 such that equation (0.1) admits positive, radially symmetric, nor-

malized ground state solutions when β > β̃. Furthermore, this result can be generalized to systems with an

arbitrary number of components under some assumptions, and the corresponding standing wave is orbitally

unstable.

Keywords:Nonlinear Schrödinger system; normalized solution; variational methods.
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1 Introduction

This article investigates the existence of normalized ground state solutions to the coupled nonlinear

Schrödinger equations:

(1.1)







−∆u1 + λ1u1 = µ1|u1|
p1−2u1 + βr1|u1|

r1−2u1|u2|
r2 in R

3,

−∆u2 + λ2u2 = µ2|u2|
p2−2u2 + βr2|u1|

r1 |u2|
r2−2u2 in R

3,

subject to the constraint (u1, u2) ∈ Sa1
× Sa2

, where λ1 and λ2 are interpreted as Lagrange multipliers.

Parameters µ1, µ2 > 0, r1, r2 > 1, a1, a2 > 0, and β ≥ 0 are defined accordingly. These equations arise

from the study of solitary waves for the system of coupled Schrödinger equations:

(1.2)















−ι ∂
∂t
Φj = ∆Φj + µj |Φj |

pj−2
Φj +

∑

i6=j βijrj |Φi|
ri |Φj |

rj−2Φj (x, t) ∈ R
3 × R,

Φj = Φj(x, t) ∈ C, j = 1, . . . , k,

Φj(x, t) → 0 as |x| → +∞.

Here, µj > 0 represents the self-focusing effect within the jth beam component, while βij denotes the inter-

action strength between the ith and jth components, with attractive or repulsive interactions depending on

the sign of βij . The system (1.2) is applicable in various physical contexts, particularly in nonlinear optics.

Furthermore, it is analogous to the Hartree–Fock theory describing a binary Bose-Einstein condensate in

distinct hyperfine states(cf. [16]).
1
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To obtain solitary wave solutions of system (1.2), we assume Φj(x, t) = eiλj tuj(x), which allows us to

convert the system into a set of steady-state, N-coupled nonlinear Schrödinger equations given by

(1.3)







∆uj − λjuj + µj |uj |pj−2uj +
∑

i6=j rjβij |ui|ri |uj |rj−2uj = 0 in R3

uj(x) ∈ H1(R3)
j = 1, . . . , k.

We make the assumption that βij = βji ≥ 0 for all i 6= j, and fix µi > 0. There are two viable approaches:

one can either consider the frequencies λi as constant or incorporate them as unknown variables, prescribing

the masses accordingly. The latter approach is particularly compelling from a physical perspective, as it

treats λi as Lagrange multipliers associated with the mass constraint.

The issue of fixed λi has been extensively researched over the past decade. For systems with two

components and the existence of positive solutions (i.e., u1, u2 > 0 in R
3), the understanding is relatively

comprehensive. Interested readers are referred to the literature, including [1, 2, 3, 4, 9, 10, 13, 14, 15, 20,

21, 22, 23, 24, 26, 27, 28, 29, 30, 31] and their citations.

In contrast, fewer studies have addressed the existence of normalized solutions. References on this

topic include [5, 6, 7, 8, 11, 17, 18], among others. Specifically, only the works [6, 11, 17, 18] tackle the

issue of normalized solutions for system (1.3) with βij > 0.

We define the sets Daj
= {u ∈ H1(R3)|

∫

R3 u
2 dx 6 a2j}, ∂Daj

= Saj
= {u ∈ H1(R3)|

∫

R3 u
2 dx = a2j},

and u = (u1, u2, . . . , uk) and β = (β12, . . . , β1k, . . . , βk−1k). Additionally, (H1(R3))k denotes the Cartesian

product of H1(R3) with itself k times.

The constrained energy functional is given by

(1.4) Eβ(u) =
1

2

k
∑

j=1

∫

R3

|∇uj |
2 dx−

k
∑

j=1

µj

pj

∫

R3

|uj |
pj dx−

k
∑

i,j=1,i6=j

βij

∫

R3

|ui|
ri |uj |

rj dx.

Since Eβ(u) is unbounded on Sa1
× . . .× Sak

, we utilize the Pohozaev-Nehari identity:

Jβ(u) =
k

∑

j=1

∫

R3

|∇uj |
2 dx−

k
∑

j=1

3µj(pj − 2)

2pj

∫

R3

|uj |
pj dx

−
k

∑

i,j=1,i6=j

3βij(ri + rj − 2)

2

∫

R3

|ui|
ri |uj |

rj dx.(1.5)

We will show that all solutions to (1.3) satisfy (1.5). The set Mβ is defined as {u ∈ (H1(R3))k\{0}|Jβ(u) =

0}, where u 6= 0 indicates that at least one uj 6= 0. A normalized ground state solution to (1.3) is a

nontrivial solution that minimizes Eβ(u) among all nontrivial solutions. Specifically, if u solves (1.3) and

Eβ(u) = infSa1×...×Sak
∩Mβ

Eβ, then u is a normalized ground state solution.

We examine the scalar problem defined by the following system of equations:

(1.6)







−△w + λw = µ|w|p−2w in R
3,

∫

R3 w
2 dx = a2.

According to [19], this system has a unique positive solution, denoted by wa,µ,p. Additionally, wa,µ,p

belongs to the set P(a, µ, p) and satisfies Ia,µ,p(wa,µ,p) = infw∈P(a,µ,p) Ia,µ,p(w), where

P(a, µ, p) = {w ∈ Sa :

∫

R3

|∇w|2 dx =
3(p− 2)µ

2p

∫

R3

|w|p dx}

2



and

Ia,µ,p(w) =
1

2

∫

R3

|∇w|2 dx−
µ

p

∫

R3

|w|p dx.

Furthermore, we define ℓ(a, µ, p) := Ia,µ,p(wa,µ,p) > 0.

1.1 Case: k=2

Firstly, we examine the scenario where k = 2, and equation (1.3) is equivalent to (1.1).

For the case p1 = p2 = 4 and r1 = r2 = 2, [6] demonstrated the existence of a normalized solution with

Morse index 2 when β is less than a certain positive constant. Additionally, they showed the existence

of a mountain pass solution on the constraint, which also represents a normalized ground state solution

when β exceeds a fixed positive constant. [11] verified the existence of a normalized solution for β across

a wide range, employing a novel method based on the fixed point index in cones, bifurcation theory, and

the continuation method. However, they did not confirm whether the normalized solution corresponds to

a ground state. Under the following conditions:

(H0)N ≥ 1, 1 < p, q < 2 + 4
N
, r1, r2 > 1, 2 + 4

N
< r1 + r2 < 2∗;

(H1)N ≥ 1, 2 + 4
N

< p, q < 2∗, r1, r2 > 1, r1 + r2 < 2 + 4
N
, [17] obtained a multiplicity result.

Recently, [18] established the existence of normalized ground state solutions for Equation (1.1) in the

mass super-critical case, specifically for 2 + 4
N

< p1, p2, r1 + r2 < 2∗, where 1 6 N 6 4, with 2∗ denoting

the critical Sobolev index and 2 + 4
N

the mass subcritical index. However, the parameters r1 and r2 were

required to meet the conditions 1 < r1 6 2 or 1 < r2 6 2. Motivated by [12], this paper introduces a

distinct approach for investigating the existence of normalized ground state solutions, and our findings

generalize those of [18] for N = 3. Furthermore, our approach requires only that r1, r2 > 1 and r1+r2 < 6,

indicating a relaxation of the conditions on r1 and r2 compared to [18].

We define γ(β) = infDa1×Da2∩Mβ
Eβ(u1, u2). We present the main results below.

Theorem 1.1. Assume that 10
3
< p1, p2, r1 + r2 < 6 with r1, r2 > 1. There exists a non-negative constant

β̃. The function γ(β) and β̃ possess the following characteristics:

(i) γ(β) is continuously defined on [0,∞);

(ii) For β ∈ [0, β̃], γ(β) is given by min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}, and it is strictly decreasing on

(β̃,∞);

(iii) As β → ∞, γ(β) → 0.

Theorem 1.2. Assume that 10
3
< p1, p2, r1 + r2 < 6 and r1, r2 > 1. Then equation 1.1 possesses positive,

radially symmetric, normalized ground state solutions (λ1, λ2, u1, u2) for β > β̃.

Remark 1.3. β̃ is a fixed constant. According to [18, Theorem 2.2], we can obtain the concrete value of β̃

under some assumptions.

Theorem 1.4. Assume that 10
3

< p1, p2, r1 + r2 < 6 and r1, r2 > 1. Let β > β̃ and consider a sequence

βn → β with βn > β̃. There exists (u1,n, u2,n) ∈ Sa1
× Sa2

∩ Mβn
that achieves the minimum energy

Eβn
(u1,n, u2,n) = γ(βn). Then (u1,n, u2,n) is a Palais-Smale sequence for the functional Eβ restricted to

Sa1
× Sa2

. Moreover, there is a normalized ground state solution (u1, u2) of Eβ such that (u1,n, u2,n) →

(u1, u2) in H1(R3)×H1(R3) up to a subsequence.
3



We define the set Kβ = {(u1, u2)|(u1, u2) ∈ Sa1
× Sa2

∩ Mβ , Eβ(u1, u2) = γ(β)}. It follows that

Kβ ⊆ H1
r (R

3) × H1
r (R

3) and, according to Theorem 1.4, Kβ is compact. The expressions for d1(β) and

d̂1(β) are given by

d1(β) = inf
(u1,u2)∈Kβ

∫

R3

|u1|
r1 |u2|

r2 dx = min
(u1,u2)∈Kβ

∫

R3

|u1|
r1 |u2|

r2 dx,

d̂1(β) = sup
(u1,u2)∈Kβ

∫

R3

|u1|
r1 |u2|

r2 dx = max
(u1,u2)∈Kβ

∫

R3

|u1|
r1 |u2|

r2 dx.

The functions d1(β) and d̂1(β) are well-defined for β ∈ (β̃,∞).

Theorem 1.5. Assume that 10
3
< p1, p2, r1 + r2 < 6 and r1, r2 > 1. Then γ(β) is differentiable at almost

everywhere β ∈ (β̃,+∞). Furthermore, for β0 ∈ (β̃,+∞),

lim
β→β+

0

γ(β)− γ(β0)

β − β0

= −d̂1(β0), lim
β→β−

0

γ(β)− γ(β0)

β − β0

= −d1(β0).

In particular, d1(β0) = d̂1(β0) ⇔ γ(β) is differentiable at β0 and γ
′

(β0) = −d1(β0).

Theorem 1.6. Assume that 10
3

< p1, p2, r1 + r2 < 6 and r1, r2 > 1. Let (u1,β, u2,β) be the normalized

ground state solution of Eβ for β > β̃. If λ1(β) and λ2(β) are the Lagrange multipliers associated with

(u1,β , u2,β), then

(i) λ1(β) and λ2(β) are continuous on (β̃,∞) and are strictly positive;

(ii) as β → ∞, λ1(β) → 0 and λ2(β) → 0.

1.2 Case: k=3

In the case where k = 3, it has been shown by [6] that when p1 = p2 = p3 = p4 = 4 and r1 = r2 =

r3 = 2, a normalized solution exists for βij , 1 6 i < j 6 3, sufficiently small. This result was established

using an implicit function argument. Moreover, [6] proved the existence of a mountain pass solution within

a certain range of (β12, β13, β23). In this work, we build upon these findings from [6] to provide further

insights.

For the sake of simplicity, we take ℓ(a1, µ1, p1) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. An

analogous consideration applies to the other instances. We define

γ123(β) = inf
Da1×Da2×Da3∩Mβ

Eβ(u),

where β = (β12, β13, β23) and u = (u1, u2, u3). We introduce the notation

γij(βij) = inf
Da1×Da2∩Mβij

Eβij
(ui, uj),

with β̃ij as defined in Theorem 1.1 for the functional Eβij
(ui, uj), for 1 6 i < j 6 3. We denote

Ξ = {(β12, β13, β23)|β12, β13, β23 > 0}.

According to Theorem 1.1, there is a β̄23 > 0 for which γ(β̄23) = ℓ(a1, µ1, p1).
4



Theorem 1.7. Suppose 10
3
< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6 and r1, r2, r3 > 1. Then, the function

γ123(β) has the following characteristics:

(i) γ123(β) is continuous over the set Ξ;

(ii) As |β| → ∞, where |β| = (β2
12 + β2

13 + β2
23)

1
2 , we have γ123(β) → 0;

(iii) Let ℓ(a1, µ1, p1) = min {ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. Then, the following holds:































γ123(β12, 0, 0) = γ12(β12)

γ123(0, β13, 0) = γ13(β13)

γ123(0, 0, β23) =







ℓ(a1, µ1, p1) for 0 6 β23 6 β̄23

γ(β23) for β23 > β̄23.

Let Ω = {(β12, β13, β23)|γ123(β12, β13, β23) < γij(βij), 1 ≤ i < j ≤ 3}.

Theorem 1.8. Suppose 10
3
< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6, with r1, r2, r3 > 1, and ℓ(a1, µ1, p1) =

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. Furthermore, if there exists j ∈ {1, 2, 3} such that rj < 2,

then:

(i) Ω is a non-empty, unbounded, simply connected open subset of Ξ;

(ii) Equation 1.3 has positive radially symmetric normalized ground state solutions (λ1, λ2, λ3, u1, u2, u3)

for β ∈ Ω.

Remark 1.9. Under the same hypotheses as above but with r1 = r2 = r3 = 2, and for (β12, β13, β23) ∈

(β̃12,+∞) × (β̃13,+∞) × (β̄23,+∞), assume the existence of (u2, u3), (ū1, ū2), and (ũ1, ũ3) such that

γ23(β23) = Eβ23
(u2, u3), γ12(β12) = Eβ12

(ū1, ū2), and γ13(β13) = Eβ13
(ũ1, ũ3). By analogy with the proof

of [18, Theorem 7.2], to establish Ω 6= ∅, one must find (β12, β13, β23) satisfying the following three

inequalities for h ∈ H1(R3) \ {0}:

(i) − 1
2
∆h < β12|u2|

2h− β13|u3|
2h in R

3;

(ii) − 1
2
∆h < β12|ū2|

2h− β23|ū3|
2h in R

3;

(iii) − 1
2
∆h < β12|ũ2|

2h−β23|ũ3|
2h in R

3. We indetermination the existence of (β12, β13, β23) satisfying

three inequations.

Theorem 1.10. Suppose 10
3
< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6, with r1, r2, r3 > 1, and ℓ(a1, µ1, p1) =

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. Furthermore, there exists j ∈ {1, 2, 3} such that rj < 2. If

β ∈ Ω and βn ∈ Ω converge to β in R
3, then there exist sequences un = (u1,n, u2,n, u3,n) such that

Eβn
(un) = γ123(βn). Consequently, we can obtain u = (u1, u2, u3) in (H1(R3))3 such that un, up to a

subsequence, converges to u and Eβ(u) = γ(β).

We define the set Kβ = {(u1, u2, u3)|(u1, u2, u3) ∈ Sa1
×Sa2

×Sa3
∩Mβ, Eβ(u1, u2, u3) = γ(β)}, and

which is a subset of H1
r (R

3)×H1
r (R

3)×H1
r (R

3). By Theorem 1.10, it is established that Kβ is compact.

The following quantities are defined for 1 ≤ i < j ≤ 3:

cij(β) = inf
u∈Kβ

∫

R3

|ui|
ri |uj |

rjdx = min
u∈Kβ

∫

R3

|ui|
ri |uj |

rjdx

and

ĉij(β) = sup
u∈Kβ

∫

R3

|ui|
ri |uj |

rjdx = max
u∈Kβ

∫

R3

|ui|
ri |uj |

rjdx.
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Theorem 1.11. Suppose 10
3
< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6, with r1, r2, r3 > 1, and ℓ(a1, µ1, p1) =

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. Furthermore, there exists j ∈ {1, 2, 3} such that rj < 2. The

partial derivatives of γ(β) exist almost everywhere β ∈ Ω. Furthermore,

lim
δβij→0+

γ(β + δβij)− γ(β)

δβij

= −ĉij(β)

and

lim
δβij→0−

γ(β + δβij)− γ(β)

δβij

= −cij(β).

Here δβ12 = (δβ12, 0, 0), δβ13 = (0, δβ13, 0), δβ23 = (0, 0, δβ23) and 1 6 i < j 6 3.

Specifically, cij(β) = ĉij(β) ⇔ the partial derivative of γ(β) with respect to βij at β0 exists and
∂γ(β)
∂βij

= −cij(β).

Theorem 1.12. Suppose 10
3
< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6, with r1, r2, r3 > 1, and ℓ(a1, µ1, p1) =

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. Furthermore, there exists j ∈ {1, 2, 3} such that rj < 2. Let

(u1,β , u2,β , u3,β) be a normalized ground state solution of Eβ for β ∈ Ω. Let λ1(β), λ2(β) and λ3(β) be

Lagrange multipliers of (u1,β, u2,β , u3,β). Then

(i) λ1(β), λ2(β) and λ3(β) are continuous on Ω. Moreover, λ1(β), λ2(β), λ3(β) > 0;

(ii) λ1(β), λ2(β), λ3(β) → 0 as |β| → +∞.

1.3 Case: k>3

We can extend Theorems 1.7, 1.8, 1.10, 1.11, and 1.12 to the corresponding versions of Equation (1.3)

for k > 3. However, the corresponding results are omitted here for simplicity.

Let us proceed to investigate the orbital stability of solitary waves for the system

−i
∂

∂t
Φj = ∆Φj + µj|Φj |

pj−2Φj +
∑

i6=j

βijrj |Φi|
ri |Φj |

rj−2Φj , (x, t) ∈ R
3 × R, j = 1, . . . , k,

which are associated with the solutions obtained in Theorem 1.8, or Theorem 1.2 when k = 2. By [5,

Theorem 1.8], the following theorem can be established.

Theorem 1.13. Let k > 2. Suppose (λ1, . . . , λk, u1, . . . , uk) represents the solution obtained from Theorem

1.8 (or Theorem 1.2 when k = 2). Then the associated solitary wave is orbitally unstable by blow up in

finite time.

We outline our approach to finding normalized ground states for equation (1.1). We employ the

framework from [12] to identify the minimizer (u1, u2) of Eβ(u1, u2) over the set Da1
× Da2

∩ Mβ . We

then demonstrate that if γ(β) < min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}, the pair (u1, u2) resides in Sa1
× Sa2

.

According to [18, Lemmas 4.8 and 4.9], Mβ is a natural constraint, implying that (u1, u2) serves as a

normalized ground state solution to (1.1). Furthermore, we investigate the range of β for which γ(β) <

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}. We establish the monotonicity of γ(β), which guarantees the existence of

a β̃ ≥ 0 such that γ(β) is constant on [0, β̃] and strictly decreasing on (β̃,+∞). Ultimately, we show that

γ(0) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)} and γ(β) ց 0 as β → +∞, indicating the existence of β̃ such that

for β > β̃, γ(β) < min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}.
6



When k = 3, we can employ a similar approach to establish the existence of a minimizer for

inf
Da1×Da2×Da3∩Mβ

E(β12,β13,β23)(u12, u13, u23).

Subsequently, we investigate the interrelation between γij(βij) and γ123(β). In contrast to the case with

k = 2, it is necessary to show that Ω is non-empty. However, we merely demonstrate that if there exists

an index j ∈ {1, 2, 3} such that 1 < rj < 2, then Ω is indeed non-empty. Ultimately, we can derive the

corresponding result for β ∈ Ω.

The structure of the paper is as follows: In Section 2, we investigate the properties of Eβ(u1, u2)

and Jβ(u1, u2) and demonstrate the existence of infDa1×Da2∩Mβ
Eβ(u1, u2). Section 3 is dedicated to the

case k = 2, where we establish that the minimizers of Eβ(u1, u2) within Da1
×Da2

∩Mβ are exclusively

contained in Sa1
× Sa1

under an assumption of β. Subsequently, we examine the characteristics of γ(β).

In Section 4, we consider the scenario k = 3. We generalize some findings from Section 2 and explore the

relationship between γ(βij) and γ(β), for 1 6 i < j 6 3. Finally, we demonstrate that Ω is non-empty.

Let us establish the following notations. The Lp norm, denoted as | · |p, is considered for p ≥ 1. We

define H1(R3,Rk) as (H1(R3))k, and its corresponding norm is given by

||(u1, . . . , uk)||
2
H1(R3,Rk) =

k
∑

j=1

|uj |
2
2 +

k
∑

j=1

|∇uj |
2
2.

For (u1, . . . , uk) ∈ H1(R3,Rk), we simplify the notations as |(u1, . . . , uk)|
2
2 =

∑k

j=1 |uj |
2
2 and

|∇(u1, . . . , uk)|
2
2 =

k
∑

j=1

|∇uj |
2
2.

Furthermore, u = (u1, . . . , uk) 6= 0 signifies that there exists at least one j ∈ {1, . . . , k} such that uj 6= 0.

Lastly, (H1
r (R

3),Rk) denotes the product of k copies of H1
r (R

3), with H1
r (R

3) representing the space of

radially symmetric functions in H1(R3).

2 Prelimainaries

In this section, we demonstrate several properties of Eβ(u1, u2) and Jβ(u1, u2) that can be generalized

to the scenario where k > 2.

Lemma 2.1. ([18, Lemma 4.1]) Let 10
3
< p1, p2, r1 + r2 < 2∗, r1, r2 > 1, and β ≥ 0. If (u1, u2) 6= 0 is a

weak solution to Equation 1.1 restricted to Sa1
× Sa2

, then Jβ(u) = 0.

Lemma 2.2. ([18, Lemma 4.4]) Assume 10
3

< p1, p2 < 2∗ and r1 + r2 < 2∗, with r1, r2 > 1 and β ≥ 0.

There exists a positive constant C0, dependent solely on p1, p2, r1, r2, such that

Eβ(u1, u2) ≥ C0

(

|∇u1|
2
2 + |∇u2|

2
2

)

holds for any (u1, u2) that fulfill Jβ(u1, u2) = 0. This indicates that Eβ is coercive on the set Da1
×Da2

∩Mβ.

Lemma 2.3. ([18, Lemma 4.6]) Suppose 10
3
< p1, p2 < 2∗ and r1, r2 > 1 with r1 + r2 < 2∗, and let β ≥ 0.

There exists some δ > 0 such that the following holds:

inf
(u1,u2)∈Da1×Da2∩Mβ

(

|∇u1|
2
2 + |∇u2|

2
2

)

> δ,

7



implying γ(β) > 0.

We define t ⋆ (u1, u2) = (ut
1, u

t
2) = (t

3
2u1(tx), t

3
2u2(tx)) for all t > 0. It is straightforward to show that

|∇(t ⋆ (u1, u2))|2 = |∇(u1, u2)|2. The following proposition can be derived.

Proposition 2.4. ([18, Lemma 4.2 and Corollary 4.3]) Suppose that 10
3
< p1, p2, r1 + r2 < 2∗, r1, r2 > 1,

and β ≥ 0. If (u1, u2) ∈ Da1
×Da2

with (u1, u2) 6= 0, there exists a unique t0 > 0 such that

max
t>0

Eβ(t ⋆ (u1, u2)) = Eβ(t0 ⋆ (u1, u2))

and t0 ⋆ (u1, u2) ∈ Da1
×Da2

∩Mβ.

Lemma 2.5. ([18, Lemma 4.8 and 4.9]) Assume that 10
3
< p1, p2, r1 + r2 < 2∗, with r1, r2 > 1 and β ≥ 0.

For any critical point of Eβ on Da1
×Da2

∩Mβ, there exist λ1, λ2 ∈ R such that

E′
β(u1, u2) + λ1(u1, 0) + λ2(0, u2) = 0.

Before demonstrating that the infimum infDa1×a2∩Mβ
Eβ(u) is achieved, we require a result regarding

profile decomposition, which is a generalization of [25, Theorem 1.4].

Lemma 2.6. Let (u1,n, u2,n) ⊂ H1(R3,R2) be bounded. Then, for any n ≥ 1, there exist sequences

(ũ1,i, ũ2,i)
∞
i=0 ⊂ H1(R3,R2) and (yin)

∞

i=0 ⊂ R3 such that y0n = 0, |yin − yjn| → ∞ as n → ∞ for i 6= j, and,

upon passing to a subsequence, the following conditions hold for any i ≥ 0:

u1,n(·+ yin) ⇀ ũ1,i in H1(R3) as n → ∞,

u2,n(·+ yin) ⇀ ũ2,i in H1(R3) as n → ∞,

lim
n→∞

∫

R3

|u1,n|
2 + |u2,n|

2 dx =
i

∑

j=0

∫

R3

|∇ũ1,j |
2 + |∇ũ2,j |

2 dx+ lim
n→∞

∫

R3

|∇vi1,n|
2 + |∇vi2,n|

2 dx,

where vi1,n := u1,n −
∑i

j=0 ũ1,j(· − yjn) and vi2,n := u2,n −
∑i

j=0 ũ2,j(· − yjn). Furthermore, we have

lim sup
n→∞

∫

R3

H(u1,n, u2,n) dx =

∞
∑

j=0

∫

R3

H(ũ1,j , ũ2,j) dx,

where the functional H is defined as

H(u1, u2) =
µ1

p1

∫

R3

|u1|
p1 dx+

µ2

p2

∫

R3

|u2|
p2 dx+ β

∫

R3

|u1|
r1 |u2|

r2 dx.

We draw upon [12, Lemma 2.7] and [18, Lemma 5.1] to establish the following lemma. The proof is

analogous to those provided therein, and thus, it is omitted here.

Lemma 2.7. Suppose that 10
3
< p1, p2 < 2∗ and r1 + r2 < 2∗, with r1, r2 > 1 and β ≥ 0. The minimizer

infDa1×a2∩Mβ
Eβ(u) is achieved by a non-negative, radially symmetric function over the interval [0,+∞).

3 case: k=2

In this section, we demonstrate that the minimizers of Eβ(u1, u2) ∈ Da1
× Da1

∩Mβ only belong to

Sa1
× Sa1

under the assumption that is γ(β) < min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}. Additionally, we discuss

certain properties of the function γ(β).
8



Lemma 3.1. Assume that 10
3
< p1, p2, r1 + r2 < 2∗, with r1, r2 > 1 and β > 0, if

γ(β) < min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)},

then for any (u1, u2) ∈ (Da1
×Da2

\ Sa1
× Sa2

) ∩Mβ, it follows that

inf
Sa1×Sa2∩Mβ

Eβ < Eβ(u1, u2).

Proof. Suppose by contradiction that there is (u1, u2) ∈ Da1
× Da2

∩ Mβ such that
∫

R3 u
2
1dx < a1 and

γ(β) = E(u1, u2) 6 infSa1×Sa2∩Mβ
Eβ. We claim that u1 6= 0. If not, we would have u1 = 0. Since

(u1, u2) ∈ Mβ , we have u2 6= 0. We easily have |u2|2 = a2 according to [12, Lemma 2.8]. Then γ(β) =

ℓ(a2, µ2, p2), which is a contradiction.

According to Proposition 2.4, there exists a unique t = t(l) such that (t
3
2 lu1(tx), t

3
2u2(tx)) ∈ Mβ for

any fixed l > 0 and t(1) = 1. This leads to the following equality:

l2t2|∇u1|
2
2 + t2|∇u2|

2
2 =

3µ1(p1 − 2)

2p1
lp1t

3
2p1−3|u1|

p1
p1

+
3µ2(p2 − 2)

2p2
t

3
2p2−3|u2|

p2
p2

+
3β(r1 + r2 − 2)

2
lr1t

3
2 (r1+r2)−3

∫

R3

|u1|
r1 |u2|

r2dx,

from which we derive

dt

dl
|l=1 =

2|∇u1|
2
2 −

3(p1−2)
2

µ1|u1|
p1
p1

− 3βr1(r1+r2−2)
2

∫

R3 |u1|
r1 |u2|

r2dx
3(p1−2)

2p1
( 3
2
p1 − 5)µ1|u1|

p1
p1 +

3(p2−2)
2p2

( 3
2
p2 − 5)µ2|u2|

p2
p2 +

3(r1+r2−2)
2

( 3
2
(r1 + r2)− 5)β

∫

R3 |u1|r1 |u2|r2dx
.

Given that (u1, u2) ∈ Mβ , it follows that

Eβ(u1, u2) = Eβ(u1, u2)−
1

2
Jβ(u1, u2)

=
3(p1 − 2)− 4

4p1
µ1|u1|

p1
p1

+
3(p2 − 2)− 4

4p2
µ2|u2|

p2
p2

+
3(r1 + r2 − 2)− 4

4
β

∫

R3

|u1|
r1 |u2|

r2dx.

Since γ(β) = E(u1, u2), we have

∂Eβ(t
3
2 lu2(tx), t

3
2u2(tx))

∂l
|l=1 = 0.

Direct computation and the fact that (u1, u2) ∈ Mβ lead to

(3.1) |∇u1|
2
2 − µ1|u1|

p1
p1

− r1β

∫

R3

|u1|
r1 |u2|

r2dx = 0.

Notice that γ(β) = infu∈Da1∩{u|(u,u2)∈Mβ} Eβ(u, u2) = Eβ(u1, u2) and u1 ∈ Da1
\Sa1

, there exists λ such

that

−∆u1 − µ1|u1|
p1−2u1 − βr1|u1|

r1−2u1|u2|
r2

+λ(−2∆u1 −
3(p1 − 2)

2
µ1|u1|

p1−2u1 −
3βr1(r1 + r2 − 2)

2
|u1|

r1−2u1|u2|
r2) = 0

or equivalently

−(1 + 2λ)∆u1 − (1 +
3λ(p1 − 2)

2
)µ1|u1|

p1−2u1 − (1 +
3λ(r1 + r2 − 2)

2
)r1β|u1|

r1−2u1|u2|
r2 = 0.
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This implies that u1 satisfies the Nehari-type identity

(1 + 2λ)|∇u1|
2
2 = (1 +

3λ(p1 − 2)

2
)µ1|u1|

p1
p1

+ (1 +
3λ(r1 + r2 − 2)

2
)r1β

∫

R3

|u1|
r1 |u2|

r2dx.

In conjunction with (3.1), we can conclude that λ = 0 or

2|∇u1|
2
2 =

3(p1 − 2)

2
µ1|u1|

p1
p1

+
3(r1 + r2 − 2)

2
r1β

∫

R3

|u1|
r1 |u2|

r2dx.

Case 1: λ = 0.

We have

−∆u1 − µ1|u1|
p1−2u1 − βr1|u1|

r2−2u1|u2|
r2 = 0.

Thus u1 satisfies the Pohozaev identity:

|∇u1|
2
2 = 6(

µ1

p1
|u1|

p1
p1

+ β

∫

R3

|u1|
r1 |u2|

r2dx).

From Equation (3.1), it follows that

6− p1

p1
µ1|u1|

p1
p1

+ (6− r1)β

∫

R3

|u1|
r1 |u2|

r2dx = 0,

which implies a contradiction since u1 6= 0.

Case 2: 2|∇u1|
2
2 = 3(p1−2)

2
µ1|u1|

p1
p1

+ 3(r1+r2−2)
2

r1β
∫

R3 |u1|
r1 |u2|

r2dx.

Utilizing Equation (3.1) yields

3p1 − 10

4
µ1|u1|

p1
p1

+
3(r1 + r2)− 10

4
βr1

∫

R3

|u1|
r1 |u2|

r2dx = 0,

which again contradicts the assumption u1 6= 0. Thus u1 ∈ Sa1
.

An analogous argument shows that u2 ∈ Sa2
, completing the proof. �

We will now proceed to discuss the characteristics of the function γ(β).

Proposition 3.2. Assuming that 10
3
< p1, p2 < 2∗ and r1, r2 > 1 with r1+r2 < 2∗. γ(β) is non-increasing

over the interval [0,+∞).

Proof. Let us assume that 0 6 β1 < β2. For any arbitrarily small ε > 0, there exists (u1, u2) ∈ Mβ1
such

that Eβ1
(u1, u2) < γ(β1) + ε, with u1 and u2 both nonzero. Proposition 2.4 ensures the existence of a

unique t > 0 for which t⋆ (u1, u2) ∈ Mβ2
and Eβ1

(t⋆ (u1, u2)) 6 Eβ1
(u1, u2). It follows from the expression

of Eβ that the following chain of inequalities holds:

γ(β2) 6 Eβ2
(t ⋆ (u1, u2)) 6 Eβ1

(t ⋆ (u1, u2)) 6 Eβ1
(u1, u2) < γ(β1) + ε.

Consequently, we deduce that γ(β2) 6 γ(β1). �

The proof of Theorem 1.1 (i). Due to Proposition 3.2, we need only demonstrate that for any se-

quence βn → β+, the inequality holds:

(3.2) γ(β) 6 lim
n→+∞

γ(βn).
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Let ε > 0 be arbitrarily fixed. Suppose there exists a sequence (u1,n, u2,n) ∈ Da1
× Da2

∩ Mβn
such

that Eβn
(u1,n, u2,n) < γ(βn) + ε. According to Proposition 2.4, there exists a sequence tn such that

tn ⋆ (u1,n, u2,n) ∈ Mβ . Notice that

γ(β) 6 Eβ(tn ⋆ (u1,n, u2,n)) = Eβn
(tn ⋆ (u1,n, u2,n)) + (βn − β)t

3(r1+r2−2)
2

n

∫

R3

|u1,n|
r1 |u2,n|

r2dx.

By Proposition 2.4, we have Eβn
(tn ⋆ (u1,n, u2,n)) 6 Eβn

(u1,n, u2,n) < γ(βn) + ε. Therefore, it suffices to

show that

t
3(r1+r2−2)

2
n

∫

R3

|u1,n|
r1 |u2,n|

r2dx

is bounded. Proposition 3.2 and Lemma 2.2, yield

C0(|∇u1,n|
2
2 + |∇u2,n|

2
2) 6 γ(βn) + ε 6 γ(β) + ε.

This implies that (u1,n, u2,n) is bounded in H1(R3,R2) and
∫

R3 |u1,n|
r1 |u2,n|

r2dx is bounded. Since tn ⋆

(u1,n, u2,n) ∈ Mβ, we obtain

|∇u1,n|
2
2 + |∇u2,n|

2
2 = t

3(p1−2)
2 −2

n

3µ1(p1 − 2)

2p1

∫

R3

|u1,n|
p1dx+ t

3(p2−2)
2 −2

n

3µ2(p2 − 2)

2p2

∫

R3

|u2,n|
p2dx

+ t
3(r1+r2−2)

2 −2
n

3β(r1 + r2 − 2)

2

∫

R3

|u1,n|
r1 |u2,n|

r2dx.

Assume that p1 = min{p1, p2, r1 + r2}, then by (u1,n, u2,n) ∈ Mβn
, we obtain

|∇u1,n|
2
2 + |∇u2,n|

2
2 = t

3(p1−2)
2 −2

n (|∇u1,n|
2
2 + |∇u2,n|

2
2 −

3(βn − β)(r1 + r2 − 2)

2

∫

R3

|u1,n|
r1 |u2,n|

r2dx)(3.3)

+ (t
3(p2−2)

2 −2
n − t

3(p1−2)
2 −2

n )
3µ1(p2 − 2)

2p2

∫

R3

|u2,n|
p2dx

+ (t
3(r1+r2−2)

2 −2
n − t

3(p1−2)
2 −2

n )
3β(r1 + r2 − 2)

2

∫

R3

|u1,n|
r1 |u2,n|

r2dx.

Again by Proposition 3.2, we know that γ(βn) has a positive lower bound, which implies |∇u1,n|
2
2+|∇u2,n|

2
2

possesses a positive lower bound. Notice that 3(p1−2)
2

−2 > 0, we infer from Equation (3.3) that for tn > 1,

the following inequality holds:

|∇u1,n|
2
2 + |∇u2,n|

2
2 > t

3(p1−2)
2 −2

n (|∇u1,n|
2
2 + |∇u2,n|

2
2 −

3(βn − β)(r1 + r2 − 2)

2

∫

R3

|u1,n|
r1 |u2,n|

r2dx).

This implies that tn is bounded, thus completing the proof. �

For any β > 0, Eβ(wa1,µ1,p1
, 0) = ℓ(a1, µ1, p1) and Eβ(0, wa2,µ1,p2

) = ℓ(a2, µ2, p2). So we have

γ(β) 6 min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}.

The proof of Theorem 1.1 (iii). We assume that (u1, u2) ∈ Da1
× Da2

, where u1 6= 0 and u2 6= 0.

According to Proposition 2.4, there exists a sequence tn such that tn ⋆ (u1, u2) ∈ Mβn
. Notice that

t2n(|∇u1|
2
2 + |∇u2|

2
2) = t

3(p1−2)
2

n

3µ1(p1 − 2)

2p1

∫

R3

|u1|
p1dx

+ t
3(p2−2)

2
n

3µ2(p2 − 2)

2p2

∫

R3

|u2|
p2dx

+ t
3(r1+r2−2)

2
n

3βn(r1 + r2 − 2)

2

∫

R3

|u1|
r1 |u2|

r2dx.

11



which implies tn → 0 as βn → +∞. Since Lemma 2.2 and

γ(βn) 6 Eβn
(tn ⋆ (u1, u2)) 6

1

2
t2n

∫

R3

|∇u1|
2 + |∇u2|

2dx,

we have γ(β) → 0 as β → +∞. �

The proof of Theorem 1.1 (ii). Step 1: γ(0) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}.

Notice that

E0(u1, u2) =
1

2

∫

R3

|∇u1|
2 + |∇u2|

2dx−

∫

R3

µ1

p1
|u1|

p1 +
µ2

p2
|u2|

p2dx

and

M0 = {(u1, u2) 6= 0|J0(u1, u2) = |∇u1|
2
2+|∇u2|

2
2−

3µ1(p1 − 2)

2p1

∫

R3

|u1|
p1dx−

3µ2(p2 − 2)

2p1

∫

R3

|u2|
p2dx = 0}.

Consequently,

M0 =
⋃

A∈R

{(u1, u2) 6= 0|

∫

R3

|∇u1|
2 −

3µ1(p1 − 2)

2p1
|u1|

p1dx = A,

∫

R3

|∇u2|
2 −

3µ2(p2 − 2)

2p2
|u2|

p2dx = −A}

and E0(u1, u2) = ( 3µ1(p1−2)
4

− 1)µ1

p1
|u1|

p1
p1

+ ( 3µ2(p2−2)
4

− 1)µ2

p2
|u2|

p2
p2

for (u1, u2) ∈ M0. Furthermore, let

A = {(u1, u2) 6= 0|

∫

R3

|∇u1|
2 −

3µ1(p1 − 2)

2p1
|u1|

p1dx = A,

∫

R3

|∇u2|
2 −

3µ2(p2 − 2)

2p2
|u2|

p2dx = −A},

and

0 = {(u1, u2) 6= 0|

∫

R3

|∇u1|
2 +

3µ1(p1 − 2)

2p1
|u1|

p1dx = 0,

∫

R3

|∇u2|
2 +

3µ2(p2 − 2)

2p2
|u2|

p2dxdx = 0}.

We claim that

inf
(u1,u2)∈0∩Da1×Da2

E0(u1, u2) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}

and

inf
(u1,u2)∈A∩Da1×Da2

E0(u1, u2) > min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}.

Notice that

inf
(u1,u2)∈0∩Da1×Da2

E0(u1, u2) = inf
Da1∩{u1∈H1(R3)|

∫
R3

|∇u1|2−
3(p1−2)µ1

2p1
|u1|p1dx=0}

[
1

2

∫

R3

|∇u1|
2dx−

µ1

p1

∫

R3

|u1|
p1dx]

+ inf
Da2∩{u2∈H1(R3)|

∫
R3

|∇u2|2−
3(p2−2)µ2

2p2
|u2|p2dx=0}

[
1

2

∫

R3

|∇u2|
2dx−

µ2

p2

∫

R3

|u2|
p2dx].

Since either u1 6= 0 or u2 6= 0, it follows that inf(u1,u2)∈0E0(u1, u2) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}

according to [12, Lemma 2.8]. For a given A > 0, we define

B = {u2 ∈ H1(R3)|

∫

R3

|∇u2|
2 −

3µ2(p2 − 2)

2p2
|u2|

p2dx = −A}

and

C = {u2 ∈ H1(R3)\{0}|

∫

R3

|∇u2|
2 −

3µ2(p2 − 2)

2p2
|u2|

p2dx = 0}.
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For any u2 ∈ H1(R3)\{0}, we consider the functional

I(ut
2) = t2

∫

R3

|∇u2|
2dx− t

3(p2−2)

2
3µ2(p2 − 2)

2p2

∫

R3

|u2|
p2dx,

which implies that B is homomorphic to C, and there exists t(u) > 1 such that ut(u) ∈ B for any u ∈ C.

Consequently, we have inf(u1,u2)∈A∩Da1×Da2
E0(u1, u2) > infu2∈C∩Da2

( 3µ2(p2−2)
4

− 1)t(u)
3(p2−2)

2
µ2

p2
|u1|

p1
p1

>

ℓ(a2, µ2, p2). Similarly, for A < 0, we obtain inf(u1,u2)∈Da1×Da1∩A E0(u1, u2) > ℓ(a1, µ1, p1). Therefore,

γ(0) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}.

According to Proposition 3.2, Theorem 1.1 (iii) and step 1, there exists β̃ such that

γ(β) = min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)}

for β ∈ [0, β̃] and γ(β) < min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2)} when β ∈ (β̃,+∞).

Step 2: γ(β) is strictly decreasing on (β̃,+∞).

For any β0 > β̃, according to Lemma 3.1, there exists (u1,0, u2,0) ∈ Sa1
× Sa2

∩ Mβ0
such that

γ(β0) = E(u1,0, u2,0). Similar to Proposition 3.2, we can infer γ(β0) > γ(β) for any β > β0. �

The proof of Theorem 1.2. From Lemma 2.7, Theorem 1.1 (ii) and Lemma 3.1, We have γ(β) can be

obtained by (u1,β , u2,β) in the set Sa1
× Sa2

∩Mβ in the interval β ∈ (β̃,+∞). Furthermore, it follows

from Lemma 2.5 that Sa1
× Sa2

∩ Mβ is a natural constraint. The combination of Lemma 3.1 and the

maximum principles leads to the completion of the proof. �

The proof of Theorem 1.4. Since Eβn
(u1,n, u2,n) = γ(βn) and (u1,n, u2,n) ∈ Sa1

×Sa2
∩Mβn

, it follows

that (u1,n, u2,n) is bounded in H1(R3,R2). Notice that

Eβ(u1,n, u2,n) = Eβn
(u1,n, u2,n) + (βn − β)

∫

R3

|u1,n|
r1 |u2,n|

r2dx.

We derive Eβ(u1,n, u2,n) → γ(β) by Theorem 1.1 (i). Furthermore,

Eβ |
′

Sa1×Sa2
(u1,n, u2,n) = Eβn

|
′

Sa1×Sa2
(u1,n, u2,n)+(β−βn)(r1|u1,n|

r1−2u1,n|u2,n|
r2 +r2|u1,n|

r1 |u2,n|
r2−2u2,n).

Consequently, Eβ|
′

Sa1×Sa2
(u1,n, u2,n) → 0 in H−1(R3). Notice that

Jβ(u1,n, u2,n) = Jβn
(u1,n, u2,n) +

3(βn − β)(r1 + r2 − 2)

2

∫

R3

|u1,n|
r1 |u2,n|

r2dx,

which means Jβ(un) → 0.

Hence, (u1,n, u2,n) is a Palais-Smale consequence of Eβ constrained Sa1
× Sa2

with Jβ(u1,n, u2,n) →

0. According to [18, Lemma 8.1], there exists a normalized ground state solution (u1, u2) satisfying

(u1,n, u2,n) → (u1, u2), up to a subsequence. This completes the proof. �

The proof of Theorem 1.6. We have

λ1(β) =
µ1

∫

R3 |u1,β |
p1dx+ βr1

∫

R3 |u1,β |
r1 |u2,β |

r2dx−
∫

R3 |∇u1,β |
2dx

a21

and

λ2(β) =
µ2

∫

R3 |u2,β |
p2dx+ βr2

∫

R3 |u2,β |
r2 |u1,β |

r1dx−
∫

R3 |∇u2,β |
2dx

a22
.
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Hence,

λ1(β)a
2
1 + λ2(β)a

2
2 = µ1|u1,β |

p1
p1

+ µ2|u2,β |
p2
p2

+ β(r1 + r2)

∫

R3

|u1,β |
r1 |u2,β |

r2dx− |∇u1,β |
2
2 − |∇u2,β |

2
2,

where (u1,β , u2,β) ∈ Mβ . we obtain

λ1(β)a
2
1 + λ2(β)a

2
2 = (1−

3(p1 − 2)

2p1
)µ1|u1,β |

p1
p1

+ (1−
3(p2 − 2)

2p2
)µ2|u2,β |

p2
p2

+ (r1 + r2 −
3(r1 + r2 − 2)

2
)β

∫

R3

|u1,β |
r1 |u2,β |

r2dx.

Given that 10
3

< p1, p2, r1 + r2 < 6, it follows that λ1(β)a
2
1 + λ2(β)a

2
2 > 0, indicating that λ1(β) > 0 or

λ2(β) > 0. Assume by contradiction that λ1(β) > 0 and λ2(β) 6 0. We then have

−△ u2,β = −λ2u2,β + µ2|u2,β |
p2−2u2,β + βr2|u1,β |

r1 |u2,β |
r2−2u2,β .

According to Lemma 3.1, both u1,β and u2,β are non-negative, leading to −△u2,β > 0, which would imply

u2,β = 0. This is a contradiction. Consequently, λ1(β), λ2(β) > 0.

We can directly deduce (i) from Theorem 1.4. Moreover, Theorem 1.1 (iii) and Lemma 2.2 imply that

γ(β) → 0 as β → +∞, which in turn indicates that |∇u1,β|
2
2 → 0 and |∇u2,β |

2
2 → 0 as β → +∞. Notice

that

β

∫

R3

|u2,β |
r2 |u1,β |

r1dx =

∫

R3

|∇u1,β |
2+|∇u2,β |

2dx−
3µ1(p1 − 2)

2p1

∫

R3

|u1,β |
p1dx−

3µ2(p2 − 2)

2p2

∫

R3

|u2,β |
p2dx,

we can establish (ii) by the Garliardo-Nirenberg inequality. �

Lemma 3.3. Assume that (u1,β, u2,β) ∈ Kβ and (u1,β0
, u2,β0

) ∈ Kβ0
, where β, β0 > β̃. Let t0⋆(u1,β , u2,β) ∈

Kβ0
and t ⋆ (u1,β0

, u2,β0
) ∈ Kβ . We have

Eβ(u1,β , u2,β) 6 (β0 − β)

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx+ Eβ0
(u1,β0

, u2,β0
),

Eβ0
(u1,β0

, u2,β0
) 6 (β − β0)

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx+ Eβ(u1,β , u2,β).

Proof. Notice that

Eβ(u1,β , u2,β) 6 Eβ(t ⋆ (u1,β0
, u2,β0

))

= Eβ0
(t ⋆ (u1,β0

, u2,β0
)) + (β0 − β)

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx

6 (β0 − β)

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx+ Eβ0
(u1,β0

, u2,β0
),

and

Eβ0
(u1,β0

, u2,β0
) 6 Eβ0

(ut0
1,β , u

t0
2,β)

= Eβ(u
t0
1,β , u

t0
2,β) + (β − β0)

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx

6 (β − β0)

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx+ Eβ(u1,β , u2,β).

�
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The proof of theorem 1.5. According to Lemma 3.3, we deduce that

(β0 − β)

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx 6 γ(β)− γ(β0) 6 (β0 − β)

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx,

where t0⋆(u1,β, u2,β) and t⋆(u1,β0
, u2,β0

) are given in Lemma 3.3. By the definition of Mβ and Proposition

2.4, it follows that t → 1 as β → β0.

First, assuming β > β0, we obtain

−

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx 6
γ(β)− γ(β0)

β − β0

6 −

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx.

On the one hand,

lim sup
β→β

+
0

γ(β)− γ(β0)

β − β0

6 − lim inf
β→β

+
0

∫

R3

|ut
1,β0

|r1 |ut
2,β0

|r2dx

= − lim inf
β→β

+
0

∫

R3

t
3(r1+r2−2)

2 |u1,β0
|r1 |u2,β0

|r2dx

= −

∫

R3

|u1,β0
|r1 |u2,β0

|r2dx.

From the arbitrariness of (u1,β0
, u2,β0

), we conclude

lim sup
β→β

+
0

γ(β)− γ(β0)

β − β0

6 −d̂1(β0).

On the other hand,

lim inf
β→β

+
0

γ(β)− γ(β0)

β − β0

> lim inf
β→β

+
0

−

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx = − lim sup
β→β

+
0

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx.

By Theorem 1.4, there exists (u1,0, u2,0) ∈ Kβ0
such that

lim sup
β→β

+
0

∫

R3

|ut0
1,β |

r1 |ut0
2,β |

r2dx =

∫

R3

|u1,0|
r1 |u2,0|

r2dx.

Therefore,

lim inf
β→β

+
0

γ(β)− γ(β0)

β − β0

> −

∫

R3

|u1,0|
r1 |u2,0|

r2dx > −d̂1(β0),

yielding limβ→β
+
0

γ(β)−γ(β0)
β−β0

= −d̂1(β0).

Analogously, one can demonstrate that

lim
β→β

−

0

γ(β)− γ(β0)

β − β0

= −d1(β0).

Since γ(β) is continuous and strictly decreasing, γ(β) is differentiable almost everywhere in β ∈

(β̃,+∞). Consequently, we have d1(β) = d̂1(β) ⇔ γ(β) is differentiable at β and γ′(β) = −d1(β). �

4 case: k=3

In this section, we demonstrate the existence of a normalized ground state solution for Equation (1.3)

in the case where k = 3. We define t ⋆ (u1, u2, u3) = (ut
1, u

t
2, u

t
3) = (t

3
2u1(tx), t

3
2u2(tx), t

3
2u3(tx)) for t > 0.

Following a similar argument to that of Proposition 3.2, we establish the following proposition.
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Proposition 4.1. Suppose that 10
3
< p1, p2, r1 + r2, r1 + r3, r2 + r3 < 6 and r1, r2, r3 > 1. Then, γ123(β)

is monotonically non-increasing on the β+
ij − axis for 1 6 i < j 6 3 where β+

ij = {βij |βij > 0}.

The proof of the Theorem 1.7 (i). We choose β0 = {β12,0, β13,0, β23,0} ∈ Ξ. ∀ε > 0 and β =

{β12, β13, β23} ∈ Bε(β0) ∩ Ξ, there exists u = {u1, u2, u3} ∈ Mβ such that Eβ(u) < γ123(β) + ε, where

Bε(β0) = {β ∈ R
3||β0 − β| < ε|}.

Step 1: we demonstrate γ123(β0) < γ123(β) + ε.

According to Proposition 2.4, there exists t > 0 such that t ⋆ u ∈ Mβ0
and γ123(β0) 6 Eβ0

(t ⋆ u),

with t = t(u). Notice that

Eβ0
(t ⋆ u) = Eβ(t ⋆ u) + (β12 − β12,0)t

3(r1+r2−2)
2

∫

R3

|u1|
r1 |u2|

r2dx(4.1)

+ (β13 − β13,0)t
3(r1+r3−2)

2

∫

R3

|u1|
r1 |u3|

r3dx

+ (β23 − β23,0)t
3(r2+r3−2)

2

∫

R3

|u2|
r2 |u3|

r3dx

and Eβ(t ⋆ u) < γ123(β) + ε.

Subsequently, we verify that t(u),
∫

R3 |u1|
r1 |u2|

r2dx,
∫

R3 |u1|
r1 |u3|

r3dx and
∫

R3 |u2|
r2 |u3|

r3dx are bounded

on R for any β ∈ Bε(β0) ∩ Ξ and u ∈ {u ∈ Da1
× Da2

× Da3
∩Mβ |Eβ(u) < γ123(β) + ε}. Notice that

γ123(β) 6 ℓ(a1, µ1, p1) and

Eβ(u) = Eβ(u)−
1

2
Jβ(u)(4.2)

= (
3(p1 − 2)

4
− 1)

µ1

p1

∫

R3

|u1|
p1dx+ (

3(p2 − 2)

4
− 1)

µ2

p2

∫

R3

|u2|
p2dx

+ (
3(p3 − 2)

4
− 1)

µ3

p3

∫

R3

|u3|
p3dx+ (

3(r1 + r2 − 2)

4
− 1)β12

∫

R3

|u1|
r1 |u2|

r2dx

+ (
3(r1 + r3 − 2)

4
− 1)β13

∫

R3

|u1|
r1 |u3|

r3dx+ (
3(r2 + r3 − 2)

4
− 1)β23

∫

R3

|u2|
r2 |u3|

r3dx.

Thus,
∫

R3 |u1|
r1 |u2|

r2dx,
∫

R3 |u1|
r1 |u3|

r3dx and
∫

R3 |u2|
r2 |u3|

r3dx are bounded due to
3(pj−2)

4
−1,

3(ri+rj−2)

4
−

1 > 0, where 1 6 i < j 6 3. On the other hand, similar to the argument with Theorem 1.1 (i), we can

prove t(u) is bounded.

Finally, we conclude that for all ε > 0, there exists δ > 0 such that γ123(β0) < γ123(β) + ε for any

β ∈ Bδ(β0) ∩ Ξ.

Step 2: we prove γ123(β) < γ123(β0) + ε.

∀ε > 0, there exist u0 = {u1,0, u2,0, u3,0} and t > 0 such that Eβ0
(u0) < γ123(β0) + ε and ut

0 ∈ Mβ.

Notice that

γ123(β) 6 Eβ(u
t
0) = Eβ0

(ut
0) + (β12,0 − β12)t

3(r1+r2−2)

2

∫

R3

|u1,0|
r1 |u2,0|

r2dx(4.3)

+ (β13,0 − β13)t
3(r1+r3−2)

2

∫

R3

|u1,0|
r1 |u3,0|

r3dx

+ (β23,0 − β23)t
3(r2+r3−2)

2

∫

R3

|u2,0|
r2 |u3,0|

r3dx.

Similar to the argument with Theorem 1.1 (i), we can prove t = t(β) is bounded. Thus we complete the

proof. �
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The proof of Theorem 1.7 (ii). The proof resembles that of Theorem 1.1 (iii), and thus, we omit the

details here. �

The proof of Theorem 1.7 (iii). Firstly, we demonstrate that γ123(β12, 0, 0) = γ12(β12). We have

Eβ12,0,0 =

3
∑

j=1

1

2

∫

R3

|∇uj |
2dx−

3
∑

j=1

µj

pj

∫

R3

|uj |
pjdx− β12

∫

R3

|u1|
r1 |u2|

r2dx

and

Mβ12,0,0 = {(u1, u2, u3) ∈ H1(R3,R3)\{0}|
3

∑

j=1

∫

R3

|∇uj |
2dx−

3
∑

j=1

3µj(pj − 2)

2pj

∫

R3

|uj |
pjdx

−
3β12(r1 + r2 − 2)

2

∫

R3

|u1|
r1 |u2|

r2dx = 0}.

We define

NA ={(u1, u2, u3) ∈ H1(R3,R3)\{0}|

∫

R3

|∇u1|
2 + |∇u2|

2dx−

∫

R3

3µ1(p1 − 2)

2p1
|u1|

p1 −
3µ2(p2 − 2)

2p2
|u2|

p2dx

−
3β12(r1 + r2 − 2)

2

∫

R3

|u1|
r1 |u2|

r2dx = A,

∫

R3

|∇u3|
2 −

3µ3(p3 − 2)

2p3
|u3|

p3dx = −A}.

Therefore, we have

M(β12,0,0) =
⋃

A∈R

NA,

and

E(β12,0,0)(u1, u2, u3) = (
3(p1 − 2)

4
− 1)

µ1

p1

∫

R3

|u1|
p1dx+ (

3(p2 − 2)

4
− 1)

µ2

p2

∫

R3

|u2|
p2dx

+ (
3(p3 − 2)

4
− 1)

µ3

p3

∫

R3

|u3|
p3dx+ (

3(r1 + r2 − 2)

4
− 1)β12

∫

R3

|u1|
r1 |u2|

r2dx

for (u1, u2, u3) ∈ M(β12,0,0). We claim that

inf
(u1,u2,u3)∈N0∩Da1×Da2×Da3

E(β12,0,0)(u1, u2, u3) = γ12(β12)

and

inf
(u1,u2,u3)∈NA∩Da1×Da2×Da3

E(β12,0,0)(u1, u2) > γ12(β12).

We define

Q0 = {(u1, u2) ∈ H1(R3,R2) \ {0}|

∫

R3

|∇u1|
2 + |∇u2|

2dx−

∫

R3

3µ1(p1 − 2)

2p1
|u1|

r1 −
3µ2(p2 − 2)

2p2
|u2|

r2dx

−
3β12(r1 + r2 − 2)

2

∫

R3

|u1|
r1 |u2|

r2dx = 0}

and

P0 = {u3 ∈ H1(R3) \ {0}|

∫

R3

|∇u3|
2 −

3µ2(p3 − 2)

2p3
|u3|

p3dx = 0}
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Notice that

inf
(u1,u2,u3)∈N0∩Da1×Da2×Da3

E(β12,0,0)(u1, u2, u3) = [ inf
Q0∩Da1×Da2

(
3(p1 − 2)

4
− 1)

µ1

p1

∫

R3

|u1|
p1dx

+ (
3(p2 − 2)

4
− 1)

µ1

p1

∫

R3

|u2|
p2dx

+ (
3(r1 + r2 − 2)

4
− 1)β12

∫

R3

|u1|
r1 |u2|

r2dx]

+ inf
P0∩Da3

(
3(p3 − 2)

4
− 1)

µ3

p3

∫

R3

|u3|
p3dx.

By considering the cases when either (u1, u2) 6= 0 or u3 6= 0, we obtain

inf
(u1,u2,u3)∈N0∩Da1×Da2×Da3

E(β12,0,0)(u1, u2, u3) = γ12(β12)

since ℓ(a3, µ3, p3) > ℓ(a1, µ1, p1).

For any A ∈ R, we assume A > 0. We can make same argument with Theorem 1.1 (ii) to obtain

inf
(u1,u2,u3)∈NA∩Da1×Da2×Da3

Eβ12,0,0(u1, u2, u3) > inf
u∈P0∩Da3

t(u)
3(p3−2)

2
3µ3(p3 − 2)

2p3

∫

R3

|u3|
p3dx > ℓ(a3, µ3, p3),

where t(u) > 1. For any A < 0, we have

inf
(u1,u2,u3)∈NA∩Da1×Da2×Da3

Eβ12,0,0(u1, u2, u3) > γ12(β12).

Similarly, The other two formulas also can be showed. We complete the proof. �

The proof of Theorem 1.8 (i). We assume, for simplicity, that 1 < r1 < 2. For a fixed β12 > 0,

it follows from Theorem 1.7 (i), (ii), (iii) and Proposition 4.1 that there exists unbounded, simply

connected open subset Γ1(β12) = {(β13, β23)|γ123(β12, β13, β23) < γ12(β12)} with respect to R
+ × R

+.

Analogously, for a fixed β13 > 0, there exists unbounded simply connected open subset Γ2(β13) =

{(β12, β23)|γ123(β12, β13, β23) < γ13(β13)} with respect to R
+×R

+. By imitating the proof of [18, Theorem

7.2], we obtain γ123(β12, β13, β23) < γ23(β23) provided β23 > β̄23 and (β12, β13) 6= (0, 0). Consequently, for

any (β12, β13) 6= (0, 0), there exists some β̂23 such that (β12, β13, β23) ∈ Ω for β23 > β̂23. Furthermore,

according to Theorem 1.7 (i), (ii), Ω is demonstrated to be an unbounded, simply connected open subset

of Ξ. We complete the proof. �

Lemma 4.2. Assume that 10
3

< p1, p2, p3, r1 + r2, r1 + r3, r2 + r3 < 6, r1, r2, r3 > 1 and ℓ(a1, µ1, p1) =

min{ℓ(a1, µ1, p1), ℓ(a2, µ2, p2), ℓ(a3, µ3, p3)}. If γ123(β) ∈ Ω, then for any u ∈ (Da1
×Da2

×Da3
\Sa1

×Sa2
×

Sa3
) ∩Mβ, there holds

inf
Sa1×Sa2×Sa3∩Mβ

Eβ < Eβ(u).

Proof. Suppose by contradiction that there exists u = (u1, u2, u3) ∈ Da1
× Da2

× Da3
∩ Mβ such that

∫

R3 u
2
1dx < a1 and γ123(β) = Eβ(u) 6 infSa1×Sa2×Sa3∩Mβ

Eβ. We assert that u1 6= 0. If not, we could

assume u1 = 0. Then γ123(β) = infDa2×Da3∩Mβ23
Eβ23

(u2, u3) > γ23(β23), which is a contradiction.

Aualogous to the argument in Lemma 3.1, we can conclude that u1 ∈ Sa1
. Similarly, (u2, u3) ∈

Sa2
× Sa3

. This completes the proof. �
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The proof of Theorem 1.8 (ii). Combining Theorem 1.7 with Lemma 4.2 and be similar to Theorem

1.2, we can derive the result. �

The proof of Theorem 1.10. The proof is similar to the one of Theorem 1.4, so we omit details. �

The proof of Theorem 1.11. The proof is quite similar to the one of Theorem 1.5 and we ignore

details. �

The proof of Theorem 1.12 . The proof is similar to the one of Theorem 1.6, so we omit details. �
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