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PROJECTIVITY CRITERIA FOR KÄHLER MORPHISMS

BENOÎT CLAUDON AND ANDREAS HÖRING

Abstract. In this short note we prove two projectivity criteria for fibrations
between mildly singular compact Kähler spaces. They are the relative ver-
sions of the celebrated criteria of Kodaira and Moishezon. As an application
we obtain that the MRC fibration always has a model that is a projective
morphism.

1. Introduction

Given a compact Kähler manifold X , one of the most basic questions is to decide
whether X is (the analytification of) a projective manifold. There are two well-
known cases where this always holds:

• Kodaira’s criterion: X is projective if H0(X,Ω2
X) = 0.

• Moishezon’s theorem: X is projective if there exists a line bundle L → X
that is big.

In view of the recent progress on the MMP for projective morphisms [Fuj22,
DHP24], it is interesting to find sufficient conditions for a Kähler morphism to
be projective. In this short note we generalise the classical criteria to the relative
situation. Our first result is:

1.1. Theorem. Let f : X → Y be a fibration between compact Kähler manifolds.
Assume one of the following:

• The natural map f∗ : H0(Y,Ω2
Y ) −→ H0(X,Ω2

X) is an isomorphism.
• The morphism f is Moishezon, i.e. there exists a line bundle L → X that

is f -big.

Then f is a projective morphism.

The first assumption gives a global version of [Bin83, Cor.1.2] [Nak02, Prop.3.3.1]
and is verified by every fibration that is cohomologically constant (cf. [DS21] for
the terminology). In particular it holds for any smooth model of the MRC fibration
of a compact Kähler manifold, see below. The second statement improves [CP00,
Thm.10.1] where it was shown that f is locally projective. In the case where Y
is a point Boucksom’s version of Moishezon’s theorem [Bou02, Thm.1.2.13] gives a
more precise result: if X is Kähler and Moishezon, then the projection of a Kähler
class on the real Neron-Severi space remains Kähler. It is not clear to us if this still
holds in the relative setting.
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The proofs of the two statements are quite different. For the first case we use
the Hodge decomposition to construct a relatively ample line bundle, whereas in
the second case we use a relative MMP to show that the projectiveness of the
fibration is preserved under suitably chosen bimeromorphic modifications. The
latter technique also works for mildly singular spaces, allowing us to prove a variant
of the main statement that is suitable for applications in the MMP, cf. Theorem 3.1.
In particular we obtain:

1.2. Theorem. Let X be a normal compact Kähler space with klt singularities.
Then there exists a model of the MRC fibration that is a projective morphism.

This answer a question asked to us by Juanyong Wang. In fact our proof shows
that every holomorphic model X ′ → Y ′ with X ′ and Y ′ smooth is a projective
morphism, cf. also Remark 4.4.

In Section 4 we give some applications of our main results, for example to bimero-
morphic morphism between strongly Q-factorial klt spaces.
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excellent working conditions. BC benefits from the support of the French govern-
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following reference ANR-11-LABX-0020-01.

2. Basic facts and notation

All complex spaces are supposed to be separated and of finite dimension, a complex
manifold is a smooth irreducible complex space. An analytic variety is a complex
space that is irreducible and reduced. A fibration is a proper surjective morphism
with connected fibres between complex spaces. We refer to [Gra62, Fuj79, Dem85]
for basic definitions about (p, q)-forms and Kähler forms in the singular case.

We use the standard terminology of the MMP as explained in [KM98, Deb01], cf.
also [Nak87] for foundational material in the case of projective morphisms.

2.A. Relatively ample line bundles. Let X be a normal compact complex space
with at most rational singularities. Suppose that X is in the Fujiki class, i.e. X
is bimeromorphic to a compact Kähler manifold. A (1, 1)-class on X is an element

of N1(X) := H1,1
BC(X), the Bott-Chern group of (1, 1)-currents that are locally

∂∂̄-exact (cf. [HP16, Sect.2] for details). Even if X is projective, the inclusion

NS(X)⊗ R ⊂ N1(X)

is typically not an equality. However if H2(X,OX) = 0, we can apply Kodaira’s
criterion to a desingularisation to see that X is projective and every (1, 1)-class is
an R-divisor class.
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2.1. Definition. Let f : X → Y be a fibration between analytic varieties. The
fibration f is projective (resp. Moishezon) if there exists a line bundle L → X that
is relatively ample (resp. relatively big).

The fibration f is locally projective (resp. locally Moishezon), if there exists a cov-
ering of Y by open sets Ui such that f−1(Ui) → Ui is projective (resp. Moishezon).

2.2. Remark. In the literature, e.g. [GPR94, VII, §6] a compact analytic variety
is said to be Moishezon if its dimension is equal to its algebraic dimension, i.e. the
transcendence degree of its field of meromorphic functions. If X is smooth this is
equivalent to the existence of a big line bundle [GPR94, VII, §6.3].

Our definition of projective, resp. Moishezon morphism is more general than in
parts of the literature, e.g. [Kol22].

2.3. Remark. The composition of two projective morphisms is in general not
projective, but it is straightforward to show that this holds if the base of the
fibrations are compact.

The relative ampleness of a line bundle can be read off positivity properties of its
Chern class:

2.4. Lemma. Let f : X → Y be a fibration between compact Kähler manifolds. A
line bundle L ∈ Pic(X) is f -ample if and only if there exists [ωY ] ∈ H2(Y,R) a
Kähler class such that c1(L) + f∗(ωY ) is a Kähler class on X.

We have not been able to locate this statement in the literature, cp. [FS90, Sect.1]
for similar considerations. We thus describe a sketch of proof for the reader’s
convenience.

Sketch of proof. If L ∈ Pic(X) is f -ample, we can just apply [Fuj79, Lemma 4.4].

Conversely, assume that for some smooth metric h on L and some Kähler form
ωY on Y , the c1(L, h) + f∗(ωY ) form is Kähler. We can then consider U ⊂ Y a

Stein open subset where (ωY ) |U = i∂∂ϕU for some smooth strictly psh function
ϕU : U → R. Over XU := f−1(U), the line bundle L can be endowed with the
metric he−ϕU◦f that has positive curvature. Being proper over a Stein manifold,
XU is holomorphically convex hence weakly pseudoconvex. We can then resort to
the usual L2 estimates over XU for the Hermitian line bundle (L, he−ϕU◦f ) [Dem82]
and produce sections of L⊗m defined over XU which separate points and tangent
vectors (for some integer m depending on U). The manifold Y being compact,
we cover it with finitely many open subsets as above and we then choose an m
uniformly such that L⊗m is f -very ample. �

We recall the following application of Chow’s lemma:

2.5. Lemma. Let f : X → Y be a Moishezon fibration between compact analytic
varieties. Then there exists a projective log-resolution µ0 : X0 → X such that the
composition f ◦ µ0 is a projective morphism.

Proof. It is shown in [DH20, Lem.2.18] that we can find a log-resolution µ0 such
that f ◦µ0 is a projective morphism. The property that µ0 is also projective is not
claimed in [DH20], but can be achieved by applying the analytic version of Chow’s
lemma [Hir75, Cor.2] to the bimeromorphic map µ0. �
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2.B. Preliminaries on MMP. A normal projective variety X is Q-factorial if
every Weil divisor is Q-Cartier, or more formally the natural map Pic(X) → Cl(X)
induces an isomorphism

Pic(X)⊗Q −→ Cl(X)⊗Q.

Following [DH20] we extend the definition to the Kähler setting:

2.6. Definition. Let X be a normal complex space. We denote by W (X) the group
of divisorial sheaves, i.e. the group of isomorphism classes of reflexive sheaves of
rank one, endowed with the group operation F ◦ G := (F ⊗ G)∗∗.

2.7. Remark. We have a natural inclusion{
Cl(X) −֒→ W (X)

D 7−→ OX(D).

If X is not the projective this inclusion is not necessarily surjective: let S be a K3
surface that is very general in its deformation space, so Pic(S) = 0. Let X = P(ΩS),
then we have Pic(X) ≃ ZKX 6= 0. However X does not contain any divisor, cf.
[AH21, Cor.3.5], so Cl(X) = 0.

2.8. Definition. [DH20, Defn.2.2(ix)] A normal complex space X is strongly Q-
factorial if every divisorial sheaf is Q-Cartier, i.e. for every F ∈ W (X) there exists
m ∈ N such that F [m] is locally free.

2.9. Remark. Since a line bundle defines a locally free sheaf, we have an inclusion
Pic(X) →֒ W (X). The complex space is strongly Q-factorial if the inclusion induces
an isomorphism

Pic(X)⊗Q −→ W (X)⊗Q.

In this case we have a well-defined morphism
{

W (X) −→ N1(X)
F 7−→ c1(F) := 1

m
c1(F

[m])

where we choose m ∈ N∗ such that F [m] is locally free.

Let us restate the results on MMP for projective morphisms in the form that we
will use in the sequel:

2.10. Theorem. [Nak87, DHP24, Fuj22] Let X be a normal compact strongly Q-
factorial Kähler space. Assume that there exists a boundary divisor ∆ on X such
that the pair (X,∆) is klt. Let f : X → Y be a projective morphism onto a normal
compact Kähler space Y .

(1) If KX +∆ is not f -nef, there exists a countable collection of rational curves
li ⊂ X such that f(li) is a point and

NE(X/Y ) = NE(X/Y )KX+∆≥0 +
∑

i∈I

R+[li].

One has

0 < −(KX +∆) · li ≤ 2 dimX

and for every extremal ray R+[li] ⊂ NE(X/Y ) there exists a line bundle
L → X such that R+[li] = NE(X/Y ) ∩ c1(L)

⊥.
4



(2) For every extremal ray R+[li] ⊂ NE(X/Y ) as above there exists a projective
morphism g : Z → Y and a contraction morphism

ϕ : X → Z

onto a normal compact Kähler space Z such that −(KX + ∆) is ϕ-ample
and for any curve C ⊂ X such that f(C) is a point we have

ϕ(C) = pt. ⇔ [C] ∈ R+[li].

(3) We can run a KX +∆-MMP over Y , i.e. there exists a sequence of bimero-
morphic maps ϕj : Xj 99K Xj+1 over Y such that ϕj is either the divisorial
contraction of a KXj

+∆j-negative extremal ray or its flip (if the contrac-
tion is small). Moreover the pair (Xj+1, (ϕj)∗(∆j)) is klt, the normal space
Xj+1 is strongly Q-factorial and the natural morphism fj+1 : Xj+1 → Y is
projective.

(4) If KX +∆ is f -pseudoeffective and ∆ or KX +∆ are f -big, any MMP with
scaling by an f -ample line bundle terminates with a relative minimal model,
i.e. a projective morphism fm : Xm → Y such that KXm

+∆m is fm-nef.
(5) If KX +∆ is not f -pseudoeffective, any MMP with scaling by an f -ample

line bundle terminates with a relative Mori fibre space, i.e. a Mori fibre
space ϕm : Xm → Z onto a normal compact Kähler space Z of dimension at
most dimX−1 and a projective morphism g : Z → Y such that fm = g◦ϕm.

Proof. The first statement is [Nak87, Thm.4.12(1)] (applied in the case Y = W ),
the statement on the length of the extremal ray is [DHP24, Thm.2.44(3)b)], [Fuj22,
Thm.9.1].

The existence of the contraction in the second statement is [Nak87, Thm.4.12(2)]
(applied in the case Y = W ), note that any open neighbourhood W ⊂ U ⊂ Y is
equal to Y . While [Nak87] does not state that the morphism g is projective, this
is clear from the first item: the supporting nef line bundle descends to Z [Nak87,
Thm.4.12(3,b)] and by construction is strictly positive on NE(Z/Y ). Thus it is
relatively ample by [Nak87, Prop.4.7]. It is clear that Z is Kähler since Y is Kähler
by assumption and the morphism g is Kähler (even projective).

The existence of MMP in the third statement is [Fuj22, Thm.1.7], [DHP24,
Thm.1.4(1)]. Strong Q-factoriality is shown in [DH20, Lemma 2.5], the klt property
is shown as in the projective case [KM98, Cor.3.42, Cor.3.43]

The two last statements are stated in [Fuj22, Thm.1.7], [DHP24, Thm.1.4] for a
MMP with a scaling by a relatively ample divisor, but the arguments work if we
scale by the first Chern class of a relatively ample line bundle. Alternatively note
that given an f -ample line bundle L, we can take a finite open cover Yk of the base
such that each Yk satisfies the condition (P ) in [DHP24, Fuj22] and c1(L)|f−1(Yk)

is represented by an R-divisor. �

2.11. Lemma. Let X be a normal compact Kähler space, and let ∆ be a boundary
divisor such that (X,∆) is klt. Then there exists a small projective modification
ν : X ′ → X such that X ′ is strongly Q-factorial.

Proof. This is shown for threefolds in [DH20, Lem.2.27], by running a relative
MMP for some projective log-resolution. As shown by Theorem 2.10, the results
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of [Fuj22, DHP24] allow to run this MMP in any dimension. Thus the proof works
without changes. �

We prove a variant of [DH20, Lem.2.32], following their proof:

2.12. Lemma. Let µ : X ′ → X be a bimeromorphic morphism between normal
compact Kähler spaces. Assume that X has strongly Q-factorial klt singularities.
Let τ : X0 → X ′ be a log-resolution of X ′ and the morphism µ such that µ0 := µ◦ τ
is a projective morphism (cf. Lemma 2.5) with SNC exceptional locus.

Then there exists a boundary divisor ∆0 such that (X0,∆0) is klt and a decompo-
sition of the morphism µ0 : X0 → X into a finite sequence of KX•

+ ∆•-negative
bimeromorphic Mori contractions and flips

ϕi : Xi 99K Xi+1 i = 0, . . . ,m− 1

between normal compact Kähler spaces over X such that Xm ≃ X.

Proof. We denote by E1, . . . , Ek ⊂ X0 the µ0-exceptional divisors. Since X has klt
singularities we have

KX0
∼Q µ∗

0KX +

k∑

i=1

aiEi

with ai > −1 for all i = 1, . . . , k. Thus we can choose 0 < ǫ < 1 such that ai−ǫ > −1

for all i = 1, . . . , k. Since X0 is smooth and the divisor
∑k

i=1 Ei has SNC support,

the pair (X0, (1 − ǫ)
∑k

i=1 Ei) is klt. Since the morphism µ0 is projective and the
boundary is big on the general fibre (an empty condition for bimeromorphic maps),
we can run by Theorem 2.10 a terminating directed MMP

ϕ : X0 99K Xm

over X such that KXm
+ (1− ǫ)

∑k
i=1 ϕ∗Ei is relatively nef for the bimeromorphic

morphism µm : Xm → X .

Since

KXm
+ (1 − ǫ)

k∑

i=1

ϕ∗Ei ∼Q µ∗
mKX +

k∑

i=1

(1− ǫ+ ai)ϕ∗Ei,

the effective divisor
∑k

i=1(1 − ǫ + ai)ϕ∗Ei is µm-nef and µm-exceptional. Thus

the Q-divisor −
∑k

i=1(1− ǫ+ ai)η∗Ei is effective by the negativity lemma [Wan21,
Lem.1.3] and therefore the MMP ϕ contracts all the divisors Ei. Since the MMP
does not extract any divisors, the exceptional locus of µm has codimension at least
two. By assumption X is strongly Q-factorial, so µm is an isomorphism [DH20,
Lem.2.4]. �

3. Proof of the main theorem

We will prove the following singular variant, which obviously implies Theorem 1.1.

3.1. Theorem. Let f : X → Y be a fibration between normal compact Kähler
spaces. Assume that X has strongly Q-factorial klt singularities. Assume one of
the following:

6



• The normal space Y has klt singularities and the natural map [KS21,

Thm.1.9] f∗ : H0(Y,Ω
[2]
Y ) −→ H0(X,Ω

[2]
X ) is an isomorphism.

• The morphism f is Moishezon.

Then f is a projective morphism.

Namikawa showed in [Nam02] that a normal compact Kähler spaces with 1-rational
singularities that is Moishezon is even projective. Since klt singularities are rational
this is more general than our statement (in the case where Y is a point). The
technique is quite different: while Namikawa’s proof aims at constructing an ample
line bundle on X , we obtain the polarisation as a consequence of running a suitable
MMP.

Proof of Theorem 3.1. We divide the proof into three steps.

Step 1. We prove the theorem under the first assumption, assuming moreover that
X and Y are smooth. Let us denote d := dimX − dimY , and let ω be a Kähler
class on X .

Let η ∈ H2(X,Q) be any class, then according to the assumption we can write

(1) η = f∗(γ) + β + f∗(γ̄)

with γ ∈ H0(Y,Ω2
Y ) and β of type (1, 1). In particular for every y ∈ Y the

restriction of η to the fibre Xy is of type (1, 1). Since Y is compact we can choose
η ∈ H2(X,Q) sufficiently close to ω such that β is still a relative Kähler class.

We claim that we can replace η with η̃ so that η̃ − η ∈ f∗H2(Y,R) and η̃ is also
of type (1, 1). Then we know by the Lefschetz (1, 1)-theorem that, up to replacing
η̃ by mη̃ with m ∈ N sufficiently divisible, there exists a line bundle L ∈ Pic(X)
such that η̃ = c1(L). By construction c1(L) is a relative Kähler class, so by [Fuj79,
Lemma 4.4] we can find a Kähler class [ωY ] on Y such that c1(L)+f∗[ωY ] is Kähler.
Therefore L is f -ample by Lemma 2.4.

Proof of the claim. Note that (1) implies that

f∗(η
d) = f∗(β

d) and

f∗(η
d+1) = f∗(β

d+1) + (d+ 1)f∗(η
d) (γ + γ̄) .(2)

This is indeed a consequence of the projection formula

f∗ (α ∧ f∗(δ)) = f∗(α) ∧ δ

and of the fact that f∗ is a morphism of Hodge structures of bidegree (−d,−d). Let
us note that the equality (2) is nothing but the Hodge decomposition of f∗(η

d+1)
in H2(Y,R).

Since f∗ is defined over Q and η is a rational class we have f∗(η
k) ∈ H2k−2d(Y,Q)

for every k ∈ N. Moreover

f∗(η
d) =

∫

F

βd ∈ H0(Y,Q)

is a positive rational number, since by construction the restriction of β to the general
fibre F is a Kähler class. With this in mind, we can set

ηY :=
1

(d+ 1)f∗(ηd)
f∗(η

d+1) ∈ H2(Y,Q)

7



and can consider
η̃ := η − f∗(ηY ) ∈ H2(X,Q).

Using the equality (2), we see that

η̃ = β −
1

(d+ 1)f∗(ηd)
f∗

(
f∗(β

d+1)
)

is of type (1, 1). This is the sought rational (1, 1)-class and it proves the claim.

Step 2. We prove the theorem under the second assumption. By Lemma 2.5 we can
find a log-resolution µ0 : X0 → X such that µ0 and

f ◦ µ0 : X0 → Y

are projective morphisms. Applying Lemma 2.12 we obtain that the bimeromorphic
map µ0 decomposes into a sequence

ϕi : Xi 99K Xi+1

of divisorial contractions and flips over X . Denote by µi : Xi → X the natural
morphisms. Since f0 := f ◦ µ0 is projective and fm ≃ f we are done if we show
that projectiveness of fi = f ◦µi is invariant under every step of our MMP. We will
show this for the first contraction, the statement then follows by induction.

Denote by ϕ : X0 → Z the elementary Mori contraction of the extremal ray R+[C]
in NE(X0/X) (so ϕ is small if ϕ0 is a flip, and ϕ = ϕ0 in the divisorial case), and
let g : Z → Y be the natural map. We have natural inclusions

NE(X0/X) ⊂ NE(X0/Y ) ⊂ NE(X0)

and we claim that R+[C] ∈ NE(X0/Y ) is still an extremal ray. Indeed if l1, l2 ∈
NE(X0/Y ) are pseudoeffective classes such that l1 + l2 ∈ R+[C], then

0 = ϕ∗(l1 + l2) = ϕ∗l1 + ϕ∗l2.

Since Z is Kähler by Theorem 2.10(2), and ϕ∗lj ∈ NE(Z) we have ϕ∗lj = 0 for
j = 1, 2. Yet the kernel of

ϕ∗ : N1(X0) → N1(Z)

is exactly R[C]. Thus we obtain lj ∈ R+[C].

Since R+[C] ∈ NE(X0/Y ) is an extremal ray we know by Theorem 2.10 (2) that

there exists a projective contraction morphism η : X0 → X̃1 such that X̃1 → Y is
projective. Yet ϕ0 and η contract exactly the same curves, so by the rigidity lemma
[BS95, Lem.4.1.13] we have an isomorphism X̃1 → Z that identifies ϕ and η.

If ϕ is divisorial we have Z ≃ X1, so this proves the claim. If ϕ is small, note that
the flip ϕ+ : X1 → Z is a projective morphism polarised by the Q-line bundle KX1

,
so g ◦ ϕ+ is projective by Remark 2.3.

Step 3. We prove the theorem under the first assumption. Let µY : Y ′ → Y and
µX : X ′ → X be projective modifications by compact Kähler manifolds such that we
have an induced fibration f ′ : X ′ → Y ′. By [KS21, Thm.1.2] we have isomorphisms

H0(Y ′,Ω2
Y ′) ≃ H0(Y,Ω

[2]
Y ), H0(X ′,Ω2

X′) ≃ H0(X,Ω
[2]
X )

and therefore the injection

(f ′)∗ : H0(Y ′,Ω2
Y ′) → H0(X ′,Ω2

X′)
8



is an isomorphism. By Step 1 the fibration f ′ is projective, and therefore the
fibration f is Moishezon (note that X ′ is strongly Q-factorial, so the push-forward
of a relatively ample line bundle induces a relatively big line bundle). Yet by Step 2
this implies that f is projective. �

4. Applications of the main result

For lack of reference let us state the Kähler version of [Kol86, Thm.7.1]:

4.1. Theorem. [Kol86, Tak95] Let f : X → Y be a fibration between normal
compact Kähler spaces with rational singularities, and let F be a general fibre.
Then the following statements are equivalent:

• Rif∗OX = 0 for all i > 0;
• hi(F,OF ) = 0 for all i > 0.

Proof. Since X has rational singularities we can replace it with a desingularisation
without changing the statement. Now we follow the proof of [Kol86, Thm.7.1]: this
proof is based on [Kol86, Thm.2.1] and general duality theory. The Kähler case
of [Kol86, Thm.2.1] is shown in [Tak95, Thm. II and IV], duality theory in the
analytic setting is established in [RR70]. �

The assumption in Theorem 3.1 can easily be verified:

4.2. Corollary. Let f : X → Y be a fibration between normal compact Kähler
spaces with klt singularities. Assume that X is strongly Q-factorial. If

R1f∗OX = R2f∗OX = 0,

then f is projective. In particular

• if hi(F,OF ) = 0 for all i > 0, or
• if f is bimeromorphic

the morphism f is projective.

Proof. Since R1f∗OX = R2f∗OX = 0, the Leray spectral sequence shows that
H2(X,OX) ≃ H2(Y,OY ). Since klt singularities are rational, Hodge duality holds
(see e.g. [Kir15, Cor.B.2.8]), so we obtain the isomorphism in the assumption
of Theorem 3.1. The last statement is now clear by Theorem 4.1 (and since f
bimeromorphic corresponds to the case dim(F ) = 0). �

4.3. Remark. It was proven by Nakayama [Nak02, Prop.3.3.1] that a Kähler
morphism f : X → Y with R2f∗OX = 0 is locally projective. It is not possible
to improve this statement, i.e. Corollary 4.2 does not hold if we only assume
R2f∗OX = 0: let X be a compact complex torus of dimension 2 and algebraic
dimension a(X) = 1. Then the algebraic reduction is a fibration f : X → Y onto
an elliptic curve Y . For dimension reasons we have R2f∗OX = 0 (but R1f∗OX ≃
OY 6= 0). The morphism f is not projective, since otherwise X would also be
projective.

9



Proof of Theorem 1.2. The MRC fibration is an almost holomorphic fibration
f : X 99K Y such that the general fibre F is rationally chain connected. Since
F has klt singularities, a desingularisation F ′ → F is rationally chain connected
[HM07] and therefore hi(F,OF ) = hi(F ′,OF ′) = 0 for all i > 0. Choose now any
modification Y ′ → Y such that Y ′ is a compact Kähler space with klt singularities,
and choose a resolution of the indeterminacies X ′ → X such that X ′ is a com-
pact Kähler space with strongly Q-factorial klt singularities (e.g. X ′ is smooth).
Then the morphism f ′ : X ′ → Y ′ satisfies the assumptions of Corollary 4.2 and is
therefore projective. �

4.4. Remark. In general the MRC fibration is not holomorphic, so a priori it has
no distinguished bimeromorphic model. However we can choose a model which is
canonical in many ways and a projective morphism: let X be a normal compact
Kähler space with klt singularities, and let F be a general fibre of the MRC fibra-
tion. Since the MRC fibration is almost holomorphic, the class of F is contained in
a unique irreducible component of the cycle space C(X), and we denote its normali-
sation by Z. The universal family Γ → Z defines a canonically defined meromorphic
MRC fibration f : X 99K Z. Denote by Zc → Z the canonical modification (this
exists by [Fuj22, Thm.1.16]). Let Xc be the canonical modification of the unique
component of Γ×Z Zc that dominates Zc. By Lemma 2.11 we can assume after a
small modification that Xc is strongly Q-factorial. Thus we can apply Corollary 4.2
to obtain that

fc : Xc −→ Zc

is a projective morphism.
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