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A bound preserving cut discontinuous Galerkin method for one

dimensional hyperbolic conservation laws

Pei Fu∗, Gunilla Kreiss†, Sara Zahedi‡

Abstract

In this paper we present a family of high order cut finite element methods with bound preserving

properties for hyperbolic conservation laws in one space dimension. The methods are based on the

discontinuous Galerkin framework and use a regular background mesh, where interior boundaries are

allowed to cut through the mesh arbitrarily. Our methods include ghost penalty stabilization to handle

small cut elements and a new reconstruction of the approximation on macro-elements, which are local

patches consisting of cut and un-cut neighboring elements that are connected by stabilization. We show

that the reconstructed solution retains conservation and optimal order of accuracy. Our lowest order

scheme results in a piecewise constant solution that satisfies a maximum principle for scalar hyperbolic

conservation laws. When the lowest order scheme is applied to the Euler equations, the scheme is

positivity preserving in the sense that positivity of pressure and density are retained. For the high order

schemes, suitable bound preserving limiters are applied to the reconstructed solution on macro-elements.

In the scalar case, a maximum principle limiter is applied, which ensures that the limited approximation

satisfies the maximum principle. Correspondingly, we use a positivity preserving limiter for the Euler

equations, and show that our scheme is positivity preserving. In the presence of shocks additional limiting

is needed to avoid oscillations, hence we apply a standard TVB limiter to the reconstructed solution.

The time step restrictions are of the same order as for the corresponding discontinuous Galerkin methods

on the background mesh. Numerical computations illustrate accuracy, bound preservation, and shock

capturing capabilities of the proposed schemes.

Keywords: Hyperbolic conservation laws, discontinuous Galerkin method, cut elements, satisfying maxi-

mum principle, positivity preserving

1 Introduction

In this paper we consider problems in one space dimension, both scalar hyperbolic conservation laws and

the important hyperbolic system of equations known as the Euler equations of gas dynamics. These are of

the form {
ut + ∂xf(u) = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(1.1)
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with suitable boundary conditions. Here, Ω ⊂ R, u = (u1, · · · , un)
T is a vector of real valued functions,

which represents conservative variables, and f(u) = (f1(u), · · · , fn(u))T is the vector valued flux function.

We assume that the corresponding Jacobian matrix has n real eigenvalues and n complete eigenvectors.

Solutions of such systems may develop shocks or discontinuities even if the initial data is smooth. It therefore

becomes necessary to consider weak solutions, and as usual we seek the physical relevant weak solution which

satisfies an entropy condition.

An important property of the entropy solution for a scalar equation of the form (1.1) is the maximum

principle, which for Cauchy problems means

if u0(x) ∈ [m, M] then u(x, t) ∈ [m, M]. (1.2)

The solution of the Euler equations usually does not satisfy the maximum principle, but density and pressure

should remain positive. With negative density or pressure hyperbolicity is lost and the Euler system becomes

ill-posed, which causes severe numerical difficulties. For initial boundary-value problems boundary conditions

must satisfy corresponding restraints for the maximum principle, or positivity, to be valid. It has been noted

that high order methods without bound preserving properties often suffer from numerical instability or

nonphysical features when applied to problems with low density or high Mach number, see for example [25].

A finite element method (FEM) based on discontinuous piecewise polynomial spaces is commonly called

a discontinuous Galerkin (DG) method. The DG methodology coupled to explicit Runge-Kutta time dis-

cretizations and limiters, has successfully been applied to nonlinear time dependent hyperbolic conservation

laws, see e.g. [13, 12, 14]. For more details on DG methods, we refer to [28, 44]. Most finite element methods

require the mesh to be aligned to boundaries and material interfaces, and to achieve the optimal accuracy

the mesh quality needs to be high.

For boundaries and material interfaces with complicated shapes one approach is to start with a Cartesian

background mesh and use agglomeration to create a body fitted mesh of good quality. An alternative

approach is to allow boundaries and interfaces to cut through the Cartesian background mesh arbitrarily.

This is the approach we take. In this paper we develop an unfitted discretization for hyperbolic PDEs

based on standard Cartesian finite elements that preserves important properties. Small cut elements may

cause problems, including ill-conditioned linear systems and severe time-step restrictions. Various techniques

have been introduced to handle such difficulties. One approach often used in unfitted methods based on

DG is cell merging, where new elements, still unfitted but of sufficient size are created by merging small cut

elements with their neighbours [30, 32, 38, 39, 40, 9, 10]. A common technique in connection with Cut Finite

Element Methods (CutFEM) is to add ghost penalty stabilization terms in the weak form [4, 5, 36, 42, 24].

In CutFEM the physical domain is embedded into a computational domain equipped with a quasi-uniform

mesh. Elements that have an intersection with the domain of interest define the active mesh and associated

to that is a finite dimensional function space and a weak form, which together define the numerical scheme

[35, 26, 17, 46]. Interface and boundary conditions are imposed weakly, when the mesh is unfitted.

Recently, some methods based on the DG framework with time-step restrictions that are independent

of the sizes of smallest elements have been developed for time-dependent hyperbolic conservation laws. In

[16, 37] methods are presented that include stabilization of small elements, designed to restore proper domains

of dependence. In [21] small elements are stabilized by a redistribution step, which was first introduced in [3].

In [19] a family of high-order cut discontinuous Galerkin (Cut-DG) methods with ghost penalty stabilization

for non-linear scalar hyperbolic problems is presented. These methods are proven to be high order accurate

and L2−stable under time-step restrictions that are independent of cut sizes. Total variation stability, which

is important when considering problems with shocks, is also established, but only for the piecewise constant
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scheme. In [18] a similar methodology is used, but the focus is on conservation at material interfaces with

discontinuous fluxes, which cut arbitrarily through elements in one and two space dimensions.

In this paper we will develop and analyze a family of high order bound-preserving unfitted discontinuous

Galerkin (DG) methods for nonlinear hyperbolic conservation laws. We will consider (1.1) with several artifi-

cial subdomain interfaces, a problem which is equivalent to (1.1) on the original domain. The computational

mesh, which will be introduced later, is not fitted to these interfaces. We have chosen this model problem

as a one dimensional model for problems in higher spatial dimension with a physical boundary or a physical

interface that cuts arbitrarily through the computational mesh and creates increasingly many cut elements

as the mesh is refined, see Figure 1.

The contribution in this paper is a method for applying limiters in connection with unfitted discretizations

such as in [19] so that bound preservation is achieved for piecewise constant schemes as well as for high order

schemes. We illustrate with numerical experiments (see Figure 4, 6 in Section 5) that it is not sufficient

to directly apply limiters on the numerical solution on the unfitted computational mesh. We show that

the desired properties can be achieved on macro-elements. Macro-elements [33] consist of cut and un-cut

neighbouring elements in the computational mesh so that each macro-element always has a large intersection

with the domain of interest. We propose a reconstruction of the approximated solution on macro-elements

based on polynomial extension that preserves conservation and order of accuracy. If reconstruction is applied

everywhere the proposed scheme corresponds to cell merging with a particular basis on the macro-element.

To minimize errors the reconstruction on a macro-element should be applied only when limiting is needed

on an element belonging to the macro-element. This is possible when the ill-conditioning and time step

restrictions due to small cut cells is handled by ghost penalty terms.

In the piecewise constant case we can show that under a suitable time step restriction the reconstructed

solutions in the scalar case and for the Euler system, satisfy the maximum principle and the positivity of

density and pressure, respectively. For the higher order schemes we can show that the average values of the

reconstructed solutions on the macro-elements satisfy the corresponding bounds. Thus, the bound preserving

limiters developed by Zhang et. al [52, 53] can be applied to ensure that the discrete approximations satisfy

the pointwise bounds.

The bound preserving limiter is not enough to control oscillations near shocks. There we need additional

limiting. In our work, we use a TVD/TVB slope limiter commonly applied in combination with DG methods,

see [13, 12, 11, 14]. Other limiters, such as WENO-limiters [41] are also possible.

The paper is organized as follows. In Section 2 we introduce the model problem, the mesh, the finite

element function spaces, the Cut-DG discretization, the process for reconstructing solutions on macro-

elements, and some notation. In Section 3 the scheme is presented for scaler hyperbolic conservation laws

and we show that it satisfies the maximum-principle property when a suitable bound preserving limiter is

applied during time evolution. In Section 4, we present the corresponding scheme for the Euler equations,

and analyze the positivity property. In Section 5 numerical computations are presented, which support the

theoretical results. Finally, a conclusion is given in Section 6.

2 A cut discontinuous Galerkin discretization in space

In this section we present an unfitted spatial discretization for hyperbolic conservation laws on the form

(1.1). After presenting the model problem we define the mesh, our finite dimensional function spaces, and

the macro-element partition.
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2.1 A model geometry in one space dimension

To mimic a problem in higher spatial dimensions with a boundary (or an interface) that cuts arbitrarily

through a computational mesh, as in Figure 1, we consider a one dimensional problem with several artificial

interfaces, see Figure 2. In the computations in Section 5 we let the number of cut elements increase with

mesh refinement. This one dimensional problem is considerably more challenging than if only cut elements

at the two boundaries are present. For completeness, results with unfitted boundaries and with a physical

interface are included in subsections 5.4.4 and 5.3.

Figure 1: An illustration of a regular mesh and an unfitted interface.

2.2 Mesh and spaces

We embed the physical domain Ω = [xL, xR] into a computational domain Ωh = [xL, xR], which is discretized

into N intervals Ij = [xj− 1
2
, xj+ 1

2
], j = 1, · · · , N such that xL = x 1

2
< x 3

2
< · · · < xN+ 1

2
= xR, where

xj+ 1
2
= xL + jh with h = xR−xL

N . Let

x 1
2

xL

x 3
2

xj− 5
2

xj− 3
2

Γ1

Ω1

M ∈Mh,1

Ω2
Ω3

xj− 1
2

xj+ 3
2

xk− 1
2

Γ2

xk+ 1
2

xN− 1
2

xN+ 1
2

xR

Figure 2: Discretization of the computational domain Ωh = [xL, xR] into a uniform partition. This back-

ground mesh is cut by two interfaces at x = Γ1 and x = Γ2, dividing the computational domain into three

subdomains. The dotted line at xj− 3
2
indicates the interior edge in Mh,1 on which stabilization is applied,

i.e. xj− 3
2
∈ Fh,1

Th = {Ij : Ij ∩ Ω 6= ∅ : j = 1, · · · , N}. (2.1)
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We refer to Th as the background mesh of the domain Ω. The background mesh may be cut by either the

outer domain boundary ∂Ω and by interior boundaries (interfaces). In this work we let

Ωh = Ω =

N⋃

j=1

Ij , (2.2)

and hence the generated background mesh Th aligns with the boundary ∂Ω but not with interior interfaces.

Assume the interior interfaces divide the domain into NΩ non-overlapping subdomains Ωi such that Ω =

∪NΩ

i=1Ωi. The NΩ − 1 interfaces are positioned at x = Γj , j = 1, · · · , NΩ − 1 and non of them align with the

mesh, so we have NΩ − 1 cut elements in the interior of the domain Ω. For an illustration, see Figure 2.

Associated with the subdomains Ωi we define active meshes

Th,i = {Ij ∈ Th : Ij ∩ Ωi 6= ∅}, i = 1, · · · , NΩ, (2.3)

and active finite element spaces

V p
h,i = {v ∈ L2(Ω) : v|Ij ∈ P

p(Ij), ∀Ij ∈ Th,i}, (2.4)

where P
p(Ij) denotes the space of discontinuous piecewise polynomials of degree less or equal to p on Ij .

Let Eh,i be the set of interior edges in the active mesh Th,i. The intersections of Ij with Ωi are in the set

Kh,i

Kh,i = {K = Ij ∩ Ωi : Ij ∈ Th,i}. (2.5)

Finally, let

V p
h =

NΩ−1⊕

i=1

V p
h,i. (2.6)

2.2.1 Macro-elements

We create a macro-element partition Mh,i of the active domain

Ωh,i =
⋃

Ij∈Th,i

Ij (2.7)

following [33]. The idea is to construct elements with large Ωi-intersections. To do that each interval Ij

in the active mesh Th,i is first classified as having a large or a small intersection with the domain Ωi. We

classify Ij ∈ Th,i as having a large Ωi-intersection if

δ ≤ |Ij ∩ Ωi|
|Ij |

. (2.8)

Here 0 < δ ≤ 1 is a constant which is independent of the element and of the mesh size h. We assume that

h is small enough so that in each subdomain Ωi there is at least one element which is classified as having

a large intersection with Ωi. To each element with a large intersection a macro-element is associated. The

macro-element consist of either only this element or this element and adjacent elements (connected via a

bounded number of internal edges) that are classified as having small intersections with Ωi. In one space

dimension a macro-element will at most consist of three elements. In higher dimensions, if the geometry

is smooth and well resolved the macro-element partitioning can be made to avoid macro-elements of very

different size, please see Algorithm 1 in [33].

We define by Fh,i(M) the set consisting of interior edges of macro-element M ∈ Mh,i. Stabilization

will be applied at these edges. Note that the set Fh,i(M) is empty when the macro-element consist of
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only one element Ij (with a large Ωi-intersection). An example is shown in Figure 2, where M ∈ Mh,1

is a macro-element consisting of more than one element in Ωh,1 and xj− 3
2
∈ Fh,1 is the interior edge of

that macro-element. In the original ghost-penalty approach, stabilization is applied on all interior edges

(with respect to Ωi) that also belong to cut elements. This is referred to as full stabilization. Using the

macro-element partitioning stabilization is applied only on interior edges in each macro-element and never

between macro-elements, hence conservation properties of the underlying DG-scheme can be inherited to

macro-elements. In addition, with a macro-element stabilization errors are less sensitive to stabilization

parameters, see [33]. With smaller choices of δ less elements are connected via the stabilization, resulting

in a more sparse mass-matrix. However a small value causes a more severe time step restriction, see e.g.

Theorem 3.1. In the numerical experiments we have used δ = 0.2.

2.3 The weak formulation

As a first step in finding an approximate solution to (1.1), we follow [19, 18] and formulate a semi-discrete

weak form: For t ∈ [0, T ] find uh(·, t) = (uh,1(·, t), · · · ,uh,NΩ
(·, t)) ∈ V p

h such that,

((uh)t,vh)Ω + γ1J1(uh,t,vh) + a(uh,vh) + γ0J0(uh,vh) = 0, ∀vh ∈ V p
h , (2.9)

where

(ut,v)Ω =

NΩ∑

i=1

∑

K∈Kh,i

((ui)t,vi)K , (2.10)

a(u,v) =−
NΩ∑

i=1

∑

K∈Kh,i

(f(ui), ∂x(vi))K −
NΩ∑

i=1

∑

e∈Eh,i

f̂ (ui)e[vi]e −
NΩ−1∑

i=1

f̂(u)Γi
[v]Γi

, (2.11)

Js(u,v) =

NΩ∑

i=1

∑

M∈Mh,i

∑

e∈Fh,i(M)

p∑

k=0

wkh
2k+s

[
∂kui

]
e

[
∂kvi

]
e
. (2.12)

Here

f̂(u)ξ = {f(u)}ξ −
λ

2
[u]ξ (2.13)

is the Lax-Friedrichs flux, where λ is an estimate of the largest absolute eigenvalue of the Jacobian matrix
∂f
∂u in the domain Ω, [w]ξ = w+ − w− represents the jump of the function w at ξ and {w}ξ = (w++w

−)
2

with w+ = lim
ǫ→0+

w(ξ + ǫ), and w− = lim
ǫ→0+

w(ξ − ǫ) denoting the limit values of w ∈ V p
h at ξ from right and

left. Note that at e ∈ Eh,i we have [v]e = v+
i − v−

i and at Γi we have [v]Γi
= vi+1|Γi

− vi|Γi
with vi ∈ V p

h,i.

In this paper we apply the global Lax-Friedrichs flux, i.e. λ is constant in the entire domain Ω. The local

Lax-Friedrichs flux [27] and other positivity preserving fluxes like HLL flux [49], HLLC flux [2] can also be

applied.

In the stabilization term (2.12), ωk = 1
(k!)2(2k+1) , we refer to [47] for more details about this choice. The

stabilization parameters γ0, γ1 are positive constants and need to be chosen sufficiently large to avoid severe

time step restrictions. In our numerical experiments γ0 = 0.25 and γ1 = 0.75. Assuming time and space

scaled so that the wave speed is O(1) these values work well. However, we have not optimized these values

but with the macro-element stabilization our experience is that the results are not sensitive to these precise

values.

The initial condition is given by the stabilized L2-projection:

NΩ∑

i=1

∑

K∈Kh,i

(uh(·, 0),vh)K + γ1J1(uh(·, 0),vh) =

NΩ∑

i=1

∑

K∈Kh,i

(u0,vh)K , ∀vh ∈ V p
h . (2.14)
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2.4 A reconstruction on macro-elements

In general, fully discrete solutions of (2.9) do not automatically satisfy the maximum principle for scalar

equations (see the left panel in Figure 5), or positivity of density and pressure for the Euler equations.

To guarantee that the approximate solution to (1.1) has all the desired properties we utilize limiters, but

we need to apply them properly. We will need a bound preserving limiter and sometimes when shocks

or discontinuities are present we will also need additional limiters. The numerical examples in Section 5

show that it does not suffice to apply a standard limiter directly. Our main idea is to define an approximate

solution uh,M from uh on the macro-element partition of the subdomains, and apply the appropriate limiters

on uh,M .

We will in next sections show that applying a limiter to the reconstructed solution on macro elements

will ensure the bound preserving properties.

x 1
2

x 3
2

xJ− 3
2 xJ− 1

2

IM

M ∈Mh,i

K1 K2

xJ+ 1
2

xk− 3
2

xk− 1
2

xk+ 1
2

xN− 1
2

xN+ 1
2

Figure 3: Illustration of intervals Kj ∈ Kh,i, which constitute part of the macro-element M.

For each macro-element M ∈Mh,i, see Figure 3, let

IM = M ∩ Ωi = ∪j∈NM
Kj with Kj ∈ Kh,i, (2.15)

where NM is an index set for those elements in Kh,i that constitute IM , the part of the macro-element

M that is in Ωi. Furthermore, we have |IM | ≥ δh with the definition of δ in (2.8). For the macro-

element M illustrated in Figure 3, NM = 1, 2. We consider the scalar function on the macro-element here

and note that we do a reconstruction for each component of uh if uh is a vector-valued function. Let

uh(·, t) = (uh,1, · · · , uh,NΩ
) with uh,i ∈ V p

h,i be an approximation of u(·, t). and let ui = u|Ωi
.

For each macro-element M ∈Mh,i and each Kj with j ∈ NM define

wh,j = uh,i|Kj
, we

h,j = EMwh,j , (2.16)

where EM is the polynomial extension operator that extends wh,j to the entire macro-element M , such that

EMwh,j |Kj
= wh,j , ‖EMwh,j‖IM ≤ c‖wh,j‖Kj

. (2.17)

Here c = c̃

√
|IM |√
|Kj|

and c̃ is a constant independent of mesh size h and independent of how the interface cuts

through the element. At a point x outside Kj , w
e
h,j(x) is simply the evaluation of the polynomial at x.

We propose the following reconstruction on each M

uM
h,i =

∑

j∈NM

ωjw
e
h,j + c0, for each M ∈Mh,i (2.18)

with

ωj =
|Kj |
|IM |

, c0 =

∑
j∈NM

∫
Kj

wh,jdx

|IM |
−
∑

j∈NM
ωj

∫
IM

we
h,jdx

|IM |
. (2.19)
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Note that each wh,j is extended to the entire macro-element and evaluated in IM and other choices of

weights are possible. The constant c0 is chosen so that uM
h,i has the same mean value on IM as uh,i. Note

that
∑

j∈NM
ωj = 1, and when M consists of only one element then |Kj | = |IM | and uM

h,i = uh,i|M .

This reconstruction yields a new approximate solution uM

h,i on the macro-element partition, which is in

the subspace of V p
h,i and has the following properties

• conservation: we have
∫

IM

uM

h,idx =
∑

j∈NM

∫

Kj

wh,jdx =

∫

IM

uh,idx, (2.20)

which shows that the reconstruction maintains conservation.

• accuracy: to consider the error estimate of the reconstruction, we write

||ui − uM

h,i||IM =||
∑

j∈NM

ωj(ui − we
h,j)− c0||IM = ||

∑

j∈NM

ωj(ui − we
h,j)

+
∑

j∈NM

1

|IM |

∫

Kj

(ui − wh,j)dx+
∑

j∈NM

ωj

|IM |

∫

IM

(we
h,j − ui)dx||IM

≤||
∑

j∈NM

ωj(ui − we
h,j)||IM + ||

∑

j∈NM

ωj

|IM |

∫

IM

(we
h,j − ui)dx||IM +

1

|IM |
||
∑

j∈NM

∫

Kj

(ui − wh,j)dx||IM

≤
∑

j∈NM

ωj ||ui − we
h,j ||IM +

∑

j∈NM

ωj

|IM |
√
|IM |

∫

IM

|we
h,j − ui|dx +

∑

j∈NM

1√
|IM |

∫

Kj

|ui − wh,j |dx

≤2
∑

j∈NM

ωj||ui − we
h,j ||IM +

∑

j∈NM

√
ωj||ui − wh,j ||Kj

≤(2c̃+ 1)
∑

j∈NM

√
ωj||πhui − wh,j ||Kj

+ 3
∑

j∈NM

√
ωj ||ui − πhui||IM . (2.21)

Here πh : ui ∈ Hp+1(Ωi)→ πh(Eui|Mh,i
) ∈ V p

h,i is the projection operator where E is a Sobolev exten-

sion operator [45]. Note that we have used
∑

j∈NM
ωj = 1, and added and subtracted 1

|IM |

∫
IM

uidx =
1

|IM |

∑
j∈NM

∫
Kj

uidx = 1
|IM |

∑
j∈NM

ωj

∫
IM

uidx in the second equality in (2.21). To get the inequali-

ties in the third and fourth line we used Minkowski’s inequality. In the fifth line, Hölder’s inequality

is applied. To get the last inequality in (2.21), we split ui − we
h,j into two terms ui − πhui and

πhui −we
h,j . We note that ui = u|Ωi

and we have πhui = πh(Eui|Mh,i
). Thus πhui −we

h,j is a polyno-

mial extension of πhui − wh,j from element Kj to the entire macro-element M . From (2.17), we have

ωj||πhui−we
h,j||IM ≤ c̃

√
ωj ||πhui−wh,j||Kj

. With optimal error estimates for the projection operator,

it follows that the reconstructed solution has the same order of accuracy as the original uh. We refer to

[18] for the estimate of
∑

j∈NM
||πhui − wh,j ||Kj

. Thus, the reconstruction does not destroy the order

of accuracy of the numerical solution.

Remark 2.1. In practice the approximate solution uh,M should be constructed only when limiting

is necessary. Numerical experiments, where the reconstruction is only done for macro-elements that

violate the bound property, show that this works well. See Figure 7 for a scalar example and Figure

13 for a system. We remark that it is also possible to use the extension technique in the discretization

of the PDE instead of adding stabilization terms, see for example [29, 7, 6].
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3 Maximum principle preserving DG methods for scalar equations

In this section, we propose a fully discretized scheme for the scalar hyperbolic conservation laws and study

the maximum principle property of the proposed scheme. It suffices to consider the forward Euler method.

In the numerical experiments, we use high order time discretization methods that are linear combinations

of the forward Euler method. In each time step we include a reconstruction on the macro-element partition

of the mesh. We will show that our proposed scheme satisfies the maximum principle. The scheme can

be summerized as follows: Given the approximate solution un
h = (un

h,1, · · · , un
h,NΩ

) with un
h,i ∈ V p

h,i, and

satisfying un
h,i|Ωi

∈ [m, M] at time tn, we compute un+1
h by the following steps:

1. Find ũn+1
h = (ũn+1

h,1 , ũn+1
h,2 , · · · , ũn+1

h,NΩ
) ∈ V p

h such that for ∀vh ∈ V p
h

NΩ∑

i=1

∑

K∈Kh,i

(
ũn+1
h,i − un

h

∆t
, vh

)

K

+ γ1J1

(
ũn+1
h − un

h

∆t
, vh

)
+ a(un

h, vh) + γ0J0(u
n
h, vh) = 0, (3.1)

with the bilinear forms a(·, ·) and Js(·, ·) (s = 0, 1) defined as in (2.11) and (2.12).

2. From ũn+1
h,i , we compute the reconstructed solution following (2.18). For each M ∈Mh,i, i = 1, · · · , NΩ,

we compute uM,n+1
h,i from ũn+1

h,i , which is

uM,n+1
h,i |M =

∑
j∈NM

|Kj |w̃e,n+1
h,j

|IM |
+ c0. (3.2)

Here, w̃e,n+1
h,j is defined as in (2.16) but uh,i is replaced by ũn+1

h,i . If needed, bound preserving limiting,

which will be described in section 3.3, is applied to the reconstructed solution before the next step.

3. Finally, for each macro-element M ∈Mh,i, i = 1, · · · , NΩ set

un+1
h,i |M = uM,n+1

h,i |M . (3.3)

At the initial time t0, given u0, replace (3.1) by (2.14) and then apply step 2 and 3 to compute uM,0
h,i and u0

h,i.

In practice, the approximate solution uh,M should be construct only in those M ∈ Mh,i when limiting is

needed (see Figure 7 for Burgers’ equation and Figure 13 for the Euler equations). Note that the stabilization

terms Ji act only on the interior edges in macro-elements. For macro-elements where the reconstruction is

done, the reconstructed solution un
h has no jump across the interior edges and thus on such elements the

stabilization terms Ji(u
n
h, vh) vanish. In all other macro-elements the stabilization J0 is needed.

In the higher order versions of our scheme the reconstructed solution may not satisfy the maximum

principle automatically at the next time level i.e. uM,n+1
h,i /∈ [m, M], i = 1, · · · , NΩ, and this makes limiting

necessary. The details are found in Algorithm 1.

3.1 Piecewise constant approximation

Let un
h ∈ V p

h , p = 0 denote the piecewise constant function that approximates the solution at time tn. Note

that in this case, we have from the conservation property (2.18) that c0 = 0 and thus

suM,n
h,i =

∑
j∈NM

|Kj |w̃n
h,j

|IM |
, (3.4)

where w̃n
h,j denotes the mean value on the element Kj . Note that the solution uM,n

h,i has no discontinuity at

interior edges of macro-elements (for example across the edge between K1 and K2 in Figure 3), and with

p = 0 there is no difference between function values and mean values.
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Theorem 3.1. Consider the Cut-DG scheme described by (3.1)-(3.3) with p = 0. If the time step ∆t satisfies

∆t

δh
λ ≤ 1, (3.5)

then un
h,i|Ωi

∈ [m, M], i = 1, · · · , NΩ implies un+1
h,i |Ωi

∈ [m, M] for i = 1, · · · , NΩ. Here h is the element size

in the background mesh, and δ is a given constant, which in (2.8) defines when an intersection between an

element and Ωi is classified as large. λ is the maximum absolute value of the Jacobian ∂f(un
h)/∂u

n
h in the

domain Ω.

Proof. By the reconstruction (3.3), un
h is constant in each macro element M ∈ Mh,i, i = 1, · · · , NΩ, and we

denote the value by uM,n
h,i . Let un

h,l and un
h,r denote the values adjacent to the left and right boundary of

IM , respectively, see IM in (2.15). We assume un
h ∈ [m,M ]. Thus, we have uM,n

h,i , un
h,l, u

n
h,r ∈ [m, M]. Further,

let f̂l and f̂r denote the numerical fluxes on the left and on the right boundary of the macro-element IM ,

respectively. We use the global Lax-Friedrichs flux, defined by (2.13), which is

f̂l =
1

2

(
f(un

h,l(xl)) + f(uM,n
h,i (xl))

)
− λ

2

(
uM,n
h,i (xl)− un

h,l(xl)
)
, (3.6)

f̂r =
1

2

(
f(uM,n

h,i (xr)) + f(un
h,r(xr))

)
− λ

2

(
un
h,r(xr)− uM,n

h,i (xr)
)
. (3.7)

Let the test function vh in (3.1) to be vh = 1 on each element of M and vh = 0 otherwise. By noting that

the stabilization terms Js act only on interior edges in macro-elements and that un
h,i has no jump across

such edges, we get

∑

j∈NM

|Kj |w̃n+1
h,j =

∑

j∈NM

|Kj |un
h,i|Kj

−∆t(f̂r − f̂l).

Taking (??) into account at t = tn+1, the above equation can be written as

uM,n+1
h,i = uM,n

h,i −
∆t

|IM |
(
f̂r − f̂l

)
. (3.8)

With the definition of global Lax-Friedrichs flux (3.6)-(3.7) we can rewrite (3.8) as

uM,n+1
h,i = uM,n

h,i −
λ∆t

|IM |
uM,n
h,i +

∆t

2|IM |
(λun

h,r − f(un
h,r)) +

∆t

2|IM |
(λun

h,l + f(un
h,l)). (3.9)

With H(a, b, c) defined as

H(a, b, c;λ) :=

(
1− λ∆t

|IM |

)
b+

∆t

2|IM |
(λc− f(c)) +

∆t

2|IM |
(λa + f(a)), (3.10)

we have

uM,n+1
h,i = H(un

h,l, u
M,n
h,i , un

h,r;λ). (3.11)

Since |IM | ≥ δh, it follows by (3.5) that

0 <
∆t

|IM |
λ ≤ 1, (3.12)

∂H(a, b, c;λ)

∂a
=

∆t

2|IM |
(λ + f ′(a)) ≥ 0, (3.13)

∂H(a, b, c;λ)

∂b
= 1− ∆t

|IM |
λ ≥ 0, (3.14)
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∂H(a, b, c;λ)

∂c
=

∆t

2|IM |
(λ − f ′(c)) ≥ 0. (3.15)

Further,

H(z, z, z;λ) =

(
1− λ∆t

|IM |

)
z +

∆t

2|IM |
(λz − f(z)) +

∆t

2|IM |
(λz + f(z)) = z. (3.16)

Thus, it follows that uM,n+1
h,i ∈ [m, M] and hence un+1

h satisfies the maximum principle under the time step

restriction (3.5).

3.2 Mean values of high order approximations

We now consider higher order schemes in space and time, where the time discretization can be seen as a

sequence of Euler steps. We therefore consider (3.1) with p ≥ 1 together with the reconstruction (3.2).

We will show that for sufficiently small time steps the mean values on macro-elements after an Euler step

satisfy the same maximum principle as in Theorem 3.1 above. We will follow the ideas used to prove the

corresponding result for the standard DG method [52]. In the proof we will use the q−point Gauss-Lobatto

quadrature rule on each macro-element, which is exact for polynomials of degree 2q − 3. Let q be the

smallest integer satisfying 2q − 3 > p. For each M ∈ Mh,i, we let x̂M
µ denote the µ-th quadrature point,

with x̂M
1 = xM,l, x̂

M
q = xM,r. Here xM,l, xM,r are the end points of IM , the part of the macro-element,

which is in the subdomain Ωi. The corresponding weights, normalized to a unit interval, are denoted by

ŵµ, µ = 1, · · · , q. We note that the weights in the chosen quadrature rules are symmetric, ŵ1 = ŵq. We also

note that after the reconstruction our approximation is a polynomial of degree p on the entire macro-element,

which can be integrated exactly by the quadrature rule. The following theorem shows that one Euler step

preserves the maximum principle for mean values defined by ūn
h = (ūn

h,1, · · · , ūn
h,NΩ

) with

ūn
h,i|M =

1

|IM |

∫

IM

uM,n
h,i dx =

1

|IM |

∫

IM

un
h,idx, ūM,n

h,i = ūn
h,i|M , (3.17)

for each macro-element M ∈Mh,i.

Theorem 3.2. Consider the Cut-DG scheme described by (3.1)-(3.3) with p ≥ 1. If the time step ∆t satisfies

∆t

δh
λ ≤ ŵ1, (3.18)

then un
h,i|Ωi

∈ [m, M], i = 1, · · · , NΩ implies that ūM,n+1
h,i |Ωi

∈ [m, M], i = 1, · · · , NΩ, that is, mean values on all

macro-elements satisfy the maximum principle. Here h is the element size in the background mesh, and δ

is a given constant, which in (2.8) defines when an intersection between an element and Ωi is classified as

large. λ is the maximum absolute value of the Jacobian ∂f(un
h)/∂u

n
h in the domain Ω. ŵ1 is the normalized

weight corresponding to the first interior point for a q-point Gauss-Lobatto rules with 2q − 3 ≥ p.

Proof. As in Section 3.1, we look at a macro-element M as shown in Figure 3, with IM = K1 ∪K2. Let u
n
h,l

and un
h,r denote the values adjacent to the left and right end of IM , respectively, and let f̂r and f̂l be the

corresponding numerical fluxes defined by (2.13), which is expressed in (3.6)-(3.7) on the macro-element. By

reconstruction, un
h is a single polynomial of degree p in M , and can be exactly integrated over IM by the

q−point Gauss-Lobatto quadrature rule. Let the test function vh in (3.1) be 1 on each element of M and 0

otherwise, to obtain

∑

j∈NM

∫

Kj

ũn+1
h,j dx =

∑

j∈NM

∫

Kj

un
h,idx − (f̂r − f̂l). (3.19)
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By conservation on macro-elements and the definition (3.2), (3.17), we have

uM,n+1
h,i = uM,n

h,i −
∆t

|IM |
(
f̂r − f̂l

)
. (3.20)

Applying a q-point Gauss-Lobatto quadrature rules gives

uM,n
h,i =

1

|IM |

∫

IM

uM,n
h,i dx =

q∑

µ=1

ŵµû
M,n
µ . (3.21)

Here ûM,n
µ = uM,n

h,i (x̂M
µ ) denotes the value of the local polynomial at the quadrature point x̂M

µ . We now

follow the idea of the proof of the bound preserving property of the standard DG method for hyperbolic

conservation laws, see Theorem 2.2 in [52]. But we consider the mean values ūM,n+1
h,i of the Cut-DG method

on each macro-element. Introduce F̂ as the Lax-Friedrichs flux based on ûn
M,1 and ûn

M,q, that is

F̂ =
1

2
(f(ûM,n

1 ) + f(ûM,n
q ))− λ

2
(ûM,n

q − ûM,n
1 ), (3.22)

Using the quadrature (3.21), ω̂1 = ω̂q and the definition of H(a, b, c;λ) in (3.10), the equation (3.20) can be

rewritten as

uM,n+1
h,i =

q∑

µ=1

ŵµû
M,n
µ − ∆t

|IM |
(
f̂r − f̂l

)
=

=

q−1∑

µ=2

ŵµû
M,n
µ + ŵ1

(
ûM,n
1 − ∆t

ŵ1|IM |
(
F̂ − f̂l)

))
+ ŵq

(
ûM,n
q − ∆t

ŵn
q |IM |

(f̂r − F̂ )

)
=

=

q−1∑

µ=2

ŵµû
M,n
µ + ŵ1H(ûM,n

0 , ûM,n
1 , ûM,n

q ;λ/ŵ1) + ŵqH(ûM,n
1 , ûM,n

q , ûM,n
q+1 ;λ/ŵq).

Here ûM,n
0 = un

h,l(xM,l) and ûM,n
q+1 = un

h,r(xM,r) are used. We can see that the above expression is a linear

combination of two first order schemes (3.11) and
∑q−1

µ=2 ŵµû
M,n
µ . As in Theorem 3.1, we can conclude that

uM,n+1
h,i ∈ [m, M] under the condition ∆t

δhλ ≤ ŵ1.

We note that the time restrictions in (3.5) and (3.18) are of the same order as for the corresponding

standard DG methods on the background grid. When we set δ = 1, the time-step restrictions are same as

in the standard un-cut case, but all cut elements are stabilized.

3.3 A bound preserving limiter for scalar problems

In our proposed scheme described in (3.1)-(3.3) and in Theorems 3.1-3.2, we require un
h,i|Ωi

∈ [m, M], i =

1, · · · ,ΩN , but the high order reconstructed solution at next time level may not satisfy this requirement. In

order to guarantee that the solution remains within the bounds at later times, we use a bound preserving

limiter developed by Zhang and Shu [52] for high order approximations. In the standard DG method, the

solution uh(x) is modified locally in each element I such that mean values are un-changed, and uh(x) ∈ [m, M]

for x ∈ SI , where SI is set of the Gauss-Lobatto quadrature points on I. In the unfitted case, a cut element

I may be such that I ∩ Ωi is very small but IM = M ∩ Ωi is always large. Therefore we propose to apply

the limiter to the reconstructed solution in each macro-element M . For each macro-element M we define

the limited solution u
M,(l)
h,i (x) by

u
M,(l)
h,i (x) = θ

(
uM
h,i(x) − ūM

h,i

)
+ ūM

h,i, θ = min

{∣∣∣∣∣
M− ūM

h,i

MM − ūM
h,i

∣∣∣∣∣ ,
∣∣∣∣∣
m− ūM

h,i

mM − ūM
h,i

∣∣∣∣∣ , 1
}
. (3.23)
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Here we assume uM
h,i is a reconstructed solution on M and

MM = max
x∈IM

uM
h,i(x), mM = min

x∈IM
uM
h,i(x). (3.24)

Then, we let uM

h,i|M = u
M,(l)
h,i (x), which satisfies the maximum principle on Ωi. As for the standard DG

method, we can use u
M,(l)
h,i (x) instead of uM

h,i(x) without destroying the accuracy. We note that the exact

minimum value and maximum value of the polynomials is needed on the macro-element.

By combining the sequence of steps (3.1)-(3.3) with (3.23), we can get a fully discrete, bound preserving

scheme for scalar problems for any polynomial order. For clarity we have formulated the version based on a

third order Runge-Kutta discretization (5.2) in time in Algorithm 1.

Algorithm 1: Fully discrete bound preserving Cut-DG method for scalar problem

Data: Given initial condition u0(x) at t = 0

Result: Bound preserving approximation at final time T

1 Initialize ũ0
h by (2.14) and n = 0;

2 u0
h=Reconstruction and limiting(ũ0

h);

3 while t ≤ T do

4 Compute suitable time-step ∆t based on Theorem 3.1/3.2;

/* Runge-Kutta time discretization */

5 ũ
(1)
h = Euler-Step (un

h, tn, ∆t); // first stage

6 u
(1)
h = Reconstruction and limiting (ũ

(1)
h );

7 u
(2′)
h = Euler-Step(u

(1)
h , tn +∆t, ∆t); // second stage

8 Set: ũ
(2)
h = 3

4u
n
h + 1

4u
(2′)
h ;

9 u
(2)
h = Reconstruction and limiting (ũ

(2)
h );

10 ũ
(3′)
h = Euler-Step(u

(2)
h , tn +∆t/2, ∆t); // third stage

11 Set: ũ
(3)
h = 1

3u
n
h + 2

3u
(3′)
h ;

12 u
(3)
h = Reconstruction and limiting (ũ

(3)
h );

13 Set: un+1
h = u

(3)
h ;

14 n← n+ 1;

15 t← t+∆t;

16 end

1 Function Euler-step(uh, t, ∆t)

2 Using (3.1) with uh, t,∆t to get ũh = (ũh,1, ũh,2, · · · , ũh,NΩ
) ∈ V p

h ;

3 return ũh = (ũh,1, ũh,2, · · · , ũh,NΩ
);

1 Function Reconstruction and limiting(ũh)

2 for i = 1 to NΩ do

3 Using (3.2) with ũh to reconstruct uM

h,i, i = 1, · · · , NΩ;

4 if uM

h,i|Ωi
/∈ [m, M] then modify uM

h,i by (3.23);

5 uh,i ← uM

h,i;

6 end

7 return uh = (uh,1, uh,2, · · · , uh,NΩ
) ∈ V p

h ;
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4 A Positivity preserving Cut-DG method for the Euler equations

In this section, we will show how the positivity property for the Euler equations can be built into our

proposed Cut-DG method. The Euler equations in one space dimension are

ut + ∂xf(u) = 0, t ≥ 0, x ∈ Ω ⊂ R, (4.1)

u =




ρ

m

E


 , f(u) =




m

ρu2 + p

(E + p)u


 . (4.2)

Here ρ is the density, m the momentum, and E the total energy. These quantities are often called the

conservative variables, and are related to other physical quantities such as the velocity u, the pressure p,

and the internal energy e through E = 1
2ρu

2 + ρe, m = ρu, and p = (γ − 1)ρe. Here γ is the specific gas

constant. Note that the pressure p can be written as a function of the conservative variables,

p(u) = (γ − 1)

(
E − 1

2

m2

ρ

)
. (4.3)

Also important is the sound speed, given by c =
√
γp/ρ.

In physically relevant solutions, the density and pressure should be positive. Without positivity hyper-

bolicity is lost, and the mathematical problem is ill-posed. If the solution is initially positive, it can be

proven that the solution of the compressible Euler equations cannot loose positivity of density and pressure,

see [22, 15, 8]. Therefore we define the following set

G =

{
u = (ρ,m,E)T

∣∣∣∣ ρ > 0, p(u) = (γ − 1)

(
E − 1

2

m2

ρ

)
> 0

}
, (4.4)

as the set of admissible solutions for the compressible Euler equations (4.1). Since −p(u) is convex, we have
using Jensen’s inequality for any 0 ≤ s ≤ 1, u1 = (ρ1,m1, E1)

T ∈ G, and u2 = (ρ2,m2, E2)
T ∈ G we have

p(su1 + (1− s)u2) ≥ sp(u1) + (1− s)p(u2) > 0, if ρ1 ≥ 0, ρ2 ≥ 0. (4.5)

Thus G is a convex set.

Numerical methods that do not preserve the positivity property, may cause numerical instability or

nonphysical features in approximated solutions of problems with low density, or high Mach number [25].

Preserving positivity of pressure and density is therefore an important property of a numerical method for the

Euler equations, and it can be seen as a generalization of the maximum principle for scalar conservation laws.

As for the scalar problems, we will be working with mean values on macro-element M ∈Mh,i, i = 1, · · · , NΩ.

For each component of uh, we define the mean values on the macro-element M as in (3.17), and for the

pressure we define pMh,i := p(uM
h,i) = (γ − 1)

(
E

M

h,i − 1
2

(
m̄h, i

M
)2

/ρ̄Mh,i

)
. By uM

h,i ∈ G we mean ρMh,i > 0 and

pMh,i > 0.

4.1 Piecewise constant approximations

In this subsection, we will study the piecewise constant scheme, (3.1)-(3.3), for the compressible Euler

equations (4.1). We are particularly interested in the positivity property, which was discussed above. For

the piecewise constant method we prove the following positivity result.
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Theorem 4.1. Consider the piecewise constant Cut-DG scheme described by (3.1)-(3.3) applied to the Euler

equations (4.1). The reconstruction (3.2) is done component wise. If the time step ∆t satisfies

∆t

δh
λ ≤ 1, (4.6)

then un
h,i|Ωi

∈ G, i = 1, · · · , NΩ implies un+1
h,i |Ωi

∈ G, i = 1, · · · , NΩ. Here h is the element size in the

background mesh, and δ is a given constant, which in (2.8) defines when an intersection between an element

and Ωi is classified as large. λ = maxx∈Ω |u|+ c is the largest absolute eigenvalue of Jacobian matrix
∂f(un

h)
∂un

h

in the entire domain Ω.

Proof. As before we consider each macro-elementM ∈Mh,i, i = 1, · · · , NΩ separately. Let un
h,l = (ρnh,l,m

n
h,l, E

n
h,l),

un
h,r = (ρnh,r,m

n
h,r, E

n
h,r), u

M,n
h,i denote the solution on the left side and right side of IM , and in IM , respec-

tively. By assumption un
h,l,u

M,n
h,i ,un

h,r ∈ G, and u
M,n
h,i is constant in IM . Following the same analysis as for

the scalar conservation law, we get

u
M,n+1
h,i = H(un

h,l,u
M,n
h,i ,un

h,r;λ), (4.7)

H(un
h,l,u

M,n
h,i ,un

h,r;λ) := u
M,n
h,i −

∆t

|IM |
(
f̂r − f̂l

)
. (4.8)

Here f̂r and f̂l are the numerical fluxes on the right and the left edge of IM , respectively. We use the global

Lax-Friedrichs flux (2.13) with λ = maxx∈Ω{|u| + c} , which is the largest absolute value of eigenvalues of

the Jacobian matrix
∂f(un

h
)

∂un
h

. Next, we study the positivity property for the density and pressure of (4.7).

From the definition of the global Lax-Friedrichs flux (2.13) applied to the particular Euler flux (4.2) we have

ρM,n+1
h,i = ρM,n

h,i −
∆t

2|IM |
(mM,n

h,i +mn
h,r − λ(ρnh,r − ρM,n

h,i )) +
∆t

2|IM |
(mM,n

h,i +mn
h,l − λ(ρM,n

h,i − ρnh,l))

=

(
1− ∆t

|IM |
λ

)
ρM,n
h,i +

∆t

2|IM |
ρnh,r(λ− un

h,r) +
∆t

2|IM |
ρnh,l(λ+ un

h,l). (4.9)

From λ = maxx∈Ω |u|+ c it follows that λ± u ≥ 0, and since |IM | ≥ δh and

ρM,n
h,i > 0, ρnh,l > 0, ρnh,r > 0, 1− λ∆t

|IM |
> 0, (4.10)

we conclude from equation (4.9) that ρM,n+1
h,i > 0 under time step restriction (4.6). To show that uM,n+1

h,i ∈ G

it remains to consider the pressure that corresponds to u
M,n+1
h,i . Following the analysis in [20], we define

Va(u
n
h,l) = f(un

h,l)/λ+ un
h,l and Vb(u

n
h,r) = un

h,r − f(un
h,r)/λ, and rewrite (4.8) as

H(un
h,l,u

M,n
h,i ,un

h,r;λ) = (1− λ∆t

|IM |
)uM,n

h,i +
λ∆t

2|IM |
Va(u

n
h,l) +

λ∆t

2|IM |
Vb(u

n
h,r). (4.11)

As in [20] (see Lemma 3.1), we have p(Va) > 0 and p(Vb) > 0 if un
h,l,u

n
h,r ∈ G. By the convexity of G we

obtain the desired result. We refer to the corresponding analysis for the DG method on a non-cut mesh in

[53] and [20] for more details.

4.2 Mean values for higher order approximations

Next we consider high order schemes, where as before the time discretization can be seen as a sequence of

Euler steps. We therefore consider (3.1) with p ≥ 1 together with the reconstruction in (3.2)-(3.3). Similarly

to the scalar case we show a sufficient condition for the mean values on each macro-element to satisfy the

positivity property. We again use the q−point Gauss-Lobatto quadrature rule on each macro element, with

2q − 3 > p. We will prove the following theorem.

15



Theorem 4.2. Consider (3.1)-(3.3) with p ≥ 1 for the Euler equations (4.1), and with the reconstruction

done component-wise. If the time step ∆t satisfies

∆t

δh
λ ≤ ŵ1, (4.12)

then un
h,i|Ωi

∈ G, i = 1, · · · , NΩ implies that the mean value on each macro element satisfies ū
M,n+1
h,i |Ωi

∈ G

for i = 1, · · · , NΩ. Here h is the element size in the background mesh, and δ is a given constant, which in

(2.8) defines when an intersection between an element and Ωi is classified as large. λ denotes the largest

absolute value of the Jacobian matrix ∂f(un
h)/∂u

n
h in the entire domain Ω. Further ŵ1 is the normalized

quadrature weight corresponding to the first quadrature point of a q−point Gauss-Lobatto quadrature rule

with 2q − 3 ≥ p.

Proof. Similar to the high order Cut-DG scheme (3.20) for scalar problems, we have for the mean values of

the reconstructed approximation on IM in (2.15) that

u
M,n+1
h,i = u

M,n
h,i −

∆t

|IM |
(f̂r − f̂l). (4.13)

We will now show that uM,n+1
h,i ∈ G. We introduce the Gauss-Lobatto quadrature to decompose the mean

values on each macro-element, see (3.21), and rewrite (4.13) as

u
M,n+1
h,i =

q∑

µ=1

ŵµû
M,n
µ − ∆t

|IM |
(f̂r − f̂l) =

=

q−1∑

µ=2

ŵµû
M,n
µ + ŵ1H(ûM,n

0 , ûM,n
1 , ûM,n

q ;
λ

ŵ1
) + ŵqH(ûM,n

1 , ûM,n
q , ûM,n

q+1 ;
λ

ŵq
).

Here ûM,n
0 = un

h,l(xM,l) and û
M,n
q+1 = un

h,r(xM,r) denote the approximations from the left side and right side of

IM , respectively. With the positivity-property of the piecewise constant scheme (4.7) and time step restriction

(4.12), it follows that ∆t
|IM |λ ≤ ŵ1 implies H(ûM,n

0 , ûM,n
1 , ûM,n

q ; λ
ŵ1

) ∈ G and H(ûM,n
1 , ûM,n

q , ûM,n
q+1 ;

λ
ŵq

) ∈ G.

Thus, we get uM,n+1
h,i ∈ G since u

M,n+1
h,i is a convex combination of solutions in G.

4.3 Positivity preserving limiting for the Euler equations

As for the standard DG method for the Euler equations on a non-cut mesh, we need to apply a positivity

preserving limiter to ensure the positivity of density and pressure for p ≥ 1. We will use the limiter developed

by Zhang ad Shu [53], which is briefly introduced below. It retains conservation everywhere, and accuracy

in smooth regions. We will apply it to the reconstructed solution in each inner stage of each time step. By

the previous theorem, we know that mean values on all macro-elements are in G. Let M ∈Mh,i represent a

macro-element in Ωi and uM
h = (ρMh ,mM

h , EM
h ) denote the corresponding solution on the macro-element M .

By the previous theorem ρMh > 0 and pMh ¿0. We assume there exists a small number ε > 0 such that ρ̄Mh > ε

and p̄Mh > ε for all macro-elements. In our computation, we take ε = 10−8. We first limit the density by

replacing ρMh (x) by ρ
M,(l)
h (x)

ρ
M,(l)
h (x) = θ1

(
ρMh (x)− ρ̄Mh

)
+ ρ̄Mh , (4.14)

where

θ1 = min

{
ρ̄Mh − ε

ρ̄Mh − ρmin
, 1

}
, ρmin = min

k
ρMh
(
x̂M
µ

)
. (4.15)
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Then, let q̂M
h (x) =

(
ρ
M,(l)
h (x),mM

h (x), EM
h (x)

)T
and denote q̂M

h

(
x̂M
µ

)
by q̂M

µ . Next, q̂M
h is limited to enforce

the positivity of the pressure. Define

Gε =
{
u = (ρ,m,E)T | ρ > ε and p > ε

}
, ∂Gε =

{
u = (ρ,m,E)T | ρ > ε and p = ε

}
, (4.16)

and

sµ(t) = (1− t)uM,n
h + tq̂M

h

(
x̂M
µ

)
, 0 6 t 6 1. (4.17)

Let sµε be solution of p
(
sµ
(
tkε
))

= ε when p
(
q̂M
µ

)
< ε, and sµε = q̂M

µ if p
(
q̂M
µ

)
∈ Gε. Finally, we modify

the solution by

u
M,(l)
h (x) = θ2

(
q̂M
h (x) − uM

h

)
+ uM

h , θ2 = min
µ=1,2,...,q

sµε . (4.18)

We note that it is hard to find the exact minimum value θ2 on the cut mesh. We use the Gauss-Lobatto

points on the macro-element and on each element intersection Ωi involved in the macro-element M . Finally,

we set uM,n
h,i |Ωi

= u
M,(l)
h (x) on the macro-element M .

For clarity, we formulate our proposed positivity preserving Cut-DG method for the Euler equations in

Algorithm 2 in the Appendix.

5 Numerical results

In this section we present some numerical examples that verify the bound preserving properties of our

proposed bound preserving Cut-DG scheme, which includes reconstruction on macro-elements and applying

bound preserving limiters. In all the Cut-DG computations we use a uniform mesh with N elements as the

background mesh and N ≥ 4. We assume we have N/4 subdomains interfaces, which cut N/4 elements in

the middle part of the domain. Each interface cuts an element into two pieces with size αkh and 1 − αkh,

respectively, where α is fixed and

αk = sα, s ∈ [10−6, 1] is a random number. (5.1)

Thus we have N/4 + 1 subdomains. The parameters in the stabilization (see (2.12)) and in (2.8) are set to

γ1 = 0.75, γ0 = 0.25, ωk = 1/(k!)2, and δ = 0.2, respectively.

Two different high order strong stability preserving (SSP) methods are as time discretization. To define

the methods consider ut = L(u), where L(u) is the spatial operator. The first method is the third order

Runge-Kutta method, which is convex combinations of the forward Euler method

u(1) = un +∆tL (un) (5.2)

u(2) =
3

4
un +

1

4
u(1) +

4

∆
tL
(
u(1)

)
, (5.3)

un+1 =
1

3
un +

2

3
u(2) +

2∆t

3
L
(
u(2)

)
. (5.4)

The second scheme is the third order multi-step time discretization [23]

un+1 =
16

27
(un + 3∆tL (un)) +

11

27

(
un−3 +

12

11
∆tL

(
un−3

))
. (5.5)

By the pervious analysis each time step and interior stage will be bound preserving if the time step is

sufficiently restricted. It follows that the proposed strategy, with both time discretizations, will satisfy
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the maximum principle or positivity of density and pressure. In the next section, we compute the two

time discretization schemes and show that optimal accuracy is obtained with third order multi-step time

discretizations. We note that we use P p with p = 1, 2, 3 to denote the space of piecewise p-th degree

polynomials V p
h .

5.1 Scalar linear case

In this subsection, we solve the one dimensional linear advection equation with periodic boundary condition

ut + ux = 0, t > 0, (5.6)

together with smooth and non-smooth initial data, respectively.

5.1.1 Accuracy test with smooth initial data

We first use our proposed bound preserving Cut-DG method (3.1)-(3.3) together with the bound preserving

limiter in (3.23) to solve (5.6), with smooth initial data u(x, 0) = 1.0 + 0.5 sin(πx) in the domain [0, 2]. The

exact solution is u(x, t) = 1+0.5 sin(π(x−t)). The problem is solved on a mesh where the elements in interval

[0.75, 1.25] are cut. In our test, we use α = 0.1 in (5.1) with N = 20, 40, 80, 160, 320, 640. Other alpha values

have also been tested, with similar results ( and therefore not reported here). We first solve the problem

using the third order SSP-RK method (5.2) and the time step is taken to be ∆t = Ch for second and third

order approximations and ∆t = Ch4/3 for fourth order approximations, where C = 0.5(1 − max(αk))ŵ1.

Here h4/3 is used for P 3 approximations to balance the errors caused by time and space discretization,

and ŵ1 is the weight used in the Gauss-Lobatto quadrature. The results at t = 1 are shown in Figure 4.

We can observe that the Cut-DG method using the third Runge-Kutta method and the bound preserving

limiter has accuracy degeneracy. This is also the case for the standard DG method with Runge-Kutta time

discretization [52]. When the third order multi-step method (5.5) is applied with ∆t = h/24, h4/3/15 for

P 2, P 3 approximation, the optimal accuracy is obtained, see the right panel of Figure 4. The results verify

that the reconstruction of solutions and the bound preserving limiter on macro-elements in our proposed

method can keep the same high order accuracy as the standard Cut-DG method [19, 18]. The results also

show that the proposed scheme enforce the maximum principle.

5.1.2 Non-smooth initial data

Here, we solve the advection problem (5.6) with periodic boundary condition on the domain Ω = [0, 1] and

non-smooth initial data

u(x, 0) =

{
1 0.1 < x < 0.5,

0 otherwise.
(5.7)

We use a computational mesh, where the elements in the interval [0.375, 0.625] are cut. In particular we

note that the discontinuity is initially located on the common edge of one cut element and its neighbour.

We first solve this problem using the cut DG discretization (2.9) with p = 1, 2, but without reconstruction

and without any bound preserving limiter. We observe overshoots and undershoots of the solution near the

discontinuities, see the left panel of Figure 5. In the middle panel of Figure 5, we show the results when the

bound preserving limiter (3.23) is applied to the solution on each element. A clear overshoot still exists in

the second order approximations, which will decrease with increasing degree of the polynomials. We point

out that we still observe overshoots or undershoots during time evolution in the P 2, P 3 approximations but

they are quite small and decrease with time. The results from our proposed Cut-DG method with bound
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Figure 4: The errors in the numerical solutions for the advection equation with smooth initial data at t = 1.0.

Errors are shown in both the L2-norm (solid lines) and L∞-norm (dashed lines). Left: time discretization

using third order Runge-Kutta method. Right: time discretization using third order multi-step discretization

in (5.5).

preserving limiter (3.23) and reconstruction (3.2) on the macro-elements are shown in the right panel of

Figure 5. We did not observe any overshoots or undershoots up to the final time. We also solved this

problem on a mesh where the cut elements are randomly located and have different cut sizes, with similar

results.
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Figure 5: Numerical P 1 (top), P 2 (bottom) solutions for the advection equation with non-smooth initial

data at t = 1.0. Left: without reconstruction and without limiter. Middle: without reconstruction but

limiter (3.23) is applied. Right: solution with reconstruction and limiter (3.23) applied on macro-elements.
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5.2 Burgers’ equation

In this subsection, we consider the Burgers’ equation

ut +

(
u2

2

)

x

= 0, t > 0, (5.8)

together with different initial data and suitable boundary conditions.

5.2.1 Smooth initial data

We first solve the Burgers’ equation (5.8) with smooth initial data u0(x) = sin(πx), x ∈ [0, 2] and periodic

boundary condition. This problem has a known solution, which we use as a reference when computing errors.

The solution is initially smooth, but at t = 1
π a shock forms at x = 1. We compute until time t = 0.2,

which is before the shock appears. Uniform meshes with N = 20, 40, 80, 160, 320, 640 elements are used as

background mesh. The cut elements are located in [0.75, 1.25]. The third order multi-step (5.5) is used

for time discretization. In Figure 6, the L2 and L∞ errors are shown from our proposed bound preserving

Cut-DG scheme. We observe the third and fourth order accuracy for P 2, P 3 approximations, respectively.

10
-2

10
-1

 h

10
-10

10
-8

10
-6

10
-4

10
-2

e
rr

o
r

P
2
,L

2

P
2
,L

P
3
,L

2

P
3
,L

h
3

h
4

Figure 6: Errors in the numerical solution of Burgers’ equation with smooth initial data, before a shock has

formed. Our proposed Cut-DG method based on piecewise P 2 and P 3 approximations, with reconstruction

and bound preserving limiter (3.23)was used on macro-elements.

Next we solve Burgers’ equation with P 3 approximations until time t = 0.5, when a shock has formed. The

third order RK method (5.2) is used for the time discretization to save computational cost, since multi-step

methods need to save more informations on different time levels. Results for h = 1/20, 1/320 (corresponding

to 10, 160 small cut elements) with the bound preserving limiter are shown in Figure 7. The left panel in

Figure 7 shows the results from the scheme (3.1) without reconstruction but with bound preserving limiter.

Note that the numerical solutions do not satisfy maximum principle. The middle panel in Figure 7 shows

the results from our proposed bound preserving Cut-DG method with reconstruction on all macro-elements,

which verifies our theoretical analysis. We did not observe any overshoots/undershoots at any time. Note

that the proposed scheme on the fine mesh can capture the shock quite well, even though we did not apply

a slope limiter. On the right side of Figure 7, we show the results from the scheme with the reconstruction

(2.18) applied only on those macro-elements where the solution does not satisfy the maximum principle in

an element belonging to these macro-elements. We can observe that the numerical solution still satisfies the

maximum principle, even when the reconstruction is not applied on all macro-elements.
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Figure 7: Numerical fourth order solutions for the Burgers’ equation with smooth initial data at t = 0.5. Left:

Basic scheme without reconstruction but with limiter. Middle: Proposed scheme including reconstruction

and limiter (3.23) applied on all macro-elements. Right: Proposed scheme including reconstruction and

limiter (3.23) is applied only on macro-elements, where the numerical solution does not satisfy the maximum

principle on the involved elements.

5.2.2 Riemann problems

Consider Burgers’ equation (5.8) on [−2, 2] with initial data

u0(x) =

{
ul, x ≤ 0,

ur, x > 0.

We will use our proposed bound preserving Cut-DG scheme (3.1)-(3.3) with P 1, P 2, P 3 approximations

together with the bound preserving limiter (3.23). All elements in the interval [−0.5, 0.5] are cut. We solve

with two sets of initial data, ul = −1 < 0 < ur = 1 and ul = 1 > 0 > ur = −0.5, respectively. Figure 8

shows the numerical solutions from the proposed bound preserving Cut-DG scheme based on P p, p = 1, 2, 3

approximations, together with third order RK method (5.2) for time discretization. Our proposed scheme can

simulate these two Riemann problems without violating the maximum principle. We note that violations of

the maximum principle occur near the shock in the case ul = 1 > 0 > ur = −0.5, when the bound preserving

limiter is applied to the basic scheme (3.1) without reconstruction.

5.3 Scalar case with discontinuous flux function

In this subsection, we consider a hyperbolic conservation law with an interface, where the flux function is

discontinuous. Let

f(u) = H(x− xΓ)h(u) + (1 −H(x− xΓ))g(u), x ∈ [−1, 1], (5.9)

where H(x) is the Heaviside function and g(u) = u2/2, h(u) = u. In the example, which is taken from

[1], the transport equation switches to the Burgers’ equation across the interface x = xΓ. Here, we take

xΓ = 2 · 10−5 and use a uniform mesh with N elements and h = |Ω|/N . Thus, there is a small cut cell with

size αh with α = N · 10−5 in the interior of the domain. The initial condition is taken as

u(x, 0) =




0.5 x < −0.5 ,

2 otherwise.
(5.10)

This condition is chosen such that the Rankine-Hugoniot condition at the interface xΓ is [u]Γ = 0 before

the discontinuity interacts with the interface, and [f(u)]Γ = 0 afterwards. We use our proposed bound-

preserving CutDG scheme with the Lax-Friedrichs flux on the interior element edges and the upwind flux
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Figure 8: Numerical solutions of the Riemann problem for Burgers’ equation at t = 0.5 based on polynomial

degree p(p = 1, 2, 3 from left to right). Reconstruction on macro-elements and bound preserving limiter

(3.23) are used in the computations. Top: a rarefaction wave. Bottom: a moving shock.

on the interface xΓ. Thus, the conservation is satisfied. For how to guarantee conservation at the interface

we refer to our previous work [18] (here we choose λ1 = 0, λ2 = −1). In Figure 9, the results from a third

order scheme are shown at different time instances. In this case, the discontinuity is transported to the

right until it reaches the interface. When the discontinuity enters the region where Burgers’ equation holds,

a rarefaction wave forms. With the proposed scheme, the solution is captured very well. Comparing the

results (h = 2/64) in [1], our results are more accurate on the coarser mesh (N=40, h = 1/20) and the

numerical solution is both conservative and satisfies the maximum principle. We also applied second order

and fourth order schemes to solve this problem and the results are very similar.
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Figure 9: A third order approximation of a scalar hyperbolic conservation law with the discontinuous flux

function (5.9) at different time instances. Left: t = 0.3, middle t = 0.6, right t = 0.9.

22



5.4 The Euler equations

In this subsection, we use our proposed Cut-DG method (3.1)-(3.3) with different piecewise polynomials,

together with the positivity preserving limiter in Section 4.3 for Euler equations (4.1). Recall that each

cut element is split into two parts of length αk and 1 − αk, with αk defined in (5.1) and α = 0.01. In the

examples we consider γ = 1.4, which corresponds to an ideal gas.

5.4.1 Accuracy test: smooth problem

First, we consider a low density problem in one dimension. We take the initial condition as

ρ0(x) = 1 + 0.99 sin(x), u0 = 1, p0 = 1. (5.11)

The domain is taken to be [0, 2π]. The exact solution of this problem is

ρ0(x, t) = 1 + 0.99 sin(x− t), u(x, t) = 1, p(x, t) = 1. (5.12)

Without the positivity-preserving limiter the numerical scheme may be unstable due to the negative density

in long time simulation. In Figure 10, we show the L2- and L∞-errors from our proposed bound-preserving

Cut-DG methods at t = 1. We observe the optimal p + 1-th order of accuracy for approximations of

polynomial order p = 1, 2, 3.
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Figure 10: The L2- and L∞-errors for the numerical solutions of the low density problem in Section 5.3.1

from our proposed bound-preserving Cut-DG method.

5.4.2 Riemann problems

In this subsection, we consider two Riemann problems. We use the proposed bound preserving Cut-DG

method (3.1)-(3.3) with spaces P 2, P 3.

First, we consider the Sod shock tube problem in the domain [0, 1]. The initial condition is taken as

(ρL, uL, pL) = (1, 0, 1), x < 0.5, (ρR, uR, pR) = (0.125, 0, 0.1), x > 0.5.

We solve this problem up to t = 0.2. The exact solution of Sod shock tube problem contains a rarefaction

wave, a contact discontinuity and a shock discontinuity. Figure 11 shows the approximations of density

(left), velocity (middle) and pressure (right) from our proposed bound-preserving Cut-DG scheme. In this
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case, TVD limiting is needed to control oscillations. This limiter is applied to the reconstructed solutions on

macro-elements before the positivity-preserving limiter is applied. We observe that our proposed Cut-DG

scheme can simulate this Riemann problem well and can capture the rarefaction wave and discontinuities.

Just as for the standard DG method [12] on a fitted mesh, when the TVD limiter is applied to the variables

component-wise, we see some numerical artifacts in form of oscillations, which decrease with mesh refinement.
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Figure 11: The numerical solutions from the proposed Cut-DG scheme for Sod shock tube problem on cut

meshes. Top: P 2 approximations. Bottom: P 3 approximations.

The second Riemann problem is a double rarefaction wave in the domain [−1, 1] as in [34]. The initial

condition is

(ρL, uL, pL) = (7,−1, 0.2), x < 0, (ρR, uR, pR) = (7, 1, 0.2), x > 0,

and outflow boundary conditions are used at both boundaries. There is no shock in this problem. Thus,

only the positivity-preserving limiter is used for this problem. Notice that the exact solution contains almost

a vacuum. In the middle and right panels of Figure 12 we show the results from our proposed Cut-DG

method for Euler equations. The termination time is t = 0.6. In the left panel of Figure 12, we give the

approximations of ρ, u, p from the standard DG method on uniform meshes with 800 elements. We observe

that the results on cut meshes are practically similar to those on uniform meshes. For this Riemann problem

computations are unstable without the positivity preserving limiter.

5.4.3 Sedov blast wave problem

We now test is the Sedov blast wave problem, a typical low-density problem with strong shocks. The exact

solution can be found in [31, 43]. The computational domain is [−2, 2], and we use N = 200, 800 elements
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Figure 12: DG and CutDG approximations for the double rarefaction problem on the uniform mesh (left)

and cut (middle, right) meshes. Solid line: exact solution. Symbol: approximations.
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on the background mesh. We take the initial condition as

(ρ, u, E) =

{
(1, 0, 3.2 · 106) x ∈ [0, h]

(1, 0, 10−12) otherwise,

where h = 4/N . The elements in [−0.5, 0.5] are cut with α = 0.01. We simulate this problem up to time

t = 0.001 with P 2 approximations by our proposed scheme. We apply a TVD limiter to the reconstructed

approximation on the macro-elements and the positivity preserving limiter is applied to modify the limited

approximation to make sure the solution has positive density and pressure. In the top panel of Figure 13,

we observe that our proposed Cut-DG method (3.1)-(3.3) together with the positivity preserving limiter in

Section 4.3 can simulate this blast wave problem very well. To minimize errors and reduce computational

costs, we also simulated this problem using the scheme (3.1). The TVD limiter was applied to the unre-

constructed solution on the macro-elements. Then, we reconstructed the solution on those macro-elements

where the numerical solution had negative density or pressure, and a positivity-preserving limiter was ap-

plied to the reconstruction on the macro-elements. The results are shown in the bottom panel of Figure 13,

which demonstrate that the locally applied reconstruction can also simulate this problem effectively.
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Figure 13: The third order Cut-DG approximation of Sedov blast wave on the cut mesh. The solid line

is the exact solution and the symbols represents the Cut-DG solutions. Top: reconstruction on all macro-

elements. Bottom: reconstruction only on macro-elements where the numerical solution has negative density

or pressure.

5.4.4 The two blast wave problem

Finally, we consider the two blast wave problem for the Euler Equations with solid wall boundary conditions,

see [50]. The solution contains strong shocks and rarefactions, which are reflected multiple times at the solid

boundaries. There are a variety of interactions between shock waves and rarefaction waves, as well as between
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these waves and contact discontinuities. We consider the problem on the physical domain [xl, xr] = [0, 1],

which is immersed in a background mesh. In this example there are only cut elements at the boundries. We

have constructed the mesh to be the same as in [48, 51], where the inverse Lax-Wendroff method is used.

We take the computational domain as [xL, xR] with xL = xl − (1 − α)h, xR = xr + (1− αh) and a uniform

grid xL = x− 1
2
< x 1

2
< · · · < xN− 1

2
< xN+1/2 = xR. As in [51], two unfitted small cells with size αh appear

at the boundaries. In our computations α = 0.01. The initial data at t = 0 is taken as

(ρ, u, p) =





(1, 0, 103) 0 < x < 0.1,

(1, 0, 10−2) 0.1 < x < 0.9,

(1, 0, 102) 0.9 < x < 1.

(5.13)

At the boundaries, we use wall boundary conditions. We solve this problem by our proposed positivity-

preserving scheme up to t = 0.038. The numerical solution of density is shown in Figure 14. We use the

solution from the third order standard DG method on uniform mesh with h = 1/3200 as the reference

solution. We can see that our proposed scheme can capture the structure of the solution well and preserve

the positivity of density and pressure.
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Figure 14: Example 5.3: numerical approximations of density at t = 0.038 for the two blast wave problem.

Circle: numerical solution from our proposed scheme. Solid: reference solution from the standard DG

method. P 1, P 2, P 3 approximation from left to right.

6 Conclusion

In this paper, we present a family of bound preserving Cut-DG methods for hyperbolic conservation laws.

The methods are based on explicit time-stepping with time-step restrictions on the same order as for the

corresponding standard DG methods on un-cut meshes. The parameter 0 < δ ≤ 1 in (2.8) regulates when

cut-elements are stabilized, and influences the time-step restriction. By choosing δ = 1 we get exactly the

same time-step restriction as in the standard un-cut case, but all cut elements are stabilized.

A new reconstruction of the solution on macro-elements is introduced as a post-processing step in each

inner stage of each time step. It ensures that our proposed piecewise constant scheme satisfies the maximum

principle for scalar conservation laws and positivity of density and pressure for the system of Euler equations,

respectively. The higher order versions of our proposed method includes bound preserving limiting applied to

the reconstruction on the macro-elements. To avoid oscillations when discontinuities are present, additional

limiting is also included. Results from numerical computations demonstrate the good properties of our
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proposed methodology. The test cases include several challenging problems for the Euler equations, such as

the Sedov blast wave and a double rarefaction problem. These examples include regions of low density and

strong shocks.

Extending the methodology to higher space dimensions is straightforward when no limiting is needed,

and we have good preliminary results for smooth solutions. We also have good results when including bound

preserving limiting for elements of polynomial orders zero and one. For polynomial orders higher than one,

a good strategy for finding minimal/maximal values on irregular domains (which is needed in the bound

preserving limiter) needs to be developed. We hope to present more complete results for problems in higher

space dimensions in the future.

A Fully discrete algorithm for the Euler equations

In this appendix, the fully discrete algorithm for the Euler equations is shown in Algorithm 2.
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Algorithm 2: Fully discrete bound preserving Cut-DG method for the Euler equations

Data: Given initial condition u0(x) at t = 0

Result: Bound preserving approximation at final time T

1 Initialize ũ0
h by (2.14) and n = 0;

2 u0
h = Reconstruction and limiting(ũ0

h);

3 while t ≤ T do

4 Compute suitable time-step ∆t based on Theorem 4.1/4.2;

/* Runge-Kutta time discretization */

5 ũ
(1)
h = Euler-Step (un

h , tn, ∆t); // first stage

6 u
(1)
h = Reconstruction and limiting (ũ

(1)
h );

7 u
(2′)
h = Euler-Step(u

(1)
h , tn +∆t, ∆t); // second stage
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(2)
h = 3

4u
n
h + 1

4u
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9 u
(2)
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3u
n
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3u
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(3)
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h = u

(3)
h ;
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15 t← t+∆t;

16 end

1 Function Euler-step(uh, t, ∆t)
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) ∈ V p
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4 if uM
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/∈ G then modify uM

h,i by (4.14)-(4.18);
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6 end

7 return uh = (uh,1,uh,2, · · · ,uh,NΩ
) ∈ V p

h ;
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