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Abstract— RGB-D cameras are crucial in robotic perception,
given their ability to produce images augmented with depth
data. However, their limited field of view (FOV) often requires
multiple cameras to cover a broader area. In multi-camera
RGB-D setups, the goal is typically to reduce camera overlap,
optimizing spatial coverage with as few cameras as possible.
The extrinsic calibration of these systems introduces additional
complexities. Existing methods for extrinsic calibration either
necessitate specific tools or highly depend on the accuracy of
camera motion estimation. To address these issues, we present
PeLiCal, a novel line-based calibration approach for RGB-
D camera systems exhibiting limited overlap. Our method
leverages long line features from surroundings, and filters out
outliers with a novel convergence voting algorithm, achieving
targetless, real-time, and outlier-robust performance compared
to existing methods. We open source our implementation on
https://github.com/joomeok/PeLiCal.git.

I. INTRODUCTION

In robotic perception, RGB-D cameras serve as pivotal
sensors due to their capacity to capture images accompanied
by corresponding depth values. Due to the limited FOV of
the sensor, common practice is to employ a multi-camera
configuration to ensure comprehensive coverage of the sur-
rounding environment.

In systems deploying multiple RGB-D cameras, unlike
RGB camera setups designed for shared FOV (e.g., binocular
camera configurations), the system is set up to reduce the
overlap in the FOV. This strategy aims to cover the nearby
environment using a minimum number of cameras. How-
ever, such configuration makes it challenging to employ a
calibration pattern observed simultaneously within the shared
FOV when calibrating the extrinsic parameters of the system.
Several approaches have been proposed to address these
challenges in the extrinsic calibration of camera systems with
limited co-visibility.

Existing works bifurcate into two distinct approaches:
one leveraging specialized equipment and the other adopt-
ing a hand-eye-like calibration by estimating each camera
motion [1]. In the former case, Li et al. [2] utilized a
target with unique features to easily estimate the location of
points in the partially detected pattern board. In the other
case, Kumar et al. [3] introduced additional apparatuses
like mirrors. Unfortunately, these approaches are impractical
because employing such specialized tools for calibration is
burdensome. In the latter case, the calibration results are
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Fig. 1: According to the inlier ratio of RANSAC-based fitting
from the depth images, each line pair is classified into a full 3D
case or perspective-n-line (PnL) case, and different constraints are
employed (top). Two checkerboard planes from each camera are
merged by extrinsic parameters estimated from PeLiCal (bottom).
Our method uses long lines matched from both images, and on the
condition that the cameras are set up to observe the same feature,
it can reliably determine the pose in cases with sufficient overlap
(left) as well as in cases without any overlap (right).

highly dependent on the accuracy of the estimated camera
motion.

Overcoming these challenges, we introduce a targetless
but robust methodology for extrinsic calibration, specifically
for RGB-D camera systems with limited overlap. Without
requiring a large calibration target, which is commonly
observable, we focus on line features intersecting two cam-
eras. Accordingly, our algorithm performs reliably in real-
time, without a pattern board, additional external devices,
or inter-frame motion estimation, even if co-visibility is
limited. Additionally, measurements that induce estimations
closely matching the conditions of the rotation matrix and
which are confirmed as convergent by a voting algorithm
are incorporated, enhancing robustness against outliers. The
key contributions of our study are encapsulated as follows:

• We present a robust, targetless approach for calibrating
the extrinsic parameters of RGB-D cameras across
diverse FOV settings using penetrating line matching,
available from surroundings.

• Our algorithm selectively incorporates informative
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scenes by projecting the estimated rotation matrix on the
SO(3) manifold and calculating its shortest distance.
Furthermore, the existence of precise translation is val-
idated by examining the convergence of 3D geometric
constraints, derived from the transformation of Plücker
coordinates.

• The calibration accuracy of our method is validated
from various configurations of FOV using a specially
designed device. The algorithm shows superior and sta-
ble accuracy with existing calibration tools, especially
in settings with an increased baseline in stereo setups.

II. RELATED WORK

A. Line Based Camera Pose Estimation

Leveraging line features has been widely adopted to es-
timate the camera pose. Among these approaches, the algo-
rithm that relies on matching 3D to 2D pairs is the PnL. Most
studies estimate the camera pose by formulating equations
based on the associated 3D and 2D line features. Hartley
in [4] proposed the method to calculate the essential matrix
from a set of nine lines. In the context of associating 3D
to 2D line pairs, a commonly invoked constraint is that the
preimage of the 2D line should encapsulate the transformed
3D line as in [5]. Přibyl et al. employ representation of lines
using plücker coordinates to estimate the camera pose in [6].
Xu et al. outlined the computation of the rotation matrix by
decomposing it into two distinct rotation angles incorporating
an auxiliary model frame, as detailed in [7]. The geometric
condition of the line presented in the previous research is
used as a theoretical background for our method.

B. Non-overlapping FOV Camera Calibration

In a study where the FOV of the cameras exhibit no
overlap, the methodology proposed by Kumar et al. in [3]
employs reflected images of a chessboard via a planar mirror
to determine extrinsic parameters. In [2], Li et al. proposes
a calibration method using a calibration pattern enriched
with unique features, which enables accurate localization
of features, even when the pattern board is partially ob-
served. However, these techniques are impractical because
specialized equipment or a substantially large pattern board is
required. Several algorithms have been developed to alleviate
this challenge that harnesses camera motion estimation to
retrieve the 6-DOF extrinsic parameters as in [1, 8]. However,
these motion-centric calibration approaches are intrinsically
reliant on the precision of the camera’s motion.

The investigation conducted by Perez-Yus et al. closely
corresponds to our algorithm since it exploits 3D lines
to calibrate the limited co-visibility cameras in [9]. Their
method entails extracting 2D and 3D lines and projecting
3D lines onto 2D images using initial extrinsic parameters to
establish correspondences among line features. Subsequently,
the extrinsic parameters are refined repeatedly by matching
the feature based on the estimated pose until convergence.
Given the dependence on the initial parameter for associating
line features, achieving accurate calibration parameters is
infeasible when the initial value is erroneous. In contrast,
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Fig. 2: Line features (depicted in red) can be matched between two
cameras even when they lack overlapping FOV areas. In contrast
to point features, long lines can identify corresponding pairs under
these conditions, allowing for determining geometric constraints.

our proposed algorithm calculates initial parameters using
robustly matched lines, followed by feasibility evaluation
of the solution and optimization. As a result, consistent
calibration parameters can be obtained regardless of the
initial conditions.

III. METHODOLOGY

A. Notation

In accordance with our notation conventions, we represent
scalars using italicized characters, vectors with boldface
lowercase characters, and matrices with boldface uppercase
characters. The subscripts t and s are utilized to denote
parameters associated with the target and source cameras,
respectively. For clarity in notation, a 3D line is represented
as L, with its corresponding Plücker coordinates expressed
as L = [d,m]. Correspondingly, its associated dual Plücker
matrix is represented as L∗. Within the 2D image plane, the
notation l represents a 2D line. The matrix K denotes the
line projection matrix, while K corresponds to the intrinsic
camera matrix. Given a 3D vector, the operator ( · )∧ denotes
its conversion to a skew-symmetric matrix. Furthermore, a
vector with an overbar on it signifies its representation in
homogeneous coordinates.

B. Merged Quadratic System

To leverage 3D lines within our algorithm, we initiate by
extracting and matching line features from a pair of RGB
images using a novel deep matcher designed explicitly for
line features [10], enabling line matching between signif-
icantly different scenes as shown in Fig. 2. Based on the
matching results, the 3D coordinates of the corresponding
line are established via a line fitting method using random
sample consensus (RANSAC), exploiting depth images. As
depicted in Fig. 1, when the proportion of inliers exceeds
a predetermined threshold in both images, the feature is
categorized as the full 3D case. In this scenario, a “3D
point on 3D line” constraint is incorporated into an equation
system. On the other hand, if only the line associated with
the source camera aligns accurately, the feature is classified
as PnL case, and we apply a constraint as detailed in [11].
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Fig. 3: Pipeline of the proposed calibration algorithm. The procedure iteratively continues until the optimized solution reaches convergence
and its associated cost drops below a predefined threshold.

1) Full 3D Case: In the first scenario, we utilize a
constraint that transformed 3D points on the source line
should lie on the 3D target line. This representation begins
from the property of dual Plücker matrix. Given a 3D point
X, the subsequent equation holds:

L∗
t X̄tj =

(
−d∧

t mt

−mT
t 0

)(
RXsj + t

1

)
=

(
−d∧

t RXsj − d∧
t t+mt

−mT
t RXsj −mT

t t

)
=

(
−d∧

t RXsj +mt

−mT
t RXsj

)
+

(
−d∧

t t
−mT

t t

)
= 04×1, (j = 1, 2)

(1)

where j represents each endpoint, respectively. Thus, two
constraints are derived from a single line pair Lt ↔ Ls.

2) PnL Case: For the second case, we adopt the con-
straint, also utilized in [11]. Since the projection of trans-
formed 3D point x̂t lies on 2D line lt of the target image,
lTt x̂tj = 0 holds. Consequently, from a singular correspon-
dence lt ↔ Ls, we derive two constraints:

(KT
t lt)

T (RXsj + t) = 0. (j = 1, 2) (2)

3) System Solver and Solution Refinement: To merge (1)
and (2) into a unified system, we represent the rotation matrix
R using the CGR parameterization [12], defined as:

R =
R̄

1 + sT s
, R̄ = (1− sT s)I3 + 2[s]× + 2sT s, (3)

where s = [s1, s2, s3]. Multiplying (1 + sT s) to the both
sides of (1) and (2), we get following equations which can
be readily aggregated:(

−d∧
t R̄Xsj + (1 + sT s)mt

−mT
t R̄Xsj

)
+

(
−d∧

t τ
−mT

t τ

)
= 04×1,

(KT
t lt)

T R̄Xsj + (KT
t lt)τ = 0, (j = 1, 2),

(4)

where τ = (1 + sT s)t. Given M and N measurements
included in each case, we stack them vertically to have the
following quadratic system:

Ar+Bτ = 0(8M+2N)×1, (5)

where r = [s21, s
2
2, s

2
3, s1s2, s1s3, s2s3, s1, s2, s3, 1]

T . Subse-
quently, (5) is solved using the technique presented in [11] to
retrieve the rotation matrix and translation vector. Notably,
the difference is that the system based on the CGR parameter
is processed using the RE3Q3 solver [13].

The system’s initial value is refined by optimizing a
cost function combining the line reprojection error el, as
described in [14], and the 3D point-to-line error eL [15]:

el =

[
xT
t1 l̂√
l̂21+l̂22

xT
t2 l̂√
l̂21+l̂22

]T
, (6)

eL = (I3 − dtd
T
t )(RXsj + t−Xtj), (j = 1, 2) (7)

where l̂ is the projected line on the target image. Using (6)
and (7), we define our cost function as follows:

min
R,t

(

M∑
i=1

eTLi
eLi

+

N∑
j=1

eTljelj ). (8)

We employ Levenberg-Marquardt (LM) algorithm for op-
timization to refine the initial estimates of the parameters
iteratively.

C. Scene Selection

This section introduces algorithms to identify informative
lines for estimating the rotation matrix and translation. It
is necessary to assess whether the resulting measurement
provides sufficient information for an accurate estimation.
Determining the rotation matrix by solving the quadratic
system as section III-B can be computationally demanding,
considering that PeLiCal incorporates real-time features.
Thus, our algorithm employs a lightweight approach based
on a linear equation directly derived from the direction of
the 3D line. Additionally, we evaluate the presence of a
translation vector corresponding to the optimized rotation
matrix in the form of a 3-dimensional line in the R3 space.

1) Selecting Lines for Rotation Estimation: For the
full 3D case, we derive the following constraint relating
the direction vectors from each camera:

dt = Rds. (9)



Algorithm 1 Convergence Voting.

1: Input: ϵd and l1, · · · , lN from (14), (15);
2: Output: Converged inliers;
3: % Compute equidistance points
4: m = EquiDistance({l1, · · · , lN})
5: % Initialize maximum inlier set
6: I = ∅
7: % Voting
8: for i = 1, · · · ,

(
N
2

)
do

9: Ki = ∅
10: for j = 1, · · · , N do
11: if PointToLineDistance(mi, lj) < ϵd then
12: Ki = Ki ∪ {j} % add to inlier set
13: end if
14: end for
15: if n(Ki) > n(I) then % update maximum inlier set
16: I = Ki

17: end if
18: end for
19: return I

In another case, we establish an additional constraint ensur-
ing that the preimage of the 2D target line should contain
the transformed 3D source line:

(PT
t lt)

T
1:3Rds = 0, (10)

where P represents the projection matrix of the target cam-
era. Incorporating both equations, we derive the following
linear equation:

Cvec(R) = b, (11)

where C is (3M + N) × 9 matrix and b is (3M + N)-
dimensional vector derived by stacking multiple equations
of (9), (10). After solving the equation and obtaining a 9-
dimensional vector as a solution, we reshape it and attain a
square matrix denoted as M whose Singular Value Decom-
position (SVD) is UΣVT . When a new line measurement
is introduced, we solve (11), subsequently projecting the
resulting matrix onto the SO(3) manifold using a special
orthogonalization technique as detailed in [16]. This pro-
jected matrix is denoted as R′ and can be expressed as
UΣ′V

T , where Σ′ is a diagonal matrix with diagonal
elements (1, 1,det(UVT )).

Assume we define a set of matrices, each having an SVD
representation UDVT , with D being an arbitrary diagonal
matrix, then, it can be proved that the minimum distance
between any two elements within this set is equivalent to the
Frobenius norm of the difference between the two diagonal
matrices. Consequently, the distance between two matrices,
M and R′, is computed as follows:

dSO(3) = ∥Σ− Σ′∥F , (12)

where ∥ · ∥F means Frobenius norm. In the calibration pro-
cess, only a new line pair that decreases the dSO(3) distance
is integrated.

2) Evaluating Existence of Translation: Despite exclu-
sively employing measurements that bring the estimation
closer to the SO(3) manifold, it remains necessary to val-
idate whether a translation vector can be derived from it.
Our algorithm uses geometric conditions derived from the
transformation of Plücker coordinates, distinct from those
employed in constructing the quadratic system.

In full 3D case, by transforming the Plücker coordinates
of the source line, we obtain the following equation:

mt = Rms + t∧Rds

= Rms − (Rds)
∧t,

(13)

where a solution is represented as:

t = (Rms −mt)×Rds + kRds, (14)

with k as an arbitrary scalar. This implies that the potential
candidate for the translation vector should be situated along a
3D line, as expressed in (14). In PnL case, when projecting
the transformed line represented with Plücker coordinates,
we derive the following constraint by multiplying two end-
points of the 2D target line by it:

([Rds]×KT x̄j)
T t = x̄T

j KRms. (j = 1, 2) (15)

For a single endpoint, (15) provides a potential candidate
for the translation vector within a 3D plane. Exploiting
both endpoints, we obtain a 3D line since the solution
should lie on the intersection of two planes. Similarly to
the previous case, given a single pair of PnL case, the
potential solution for the translation vector also conforms
to a 3D line. It is surprise to note that, in a noiseless
scenario where an accurate rotation matrix is known, if we
can acquire two measurements from either of the two cases,
the translation vector can be precisely determined as the point
of intersection between the two lines.

D. Outlier Rejection via Convergence Voting

In practical applications, noise in the line feature mea-
surements diminish the precision of the rotation matrix.
In such cases, we can still verify whether the estimated
rotation matrix is sufficiently accurate to enable the existence
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Fig. 4: The results of the convergence voting process with candidate
lines projected onto the xy-plane: (a) The algorithm successfully
computes a convergence point, distinguishing inliers from outliers.
(b) The candidate lines for translation do not converge due to an
inaccurate rotation matrix or errors in the measurement.
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Fig. 5: Equipment for accurate variation of rotation and translation
between cameras. In the calibration process of our algorithm, the
edge surface of the desk was used as a penetrating line.

of a translation vector as the convergence point of the
candidate lines. To robustly determine the presence of a
solution, we propose a “convergence voting” algorithm with
the pseudocode presented in Algorithm 1.

The algorithm starts by calculating equidistant points mi

for every pair of provided candidate lines. These equidistant
points serve as potential solutions for the translation vector.
From m1 to mN , for each equidistant point, a set Ki

consisting of lines located within a certain distance ϵd is
defined. After obtaining the set for all points, if the number of
elements in the maximum inlier set I surpasses a predefined
threshold, the translation vector is considered to converge as
depicted in Fig. 4. Then, we determine whether to finish the
calibration depending on the residual of the cost function
(8). If the residual is not small enough, only the line pair
included in the I is incorporated into the quadratic system.
The algorithm repeats the process until two conditions are
satisfied, as shown in Fig. 3.

IV. EXPERIMENT

A. Evaluation Metrics

Our experiments were conducted on a setup running
Ubuntu 20.04, powered by an Intel Core i7-12700@2.1 GHz
CPU and an NVIDIA GeForce RTX 3080 GPU. We per-
formed a two-fold evaluation to demonstrate the effectiveness
of PeLiCal. The first evaluation focused on identifying subtle
changes in pose by using an experimental setup as illustrated
in Fig. 5. In the next phase, we benchmarked the precision
of PeLiCal against other algorithms in a stereo setting.

We compared our approach with three calibration meth-
ods: Kalibr [17], ROS Calibrator, which is re-implementation
of [18] and CamMap [19], an extrinsic calibration strategy
designed to align maps formulated by ORB-SLAM3 [20].
In real-world settings, obtaining a definitive ground truth
for calibration is often challenging. As a result, our initial
experiment aimed to evaluate the accuracy of the pose
changes detected by our algorithm, avoiding the need for
such ground truth. Likewise, due to this inherent challenge,
our comparison against other techniques was based on the
criteria proposed by Perez et al. [9].

1) Verification of Pose Variance Estimation: Each of the
RealSense D435i cameras is mounted on an aluminum struc-
ture in our device. The target camera features a protractor to
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Fig. 6: The reconstructed point cloud representing the checkerboard
plane, denoted as π1 and π2, is merged into a singular coordinate
using the predicted pose. The value l is derived by averaging the
ratios of L1 to L6 for the number of squares in a row, then
determining the discrepancy from the actual length of 108 mm
(left). The variable d denotes the disparity between d1 and d2,
which correspond to the distances of π1 and π2 from the origin,
respectively. Meanwhile, θ represents the angle formed between the
normals of the two planes (right).

assess rotational movements, while the source camera can be
moved along the x-axis, determining translational changes
with the ruler in place. While manual adjustments to the
angle and spacing of the cameras may not result in the exact
anticipated pose disparity, a precise algorithm should be able
to discern and quantify the difference within a reasonable
error margin.

From a base setup where both cameras faced forward
with a 20 cm separation, we evaluated poses in 30 different
scenarios. Within these tests, the angles varied between 0°
and 80°, increasing in 20° steps, and the distances extended
from 20 cm to 45 cm, with a progression of 5 cm at each
step. Following this, we analyzed the accuracy of a 5 cm
translational change along the x-axis at a constant angle and
an angular adjustment of 20° at a set distance. The error for
the ith rotation or translation, keeping the alternate parameter
unvarying at either Xcm or θ◦, is computed as follows:

θXcm
ei =

∥∥∥(θXcm
i+1 − θXcm

i )− (0, 20, 0)T
∥∥∥
2
,

Xθ◦

ei =
∣∣∣∥∥∥Xθ◦

i+1 −Xθ◦

i

∥∥∥
2
− 5

∣∣∣ . (16)

2) Performance Comparison by Checkerboard: First, we
recorded a scene where a sizable calibration board was visi-
ble to both cameras. From each snapshot, we isolated planes,
transformed them into 3D spatial coordinates, and combined
them into one coordinate system using external parameters.
Afterward, we identified the most distant corner points. By
dividing the span between these corners by the count of
squares, we derived l, representing the variance between the
mean square dimension of the board and its actual size. An
ideal estimation brings this value closer to zero. Moreover,
we examined the deviations in the distance from the origin,
denoted as d, and the angular disparity between the plane
normals, represented by θ. If mapped precisely, both metrics
should ideally converge to zero, implying perfect alignment
of the two planes. Detailed illustration of the metrics is
provided in Fig. 6.



Fixed Rotation Variation (°) Fixed Distance Variation (cm)
Distance 0→20 20→40 40→60 60→80 Angle 20→25 25→30 30→35 35→40 40→45

45 cm 0.6398 0.0707 0.9675 1.2077 80° 0.1697 0.1137 1.3918 0.6780 1.3741
40 cm 0.7586 0.1131 0.3187 0.2768 60° 0.1584 1.0096 1.1799 1.3456 0.4132
35 cm 0.1203 0.4511 0.8060 0.1947 40° 0.3156 0.1831 0.7042 0.6292 0.5332
30 cm 0.3974 0.2406 0.2435 0.3669 20° 0.0120 0.0093 0.3852 0.1017 0.1975
25 cm 0.1790 0.1944 0.4898 0.1901 0° 0.2690 0.2260 0.1161 0.1105 0.0595
20 cm 0.4953 0.4800 0.4810 1.1286

(a) Error Measured for Rotation (°) and Translation (cm) Variation

0 20 40 60 80

20

25

30

35

40

45

Angle(°)

D
is

ta
n

c
e

 (
c
m

)

2

0

0.5

1

1.5

80

60

40

20

0

20 25 30 35 40 45

Distance (cm)

A
n
g

le
(°

)

(b) Error Heatmap

Fig. 7: Discrepancies between estimated pose variance and its actual value. As rotation and translation trend toward the top-right quadrant
of the heatmap, error rates escalate. This elevation in error is primarily ascribed to a diminishing count of diverse feature matches as both
cameras progressively capture different viewpoints.

B. Calibration with Various Common FOV

The experiment outcomes are presented in the table with
the heatmap in Fig. 7. In setups characterized by short dis-
tances and minimal angles where a shared FOV between the
cameras is significant, the outcomes are closely aligned with
the actual modifications in both parameters. Notably, in the
first column with the minimum variation for each scenario,
we observed a translational error of up to 0.3156 cm and an
angular error of 0.7586°. However, as the angle exceeded 40°
and the FOV no longer overlapped, the errors escalated due
to the diminished number of line features. This is because as
the angle between the camera’s central axis and the line ex-
pands, the accuracy of the depth sensor readings diminishes.
Nonetheless, even under these challenging conditions, where
traditional calibration techniques that require specialized
tools falter, PeLiCal showed discrepancies reaching up to
1.2077° and 1.3918 cm.

C. Stereo Calibration

In stereo camera systems, an increase in the baseline
reduces the overlapping FOV between the cameras. Consid-
ering this, we evaluated the extrinsic calibration performance
at baselines of 30 cm (near) and 45 cm (far) to examine
the effects of a diminished shared FOV. For calibration
purposes, Kalibr utilized an A3-sized AprilTag, while the
ROS Calibrator employed an 8×5 checkerboard with squares
measuring 45 mm each. We also tested CamMap in visually
feature-rich indoor environments, such as labs or offices,
selecting the setup that produced the the minimal errors.

The result is shown in Table. I with Fig. 8. The best results
for each metric are emphasized in bold. In the first config-
uration, the ROS Calibrator most accurately determined the
distance difference of the two planes from the origin. For
the remaining metrics and configuration, PeLiCal predomi-
nantly outperformed others. Although CamMap effectively
produced its trajectory and map over multiple sequences,
it fails to estimate the given translational configuration.
As a result, its associated values were not incorporated in
the table. Also, while the accuracy of the ROS Calibrator
and Kalibr diminished with the reduction of common FOV
caused by a more increased baseline, our algorithm consis-
tently maintained its accuracy without substantial deviation,
attributing to its utilization of extended, distinct line features
spanning across the images for calibration.

V. CONCLUSION

We present a novel extrinsic calibration algorithm for
RGB-D cameras leveraging line features. Our method solves
the merged quadratic system derived from two conditions for
initial pose estimation. Moreover, exploiting the constraints
of transformed Plücker coordinates, translation candidates
were represented as 3D lines. Existence of the optimal
translation was validated through a convergence assessment
through voting. The algorithm showed its ability to adapt to
slight variations in pose, achieving performance superior to
algorithms employing a calibration pattern.

TABLE I: Estimated rotation ∆R (roll, pitch, yaw), translation
∆t (x, y, z) and metrics by merging two planes (l, d, θ) for each
algorithm in two configurations. The results with substantial errors
are replaced with a hyphen (—).

Baseline Near Far

K
a
l
i
b
r ∆R (°) [0.66, 0.08, -0.01] [0.22, 0.98, 0.18]

∆t (mm) [296.46, 2.47, 1.36] [441.94, 3.12, -7.96]

[l, d, θ] [1.28, 0.89, 1.09] [0.88, 1.21, 2.21]

R
O
S

∆R (°) [-0.56, 0.29, -0.08] [-0.24, 0.55, -0.15]

∆t (mm) [297.79, -4.48, -2.46] [451.54, -7.50, 0.00]

[l, d, θ] [0.69, 0.67, 1.11] [1.39, 1.19, 1.55]

C
a
m
M
a
p ∆R (°) [0.04, -0.19, 1.10] [2.23, 0.15, -0.47]

∆t (mm) — —

[l, d, θ] [ — , — , 2.21] [ — , — , 2.11]

P
e
L
i
C
a
l ∆R (°) [0.00, 0.10, 0.00] [0.00, -0.23, 0.00]

∆t (mm) [303.00, -3.14, 2.02] [453.63, -5.33, 3.76]

[l, d, θ] [0.31, 0.98, 0.77] [0.07, 0.97, 0.65]
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Fig. 8: Experimental results of stereo calibration (30cm (left), 45cm
(right)) for each algorithm (Kalibr (red), ROS Calibrator (green),
CamMap (cyan), PeLiCal (blue)).
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