
April, 2024

SPLATE: Sparse Late Interaction Retrieval
Thibault Formal Stéphane Clinchant Hervé Déjean Carlos Lassance†★
Naver Labs Europe †Cohere
★ Work done while at Naver.

Abstract
The late interaction paradigm introduced with ColBERT stands out in the neural Information Retrieval
space, offering a compelling effectiveness-efficiency trade-off across many benchmarks. Efficient late
interaction retrieval is based on an optimized multi-step strategy, where an approximate search first
identifies a set of candidate documents to re-rank exactly. In this work, we introduce SPLATE, a simple
and lightweight adaptation of the ColBERTv2 model which learns an “MLM adapter”, mapping its frozen
token embeddings to a sparse vocabulary space with a partially learned SPLADE module. This allows us
to perform the candidate generation step in late interaction pipelines with traditional sparse retrieval
techniques, making it particularly appealing for running ColBERT in CPU environments. Our SPLATE
ColBERTv2 pipeline achieves the same effectiveness as the PLAID ColBERTv2 engine by re-ranking 50
documents that can be retrieved under 10𝑚𝑠.

1. Introduction
In the landscape of neural retrieval models based on Pre-
trained Language Models (PLMs), the late interaction
paradigm – introduced with the ColBERT model [16]
– delivers state-of-the-art results across many bench-
marks. ColBERT – and its variants [11,12,21,25,33,37,
45,48] – enjoys many good properties, ranging from
interpretability [6, 46] to robustness [10, 26, 47, 49].
The fine-grained interaction mechanism, based on a
token-level dense vector representation of documents
and queries, alleviates the inherent limitation of single-
vector models such as DPR [15]. Due to its MaxSim
formulation, late interaction retrieval requires a ded-
icated multi-step search pipeline. In the meantime,
Learned Sparse Retrieval [30] has emerged as a new
paradigm to reconcile the traditional search infrastruc-
ture with PLMs. In particular, SPLADE models [7,8,9]
exhibit strong in-domain and zero-shot capabilities at a
fraction of the cost of late interaction approaches – both
in terms of memory footprint and search latency [18,
20,34,35].
In this work, we draw a parallel between these two
lines of works, and show how we can simply “adapt”
ColBERTv2 frozen representations with a light SPLADE
module to effectively map queries and documents in
a sparse vocabulary space. Based on this idea, we in-
troduce SPLATE – for SParse LATE interaction – as an
alternative approximate scoring method for late inter-
action pipelines. Contrary to optimized engines like
PLAID [38], our method relies on traditional sparse
techniques, making it particularly appealing to run Col-
BERT in mono-CPU environments.

2. Related Works
Efficient Late Interaction Retrieval Late interaction
retrieval is a powerful paradigm, that requires com-
plex engineering to scale up efficiently. Specifically, it
resorts to a multi-step pipeline, where an initial set
of candidate documents is retrieved based on approx-
imate scores [16]. While it is akin to the traditional
retrieve-and-rank pipeline in IR, it still fundamentally
differs in that the same (PLM) model is used for both
steps1. Late interaction models offer advantages over
cross-encoders because they allow for pre-computation
of document representations offline, thus improving
efficiency in theory. However, this comes at the cost
of storing large indexes of dense term representations.
Various optimizations of the ColBERT engine have thus
been introduced [5,12,19,23,27,29,33,37,38,41,43].
ColBERTv2 [37] refines the original ColBERT by intro-
ducing residual compression to reduce the space foot-
print of late interaction approaches. Yet, search speed
remains a bottleneck, mostly due to the large number
of candidates to re-rank exactly (> 10𝑘) [27]. San-
thanam et al. identify the major bottlenecks – in terms
of search speed – of the vanilla ColBERTv2 pipeline,
and introduce PLAID [38], a new optimized late inter-
action pipeline that can largely reduce the number of
candidate passages without impacting ColBERTv2’s ef-
fectiveness. In particular, PLAID candidate generation is
based on three steps that leverage centroid interaction
and centroid pruning – emulating traditional Bag-of-
Words (BoW) retrieval – as well as dedicated CUDA
kernels. It reduces the large number of candidate docu-

1On the contrary, a standard DPR [15]≫MonoBERT [31] pipeline
would require feeding the query twice to a PLM at inference time.

Corresponding author(s): thibault.formal@naverlabs.com

ar
X

iv
:2

40
4.

13
95

0v
1 

 [
cs

.I
R

] 
 2

2 
A

pr
 2

02
4



SPLATE: Sparse Late Interaction Retrieval

ments to re-rank, greatly offloading subsequent steps
(index lookup, decompression, and scoring).

Hybrid Models Several works have identified similar-
ities between the representations learned by different
neural ranking models. For instance, UNIFIER [40]
jointly learns dense and sparse single-vector bi-encoders
by sharing intermediate transformer layers. Simi-
larly, the BGE-M3 embedding model [3] can perform
dense, multi-vector, and sparse retrieval indifferently.
SparseEmbed [17] extends SPLADE with dense con-
textual embeddings – borrowing ideas from ColBERT
and COIL [11]. SLIM [22] adapts ColBERT to perform
late interaction on top of SPLADE-like representations –
making it fully compatible with traditional search tech-
niques. Ram et al. [36] show that mapping represen-
tations of a dense bi-encoder to the vocabulary space –
via the Masked Language Modeling (MLM) head – can
also be used for interpretation purposes.

3. Method
SPLATE is motivated by two core ideas: 1. PLAID [38]
draws inspiration from traditional BoW retrieval to opti-
mize the late interaction pipeline; 2. dense embeddings
can seemingly be mapped to the vocabulary space [36].
Rather than proposing a new standalone model, we
show how SPLATE can be used to approximate the can-
didate generation step in late interaction retrieval, by
bridging the gap between sparse and dense models.

Adapting Representations SPLATE builds on the sim-
ilarities between the representations learned by sparse
and dense IR models. For instance, Ram et al. [36] show
that mapping representations of a dense bi-encoder
with the MLM head can produce meaningful BoW. We
take one step further and hypothesize that effective
sparse models can be derived – or at least adapted – from
frozen embeddings of dense IR models in a SPLADE-like
fashion. We, therefore, propose to “branch” an MLM
head on top of a frozen ColBERT model.

SPLATE Given ColBERT’s contextual embeddings
(ℎ𝑖)𝑖∈𝑡 of an input query or document 𝑡, we can define
a simple “adapted” MLM head, by linearly mapping
transformed representations back to the vocabulary. In-
spired by Adapter modules [14,32], SPLATE thus simply
adapts frozen representations (ℎ𝑖)𝑖∈𝑡 by learning a sim-
ple two-layer MLP, whose output is recombined in a
residual fashion before “MLM” vocabulary projection:

𝑤𝑖𝑣 = (ℎ𝑖 + 𝑀𝐿𝑃𝜽 (ℎ𝑖))𝑇𝐸𝑣 + 𝑏𝑣 (1)

where 𝑤𝑖 corresponds to an unnormalized log-
probability distribution over the vocabulary V for the

Figure 1: (Left) SPLATE relies on the same represen-
tations (ℎ𝑖)𝑖∈𝑡 to learn sparse BoW with SPLADE (can-
didate generation) and to compute late interactions
(re-ranking). (Right) Inference: SPLATE ColBERTv2
maps the representations of the query tokens to a sparse
vector, which is used to retrieve 𝑘 documents from a
pre-computed sparse index (R setting). In the e2e set-
ting, representations are gathered from the ColBERT
index to re-rank the candidates exactly with MaxSim.

token 𝑡𝑖, 𝐸𝑣 is the (Col)BERT input embedding for the
token 𝑣 and 𝑏𝑣 is a token-level bias. The residual guar-
antees a near-identity initialization – making training
stable [14]. We can then derive sparse SPLADE vectors
from these logits as follows:

𝑤𝑣 = max
𝑖∈𝑡
log (1 + ReLU(𝑤𝑖𝑣)) , 𝑣 ∈ {1, ..., |V|} (2)

We then train the parameters of the MLM head (𝜽, 𝒃)
with distillation based on the derived SPLADE vectors
to reproduce ColBERT’s scores – see Section 4. Our
approach is very light, as the ColBERT backbone model
is entirely frozen – including the (tied) projection layer
𝐸. In our default setting, the MLP first down-projects
representations by a factor of two, then up-projects back
to the original dimension. This corresponds to a latent
dimension of 768/2 = 384 – early experiments indicate
that the choice of this hyperparameter is not critical
– and amounts to roughly 0.6𝑀 trainable parameters
only (yellow blocks in Figure 1, (Left)).

Efficient Candidate Generation for Late Interaction
By adapting ColBERT’s frozen dense representations
with a SPLADE module, SPLATE aims to approximate

2



SPLATE: Sparse Late Interaction Retrieval

late interaction scoring with an efficient sparse dot prod-
uct. Thus, the same representations (ℎ𝑖)𝑖∈𝑡 can function
in both retrieval (SPLATE module) and re-ranking (Col-
BERT’s MaxSim) scenarios – requiring a single trans-
former inference step on query and document sides.
Thus, it becomes possible to replace the existing can-
didate generation step in late retrieval pipelines such
as PLAID with traditional sparse retrieval to efficiently
provide ColBERT with documents to re-rank. SPLATE
is therefore not a model per se, but rather offers an
alternative implementation to late-stage pipelines by
bridging the gap between sparse and dense models.
SPLATE however differs from PLAID in various aspects:
• While PLAID implicitly derives sparse BoW repre-
sentations from ColBERTv2’s centroid mapping,
SPLATE explicitly learns such representations by
adapting a pseudo-MLM head to ColBERT frozen
representations. The approximate step becomes su-
pervised rather than (yet efficiently) “engineered”.

• The candidate generation can benefit from the long-
standing efficiency of inverted indexes and query
processing techniques such as MaxScore [44] or
WAND [2], making end-to-end ColBERT more
“CPU-friendly” – see Table 1.

• It is more controllable and directly amenable to
all sorts of recent optimizations for learned sparse
models [18,20].

• ColBERT’s pipeline becomes even more inter-
pretable, as SPLATE’s candidate generation sim-
ply operates in the vocabulary space – rather than
representing documents as a lightweight bag of
centroids – see Table 3 for examples.

Nonetheless, SPLATE requires an additional – although
light – training round for the parameters of the Adapter
module. It also requires indexing SPLATE’s sparse doc-
ument vectors, therefore adding a small memory foot-
print overhead2. Also, note that hybrid approaches
like BGE-M3 [3] – that can output sparse and multi-
vector representations – could in theory be used in late
interaction pipelines. However, SPLATE is directly op-
timized to approximate ColBERTv2, and we leave for
future work the study of jointly training the candidate
generation and re-ranking modules.

4. Experiments
Setting We initialize SPLATE with ColBERTv2 [37]
weights which are kept frozen. We rely on top-𝑘𝑞,𝑑 pool-
ing to obtain respectively query and document BoW

2Note however that this is negligible compared to ColBERT’s index
– for instance, the MS MARCO PISA index for the SPLATE model in
Table 2 weighs around 2.2GB.

SPLADE representations3. We train the MLM param-
eters (𝜽, 𝒃) on the MS MARCO passage dataset [1],
using both distillation and hard negative sampling.
More specifically, we distill ColBERTv2’s scores based
on a weighted combination of marginMSE [13] and KL-
Div [24] losses for 3 epochs. We set the batch size to 24,
and select 20 hard negatives per query – coming from
ColBERTv2’s top-1000. By using ColBERTv2 as both
the teacher and the source of hard negatives, SPLATE
aims to approximate late interaction with sparse re-
trieval. SPLATE models are trained with the SPLADE
codebase on 2 Tesla V100 GPUs with 32GB memory in
less than two hours4. SPLATE can be evaluated as a
standalone sparse retriever (R), but more interestingly
in an end-to-end late interaction pipeline (e2e) where
it provides ColBERTv2 with candidates to re-rank (see
Figure 1, (Right))5. For the former, we rely on the PISA
engine [28] to conduct sparse retrieval with block-max
WAND and provide latency measurements as the Mean
Response Time (MRT), i.e., the average search latency
measured on the MS MARCO dataset using one core of
an Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz CPU.
For the latter, we perform on-the-fly re-ranking with
the ColBERT library6. Note that naive re-ranking with
ColBERT is sub-optimal – compared to pipelines that
pre-compute document term embeddings. We leave the
end-to-end latency measurements for future work – but
we believe the integration of SPLATE into ColBERT’s
pipelines such as PLAID should be seamless, as it would
only require modifying the candidate generation step.
We evaluate models on the MS MARCO dev set and
the TREC DL19 queries [4] (in-domain), and provide
out-of-domain evaluations on the 13 readily available
BEIR datasets [42], as well as the test pooled Search
dataset of the LoTTE benchmark [37].
The following experiments investigate three different
Research Questions: 1. How does the sparsity of SPLATE
vectors affect latency and re-ranking performance?
2. How accurate SPLATE candidate generation is com-
pared to ColBERTv2? 3. How does it perform overall
for in-domain and out-of-domain scenarios?

Latency Results Table 1 reports in-domain results
on MS MARCO, in both retrieval-only (R) and end-
to-end (e2e) settings. Overall, the results show that
it is possible to “convert” a frozen ColBERTv2 model
3While SPLADE is usually trained with sparse regularization, top-

𝑘𝑞,𝑑 was shown to be almost as effective – while being much sim-
pler [30].
4https://github.com/naver/splade
5Note that SPLATE (e2e) is an alternative implementation of Col-

BERTv2. We use SPLATE (resp. PLAID) or SPLATE ColBERTv2 (resp.
PLAID ColBERTv2) indifferently.
6https://github.com/stanford-futuredata/ColBERT

3

https://github.com/naver/splade
https://github.com/stanford-futuredata/ColBERT


SPLATE: Sparse Late Interaction Retrieval

to an effective SPLADE, with a lightweight residual
adaptation of its token embeddings. We consider sev-
eral SPLATE models trained with varying pooling sizes
(𝑘𝑞, 𝑘𝑑) – those parameters controlling the size of the
query and document representations. We observe the
standard effectiveness-efficiency trade-off for SPLADE,
where pooling affects both the performance and aver-
age latency. These results indicate that one can easily
control the latency of the candidate generation step by
selecting appropriate pooling sizes. However, after re-
ranking with ColBERTv2, all the models perform compara-
bly, which is interesting from an efficiency perspective,
as it becomes possible to use very lightweight models
to cheaply provide candidates (e.g., as low as 2.9ms
Mean Response Time), while achieving performance
on par with the original ColBERTv2 (see Table 2). For
comparison, the end-to-end latency reported in PLAID
[38] (single CPU core, less conservative setting with
𝑘 = 10) is around 186ms on MS MARCO. Given that
candidate generation accounts for around two-thirds of
the complete pipeline [38], SPLATE thus offers an inter-
esting alternative for running ColBERT on mono-CPU
environments.

Table 1: Retrieval latency (MRT), retrieval-only (R) and
end-to-end (e2e, 𝑘 = 50) MRR@10 on MS MARCO
dev.

(𝑘𝑞, 𝑘𝑑)
R e2e (𝑘 = 50)

MRT (ms) MRR@10 MRR@10
(5, 30) 2.9 34.5 39.5
(5, 50) 4.3 35.5 39.7
(5, 100) 7.4 35.6 39.8
(10, 100) 24.0 36.7 40.0
(20, 200) 106.0 37.4 40.0

Approximation Quality To assess the quality of
SPLATE approximation, we compare the top-𝑘 passages
retrieved by PLAID ColBERTv2 to the ones retrieved by
SPLATE (R). We report in Figure 2 the average fraction
𝑅(𝑘) of documents in SPLATE’s top-𝑘′ that also appear
in the top-𝑘 documents retrieved by ColBERTv2 on MS
MARCO, for 𝑘 ∈ {10, 100} and 𝑘′ = 𝑖 × 𝑘, 𝑖 ∈ {1, ..., 5}.
When 𝑘 = 10, SPLATE can retrieve more than 90% of
ColBERTv2’s documents in its top-50 (𝑖 = 5), for all
levels of (𝑘𝑞, 𝑘𝑑). This explains the ability of SPLATE to
fully recover ColBERT’s performance by re-ranking a
handful of documents (e.g., 50 only). We additionally
observe that the quality of approximation falls short for
efficient models (i.e., lower (𝑘𝑞, 𝑘𝑑)) when 𝑘 is higher.
Figure 3 further reports the performance of SPLATE
(e2e) on out-of-domain. We observe similar trends,

1 2 3 4 5
i (top-(i× k))

50

70

90

R

kq = 5, kd = 50

kq = 10, kd = 100

kq = 20, kd = 200

Figure 2: Candidate generation approximate accuracy
on MS MARCO dev – SPLATE (R). Dotted lines (■)
represent 𝑅(10), solid lines represent (✖) 𝑅(100).

where increasing both the number 𝑘 of documents to re-
rank and (𝑘𝑞, 𝑘𝑑) leads to better generalization. Overall,
re-ranking only 50 documents provides a good trade-
off across all settings – echoing previous findings [27,
38]. Yet, the most efficient scenario ((𝑘𝑞, 𝑘𝑑) = (5, 50),
𝑘 = 10) still leads to impressive results: 38.4 MRR@10
on MS MARCO dev (not shown), 70.0 𝑆@5 on LoTTE
(purple line on Figure 3).

Overall Results Finally, Table 2 compares SPLATE Col-
BERTv2 with the reference points ColBERTv2 [37] and
PLAID ColBERTv2 (𝑘 = 1000) [38] – in both R and e2e
settings. We also include results from SPLADE++ [9],
as well as the hybrid methods SparseEmbed [17] and
SLIM++ [22] – even though they are not entirely com-
parable to SPLATE. While SparseEmbed and SLIM in-
troduce new models, SPLATE rather proposes an al-
ternative implementation to ColBERT’s late retrieval
pipeline. We further report the two baselines consisting
of retrieving documents with BM25 (resp. SPLADE++)
and re-ranking those with ColBERTv2 (BM25 ≫ C and
S ≫ C respectively, with 𝑘 = 50). Note that we expect
SPLATE to perform in between, as BM25 ≫ C relies on
a less effective retriever, while S≫ C fundamentally dif-
fers from SPLATE, as it is based on two different models.
Specifically, it requires feeding the query to a PLM twice
at inference time. Overall, SPLATE (R) is effective as a
standalone retriever (e.g., reaching almost 37 MRR@10
on MS MARCO dev). On the other hand, SPLATE (e2e)
performs comparably to ColBERTv2 and PLAID on MS
MARCO, BEIR, and LoTTE. Additionally, we conducted
a meta-analysis against PLAID with RANGER [39] over
the 13 BEIR datasets, and found no statistical differ-
ences on 10 datasets, and statistical improvement (resp.
loss) on one (resp. two) dataset(s). Finally, we provide
in Table 3 some examples of predicted BoW for queries

4



SPLATE: Sparse Late Interaction Retrieval

0 50 100 150 200
top-k (to re-rank)

65

67

69

71

S
@

5

kq = 5, kd = 50

kq = 10, kd = 100

kq = 20, kd = 200

Figure 3: Impact of 𝑘 and (𝑘𝑞, 𝑘𝑑) on SPLATE (e2e)
ouf-of-domain performance – 𝑆𝑢𝑐𝑐𝑒𝑠𝑠@5 on LoTTE (test
pooled Search). The orange line represents ColBERTv2.

Table 2: Evaluation of SPLATE with (𝑘𝑞, 𝑘𝑑) = (10, 100)
and 𝑘 = 50. 𝑎𝑏𝑐𝑑𝑒 denote significant improvements
over the corresponding rows, for a paired 𝑡-test with
𝑝-value=0.01 and Bonferroni correction (MS MARCO
dev set and DL19). PLAID ColBERTv2 [38] (𝑘 = 1000)
reports the dev LoTTE∗ 𝑆@5.

MS MARCO DL19 BEIR LoTTE
MRR@10 nDCG@10 R@1k nDCG@10 S@5

▶ Sparse/Hybrid
SPLADE++ [9] 38.0 73.2 87.5 50.7 -
SparseEmbed [17] 39.2 - - 50.9 -
SLIM++ [22] 40.4 71.4 84.2 49.0 -
▶ References
ColBERTv2 [37] 39.7 - - 49.7 71.6
(a) PLAID ColBERTv2 [38] 39.8𝑏𝑑 74.6 85.2𝑏 - 69.6∗
(b) BM25 ≫ C (𝑘 = 50) 34.3 68.7 73.9 49.0 62.8
(c) S ≫ C (𝑘 = 50) 40.4𝑏𝑑 74.4 87.5𝑏 49.9 72.0
▶ SPLATE ColBERTv2 (𝑘 = 50)
(d) SPLATE (R) 36.7𝑏 72.9 84.4𝑏 46.5 66.7
(e) SPLATE (e2e) 40.0𝑏𝑑 74.2 84.4𝑏 49.6 71.0

in MS MARCO dev – highlighting the interpretable na-
ture of the retrieval step in SPLATE-based ColBERT’s
pipeline.
To sum up, our results demonstrate that the SPLATE
implementation of ColBERTv2 (i.e., SPLATE (e2e))
can bridge the gap with the original late interaction
pipelines, by re-ranking a much lower number of doc-
uments – similar to the PLAID engine. However, the
sparse term-based nature of the candidate generation
step makes it particularly appealing in mono-CPU envi-
ronments efficiency-wise.

5. Conclusion
We propose SPLATE, a new lightweight candidate gen-
eration technique simplifying ColBERTv2’s candidate
generation for late interaction retrieval. SPLATE adapts
ColBERTv2’s frozen embeddings to conduct efficient

Table 3: BoW SPLATE representations for queries in the
MS MARCO dev set with (𝑘𝑞, 𝑘𝑑) = (10, 100) (model
from Table 2).

SPLATE BoW

Q → “what is the medium for an artisan”
▶ (medium, 2.2), (art, 1.8), (##isan, 1.7), (media, 1.1),
(craftsman, 0.9), (arts, 0.6), (carpenter, 0.6), (artist, 0.5),
(##vre, 0.4), (draper, 0.3)
Q → “treating tension headaches without medication”
▶ (headache, 2.1), (tension, 1.8), (without, 1.6), (treatment,
1.5), (treat, 1.4), (medication, 1.3), (drug, 0.8), (baker, 0.7),
(no, 0.6), (stress, 0.5)
Q → “cost of interior concrete flooring”
▶ (price, 2.45), (concrete, 1.96), (interior, 1.85), (floor, 1.77),
(internal, 1.14), (##ing, 1.0), (total, 0.62), (inside, 0.57),
(harrison, 0.56), (cement, 0.26)

sparse retrieval with SPLADE. When evaluated end-to-
end, the SPLATE implementation of ColBERTv2 per-
forms comparably to ColBERTv2 and PLAID on several
benchmarks, by re-ranking a handful of documents.
Beyond optimizing late interaction retrieval, our work
opens the path to a deeper study of the link between the
representations trained from different architectures.

References
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, RanganMajumder, Andrew
McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg,
Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang.
Ms marco: A human generated machine reading com-
prehension dataset. In InCoCo@NIPS, 2016. 3

[2] Andrei Z. Broder, David Carmel, Michael Herscovici,
Aya Soffer, and Jason Zien. Efficient query evaluation
using a two-level retrieval process. In Proceedings of
the Twelfth International Conference on Information and
Knowledge Management, page 426–434, New York, NY,
USA, 2003. Association for Computing Machinery. 3

[3] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. Bge m3-embedding: Multi-lingual,
multi-functionality, multi-granularity text embeddings
through self-knowledge distillation, 2024. 2, 3

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen Voorhees. Overview of the trec 2019
deep learning track. In TREC 2019, 2019. 3

[5] Joshua Engels, Benjamin Coleman, Vihan Lakshman,
and Anshumali Shrivastava. DESSERT: An efficient al-
gorithm for vector set search with vector set queries. In
Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023. 1

[6] Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. A white box analysis of colbert, 2020. 1

[7] Thibault Formal, Carlos Lassance, Benjamin Piwowarski,

5



SPLATE: Sparse Late Interaction Retrieval

and Stéphane Clinchant. Splade v2: Sparse lexical and
expansion model for information retrieval, 2021. 1

[8] Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. SPLADE: Sparse Lexical and Expansion
Model for First Stage Ranking. In Proc. SIGIR, page
2288–2292, 2021. 1

[9] Thibault Formal, Carlos Lassance, Benjamin Piwowarski,
and Stéphane Clinchant. From distillation to hard neg-
ative sampling: Making sparse neural ir models more
effective. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 2353–2359, 2022. 1, 4, 5

[10] Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. Match your words! a study of lexical match-
ing in neural information retrieval. In Advances in Infor-
mation Retrieval, pages 120–127, Cham, 2022. Springer
International Publishing. 1

[11] Luyu Gao, Zhuyun Dai, and Jamie Callan. COIL: re-
visit exact lexical match in information retrieval with
contextualized inverted list. In Proc. NAACL-HLT, pages
3030–3042, 2021. 1, 2

[12] Sebastian Hofstätter, Omar Khattab, Sophia Althammer,
Mete Sertkan, and Allan Hanbury. Introducing neural
bag of whole-words with colberter: Contextualized late
interactions using enhanced reduction. In Proceedings
of the 31st ACM International Conference on Information
& Knowledge Management, page 737–747, New York,
NY, USA, 2022. Association for Computing Machinery.
1

[13] Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. Improving
efficient neural ranking models with cross-architecture
knowledge distillation, 2021. 3

[14] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for NLP. In Proceedings of
the 36th International Conference on Machine Learning,
pages 2790–2799. PMLR, 2019. 2

[15] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, andWen-
tau Yih. Dense passage retrieval for open-domain ques-
tion answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 6769–6781, Online, 2020. Association
for Computational Linguistics. 1

[16] Omar Khattab and Matei Zaharia. ColBERT: Efficient
and effective passage search via contextualized late
interaction over BERT. In Proc. SIGIR, pages 39–48,
2020. 1

[17] Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang
Zhang, and Mike Bendersky. Sparseembed: Learning
sparse lexical representations with contextual embed-
dings for retrieval. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’23), 2023. 2, 4,
5

[18] Carlos Lassance and Stéphane Clinchant. An efficiency
study for splade models. In Proceedings of the 45th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, page 2220–2226,
New York, NY, USA, 2022. Association for Computing
Machinery. 1, 3

[19] Carlos Lassance, Maroua Maachou, Joohee Park, and
Stéphane Clinchant. Learned token pruning in contextu-
alized late interaction over bert (colbert). In Proceedings
of the 45th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, page
2232–2236, New York, NY, USA, 2022. Association for
Computing Machinery. 1

[20] Carlos Lassance, Simon Lupart, Hervé Déjean, Stéphane
Clinchant, and Nicola Tonellotto. A static pruning study
on sparse neural retrievers. In Proceedings of the 46th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, page 1771–1775,
New York, NY, USA, 2023. Association for Computing
Machinery. 1, 3

[21] Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu,
Tao Lei, Iftekhar Naim, Ming-Wei Chang, and Vincent Y.
Zhao. Rethinking the role of token retrieval in multi-
vector retrieval, 2023. 1

[22] Minghan Li, Sheng-Chieh Lin, Xueguang Ma, and
Jimmy Lin. SLIM: Sparsified late interaction for multi-
vector retrieval with inverted indexes. In Proceedings
of the 46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. ACM,
2023. 2, 4, 5

[23] Minghan Li, Sheng-Chieh Lin, Barlas Oguz, Asish
Ghoshal, Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and
Xilun Chen. CITADEL: Conditional token interaction
via dynamic lexical routing for efficient and effective
multi-vector retrieval. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11891–11907, Toronto,
Canada, 2023. Association for Computational Linguis-
tics. 1

[24] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. In-
batch negatives for knowledge distillation with tightly-
coupled teachers for dense retrieval. In Proceedings of
the 6th Workshop on Representation Learning for NLP
(RepL4NLP-2021), pages 163–173, Online, 2021. Asso-
ciation for Computational Linguistics. 3

[25] Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru
Coca, and Bill Byrne. Fine-grained late-interaction
multi-modal retrieval for retrieval augmented visual
question answering. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. 1

[26] Simon Lupart, Thibault Formal, and Stéphane Clinchant.
Ms-shift: An analysis of ms marco distribution shifts
on neural retrieval. In Advances in Information Retrieval,
pages 636–652, Cham, 2023. Springer Nature Switzer-
land. 1

[27] Craig Macdonald and Nicola Tonellotto. On approxi-
mate nearest neighbour selection for multi-stage dense
retrieval. In Proceedings of the 30th ACM International

6



SPLATE: Sparse Late Interaction Retrieval

Conference on Information & Knowledge Management,
page 3318–3322, New York, NY, USA, 2021. Association
for Computing Machinery. 1, 4

[28] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and
Torsten Suel. PISA: performant indexes and search
for academia. In Proceedings of the Open-Source IR
Replicability Challenge co-located with 42nd International
ACM SIGIR Conference on Research and Development
in Information Retrieval, OSIRRC@SIGIR 2019, Paris,
France, July 25, 2019., pages 50–56, 2019. 3

[29] Franco Maria Nardini, Cosimo Rulli, and Rossano Ven-
turini. Efficient multi-vector dense retrieval with bit
vectors. In Advances in Information Retrieval, pages
3–17, Cham, 2024. Springer Nature Switzerland. 1

[30] Thong Nguyen, Sean MacAvaney, and Andrew Yates.
A unified framework for learned sparse retrieval. In
European Conference on Information Retrieval, pages
101–116. Springer, 2023. 1, 3

[31] Rodrigo Nogueira and Kyunghyun Cho. Passage re-
ranking with BERT, 2019. 1

[32] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian
Ruder. MAD-X: An Adapter-Based Framework for Multi-
Task Cross-Lingual Transfer. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7654–7673, Online, 2020.
Association for Computational Linguistics. 2

[33] Yujie Qian, Jinhyuk Lee, Sai Meher Karthik Duddu,
Zhuyun Dai, Siddhartha Brahma, Iftekhar Naim, Tao
Lei, and Vincent Y. Zhao. Multi-vector retrieval as sparse
alignment, 2022. 1

[34] Yifan Qiao, Yingrui Yang, Shanxiu He, and Tao Yang.
Representation sparsification with hybrid thresholding
for fast splade-based document retrieval. arXiv preprint
arXiv:2306.11293, 2023. 1

[35] Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang.
Optimizing guided traversal for fast learned sparse re-
trieval. In Proceedings of the ACM Web Conference 2023,
pages 3375–3385, 2023. 1

[36] Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov,
Jonathan Berant, and Amir Globerson. What are you
token about? dense retrieval as distributions over the
vocabulary. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2481–2498, Toronto, Canada,
2023. Association for Computational Linguistics. 2

[37] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. Colbertv2: Effec-
tive and efficient retrieval via lightweight late interac-
tion. arXiv preprint arXiv:2112.01488, 2021. 1, 3, 4,
5

[38] Keshav Santhanam, Omar Khattab, Christopher Potts,
and Matei Zaharia. Plaid: An efficient engine for late
interaction retrieval. In Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management, page 1747–1756, New York, NY, USA,
2022. Association for Computing Machinery. 1, 2, 4, 5

[39] Mete Sertkan, Sophia Althammer, and Sebastian Hof-

stätter. Ranger: A toolkit for effect-size based multi-task
evaluation. arXiv preprint arXiv:2305.15048, 2023. 4

[40] Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu,
Guodong Long, Kai Zhang, and Daxin Jiang. Unifier: A
unified retriever for large-scale retrieval, 2023. 2

[41] Susav Shrestha, Narasimha Reddy, and Zongwang Li.
Espn: Memory-efficient multi-vector information re-
trieval, 2023. 1

[42] Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. BEIR: A het-
erogeneous benchmark for zero-shot evaluation of in-
formation retrieval models. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021. 3

[43] Nicola Tonellotto and Craig Macdonald. Query embed-
ding pruning for dense retrieval. In Proc. CIKM, page
3453–3457, 2021. 1

[44] Howard Turtle and James Flood. Query evaluation:
Strategies and optimizations. Inf. Process. Manage., 31
(6):831–850, 1995. 3

[45] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and
Iadh Ounis. Pseudo-relevance feedback for multiple
representation dense retrieval. In Proceedings of the
2021 ACM SIGIR International Conference on Theory of
Information Retrieval, page 297–306, New York, NY,
USA, 2021. Association for Computing Machinery. 1

[46] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and
Iadh Ounis. Reproducibility, replicability, and insights
into dense multi-representation retrieval models: From
colbert to col*. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, page 2552–2561, New York, NY,
USA, 2023. Association for Computing Machinery. 1

[47] Orion Weller, Dawn Lawrie, and Benjamin Van Durme.
Nevir: Negation in neural information retrieval, 2023.
1

[48] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu,
Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin
Jiang, and Chunjing Xu. FILIP: Fine-grained interactive
language-image pre-training. In International Confer-
ence on Learning Representations, 2022. 1

[49] Jingtao Zhan, Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Ji-
afeng Guo, Min Zhang, and Shaoping Ma. Evaluating
interpolation and extrapolation performance of neu-
ral retrieval models. In Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management, page 2486–2496, New York, NY, USA,
2022. Association for Computing Machinery. 1

7


	Introduction
	Related Works
	Method
	Experiments
	Conclusion

