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ABSTRACT
Recent years, people have put forward higher and higher requirements for context-adaptive navigation (CAN). CAN system
realizes seamless navigation in complex environments by recognizing the ambient surroundings of vehicles, and it is crucial to
develop a fast, reliable, and robust navigational context recognition (NCR) method to enable CAN systems to operate effectively.
Environmental context recognition based on Global Navigation Satellite System (GNSS) measurements has attracted widespread
attention due to its low cost because it does not require additional infrastructure. The performance and application value of
NCR methods depend on three main factors: context categorization, feature extraction, and classification models. In this
paper, a fine-grained context categorization framework comprising seven environment categories (open sky, tree-lined avenue,
semi-outdoor, urban canyon, viaduct-down, shallow indoor, and deep indoor) is proposed, which currently represents the most
elaborate context categorization framework known in this research domain. To improve discrimination between categories,
a new feature called the C/N0-weighted azimuth distribution factor, is designed. Then, to ensure real-time performance, a
lightweight gated recurrent unit (GRU) network is adopted for its excellent sequence data processing capabilities. A dataset
containing 59,996 samples is created and made publicly available to researchers in the NCR community on Github. Extensive
experiments have been conducted on the dataset, and the results show that the proposed method achieves an overall recognition
accuracy of 99.41% for isolated scenarios and 94.95% for transition scenarios, with an average transition delay of 2.14 seconds.

I. INTRODUCTION
With the rapid development of autonomous driving, integrated navigation and seamless positioning (), people have put forward
higher and higher requirements for context-adaptive navigation (CAN). Vehicle navigation and positioning are highly dependent
on the surrounding environments, and no single technology can adapt to all operating environments. For instance, GNSS-based
navigation performs well in open environments with few or no signal obstructions and interference; in semi-open environments,
especially in urban canyons, shadow matching (Groves, 2011) and 3DMA (Adjrad & Groves, 2016) can be used to assist GNSS
localization; in indoor and severe GNSS-denied environments, navigation methods based on cellular signal, WiFi, Bluetooth,
UWB and INS are mainly adopted (). CAN systems achieve seamless navigation in complex environments by recognizing
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the ambient surroundings of the vehicle. Therefore, it is crucial to develop a fast, reliable, and robust navigational context
recognition (NCR) method to enable CAN systems’ effective operation.

The effectiveness and practicality of NCR methods mainly rely on three key factors: context categorization, feature extraction,
and classification model.

First, context categorization proposed for general or other purposes may not be suitable for CAN. For specific navigation
applications, such as autonomous driving, a dedicated context categorization framework should be proposed based on the
navigation requirements and the characteristics of different contexts. To the best of our knowledge, the existing literature ()
mainly divides the environments under consideration into four categories or less, namely deep indoor, shallow indoor, semi-
outdoor, and open-sky. Such context categorization methods are too coarse for vehicle navigation to be used in CAN. Second,
selecting the appropriate signal or sensor types and extracting the proper features are the cornerstone of NCR. Among the various
types of sensors or signals for NCR, the recognition scheme based on GNSS signals is widely used due to its universality, high
availability, and low cost (Feriol et al., 2020). In terms of identification features, researchers have proposed a large number
of useful features to distinguish various types of context, such as the mean and variance of GNSS signal’s carrier-to-noise
ratio (C/N0), satellite blocking coefficient, and fluctuation coefficient (Y. Wang et al., 2019). However, when more elaborate
classifications are required, new features need to be devised. Last, determining the appropriate classification model is crucial to
achieve fast, accurate, and robust context recognition performance. Existing classification models mainly include fuzzy inference
(Zadeh, 1996), support vector machine (SVM) (Suthaharan, 2016), and long-short term memory (LSTM) (Sherstinsky, 2020).
With the development of big data technology, large-scale parallel computing, and the popularity of graphics processing unit
(GPU) devices, deep learning has emerged as a promising field, with algorithms such as Convolutional Neural Networks (CNN,
Dai et al., 2022), Transformers (Vaswani et al., 2017) and Gated Recurrent Unit (GRU, Chung et al., 2014).

For the GNSS measurement-based methods, a classical approach is called SatProbe (Chen & Tan, 2017), which determines the
indoor/outdoor status using only the number of visible GPS satellites. Although this method turn out to be efficient, its binary
classification needs improvement for applicability in broader contexts. Xia et al. (2020) used an LSTM network, to divide
environments into four categories (deep indoors, shallow indoors, semi-outdoors, and open outdoors) based on smartphone
GNSS measurements. They achieved an overall accuracy of 98.65% and a maximum scenario transition recognition delay
of 3s. However, the constructed features suffered from redundancy, leading to unnecessary computations. Moreover, most
smartphones’ GNSS modules have a sampling rate of only 1Hz, which hampers the responsiveness to scenario transition. More
recently, Dai et al. (2022) proposed a grid-based recognition approach that utilizes GNSS measurements such as pseudorange,
Doppler shift, and C/N0. They represented the GNSS measurements with Voronoi diagrams and fed them into CNN networks,
and achieved an accuracy of 99.92%. However, the categorization is not specifically designed for vehicle navigation. In addition,
classifying images generally incurs higher computational overhead compared to numerical samples.

To summarize, NCR faces three main challenges, namely categorization framework, feature extraction, and classification models.
In response to these challenges, we dedicate to propose an elaborate categorization framework, and implement recognition by
using a lightweight network with appropriate features. The main contributions of this paper are:

• A novel fine-grained context categorization framework was proposed based on the characteristics of different environ-
ments and their corresponding integrated navigation methods, which currently represents the most elaborate context
categorization framework known in this research field.

• To improve discrimination between categories, a new feature called the C/N0-weighted azimuth distribution factor was
designed.

• To ensure real-time performance, a lightweight GRU network was adopted for its excellent sequence data processing
capabilities.

• A corresponding dataset containing 59,996 samples was created, which will serve as a valuable resource for the NCR
research community.

II. METHODOLOGY
1. Context Categorization Framework
Targeting the navigation of autonomous vehicles in urban areas, the environments that they traverse are diverse. The selection of
environmental category elements should be based on the available sensor types and the quality of wireless signal reception. The
most used four-category framework (deep indoors, shallow indoors, semi-outdoors, and open outdoors) provide a basic skeleton,
but it’s not dedicated designed for vehicle navigation. We expand it by adding three other distinct categories and propose a
fine-grained context categorization framework based on the characteristics of different environments and their corresponding
integrated navigation methods.

Table 1 shows the definitions, signal characteristics, and corresponding integrated navigation methods for each environmental



Table 1: Context categorization framework based on the characteristics of different environments and their corresponding integrated
navigation methods.

categories descriptions GNSS signal characteristics integrated navigation methods

open sky
position with an elevation angle of
less than 15◦ from the top edge of

most surrounding buildings
all GNSS signals in the sky are well

received with strong C/N0
GNSS

tree-lined avenue leaves on both sides of the road
almost cover the sky above the road

signal strength experiences some
degree of attenuation GNSS, LTE/5G, INS

semi-outdoor
building exists on one side and the
elevation of its top edge is greater

than 45◦

signals at low and medium elevation
angles on one side are blocked GNSS, WiFi, LTE/5G, INS

urban canyon a large number of super high-rise
buildings on both sides of the road

signals come from high elevation on
the top

GNSS Shadow matching,
3DMA, INS

viaduct-down position located under a viaduct signals come from low elevation on
both sides GNSS, UWB, INS

shallow indoor position located indoors and near an
outside window

weak GNSS signals coming from the
side of the window GNSS, WiFi, INS

deep indoor position located indoors and away
from an outside window almost no GNSS signal available WiFi, Bluetooth, UWB, INS

types in the proposed seven-category framework. It includes seven categories: open sky, tree-lined avenues, semi-outdoor, urban
canyons, viaduct-down, shallow indoor, and deep indoor, which currently represents the most elaborate context categorization
framework known in this research domain. For example, the simi-outdoor environment refers to a location where there is a
building exists on one side and the elevation of its top edge is greater than 45◦. Signals coming from elevations lower than this
angle on that side are blocked. The navigation solution for the semi-outdoor environment can be achieved by the integration of
GNSS, WiFi, cellular signals and/or INS.

The seven-category framework significantly improves the environmental coverage, but it also increases the difficulty of inter-class
discrimination. For example, in the four-category framework, there is no category for viaduct-down, and according to the signal
characteristics, it should be classified as a shallow indoor environment. However, how to distinguish between viaduct-down and
shallow indoor in the seven-category framework? New features need to be designed to solve the inter-class confusion problem
brought by the extended framework.

2. Feature Design/Selection
Here we show the satellite skyplots (Figure 1) of the GNSS signals received in three typical scenarios (open-sky, viaduct-down
and shallow indoor) often encountered in CAN, with green representing satellites with strong C/N0 values, blue for weak C/N0

values, and red for unavailable satellites. Two key observations can be made form them:

• Firstly, relying solely on statistical features of satellites’ C/N0 and number is insufficient to effectively distinguish between
each type of environment;

Figure 1: Satellite skyplots of open-sky (left), viaduct-down (middle) and shallow indoor (right) environments, where green represents
satellites with strong C/N0 values, blue for weak values, red for unavailable satellites.



• Secondly, there is a noticeable ”semi” nature exhibited in certain environments, which can potentially be utilized as a
distinguishing factor.

The problem is how to definitely describe this ”semi” nature.

Hence, a new feature called the C/N0-weighted azimuth distribution factor (r) is designed to improve discrimination between
categories. As shown in Figure 2, we denote b as the bisector. It divides the entire skyplot into two sectors, namely Ab1 and
Ab2, respectively. Mathematically, r can be obtained by solving the optimization problem described in equation (1).

r = max
b∈[0,360◦)

rb

s.t.


rb =

CN0b1
CN0b2

CN0bi =
∑

aj∈Abi
cj , i = 1, 2, j = 1, . . . , N

Ab1 =
{
a
∣∣b ≤ a < b+ 180◦ or 0◦ ≤ a < b− 180◦

}
Ab2 =

{
a
∣∣b− 180◦ ≤ a < b or b+ 180◦ ≤ a < 360◦

}
(1)

where aj and cj denote the azimuth and C/N0 measurement of the j-th available satellite, Ab1 and Ab2 are clockwise and
counterclockwise ranges of 180◦ start from the bisector b, respectively. Calculate the sum of C/N0 of all available satellites
in Ab1 and Ab2, respectively, and compute their ratio rb. When b varies in [0, 360◦), the maximum value of rb is taken as the
feature of this epoch.

Figure 2: Example of a satellite skyplot where b is the bisector, Ab1 and Ab2 are clockwise and counterclockwise ranges of 180◦.

This new feature significantly improves the discrimination between different categories, especially between shallow indoor and
viaduct-down. When the vehicle is in a shallow indoor environment, most of the strong GNSS signals are received from the side
with windows, which will lead to a high value of r (far greater than 1). On the contrary, when the vehicle is under a viaduct,
the number and strength of GNSS signals from both sides are not much different, which will result in an r value close to 1. The
classification model will learn this difference during the training phase and apply it during the identification phase.

In addition to the proposed feature r, the 10-dimensional feature vector used in this paper also includes the number of visible
satellites, and the mean, standard deviation, maximum, minimum, skewness, kurtosis, median, and interquartile range of satellite
C/N0 within an epoch. To ensure real-time performance, a lightweight GRU network is adopted for its excellent sequence data
processing capabilities. Details of the implementation of GRUs can be found in (Chung et al., 2014).

III. EXPERIMENTS AND RESULTS
1. Data Collection
To validate the performance of the proposed method, extensive field experiments were conducted. We collected the NMEA-
0183 (National Marine Electronics Association) samples using an u-blox F9K receiver (as shown in Figure 3) with a sampling
frequency of 5 Hz. Some key parameters of the used receiver are provided in Table 2.

The dataset consists of a total of 59,996 samples, as described in Table 3. Each set of data lasts approximately 4 minutes,
equivalent to around 1200 samples. And to ensure the broad representativeness, they were collected by different volunteers



at different locations and time for each type of environment. In order to facilitate further research, we have made this dataset
publicly available on Github (Liu, 2023) for researchers in the NCR community. It will serve as a benchmark for this research
field.

Figure 3: U-blox F9K receiver and multi-band active GNSS
antenna.

Table 2: Parameters of the receiver U-blox F9K

Items Parameters

Constellations GLONASS/Galileo/ GPS/BDS/
QZSS

Signal fequencies
L1C/A, L2C, L1OF,
L2OF, E1-B/C,
E5b, B1I, B2I

Max output rate 100 Hz
Tracking Sensitivity -158dbm
Protocols NMEA, UBX, RTCM

Table 3: Number of sets and samples for each scenario.

Categories open sky tree-lined avenue semi-outdoor urban canyon under-viaduct shallow indoor deep indoor
Number of sets 7 7 7 7 7 7 7

Number of samples 8631 8577 8803 8507 8445 8546 8487

2. Ablation Experiment
The ablation experiment was designed to validate the performance of the proposed new feature (the C/N0-weighted azimuth
distribution factor r). First, consider the 11-dimensional feature vector xt proposed in (Xia et al., 2020) :

xt = {num, sum,mean, std,max,min, range, skewness, kurtosis,median, iqr} (2)

There are two deterministic correlations between the elements within this vector:

mean = sum/num, range = max−min.

Remove sum and range from xt, resulting in a 9-dimensional feature vector, denoted as

yt = {num,mean, std,max,min, skewness, kurtosis,median, iqr}. (3)

Next, by incorporating the proposed feature r, the feature vector zt is obtained:

zt = {num,mean, std,max,min, skewness, kurtosis,median, iqr, ratio}. (4)

Then feed yt and zt into the GRU network, and evaluate their performance. To train a recognition model, many hyperparameters
need to be set and tuned. Here we present the key parameters selected after trial and error. A network with two hidden layers,
each containing 180 GRU neurons, was adopted. To capture the temporal correlation of scenario transitions, the length of the
sliding window in the temporal domain was set to 6 samples. The max training epochs was set to 35, and the batch size was set
to 256, resulting a iteration number of about 7000. The learning rate was set to 5.0E-5.

The classification confusion matrices of the model trained based on features yt and zt are shown in Figure 4 and Figure 5,
respectively. It can be observed that when trained based on yt, the model tends to confuse three groups of environments. And
they lead to a training accuracy of only 99.66%. The most severe confusion occurs between viaduct-down and shallow indoor.
When the vehicle passes between two piers under a viaduct, the semi-enclosed space obstructs the GNSS signal, reducing
the number and strength of the received satellites, resulting in performance similar to entering a shallow indoor environment.
However, with the new feature introduced in zt, these similarities or confusions have been significantly reduced, or even
eliminated altogether. As a result, we achieved an overall accuracy of 99.94% , as shown in Fig. 5. As mentioned before, this
can be attributed to the fact that distinct value of the proposed feature are obtained in the former confused environments.
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Figure 4: The confusion matrices of the model based on features yt, overall accuracy: 99.66%.

open sky
avenue

semi-outdoor
urban canyon

viaduct-down
shallow indoor

deep indoor

Predicted label

op
en

 s
ky

av
en

ue

se
m

i-
ou

td
oo

r

ur
ba

n 
ca

ny
on

vi
ad

uc
t-

do
w

n

sh
al

lo
w

 in
do

or

de
ep

 in
do

or

Tr
ue

 la
be

l

7380

0

0

0

0

0

0

8

7301

0

0

0

0

0

0

0

7560

5

0

0

0

0

0

10

7258

0

0

0

0

0

0

0

7214

2

0

0

0

0

0

7

7307

0

0

0

0

0

0

0

7254

(a) Confusion matrix (sample numbers)

open sky
avenue

semi-outdoor
urban canyon

viaduct-down
shallow indoor

deep indoor

Predicted label

op
en

 s
ky

av
en

ue

se
m

i-
ou

td
oo

r

ur
ba

n 
ca

ny
on

vi
ad

uc
t-

do
w

n

sh
al

lo
w

 in
do

or

de
ep

 in
do

or

Tr
ue

 la
be

l

99.89% 0.11%

100.00%

99.87%

0.07%

0.13%

99.93%

99.90%

0.03%

0.10%

99.97%

100.00%

(b) Confusion matrix (sample percentages)

Figure 5: The confusion matrices of the model based on features zt, overall accuracy: 99.94%

3. Comparison Experiments
In the subsequent experiments, we compare the proposed GRU-based method with the SVM-based method on an isolated testset.
The SVM-based method uses temporal filtering (Y. Wang et al., 2019) with a fixed sliding window of 6 samples and it is labeled
as ”SVM-TF”. They are both trained or learned using the proposed zt feature vectors. Their confusion matrices on the isolated
test set are shown in Table 4 and 5, respectively. The GRU-based method has a high recognition accuracy of 99.41%, which
slightly outperforms the SVM-TF-based method, 99.35%. This can be attributed to the excellent characterization ability of the
proposed zt in different environments, as well as the strong expression ability of the models.

To evaluate the performance in transition scenarios, we conducted 4 sets of comparative experiments, as shown in Figure



Table 4: Confusion matrix of the proposed GRU-based method on the isolated testset, overall accuracy: 99.41%. Labels 0 to 6 represent
’open sky’, ’ tree-lined avenues’, ’semi-outdoor’, ’urban canyon’, ’viaduct-down’, ’shallow indoor’ and ’deep indoor’, respectively. The same

labeling applies in the subsequent tables.

Actual Predicted
0 1 2 3 4 5 6

0 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2 0.00% 0.00% 99.67% 0.33% 0.00% 0.00% 0.00%
3 0.00% 0.00% 0.00% 98.51% 1.49% 0.00% 0.00%
4 0.00% 0.00% 0.00% 0.00% 97.90% 2.10% 0.00%
5 0.00% 0.00% 0.25% 0.00% 0.00% 99.75% 0.00%
6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Table 5: Confusion matrix of the SVM-TF-based method on the isolated testset, overall accuracy: 99.35%.

Actual Predicted
0 1 2 3 4 5 6

0 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2 0.00% 0.00% 99.50% 0.50% 0.00% 0.00% 0.00%
3 0.00% 0.00% 0.00% 98.68% 1.32% 0.00% 0.00%
4 0.00% 0.00% 0.00% 0.00% 97.90% 2.10% 0.00%
5 0.00% 0.00% 0.67% 0.00% 0.00% 99.33% 0.00%
6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

6-9. The overall average recognition accuracy of the GRU-based method in these five transition scenarios is 94.95%, which is
significantly higher than the 90.99% achieved by the SVM-TF-based method. This is because the former has already taken the
temporal relationship of the samples into consideration during the learning stage, while the latter only applies a temporal filtering
to the recognition results of single moments. The 2nd experiment follows the opposite process of the 1st one. For the GRU-based
method, although both experiments are conducted in the same route, the accuracy and delay in the 2nd one are inferior to those in
the 1st one. This is because in the 1st experiment, the environmental changes follow a gradual decrease in skyvisibility, and the
receiver can immediately detect the decrease in signal quantity and quality. Instead, in the 2nd experiment, as the skyvisibility
increases, the receiver needs some time to acquire and track the newly visible satellites. The same phenomenon can be observed
in the 1st and 2nd halves of the 3rd experiment, when the vehicle crossing the viaduct-down environment. Beside, there are a
total of 10 transitions in these 4 experiments, with an average delays of 2.14s, demonstrating the real-time performance of the
proposed method.
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Figure 6: Transition scenario 1: open sky→semi-outdoor→shallow indoor→deep indoor
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Figure 7: Transition scenario 2: deep indoor→shallow indoor→semi-outdoor→open sky
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Figure 8: Transition scenario 3: open sky→viaduct-down→open sky
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Figure 9: Transition scenario 4: open sky→tree-lined avenue→open sky

IV. CONCLUSIONS
In this paper, we studied the NCR approach for context-adaptive navigation. We proposed a new and fine-grained context
categorization framework based on the characteristics of different environments and their corresponding integrated navigation
methods, which is currently the most elaborate context categorization framework known. A new feature called the satellite
azimuth distribution factor weighted by carrier-to-noise ratio r, was designed, which significantly improves the discrimination
between different categories. To ensure real-time performance, a GRU network was adopted for its excellent sequence data
processing capability. A corresponding data set was created, which will serve as a valuable resource for the NCR research
community. Experiments results show that the proposed method is superior in terms of both recognition accuracy and



computational complexity to the state-of-the-art. Overall, this work has significant implications for the development of context-
adaptive navigation systems, which have the potential to greatly enhance user experience and safety in navigation applications.
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