CLASSICAL MULTIPLE ORTHOGONAL POLYNOMIALS FOR ARBITRARY NUMBER
OF WEIGHTS AND THEIR EXPLICIT REPRESENTATION
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ABSTRACT. This paper delves into classical multiple orthogonal polynomials with an arbitrary number of
weights, including Jacobi-Pifieiro, Laguerre of both first and second kinds, as well as multiple orthogonal Her-
mite polynomials. Novel explicit expressions for nearest-neighbor recurrence coefficients, as well as the step line
case, are provided for all these polynomial families. Furthermore, new explicit expressions for type I multiple
orthogonal polynomials are derived for Laguerre of the second kind and also for multiple Hermite polynomials.
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1. INTRODUCTION

Multiple orthogonal polynomials constitute a class of polynomials with widespread applications across
various branches of mathematics and engineering. Unlike orthogonal polynomials, which are associated
with a single weight function, multiple orthogonal polynomials are linked to multiple weight functions and
measures concurrently. These polynomials serve as fundamental tools in numerical analysis, approximation
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theory, and mathematical physics, offering robust solutions for intricate problems involving simultaneous
orthogonalities.

For an in-depth understanding of the subject, one can refer to the comprehensive introduction provided
in the book by Ismail [17], while its relation with integrable systems is elaborated upon in [1].

Recent research has illuminated the importance of multiple orthogonal polynomials in the Favard spec-
tral description of banded bounded semi-infinite matrices. This connection has been explored in various
works such as [13, 15, 16], with further insights available in [14]. Moreover, these polynomials have been
found to play a crucial role in the context of Markov chains and random walks beyond birth and death,
as evidenced in [9, 10, 11, 12]. Notably, in both of these scenarios, type I polynomials emerge as central
components. Unfortunately, explicit expressions for type I multiple orthogonal polynomials remain scarce.
In contrast, for type II polynomials, Rodrigues’ formula yields explicit hypergeometric expressions capable
of accommodating an arbitrary number of ‘classical’ weights, as elaborated in [5] and [3, 4, 21], see also [17,
§23].

Moreover, the nearest-neighbor recurrence coefficients (3) have only been fully explored in the case of
p = 2, as detailed in [21]. Recent advancements, such as those in [6], have provided explicit expressions
for various families, including the Jacobi-Pifieiro and Laguerre polynomials of type I, specifically for p = 2.
Subsequently, in [7], coefficients of the bidiagonal factorization for these families were determined, also
focusing on p = 2.

Expanding upon this groundwork, we extended our investigation to encompass the general case of p >
2. In [8], we derived explicit expressions for Jacobi-Pifieiro and Laguerre polynomials of the first kind,
considering p > 2. Continuing in this vein, the present work focuses on providing explicit expressions for:

i) Laguerre polynomials of the second kind, in §4.1, and Hermite polynomials of type I, see §5.1.
ii) Recurrence coefficients (3) for Jacobi—Pifieiro, see §2, and Laguerre polynomials of both kinds, see §3
and 4.2, along with Hermite in §5.2.

Next, we give a table as a resumé of these achievements and the adequate references:

] Family \ Type 11 \ Type I \ Recurrence ‘
Jacobi-Piiieiro [5] [8] Here
Laguerre First Kind [5] [8] Here
Laguerre Second Kind [5] Here Here
Hermite [17, §23.5] Here Here

Jacobi-Pifeiro

N\

Laguerre Second Kind Laguerre First Kind

Y

Hermite
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The following classical muliple ortohogonal polynomial families: Jacobi-Pifieiro, Laguerre of first and
second kind and Hermite, are connected through limit relations as showed in the Askey scheme above,
see [5].

1.1. Multiple Orthogonal Polynomials. (See [17, 18].) Let’s consider a system of p € N weight functions
Wi,...,Wp : A C R — R* a measure £ : A € R — R* and a multi-index 71 = (n1,...,n,) € Ng with
7] :=n1+- +np.

Let’s examine a sequence of monic type II polynomials B, where deg B < |ii|, that fulfill the orthogonality
relations:

/ By (0w (x) d u(x) = 0,
A

fori € {1,...,p} and j € {0,...,n; — 1}, and p sequences of type I polynomials Ag),...,qup) with
deg A;li) < n; — 1 satisfying:
p P -
e 0if j=0,...,|n| -2,
1 TAY (ywi(x) d p(x) =
M Z]/Ax D (2w (x) d () {1 o
These orhogonality conditions are equivalent to the biorthogonality conditions
P . Oifm; <m;,ie{1,...,p},
@ > [ Ba0AY (owi o) o) = { it 1l = [ + 1,
i=1 YA

0if 7] +1 < |m|.
For AT (algebraic Chebyshev) systems of weights, cf. [17, 18, §23.1.2], the associated type II and I

polynomials exist and reach the maximum degree.

1.1.1. Near Neighbour Recurrence Relations. Here we are partially following the notation of [17, §23.1.4]. Let
be (7(1),7(2),...,n(p)) a permutation of (1,2,...,p), & € RP the k-th vector of the canonical base in R”
and

&l
¥
f="

J
3,' ::Zgn(i)a jE{l,...,p}.
i=1

1

Then, the type II and type I polynomials satisfy the following nearest-neighbor recurrence relations:

p .
XBji(x) = Biyz, (x) + by (K)B;i(x) + > blBs_s (%),
j=1

p
(i) _ o) 0 (i) J (@) P
XA (x) = Aﬁ—ék (x) + bﬁ—é'k(k)Aﬁ (x) + E bﬁ+§_,,1A7:+§j x), i={1,...,p}.
j=1

From the biorthogonality, one gets that the recurrence coefficients can be written as:
1
B30 = [ 3B3(o) (AL a0+ 4 ALY 0w, () o)

b;;:/AxBa(x) (A,(Zl_)gjil(x)wl(x)+---+Aé’il_ (x)wp(x))d,u(x), jef(l,....p).

Sj-1
Remark 1.1. The multi-index 7i — §j_1 corresponds with subtracting 1 to the j — 1 different entries

{Nx(1): Nr(2)s - Nr(j-1)}
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of the muli-index 7. Consequently,
i+ x| = |n| +1, i=5jal=nl-j+1, j={1,....p}

The condition (7 — 5;-1); = n; is equivalent to write j < 771(i) while (7 — 5;_1), = n; — 1 is equivalent to
j > n71(i). These conditions will be relevant later.

We introduce the sets

S(mj)y={ie{l,....p}:j<n ()}, S(m, j) ={1,2,...,p} \ S(x, j).

For example, for p = 4 and the permutation

we have
S(r,1) ={1,2,3,4}, S(r,2) ={1,2,3}, S(r,3) =11, 3}, S(m,4) ={3}.

Type II and I polynomials can be written

B;(x) = Z Z C ---- ll7x11+"'+lp’ A(l)(x) Z C(l) N) l

and biorthogonality conditions (2) lead to

bo(k) = Zp:

=1 1=0

ni— 1+6l k

(’)Z/B = (0O)x i (x) d p(x)

~.

= / B; (x)x”"+1wk(x)du(x)+ZC(l) o / By (x)x" w; (x) d p(x)

n+ey
(4)
..... 1 ,
r(l’ilknkz ZC p/ ng+1+h + +l”Wk(X)du(x)
=0 1,20
-1\ \ Al l : ety
PR S B [ o ap
i=1 =0
(i)
p 8N .
Q:Z Z c! /B,q(x)x”lwi(x)d,u(x)
. n=Si-1 [,
i=1 =0
(5) = Y et [ B dut
. . J= A
ieS(m,j)
1O O e I RV o
- N e S N [ a0 )
ieS(m,j) 1,=0
since

dega®, = [m =20 <
n=sj-1 n;—1if j <n7(7).
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1.1.2. Step line Recurrence Relation. Using the step line multi-index sequence
{(0,0,...,0),(1,0,...,0),(1,1,...,0),...,(1,1,...,1),(2,1,...,1) ...}

we can relabel the polynomials and coefficients as follows

Bpmik = B(m+1,...,m+l,m...,m)
—_—
k times p—k times
@) _ 4@ :
APm+k'_A(m+1,...,m+1,m,...,m) ref{l.....ph
———————
k times p—k times
0 _ 1.0
me+k b(m+1 m+1,m,...,m)(k+1)
%/—/ —_————
k times p—k times
J _ ] .
Ppmek =P 11, m+Lm, . m) Je{l....ph
—————— —
k times p—ktimes
withm > 0 and k € {0,..., p —1} . Then, the recurrence relations can be written as follows

p
XBy (x) = Busa (x) + by Bu(x) + Z biBj(x),

xAD (x) = AD (x) + b0 A(‘)(x)+Zb AY (), ie{l....p}

n+j-1""n+j

In matrix terms read

Bo(x) Bo(x) _AY:) ()] —AY:) ()]
Bi(x)|  |Bi(x) BV YNCO I €Y ,
T Bzfx) =X BQ.(X) , T Aéi)(x) =X Aéi)(x) , ied{l,...,p},

in terms of Hessenberg matrix

[2,0
bo 1 o.... ............
1 0
bl b1 1,.
by b
T:=1": '
p
bp )
(;)-..bp+1,

1.2. Hypergeometric Functions. Before delving into the main results, it’s important to recall that, in the
context of standard orthogonality, the polynomials can be represented using generalized hypergeometric
series, as discussed in [2, 19]. These series, denoted as

o (@) (ap) xf
(a'q)l l'

ai, .

F
rPtq
al, .
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In [6] we found many type I polynomials families for systems of p = 2 weight functions. The most of them
were expressed through the double series known as the Kampé de Fériet functions [20]

b

al)l+m (an)l+m (bl)l e (br)l (Cl)m (Cs)m xl y
)i - - (@ tem B -+ Bt Y- - (¥ I m

q:k;j

(7) TS [ (a1,...,an) : (b1,...,by);(c1,s. .., C5)

Ms
1 [M]

Here, we are going to need a generalization of these previous ones known as the multiple Kampé de Fériet
functions [20]

(al,...,an):(bl,...,brl);...;(cl,...,crp)

R
(@1, 5@q) (Brse s Bry)s -5 (V155 Vi) P

nry;...sfp
@) Fopr ik [

~ Z Z (@it - (@ndnsost, (b= (b (et - (ery ), X_? xif
= (@)t - (@gneat, B B (YO, - (i, i 1!

All of these functions are expresed through the Pochhammer symbols (x),, x € C and n € Ny,

(x)n =

F(x+n) Jx(x+1)---(x+n-1)ifneN,
I'(x) “l1ifn=0.

2. JACOBI-PINEIRO WITH p WEIGHTS: THE RECURRENCE COEFFICIENTS

The weight functions are

wi(x;a;) =x%, ie{l,...,p}, du(x) = (1 -x)Pdux, A =10,1],
with a1, ...,ap,,8 > —1 and, in order to have an AT system, a; — a; ¢ Z for i # j. The moments are
1
, rB+H'(a;i+k+1)

9 ai+k 1-— ﬁd — , k € Ny.

© /Ox (1-xy"dx Mo, +B8+k+2) € 5o

The Jacobi-Pifieiro polynomials of type I are, cf. [8],

Mg (@q +B+1ibn, — T(a; +8+]il)

PO (x;a1,....ap.B) = (1)1 i
P (x; a1 ap,B) =(-1) (n; — 1)! qlq;tz( ai)nqr(ﬁ+|”|)r(0‘i+1)

—-n; +1,ai+[3+|ﬁ|,{ai—aq—nq+1}q¢i‘
b

X F
(10) p+18p a; +1, {CZ,' —agt+ 1}q¢i

—

n;— _
— Cél),lxl’
=0
with

(-1l 1]_[(a + B+ i),
g=1 C(a; +B+n|) (=n;+1)(a; + B+ i) ﬁ (a,—aq_nq+1)l
L (B + i) (a; +1) INa; +1); @ —ag+D;
(ni - 1)' (a’q - a,-)nq
q=1,q#i

qg=1,q#i
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The monic Jacobi-Pifeiro polynomials of type II are, cf. [5, §3],

nj p

Pi(x;aq,...,ap,B) = Z e Z C,lzl ----- Ip i+t
L=0 lp:O
clole o (o)1l ﬁ (@g +Dn, (=ng, (@1 +B+n1+ D)4,
(11) i o1 (@g + B+ D), Ly (@1+ Vs

y (a1 +n1+Dpysegs, - (@p-1+np-1+1),
(a1 +p5+n1+ 1)12+...+1p s (ap_l +B+n1+--+ np-1+ l)lp

(@g+B+n1+ny+D)jyegg, - (@p + B+ + 1),

(g + 1)lg+---+l,, e (ap + 1)1,,

We will now endeavor to derive an explicit expression for the recurrence coefficients outlined in (3).
In doing so, our first step is to establish the following summation formula:

.....

p n

(@; +ni +m)py...41, ool _ (_qy il (B+1)5 P(ag —ai —ni —m+1),,

= (i +B+ni+m+)pp gy, " (a; +B+n;+m+1);

Proof- By substituting the previously defined type II coeflicients into the multiple sum, we can express it as:

AT (ag + D, & & (=np),  (-ng), (@itnitm)pe.y, (a1 +B+n1+ 1Dy,
(-1) 1—[ = . Z ..

+ B+ || +1),, = &= Ip! L' (ai+B+ni+m+1)y. .4, (a1 + D)yt
= -
y (aq +ny+ 1)[2+...+1p cee (Clp_l +tnp-1+ 1)1[) (a/Q +ﬁ +ny+n9+ 1)12+~~~+lp cee (ap +,B + |ﬁ| + 1)1p
(@1 +B+n1+D)pyns, - (@p1+B+ni+--+np1+1), (g + D)iypoont, - (ap + 1),
Xi(—nl)h (i+ni+m+log+--+1,), (a1 +B+m+1+la+---+1p)
= ' (ai+B+ni+m+1+la+---+1,), (a1 +1+b+---+1,),

=3Fy

—ny,@ptn;+mtlg+e+lp @y +p+ny+1+lg+-+p 1
aj+p+ni+m+ltlg+-+lp , a1 +1+lg+-+lp ’

Observing the summation labeled by /;, it becomes evident that it corresponds to a 3Fy hypergeometric
function, which adheres to the Pfaff-Saalschiitz formula

F -n,a,b, | (e=a)u(c=D)
2 e —ntra+b+l-c | (Onlc—a-b),

Thus, we can utilize this formula to determine

-ny,a+ni+m+ly+--+l,ar+B+n+1+hh+---+1
a+B+ni+m+1+lg+ -+l a1 +1+la+---+1,
3 B+ D, (@i =1 +n; —n1+m)y,
(i BrnitmAl+lot Al (a1 —ny—lo— =)

3k !
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Substituting the previous expression and clearing, we obtain:

(_1)|7,| ﬁ (O,’q + 1)nq (ﬁ + 1)”1 (a'l - —nj—m+ 1)”1 & L i (_np)lp L (_n3)l3
g1 (ag + B+ +Dp, (@i +B+n;+m+1)p (a1 + 1)y, = = [,! Iy!
(@i +ni +m)py4.a1, (g + B +n1+ny+D)jyp,
(i +B+ni+ny+m+1)py.4, (a2 + Dpgtoon,,

y (g +ng+ Dpgsenr, - (@p-1+np-1+1),
(alg +pB+ny+ng+ 1)13+...+1p s (a/p_l +B+n+--- tnp-1+ 1)lp

(@3 +B+n1+ny+ng+1) ey, (ap + B+ +1),

(@3 + D)jgaerr, - (ap + 1),

xi(_nz)b (ti+ni+m+lz+--+1p) (g +B+m+ng+1+l3+-+1,),
= I (ai+B+ni+ni+m+1+I3+---+1,), (g +1+1I3+---+1p),
=3 Fy —ng,@jtn;+m+lg++lp a9 +f+ny+ng+l+lz+--+lp 1

ajtp+nitny+m+ltlg+e+lp ,ag+l+ig++lp

Now, through a parameter change, we transform the current (p —1) multiple sum into an equivalent expres-
sion to the previous p multiple sum:

(n1,...,np) EN(’; — (ng,...,np) GNg_l,
(a1,...,ap) ER? = (ag,...,ap) e RP7L,
o — a;,
B— B+n.

Hence, by applying this procedure recursively, we can iteratively reduce all the sums, yielding:

(=1) /7 ﬁ (g +Dn, B+ (a1 —a;i —ni—m+1)y
g1 (ag + B+l + 1)y, (ai+B+n;+m+1)y (a1 +1)y

B+m+1y,(ag—a;—ni—m+1),, (B+m+--+np1+1),, (ap—ai—np—m+1),,
(i +B+ni+ni+m+1),,(ag+1),, (i +B+ni+m+-+np1+m+1), (ap+1),,

(B+1)5 ﬁ (ag —a;i—ni —m+1)y,,

= (=" =
(a; +B+n;i+m+1); (aq+ﬁ+|n|+1)nq

q=1

Equipped with this lemma, we are now prepared to establish that:

Theorem 2.1 (Explicit expressions for p weights Jacobi—Pifieiro’s recurrence coefficients). The Jacobi—Pifieiro
multiple orthogonal polynomials of type I, as expressed in (10), and type II, as defined in (11), each adhere to their
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respective nearest-neighbor recurrence relations, as outlined in (3), with respect to the coefficients:

bo(k)— (ax +nr +1) ﬁ (ax —ag +np+1)
i _(a/k+,8+nk+|fi|+2)q:1(ak—aq+nk+1—nq)
i (i +n)(ax + B +ny + i +1) M), (ai — ag +n;)
(12) (a; + B +n; + )o@ — ar — ng +n; — 1) Hq lqil( a/q+n,~—nq)’
d g+ B+l - j+1); i
= (el 4, [ | ot P ) itn)
( +ﬁ+|”| J+”q+ )] ieS(n, (az+,8+nl+|”| J)j+2

y M1} (i — ag +ni)

—— , Jje{l,...,p}.
[gesin.j),qri(@i —ag+ni —ng) [gesen, jy (g + B+ 11| = j +ng)

Proof. Substituting theJacobi—Piﬁeiro moments from (9) into the expressions (4) and (5), we obtain:

0k = cFome NN s L, TB+ D (ag+ng+lh+-+1,+2)
b (k) = n+e & Z Z C !
5L=0

; Clag+B+ng+lp+---+1,+3)
=0

np
@mi-1 N\ e L TB+DC(a;+ni+l+---+1,+1)
+ZC Z ZC
1

ri+e C(ai+p+ni+li+--+1,+2)

LB+ DI (ax +ni +2) o)k i o & (ax+nk+Dpaest, o
I'(ag +B+n;+3) n+eg = =0 (ax+B+ni+ 3)ll+“'+lp n

+ i F(ﬁ + 1)F(a/,~ +n; + 1)C(l~)’ni,1 i o e (@i +n; + 1)l1+---+l,, L

..... lp
i T(a;+p+ni+2) e e (@i +B+ni+2psq1, " ’
np
; ; rg+Hl(e;+ni+hLh+---+1,+1
b% — Z C,;l_)gnll Z Z ..... Iy (I’i (@ ll 1 l p2 )
ieS () J (gi+B+ni+lhi+--+1,+2)
n
Z F(ﬁ + DI (a; + I’l,‘2+ 1) fll)sn‘l Z Zp (@i +n; + 1)121+---+lp Cs ,,,,, lp, ie( o
ieS(m.j) (@i +f+ni+2) g (@i +B+ni +2)p41,
Now, we can utilize Lemma 2.1 to simplify the sums labeled by I1,...,1, as:
i i (@i +ni +m)p+...41, cloole (_1)|n| B+1Dx ﬁ (aq—ai—ni:m+1)nq
P (i +B+ni+m+1)pqy, " (a; +B+n; +m+1); - (ag + B+l + Dy,
and get

bg(k) _ (_1)|ii| B+ 1)lﬁl ﬁ (ag —ax —ng - 1)nq r'B+HI'(ag +n;+2) CEkl’nk
n (ax + B +ni +3)5 g1 (g +B+ il +1),, T(ax+p+ng+3) ni+ey

p » p - I i . . .
+ Z(—1)|"| (B + 1)|”| l_l ( (g — n’)”q C(B+DI'(a; +n; +1) C(l)’m_l

(a; +B+ni+ 2 ag+B+il+1),, Tl(ai+B+n+2) e’

b'r{t _ Z (_1)|n| ﬁ + 1)|n| ﬁ ( (aq —a; — ni)nq F(,B + l)F(ai +n; + 1) C(l'),ni*1

& (ai+B+n; + 2)|n| ag+B+il+1),, Tl(ai+B+n+2) A5’

for j € {1,..., p}. Finally, by substituting the type I coefficients from (10) and simplifying, we arrive at the
expressions given in (12). m|
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Let us now introduce the following notation:

(13) Q) ,Q1,Q2 ..., Ap, Apsls Api2s---s A2p 5 Apsls A2pe2, - - -
S~—— ~—— —— —_—— —— ——
=-1 =a+l =ag+l =aptl =42 =agt?

This enables us to express the step-line recurrence coefficients from (6) in a unified formula as follows:

Corollary 2.2 (Step line Jacobi—Pifeiro’s recurrence coeflicients). The Jacobi—Pifieiro type I, as given in (10),
and type II, as defined in (11), multiple orthogonal polynomials in the stepline, adhere to a recurrence relation of the
Jform (6) with respect to the coefficients.

(1 +B+(p+Dm+k+1—j) Brpm+k+1-));TI0_ (aq+B+pm+k+1-));

b] —
k= X
pm H(‘;J'p:}(“ g +B+(p+Dm+k-j) Hp+k+1(aq+ﬁ+(p+1)m+k+1 7,
Xp+k+1_j (a; +m) [1,- g1 (@i — g +m)
yas) ’
Py (@i+B+(p+1)m+k - J)]+2Hp+k:1q]¢z(a/i_aq)

forje{0,1,....,p},m>=0and k € {0,...,p—1}.

3. LAGUERRE OF FIRST KIND WITH p WEIGHTS: THE RECURRENCE COEFFICIENTS

In this case we have
wilx;a;) =e*x%, ie{l,...,p}, du(x) =dx, A = [0, ),

with a1, ...,a, > -1 and, in order to have an AT system, o; —a; ¢ Z for i # j.
The Laguerre of first kind multiple orthogonal polynomials can be obtained as a limit of the Jacobi—
Pifieiro polynomials. The type I are, cf. [8],

L&i)(x' ai,...,ap) = lim L(B + JiiD pl (x
" p=eo [10_ (g + B+ i), T (@i + B + |iil)

. ONES
ﬁl_r)r;o ﬁwﬁlnlp (ﬁ,al’.“’ap’ﬁ)
(14) (—1)lil-1

—-n; + 1, {(Yi — Qg — Ny + 1}q¢i .

(=D i(eg e, D@+ D)7 P i+ L {ai —ag+gs
B (—1)ll-1 (e +1) 1 ﬁ (a/l-—a/q —nq+1)1xl
(= DY (e — @, T(@i +1) £ e+ 40 g+l T
The monic type II polynomials are, cf. [5, §4],
ny p
Li(x;at,...,ap) = l}i_l}goﬂlﬁlPﬁ (%,al, .. .,ap,ﬂ) = Z e Z CS """ I xhto+p
(15) Lh=0  1,=0
C;Ll ..... b o (1)l 1—[ (g + D, (-n : ') : 1 (a1 +m+ Dy, - (@p-1+np-1+1),
g=1 ay + 1)ll+~~~+lp (ag + 1)lg+~~+lp T (a’p + 1)lp

Theorem 3.1 (Explicit expressions for p weights Laguerre of first kind recurrence coefficients). 7he Laguerre
of the first kind multiple orthogonal polynomials of type I, as described in (14), and type II, as defined in (15), each
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adhere to their respective nearest-neighbor recurrence relations, as outlined in (3), with respect to the coefficients:

k—a/q+nk+1)

b9%)=Q%+nk£ij (e
n gl (a'k _

ag+ng+1-ngy)

P p L )
(16) + Z (a (ai + l’l) qul(a’z aq + n,)

—ag —ng+n;—1) nq 1q¢l(ai—aq+ni—nq)’
i (a; +n;) Hp:1 (a; —ay +n;)
ieS(m.j) [ges(n.j).qzi(@i = ag +ni —ng)

Proof The corresponding limits described in (14) and (15), which establish the connection between the
Jacobi-Piiieiro and Laguerre of first kind multiple orthogonal polynomials, imply the recurrence coefficients
for the Laguerre polynomials can be obtained from the Jacobi-Pifieiro ones (12) just by applying the limit

lim g7, je{0,1,...,p}.
Lo n
This application is immediate and yields the aforementioned expression. m|
Now let’s mantain the previous notation in (13) to write the step line coefficients as:

Corollary 3.1 (Step line Laguerre of the first kind recurrence coefficients). The Laguerre of first kind multiple
orthogonal polynomials of type I, as in (14), and of type II, as in (15), in the step line satisfy a recurrence relation of
the form (6) respect to the coefficients

A e T (o g )

pm+k pt+k+1—j ’
i=k+1 Hq:k+1’q¢i (ai - a,q)

forje{0,1,...,p},m>0andk € {0,...,p—1}.

4. LAGUERRE OF SECOND KIND WITH p WEIGHTS: TYPE I POLYNOMIALS AND THE RECURRENCE

COEFFICIENTS
The weight functions for this family are
(17) wi(x;ci, ap) =x®e %, ie{l,...,p}, du(x) =dux, A = [0, ),
with ap > —-1,¢1,...,¢p > 0 and, in order to have an AT system, ¢; # c; for i # j. The corresponding

monic type II multiple orthogonal polynomials are, cf. [5, §4],
Li(x;5¢1,...,¢p,p) = lim (—t)lﬁlP,; (1 - );C;clt, .o Cpl, a/o)

(18)

q g

P (=ng),c.
= |7l 9’'a 4 I+---+l
= (D @0+ D Z Z (o + 1)l1+ +lp, U lg! “ "

4.1. Explicit Hypergeometric Expressions for the Type I polynomials. In [6, §8], we established for a
system with p = 2 weight functions that they can be represented by the following hypergeometric expression
in the form of a Kampé de Fériet series, as shown in (7):

- A +ng—1
(i) (x;c1, 9, p) = (-D™ l(nl +ny —2)! ap+ni+ng i Bl
(ny,ng) ¥ =52 72 (n1 — DV(ng = DT (o + 11 +ny) * éi — ¢y
o p2o0 | it Lao+ = ——((ci—éiei - (ei = Ci)
EEO | —pg —ng+2: ap+1;—— ¢ ’ ¢ ’




12 A BRANQUINHO, JEF DIAZ, A FOULQUIE, AND M MANAS

for i € {1,2}. Here we have defined ¢; := 6; 1¢2 + 6; 2¢1.
An extension of this result to an arbitrary number of weights is provided by a multiple Kampé de Fériet
series, as depicted in (8).

Theorem 4.1 (Explicit hypergeometric expressions for the type Laguerre of the second kind). The Laguerre
of second kind multiple orthogonal polynomials of type I are

@ (_1)ni_lclfto+|n| (o + |ii] - nj + l)nl——l p ¢y ng
b (510 ppa0) = (ni = DIT (o + i) [ ] :
n; T(ap + |1 goLgsi \Ca = Ci
FLOL 51 —ni +1:——{ng gz ci
X F1:0,05- 30 L (DU Lt D
Qo+ Inl n;+1: 5 5 Ci Cq q#i
(19) = .
3 (_1)”i_10?0+|"|(a/0 +|n| —n; + l)ni—l ﬁ ( cq )ml
(ni ~ D) ag + i) LY W Py
—1n;—-1-1 PRy [y SR " 14+l
< nlz n’z ! " IZ i (—n; + 1)ll+-~~+l,, i1 ! ﬁ (nq)l L
- x
h=0 Iy=0 1,=0 (a/O + |l’l| -n;+ 1)ll+---+lp ll' q=1,q#i l (Cl - Cq)lq ’

forie {1,...,p}, and can be obtained from the Jacobi—Pificiro polynomials (10) through the limit

(i) (_ )I”I ! (l)
(20) Lﬁ (x;¢15 ..., Cp, @) = lim ————

t—oo  paotlil n

(1—§c1t cpt,a/o), ie{l,...,p}.

Proof: We will divide the proof into two parts. Firstly, we aim to demonstrate that the polynomials defined
by the previous limit indeed correspond to the Laguerre of the second kind, type I polynomials. This can
be achieved by verifying that they satisfy the orthogonality conditions given in (1) with respect to the weight
functions outlined in (17).

The Jacobi-Pifieiro type I polynomials satisfy the orthogonality conditions
P 1 . -
i A 0, if k € {0,...,|n| -2},
x—lkPﬁl)x;a/,...,a, x%(1-x)Pdx =
[ e s a0 de= T
Under the change of variables
x—>1—);c, @; —cit, B — ao,
the previous expression becomes
1)ll-1 cit 0, if k € {0, ..., [ii| - 2},
Z/ k( ) p¥ (l—f;clt,...,cpt,a'o)xa" (1—)—6) dx = ! {# Il = 2}
raotli| i t t 1, if k =|n| - 1.

Now, our objective is to apply the limit as r — oo to both sides of the preceding equation. To ensure
that the limit can be interchanged with the integral, we need to establish that the modulus of the expression
within the integral is bounded by an integrable function for all # > 0.

On one hand, we have that

X \Cit
(1- ;) o) < e, >0, xeR*,
On the other hand, the polynomial

( 1)|n| -1 (l)

a0+ "

X
(1 -7 ;cit, . cpt,a/o)
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is bounded ¢ > 0 since the limit 1 — oo exists as we will show. So the expression is bounded and, by
Lebesgue’s dominated convergence, we can interchange the limit to get that

—1)lal-1 cit 0, if k 0,...,|a] -2},
Z/ XX hm( ) P(l)(l—);cclt cpt,a'o)limx“"(l—);c) dx:{ ! E{_, 1|n| }

t—oo  pagtlii| A t—00 1, if k =|n| -

:Léi) (x;¢15...,¢p, @) by definition =x%0 exp(—c;x)

Once we have proven this, the second part of the proof will consist on calculate such limit (20) to arrive
to mentioned expression (19).
Remember the Jacobi-Pifieiro type I polynomials are

g=1(@a *B+1An,  T(a; + p+ i)
(n; — 1)' 171 gz (@q — @idn, T(B+1ADT (2 +1)
y "‘Zl (=i + D (e + B+ D TT,_; i (i — g — g +1)lxl.
1=0 l'(al + 1)1 Hq =1 qil( i~ Qq + 1)1

PV (x;a1,...,ap.B) = (-1

Through the corresponding changes of variables we get

R _1)\Idl-1
() (4 (-1) p ( X, )
Lﬁ (x5¢1,...,Cp,p) = th_)nolo Py n 1 . ;C1, ..., Cpt,p
1 1 nlq’ 1(Cq[+a’O+ |ﬁ|)nq I'(cit +ag+ |ﬁ|)
= lim ' T
t—eo (n; — D) (o + |7]) raotlil T —Lq#i(cqt = Cil)n, I'(c;t+1)
% lZ (—I’li ;i- 1)1 (C,’l‘+a/0 + |I7i|)l ﬁ (C r— Cq —ng + 1)1 (1 B )_C)l
1=0 n (Cit + 1)1 g=1.q%#i —Cql + 1)1 t

We can use now Gauss’s hypergeometric formula

=0

bo(eh (O)n

to write the previous fractions within the sum as

(cit + g + i) Z (=D (o = |7] + 1),
(C t+1), kil(cit + 1)]([ ’

(cit —cqt —ng +1); _ i (=D, (ng)x,
(cit —cqt +1); kg'(cit —cqt + Dy,

which leads to

1 1 T (eqt + a0+ 1iDn, D(cit +ag + [7i])
’_"X’ (n; = DT (g + |71]) raotlnl Hp_l’qii(cqt = Cil)n, I'(cit+1)

(- nz +1)1 (D (—ao = il + Dy 1 < (=D, (ng)x, x\!
Z Z ki!(C,'l‘ + 1)ki l_l Z kq!(cit —Cql + 1)kq (1 B ?) ’

q=1,q#i kq=0

Lé’)(x; Cly...,Cp,Qp) =
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Note that the factors outside the sum behave asymptotically for t — oo as

ap+|i]-1 p ng
Ci q=1 Cq tni—l + 0 (tn,-—z)
(i = DT + 17D TI7_, i (cq — c)™

while the multiple sum has an asymptotic expansion for r — oo:

ni—1 ni_l_kl_"'_kp—l

1 (-ao— il + 1,
Z Z : (1) n|+ 1)k

... ki fe:
k1:0 kl,ZO kl. kp. Ci tkl
L (ngk, "5 (=n; +1) ! 1
q/Kq i 1 X
<[] s (1—-) +o|—].
gotqgei (Ci = cq)fatka ZZ(; i it t (f"")

The Pochhammer product (—I), - - - (—[)x, equals (=[)k+...+k, plus less order Pochhammer symbols, whose
contributions have been included within O t%)

Now Newton’s binomial formula leads to:
n;—1
O (—ni +1); x\!
D Dy (1-5)
1=0 )

ek, TG —1—-k1—---—k I
= (—1)k1+..,+kp(—ni + 1)k1+~~-+kp (1 _ );C) 1 P Z (fl; 1 p) (x )
1=0
kyte-+k ni—l-ky—-—k
= (—1)k1+---+kp(—ni + 1)k1+~~-+kp (1 _ {) 1 P (,E) 1 P '
t t
Replacing this sum in the previous expression we find the following asymptotic expansion for t — oo

1 S D S -
1 n'z: " 121 P (=n; + 1)k1+~~~+k,, (—ag — |n| + 1)k,~
it k1=0 kp=0 kale-kp! (—en)ki

p

y 1_[ (nq)kq (1 _ )_C)k1+--~+kp xni_l_kl_"'_kp +0 (i) ]

k .
g=l.gti (cqg —ci)ka t i

Combining the common factor with the sums we find that the whole expression behaves asymptotically for
t — oo as follows:

ap+|i|-1 p ng
¢ |7

-1 i=1=ky——kp_ =
i q=1 Cyq ’12 n 1Z p-1 (—n; + 1)k1+---+kp (—ag — || + 1)k[
(ni = DT (a0 + [7]) [10_ (e — )™ £ &2 kil kp! (—ci)ki
p
% l—[ (”lq)kq i1k ky (1 B )_C)k1+ +kp +0 (1) .
g-1,q#i (€a =€) g f
Now, is trivial to apply the limit # — co finding that
ap+it] -1 p 1 cgq
L(l)(x'cl ey Cpy ) = L 4=
=g > s~ P> -
i (ni =)o + 7D 117, i (cq — e
i1 ni-leki——kpo R
y Z Ly T Dy (oo il + 1y ﬁ LR —
Ve k! —c;)ki — )k
k1=0 kp=0 kile--kp! (—ci) g=l.q i (cqg —ci)ka
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A more convenient form of this limit one appears by the index changes k1 — n; —1-103, ki — ;-1 -1},
i €{2,...,p}. Hence, the sums transforms to desired expression (19). O

For p =2 and i € {1, 2}, the previous expression reads

@)

(n1,n.

(_1)ni—1(a,0 +7; + 1)n1—1 o aotning ( ¢ )n,' Fl:();l

) 5 €1 €2 00) = e )

where, ¢; = 8; 1c9+9; 2c1 and 7A; = §; 1hg + 0; 9n1 = n1 +ng —n; . This is not the expression found at [6, §8].
This leads us to the following hypergeometric formula connecting Kampé de Fériet series.

Corollary 4.1. Let ben;, ii; € N;x € R*; g > -1 and c;, ¢; > 0 with c; # ¢é; then

pro1| it 1:——;n;

1:0;0

—ni+l @+ 1= —— (e —éei - (ei—Gi)

A 2 A

N ~ n;i—1
(Ai)n; -1 ¢ P00
-n—ng+2:ap0+1;,— é; é;

(o + iy + Dp-1 \ i —ci 1:1;0

4.2. Explicit Expressions for the Recurrence Coefficients. Now, we will proceed to determine the cor-
responding recurrence coefficients:

Theorem 4.2. The Laguerre of the second kind multiple orthogonal polynomials, both type I as described in (19)
and type II as in (18), adhere to their respective nearest-neighbor recurrence relations, as depicted in (3), with respect
to the coefficients,

0/, ao+|i]+1 n;
Pk = = +Z‘ ,
(21) , ) = 0 ci—cq
1 - . 1 .
bl = (=) (ag + i - j+1); Y S [ o Jellph
ieS(n.j) €i  qese(nmj) 4

Proof. Utilizing either of the limits provided in the type I case (20) or type II case (18) over the corresponding
nearest-neighbor recurrence relation (3) for the Jacobi-Pifieiro polynomials, we deduce that the Laguerre
coefficients can be derived from the Jacobi—Pifieiro coefficients outlined in (12) through the following limit:

tli_)ngo(—t) (b%(k;clt, S Cplyag) — 1) ,

lim (=07 bl(ert,. . eptian), je{L....p}.

For the case where j > 0, applying this limit is straightforward and yields the previously mentioned
expression. Let’s take a moment to address the case when j = 0. Here, after the variable changes, the
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recurrence coefficients from (12) remain unchanged:

(e +D(cxt +mp +1) (ck —cg)t+np+1 ni(ct +ng) P (ck — cg)t +nk
(ckt +ag+ng + |7 +2) qzl;[;&k (ck—cg)t+ng+1—-ny B (ct +ag +nyg + |1|) qzl;][¢k (ck —cg)t +ng —ny
N 2 ni(cit +n;)(cxt + ap + ng + || +1) ﬁ (ci —cg)t +ny
i it Fao+ni+ie((ei —cr)t —me+ni =1) 34 o (i = cq)t+ni—ng
:(nk+1)(1— o+ il + 1 ) ﬁ (1+ "a )
crt+ag+ng + |n|+2 g-L.ak (ck —cg)t+ng+1-ny
_nk(l— @ + I ) [ (1+ i )
crt+ ag + ng + |n| g=L.ak (ck —cg)t +ng —ny
N P ni(cit +n;)(cxt + ag + ng + || +1) P (ci—cg)t+n;
iy (cit + o + i+ D2 ((ci = et = nic+ni = 1) g (ci—cgt+ni—ng

The components within the sum on the right-hand side behave for t — oo as:

- 1 1
L—+O —1,
ci(ci—cp)t ?

while the other two summands behave for t — oo as follows:

p

1 n ap+ |1 +1 1
(me+1D) 1+ - Z ¢ _ 2 ] +O(—2),
t gLtk Ck —Cq tck t
1 & ng o + |7 1
n|l+ - Z - +0(5),
t Ck —Cq tc t

q=1,q#k

respectively.
Combining all the summands and simplifying, we find that the entire expression behaves for  — oo as:

1[ao+il+1 & ony 1
1--|/—— =+ ZLl+0(=].
t( Ck ZC,’ 12

i=1
The limit now becomes immediate to apply, resulting in (21). O

In the step line this expression becomes:

Corollary 4.2 (Step line Laguerre of the second kind recurrence coefficients). The Laguerre of second kind

type I and II (18) multiple orthogonal polynomials in the step line satisfy a recurrence relation of the form (6) respect
to the coefficients

k
0 ap+pm+k+1 m+1 ’yom
bpm+k - ¢ + C: + : : ;’
k1 U s
and
k+1-j k p k
~ i1 _ m+1 ci—Cq m ci—Cq
bi}m+k=(_1)J (xog+pm+k—j+1); E 1 | | + E 1 | | 5
c J c
i=1 ¢ g=k+2-j 4 i=k+1 €;  g=k+2-j 4

forje{l,...,k}, while forj e {k+1,...,p}
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p+k+1—j k p
J j+1 . m Ci —Cq Ci—Cq
b =) (aw+pm+k—-j+1); E —| | | | .
pm+k J J+1 Cc c
i=k+1 C; g=1 94 g=p+k+2—j q

5. MurtipLE HERMITE WITH p WEIGHTS: TYPE I POLYNOMIALS AND THE RECURRENCE COEFFICIENTS
The weight functions for this family are
(22) wi(x;c;) = exp (—x®>+¢ix), ie{l,...,p}, du(x) =dux, A =R,

with ¢1,...,¢, € R, and for an AT system, ¢; # c¢; for i # j. The corresponding monic type II polynomials
are as follows (cf. [17, §23.5]):

P 11 P )l
(23) Hi(x;cn.... c,,>-(——) ]_[ D Zzlﬁ [ 152 e, 0,
=1 =0 1,=0 g=1 [ .cq

where H,, represents the usual monic Hermite polynomials,

L5] 2%
(24) H,(x) = Z( _pyk e ”')2”22,( : n € Np.

These can be obtained through the respective limits from the Jacobi-Piifieiro type II polynomials (11) and
the Laguerre of the first kind type II polynomials (15):

il
(25) Hﬁ(x;cl,...,cp)zégr;o(g\/g) n(x+\/\_/_“8 v enB... ﬂ+c,,\/E,ﬁ),

(26) Hj(x;¢1,...,¢cp) = lim ———— 1 — L; (@x +,8;,8+01\/;,...,,8+cp\/§).

7 ()

5.1. Explicit Expressions for the Type I Polynomials. In [6], we encountered difficulty in finding an
explicit expression for the Hermite type I polynomials for a system with p = 2 weight functions. Nonetheless,
here, we will advance further and demonstrate the following expression for a general number p > 2 of
weights:

Theorem 5.1. The Hermite multiple orthogonal polynomials of type I are

(-1)ni-1 olil-1 exp (—C—‘z)

27) HWY s PR =
(27) i ()C C1 CP) \/_(nz _1) I—Iq 1q¢,( cq)nq

-1 ni=1-l—-=lp_1
! ' e (=n; + 1)ll+---+l,, L (”lq)lq Ci\ g,
X Z e Z n l_l T L Hni_l_ll_"'_lp — X,
li! ey —ci)la 2
11:0 ZPZO q:l,qil q q i

fori e {1,...,p}, where H, represents the standard Hermite polynomials as defined in (24). These can be derived
from the Jacobi—Pifieiro polynomials (10) through the limit:

98 HD (x. ey, .. = i 1 E‘)(“‘/_ )
(26) i (L Cp) ﬁglg"(2\/3)|n'22ﬁ+c,f i\ 2vB Brap. . prepB.p

or from the Laguerre of the first kind polynomials (14) through the limit:

(29) Héi)(x; Cly...,Cp) = Blim (@)lﬁl Igﬁ”i\/g e P L(ﬁi) (\/%x +B,8+ C1\/§, LBt cp\/g).
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Proof. As in the previous section, we will divide the proof into two parts. Firstly, we will demonstrate that the
polynomials defined by both previous limits satisfy the orthogonality conditions with respect to the weight
functions (22), as outlined in (1). Let’s begin with the Jacobi-Pifieiro limit.

The Jacobi-Piiieiro type I polynomials adhere to the orthogonality conditions:

p 1 k . -

1 (i) ) 0, 1fk€{0,...,|l’l|—2},

-2 PV (x 0, ..., a0, B)x%(1-x)Pdx =

;_/0 (x 2) i (5L ap B =) {1, if k = |7 - 1.
Under the change of variables

1+ VB

H —

2\/3 . a/,-—>ﬂ+cl-\/E,

the previous expression transforms into:
B civB
de )0-5) 05
P ,B+c LB+ BB -—=]| [1+— dx
Z‘/ 2\/— |”| 225+c n 2\/_ 1\/— p\/_ ,8 \/B

o, ifkefo,..., il -2},
1, itk =i -

Now, our goal is to apply the limit as f — oo to both sides of the preceding equation. To ensure that the
limit can be interchanged with the integral, we need to establish that the modulus of the expression within
the integral is bounded by an integrable function for all § > 0. On one hand, we have:

B
On the other hand, the polynomial

1 pl) (x+ VB )
(2\/3)|ﬁ| 92B+ciVB Py 2VB ’B+Cl\/_ ﬁ"'cp‘/ﬁaﬂ ,

is bounded for all 8 > 0 since the limit § — oo exists, as we will demonstrate shortly.
Thus, the expression is bounded, and by Lebesgue’s dominated convergence theorem, we can interchange
the limit to obtain:

x2 ﬁ X Ll‘/B .
(1 B _) (1 ’ «/_/_3) I(_\gp) Sexp(=x*+cix), B>0, xeR.

dx

)Ci‘/,g

i -5
Z/ x Bh_r)rgo 2\/—)|n|223+mf i\ 2B B+ciVBs....B+cp\B.B Blglgo 1 5 1_,_\/3

] - 24
:Hé” (x;¢15enns ¢p ) by definition exp (—x7+ix)

o, ifkeqo,.... [ -2},
1, itk =7 -

The reasoning from the Laguerre limit follows a completely analogous path. The Laguerre of the first
kind type I polynomials adhere to the orthogonality conditions:

p oo . N
Z/ x =B LY (x;a1,...,ap)x% e * dx = 0. if k€ {0,....Ja] =2},
i J R 1, if k = |7i| - 1.

X = \2Bx+ 8, ai—>ﬁ+ci\/§,

Under the change of variables
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the previous expression becomes

Epl (Y " gprent o8 10| 2 B \F
k Breins 4B 7 () B B
121[ gx( 2,3) B \/>e Lﬁ ( 2ﬁx+ﬁ’ﬁ+cl\/;,---,ﬁ+cp 2)

B
.G B
2 2 0, if k € {0,...,|n| — 2},
X 1+4/= 1+4/= -V2Bx)dx =
Let’s expand

B k k
g X ex n ex N 1) “ — Xk ex X — x ( 1) “ \/_ k
R O o e B Y

to get

P o |7 B ) 3 \/E
k Beiy'y =B () B B
> [ () et (@B pecaBps )

]
b k
2 o (D2 if k i =23,
X|1+4[5x exp —x2+z( ) V2 xKldx= O’T 6{9’ il =2}
B k \/Bk‘z 1, if k = |ii| - 1.

k=3

Now, our goal is to apply the limit as 8 — oo to both sides of the preceding equation. Similar to the
previous case, we need to ensure that the modulus of the expression within the integral is bounded. On one
hand, we have:

i) el BT

9 et 2\ W )
=(1+\/;x) (1+\/;x) e I(_\/g’oo)Sexp(—x +c,-x), B>0, xeR.

On the other hand, the polynomial

(\/ﬁ)w ﬁﬁﬂ"ﬁ e P Lg) (\/ﬁx +B.5+ c1\/§, B cp\/g)

is bounded for all 8 > 0 due to the existence of the limit 8 — oo.
Hence, the expression is bounded, and by Lebesgue’s dominated convergence theorem, we can inter-
change the limit 8 — oo to obtain:

Z/ x glm )I I/gﬁ+ci\/§e—ﬁLg> (x/@x+ﬁ,ﬁ+c1\/§,...,ﬁ+cl,\/§)

B
c,-\/;
: : —1kH 0, ifke{0,....[i|-2
Xgi_lgo(1+\/;x) eXp(—xl+Z( ]3 \/; 3 k) dx:{l’ Tfkf|{*|’—1’|n| }
=3 VB , ifk=1i|-1.

Once we have established that the polynomials defined by both of these limits are the Hermite polynomials,
it is sufficient to compute either of them to obtain an explicit expression. Let’s consider, for example, the
Jacobi-Piieiro limit (28).
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Recall that the Jacobi-Pifieiro type I polynomials are:

Mg 1(% + B+ 11D, C(a; + B+ i)
(ni = D]y (g — @i)n, DB+ [ADT (2 +1)

" (ni+ Di(ai+ B+ D Ty (@i —ag —ng + 1)

PO (x;a1,...,ap.0) = (-1

x.
1=0 l'(a't + 1)1 Hq =1,q#i (al —ag+ l)l
Through the corresponding changes of variables, we obtain:
1 (1) (x + \/_
BB p+ep BB
VB e "\ VB ’
(=Dl G128 +cqVB+1ibn, 128+ civB+ i)

(n; —1)! (2\/_)“" 926+eiVB 1)1 441 (cqVB = ciVB)n, T(B+1ADT (B + ciVB+1)
Z (= nl +1)1 (2B + ciVB + i) ﬁ (ciVB = cqVB —ng +1); ()H\/E)l
B+ciVB+1) 0y (ciNB—cgVB+1) 2B |

Let’s reformulate the factors within the sum to a more convenient expression. Similar to the Laguerre of
the second kind limit, we can utilize Gauss’s hypergeometric formula:

-n,b, (=n)i (b1 — b)n
F = b N 9
’ 1[ ] Z (e (c)n e
to express the following fractions within the sum as:
(ciVB —cqVB —ng +1), _ L (=D, (ng)i,
(Ci‘/ﬁ_cq\/ﬁ"'l)l kq:()k (Cl‘/__CQ‘/_+1)

With the remaining Pochhammer fraction, we will need to engage in a bit more work. We will utilize the
Gauss summation formula twice, as well as Newton’s binomial formula for Pochhammer symbols

n

(a+b)y= ) (Z)(a»,_k(b)k.

k=0
By employing these methods, we find that:

(28 + ciVB +iil), Z( D)s(=B = |ii] + 1) Z(‘ )g( Ds(B+ ] = $)s
B+civB+1), s (B+ciVB+1), s'(B+ciVB+1),
LS (=Ds(— S)ki (Ci‘/__ |7 +1+S)ki

520 ki=0 stk (B+ciVB+1),,
11—k (Dot
= —1)5+ki Shs —ciAB + |7 — 2k; —
2 2 O gy, e 2),
=2y () (e Beliil=2k) L (=9)n
ki=0 k=0 (kl_k)'k' (ﬂ+C[\/B+1)ki =0 N '

—gl-k;—k
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So, substituting these expressions for the fractions within the multiple sum, we find:

" (=1)li-1 [, 2B+cqVB+1iDn,  T(28+ civB + ii])
H.’(x;c1,...,¢cp) = lim = > >
7 B (p; ~ 1)1 (2\/—)|"| 92B+¢; VB qul q#(cq\/B — CiVB)n, T(B+ 1T (B +ciVB+1)
(- n, +1)z K (= l)k i 27Kk (e VB 1l = 2Ki)y, g
Z Z);)( D — k)'k! (B+ciVB+1),

y ﬁ l (=D, (ng)s, (x " \/B)l
q=1,q%#i kg=0 kq! (Ci‘/B —cgVB+ 1)kq oINB |

Utilizing the asymptotic behavior of the gamma function fraction as § — oo, we have:

L(2B + ciVB + i) N 22ﬁ+cz'\/B+|ﬁ|—1eX ( 2(2\/—_6 ))
LB+ AT (B+ciVB+1) VAVB p VB .

The common factor behaves when 8 — oo as follows:

(=2)lil-1 1 _C?(Z\/ﬁ—ci) ni-1
\/_(nt -1! Hq -1 q;tl( Ci)nq P ( 8\/3 )\/IE

Upon performing the index change k; — k; — k, we find that the multiple sum possesses an asymptotic
expansion when f — oo:

n;i—1 ni—l-ky——kp_1 k 7[ p

(-1 1 1 (g,
Z Z Z Qk (k; —Qk)'k'\/_ ql_[ a)k

f1=0 kp=0 Lg#i kq'(ci — Cq)kq‘/ﬁ

I
Z( n,+1)z( Do, 2! (x;\/xléﬁ) +O(

!
The Pochhammer product (=), - - - (—=1)k, can be expressed as (=), +...+k, plus terms involving lower order

)

Pochhammer symbols, whose contributions are encapsulated within O (

Applying Newton’s binomial formula, we obtain:

( n,+1)l ] x+\/B)l
Z (Dot 2 (52

4 \/B)k1+...+kp ni_l—ki—:"‘_kp (l’li S R kp) (_X + \/B)l
VB = ! VB

ki+-+kp ni—l-ki—---—kp
= (1) (= + D (x+\/ﬁ) (i) .
(D" (=ni + Dyt NG N

= (=DM (—ny + Dy, (




A BRANQUINHO, JEF DIAZ, A FOULQUIE, AND M MANAS
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Substituting this sum into the previous expression, we derive the following asymptotic expansion when

B — oo
R TS RS S sl
A 2, D, o T 2 (G e
1= P=
P
P )
g=l,q#i kq!(ci = cq)ka VB"

Combining the common factor with the sums, we ascertain that the entire expression behaves asymptotically

as follows for 8 — co:
2|I7l|—1 eXP (——) I’l,z—ll n; lz: p—l( . 1) Cf.{i (_1)k 1
—n; kit++kp o
V(i = DTG g (€i = €)™ k=0 kp=0 T gk =t (ki =20tk
P (nq)k 1-k 1
q l—l][# '(cl - Cq)k \/B

Now, it is straightforward to apply the limit § — oo and find that

c?
0 P (_Tl)
HY 3CTy e e ey =
i (x Cc1 Cp) \/—(nl _1) Hq 1q¢z( ] cq)nq

HJ (-1)¥ 1

ni—1 ni=l-ky—-—kp_1 k
X Z e Z (—]’li + 1)k1+...+k l Z
9ki 2k o 1!
= Pt 2 o (k; — 2k)'K!
p
l_l (ng)k, (niml-ki=
— .
g=lg#i kg!(ci —cg)ta
A more convenient form of this limit emerges through the index changes k1 = n; —1-11, k; = ;-1 - ;
fori € {2,...,p}. Hence, the sums transform to:
l7il-1 i 1 1-4—--—I
- _Si i ni—1-lI—
(i) (- 1)"i_1 2 exp( 4) " X P (=n; +1)11+ +l, P (”q)lq
H'(x5¢1,...,¢p) = o — Z l—[ TR
Va(ni = DT, 1q¢l(ci —cq)" 155 I,=0 g=l.qui La*(cq = i)
ni—l—ll—---—lp
— “1-h——1, -2k
e PG W PICRR I Dy .
X Z ( 1) k! gni—1-h—--—Ip -
k=0 ’
=Hp—1-1y -1, (F) by (24)
O

5.2. Explicit Expressions for the Recurrence Coefficients. Now we are going to find the corresponding

recurrence coefficients
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Theorem 5.2. The Hermite multiple orthogonal polynomials of type I (27) and II (23) satisfy respective nearest-
neighbour recurrence relations of the form (3) respect to the coefficients

bY(k) = X, bh=gr 2om [ (ei-co. jefliph
2 ieS(n,j) qeS°(m,j)

Proof- Both limits (28) and (25) imply that the Hermite coefficients can be obtained from the Jacobi-Pifieiro
coefficients (12) through the limit:

,%L‘%o‘/ﬁ(gb% (k;ﬁ+c1\/ﬁ,...,/3+c,,\//§,/3) —1),
L}i_r)lgo(2\/ﬁ)j+lb£ (/3+c1\/ﬁ,...,,8+cp\//_3,,8), jed{l,...,p}

On the other hand, limits (26) and (29) imply that the Hermite coefficients can be obtained from the
Laguerre of the first kind coefficients (16) through the limit:

g 5 el venfs) o)
g%—mbé(ﬁ+c1\/§,...,ﬁ+cp\/§), je{l,....p}
(v25)

In both cases, the limit for j € {1,..., p} is straightforward to apply. Let’s consider the Jacobi-Pifieiro
limit for the case j = 0; the reasoning for the Laguerre limit is entirely analogous. Here, we observe that
the recurrence coefficients (12) remain unchanged after the variable changes

9B+2ciVB+ 2k +2 2 (ck —c)VB+nr+1
2ﬁ+ck\/,§+nk+|ﬁ|+2i:1’#k (ck —ci)VB+nr+1—n;

. 2B + 2ci\p + 2ny P (cx — ci)VB +ng
28+ ek VB +nk + il 3 oy (ck = c)VB+ng —n;

200 (k;,8+c1\/ﬁ,...,ﬁ+cp\/ﬁ,,3) = (nk +1)

+ i 2(B+ciVB+ni) (2B + ck VB +ni + |ii| +1) y ﬁ ci — ca) VB +n;
n;

S (2B+eiNBHni+liil)y ((ci—cVB-—me+mi=1) 40 (Ci—cq)\/ﬁ+ni—nq

_ cxVB +ny — || P n; )

_(nk+1)(1+2B+Ck\/ﬁ+nk+|ﬁ|+2)i:ll,—[i¢k(l+(Ck_Ci)\/B+nk+1—ni

VB + i — || ) . ( n )
- 1 1
nk( "9 + B + i + il -Hk " ek —coNB+nx—n

.\ i 2(B+ciVB+ni) (28 + ciVB +ni + || +1) y P (ci — cg) VB +n;
n; .
i=1.i%k (28 + ciVB +ni + |iil) o ((ci = c)VB = nx +n -1) g=1,q%i (ci = cg)NB+ni —ng

The components within the sum behave as follows when f — oco:

ni
(¢; = c)VB
while the other two summands behave as follows for § — oo, respectively
al 1 & o 1 Lol 1o m 1
e+ 1+ —— - — +0(—), —— - — +0|-=]|.
i a-a) Ol e e
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Combining all the summands and simplifying, we find that the entire expression behaves as follows for

B — oo
Ck 1 1
1+ ——+0
5570 l)
The limit now becomes straightforward to apply, yielding (21). ]

Remark 5.1. An instance of Theorem 5.2 can be observed in [3, Theorem 5] (also for p weights) where a unit
shift is applied to n;. Consequently, there is no general permutation or arbitrary index involved. Moreover,
the proof provided in [3] is solely for two weights.

In the stepline, this expression transforms to:

Corollary 5.2 (Step line multiple Hermite recurrence coefficients). The Hermite type I (27) and type II (23)
multiple orthogonal polynomials in the step line adhere to a recurrence relation of the form (6) with respect to the
coefficients

0 _ Ck+1
bpm+k_ 9
1 k+1-j
bpm+k 2] Z(m+1) l_[ (ci — Cq)+ Zm l—[ (C, q, jG{l,...,k},
qg=k+2—j i=k+1  g=k+2-j
) 1 p+k+1—j P
b;m+k 97 Z ml—[(cl_cq) l_[ (ci —cq)s jef{k+1,...,p}.
i=k+1 q=1 q=p+k+2—j

CONCLUSIONS AND OUTLOOK

In this paper, we present novel findings on explicit expressions for type I multiple Laguerre of the second
kind orthogonal polynomials for an arbitrary number of weights. These expressions are represented in
terms of multiple Kampé de Fériet series. Additionally, we derive explicit expressions for type I multiple
orthogonal polynomials of multiple Hermite families with an arbitrary number of weights. Furthermore,
we provide explicit expressions for nearest-neighbor and step line recursion coefficients for Jacobi-Pifieiro,
Laguerre of the first and second kinds, and multiple Hermite polynomials.

In future research, a pivotal goal lies in uncovering analogous hypergeometric expressions employing
multiple Kampé de Fériet functions for Hahn multiple orthogonal polynomials with p weights, along with
all their discrete descendants within the Askey scheme [5]. Such discoveries bear profound significance,
especially in applications where type I polynomials hold sway, as seen in Markov chains characterized
by transition matrices featuring p subdiagonals. These findings open up fresh avenues for delving into
the spectral properties of Markov chains endowed with p banded Hessenberg transition matrices. The
bidiagonal factorization discussed in [7] initially presented for the case of p = 2 warrants extension to
encompass scenarios where p > 2.
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