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Abstract. Double robustness (DR) is a widely-used property of estimators
that provides protection against model misspecification and slow conver-
gence of nuisance functions. While DR is a global property on the proba-
bility distribution manifold, it often coincides with influence curves, which
only ensure orthogonality to nuisance directions locally. This apparent dis-
crepancy raises fundamental questions about the theoretical underpinnings of
DR.

In this short communication, we address two key questions: (1) Why do
influence curves frequently imply DR "for free"? (2) Under what conditions
do DR estimators exist for a given statistical model and parameterization?
Using tools from semiparametric theory, we show that convexity is the crucial
property that enables influence curves to imply DR. We then derive necessary
and sufficient conditions for the existence of DR estimators under a mean
squared differentiable path-connected parameterization.

Our main contribution also lies in the novel geometric interpretation of DR
using information geometry. By leveraging concepts such as parallel trans-
port, m-flatness, and m-curvature freeness, we characterize DR in terms of
invariance along submanifolds. This geometric perspective deepens the un-
derstanding of when and why DR estimators exist.

The results not only resolve apparent mysteries surrounding DR but also
have practical implications for the construction and analysis of DR estima-
tors. The geometric insights open up new connections and directions for fu-
ture research. Our findings aim to solidify the theoretical foundations of a
fundamental concept and contribute to the broader understanding of robust
estimation in statistics.
MSC2020 subject classifications: Primary 62D20; secondary 62M99.
Key words and phrases: Double Robustness, Multiple Robustness, Estimat-
ing Function, Semiparametric Theory, Information Geometry.

1. INTRODUCTION

Double robustness (DR) has emerged as a critical prop-
erty of estimators in various fields, offering protection
against model misspecification and slow convergence of
nuisance functions. Despite its widespread use, the theo-
retical underpinnings of DR remain elusive, particularly
in understanding the connection between its local and
global properties. This raises two fundamental questions:
(1) Why do influence curves, which ensure orthogonality
to nuisance directions locally, often coincide with DR, a
global property? (2) Under what conditions do DR esti-
mators exist for a given statistical model and parameteri-
zation?

Addressing these questions is crucial for deepening our
understanding of DR and its application in practice. Exist-
ing work has explored DR estimators in various contexts
(Robins and Rotnitzky, 2001; Robins et al., 2008) but has
not fully resolved the apparent discrepancy between local
and global properties or provided a complete characteri-
zation of the existence of DR estimators.

In this paper, we tackle these questions head-on by
leveraging tools from semiparametric theory and informa-
tion geometry. Our main contributions are two-fold. First,
we show that convexity is the key property that enables
influence curves to imply DR, resolving the apparent dis-
crepancy between local and global properties. Second, we
provide necessary and sufficient conditions for the exis-
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tence of DR estimators under a mean squared differen-
tiable path-connected parameterization.

To strengthen the geometric interpretation, we intro-
duce novel concepts from information geometry, includ-
ing parallel transport, m-flatness, and m-curvature free-
ness. These tools allow us to characterize DR in terms
of invariance along submanifolds, providing new insights
into when and why DR estimators exist. This geometric
perspective deepens our understanding of DR and opens
up new connections and directions for future research.

Our findings have both theoretical and practical impli-
cations. Understanding the conditions for existence can
guide the construction of DR estimators and the choice of
parameterizations. The geometric interpretation offers a
new lens through which to view DR and its relationship to
other concepts in statistics. By solidifying the theoretical
foundations of DR, our work contributes to the broader
understanding of robust estimation and its application in
various fields.

The remainder of the paper is organized as follows.
Section 2 introduces the necessary background on DR and
semiparametric theory, setting the stage for our main re-
sults. Sections 3 and 4 present our findings on the role
of convexity and the existence of DR estimators, respec-
tively. Section 5 develops the geometric interpretation us-
ing information geometry, providing new insights into the
nature of DR. Finally, Section 6 discusses the implications
of our work and potential directions for future research.

2. BACKGROUND AND PROBLEM SETUP

Double robustness (DR) is a desirable property of esti-
mators that provides protection against model misspecifi-
cation and slow convergence of nuisance functions when
estimating scientific parameters. Formally, given n i.i.d.
samples, an estimator θ̂(γ1, γ2) of θ that relies on two
nuisance functions (γ1, γ2) is called doubly robust if
θ̂(γ̂1, γ̂2) is consistent for θ provided that either γ̂1 − γ1
or γ̂2−γ2 converges to zero in some metric, where γ̂1 and
γ̂2 are some sample-based functions.

For θ that can be estimated at a root-n rate, DR can
be further categorized into “model double robustness”
and “rate double robustness” (Chernozhukov et al., 2018;
Smucler, Rotnitzky and Robins, 2019; Rotnitzky, Smu-
cler and Robins, 2021). Model double robustness refers
to estimators that are asymptotically normal when either
of the parametric models for the nuisance functions is
correctly specified. Rate double robustness, on the other
hand, refers to estimators that are asymptotically normal
when the product of the error rates of the nuisance esti-
mators converges faster than root-n, even if they are esti-
mated nonparametrically.

Define a sample space Ω, an event space F , a state
space E , and some random mapping X . A random map-
ping can be a random variable, a random vector, a ran-
dom process, or a random field. We define P = {P} as

the collection of all possible distributions of X , that is,
the model. We use P and E as a probability law and
its expectation. We are interested in inferring a differ-
entiable parameter θ = θ(P) : P → Rk. A parameteriza-
tion γ(P) is a mapping from the probability space P to a
(semi-)metric space Γ. Since in this paper, we focus on
double robustness, all parameterizations considered are
“two-dimensional” γ(P) = (γ1(P), γ2(P)). Therefore in-
tuitively a parameterization acts as longitude and latitude
over the statistical manifold.

For a pathwise differentiable estimand, every regular
and asymptotically linear estimator is equivalent to an es-
timating function, up to some regularity conditions. To
sharp the focus, we hence concentrate on population-level
double robustness below. We formally define an adaptive
estimating function and its double robustness property as
follows:

DEFINITION 1 (Adaptive estimating function). A
possibly vector function D(θ, γ) of random mapping X ,
parameter of interest θ and possibly some nuisance func-
tion γ is called an estimating function of θ when it satis-
fies, for any P ∈ P

E{D(θ(P), γ(P))}= 0,

E{D(θ′, γ(P))} ̸= 0,

when θ′ ̸= θ(P) in a neighborhood of θ(P), and

E{D(θ, γ(P′))2}<∞.

We call γ a “nuisance function” and γ(P) over statis-
tical model a “parameterization”, though sometimes we
use these two names interchangeably. Formally, we can
define a population-level double robustness over an esti-
mating function:

DEFINITION 2 (Doubly robust estimating function).
An adaptive estimating function with variation indepen-
dent tuples (θ(P), γ1(P), γ2(P)) is doubly robust if it re-
mains unbiased provided that either one of the nuisance
functions is at the truth, that is,

E[D{θ(P), γ1(P), γ2}] = E[D{θ(P), γ1, γ2(P)}] = 0,

for any γ1 and γ2.

Note that this is global property along P . The following
examples illustrate the concept of DR in various settings:

EXAMPLE 1 (Partially linear model). Consider the
following partially linear model (Härdle, Liang and Gao,
2000)

Y = θ⊤A+ ω(L) + ε,
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whereX = (Y,A,L), ω is unknown and E(Y −θ⊤A|A,L) =
E(Y − θ⊤A|L). A and L are both exploratory variables
whilst A has linear effect and L is nonlinear. The model
is semiparametric since it contains both parametric and
nonparametric components. With appropriate causal con-
ditions (Robins and Rotnitzky, 2001; Vansteelandt and
Joffe, 2014), this model is also known as the structural
mean model and β can also be understood causally. The
estimating function

D{θ, γ1, γ2}= {d(A,L)− γ1(X)}{Y − θ⊤A− γ2(X)}

is doubly robust, where

γ1(P)(X) = E{d(A,L)|L},

and

γ2(P)(X) = ω(L).

We then proceed to the semiparametric odds ratio
model to show how double robustness can be absent under
one parameterization but present under a different param-
eterization.

EXAMPLE 2 (Odds ratio model, canonical parameter-
ization). Suppose we observe X = (Y,A,L), a binary
Y , binary A, and some covariates L. Consider the semi-
parametric conditional odds ratio model:

ψ(Y,A,L;θ) =
f(Y |A,L)f(y0|a0,L)
f(Y |a0,L)f(y0|A,L)

.

for some baseline point y0, a0, where ψ is a known func-
tion. We are interested in inferring θ. Suppose the parame-
terization is given by the canonical density decomposition

γ1(P)(X) = f(A|L),

and

γ2(P)(X) = f(Y |A,L),

Robins and Rotnitzky (2001) has shown that there does
not exist DR estimating function.

EXAMPLE 3 (Odds ratio model, another parameteriza-
tion). Continuing Example 2, however, consider a dif-
ferent parameterization by

γ1(P)(X) = f(Y |a0,L),

and

γ2(P)(X) = f(A|y0,L),

Chen (2007) has shown that all influence curves are dou-
bly robust in this case. See more discussion in Tchet-
gen Tchetgen, Robins and Rotnitzky (2010) as well.

EXAMPLE 4 (Average treatment effect). Suppose we
observe X = (Y,A,L) where Y is an outcome of inter-
est, A is the treatment, and L are baseline covariates that
ensure there is no unmeasured confounding. We are in-
terested in the average treatment mean on one treatment
arm

θ = E{E(Y |A= a,L)}.

The estimating function

γ2(X)(Y − θ)

− γ2(X){γ1(X)− θ}

+

∫
γ1(X)d1(A= a)− θ,

is doubly robust, where

γ1(P)(X) = E(Y |A,L),

and

γ2(P)(t,X) =
1(A= a)

P(A|L)
.

See Hernán and Robins (2020) for details.

2.1 Semiparametric theory and influence curves

Semiparametric theory (Newey, 1990; Bickel et al.,
1993; Van der Vaart, 2000; Bickel and Kwon, 2001; Tsi-
atis, 2006; Kosorok, 2008) focuses on first order behav-
ior of the estimand geometrically. By informally treating
the statistical model P as a differential manifold and the
parameter of interest θ(P) as a differentiable mapping to
some Euclidean space, the semiparametric theory oper-
ates by computing the tangent space TP(P) at each point
P. For any point P ∈ P , this is computed by exhausting
all possible regular parametric submodels, that is, para-
metric submodels containing P. In fact, one may define
the tangent space for any submodel M⊂P as

TP(M) = clspan
({
S(X) ∈ L2

0(P) : Pt ∈M
})
.

A important concept is convexity, which gives an explicit
form of the tangent space:

LEMMA 1. When a model M is convex, the associ-
ated nuisance tangent space at each law P ∈M is

TP(M) = clspan
{

dP′

dP
(X)− 1 : P′ ∈M

}
.

With θ(P) defined, one may define the nuisance tangent
space NP(M) at each point P by

NP(M) = clspan
({

S ∈ TP(M) :
dθ(Pt)

dt

∣∣∣∣
t=0

= 0

})
.
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FIG 1. The tangent space TP(M), the nuisance tangent space

NP(M), and the orthogonal complement NP,⊥
P (M) for a model M.

The tangent space together with the inner product struc-
ture upon it makes the statistical model a Riemann man-
ifold unofficially. The understanding of the tangent space
enables one to compute the first-order derivative of a pa-
rameter of interest. The set of pathwise derivatives of the
parameter can be identified by the orthogonal comple-
ment of the nuisance tangent space by Riesz’s lemma.
The estimating function suggested by the pathwise deriva-
tives is also called the influence curve, which informally
is equal to zero first-order Taylor expansions against nui-
sance functions.

DEFINITION 3 (Influence curve). An influence curve
IC(P) ∈ L2

0(P) is a Riesz representer for the pathwise
derivative of the parameter of interest, that is, for any
parametric submodel {Pt} and its corresponding score
S(X)

dθ(Pt)

dt

∣∣∣∣
t=0

= E{IC(P)S(X)}.

Any IC lies in the orthogonal complement of the nui-
sance tangent space, that is IC ∈ N P,⊥

P (P). See Figure
1 for a geometric view of the tangent space TP(M), the
nuisance tangent space NP(M), and the orthogonal com-
plement N P,⊥

P (M) for a model M. The efficient influ-
ence curve (EIC) is the unique IC with the minimum L2

length. As we see in the examples, there are lots of cases
when influence curves are indeed doubly robust or at least
inspires DR estimating functions.

2.2 Problem formulation

We now formally state the two key questions we aim to
address in this paper:

1. Why do influence curves frequently imply DR “for
free”?

2. Under what conditions do DR estimators exist for a
given statistical model and parameterization?

The first question arises from the observation that in-
fluence curves, which ensure orthogonality to nuisance di-
rections locally, often coincide with DR estimators, which
have a global robustness property. The second question
seeks to characterize the necessary and sufficient condi-
tions for the existence of DR estimators, given a model
and parameterization.

In the following sections, we tackle these questions us-
ing tools from semiparametric theory and information ge-
ometry, providing new insights into the theoretical under-
pinnings of DR.

3. CONVEXITY AND DOUBLE ROBUSTNESS

In this section, we investigate the role of convexity
in enabling influence curves to imply double robustness
(DR) without additional conditions. We first introduce the
concept of a section, which captures the subset of the
model where one nuisance function remains fixed.

DEFINITION 4 (Section). The section of γ1() at P is
defined as

M1(P) = {P′ ∈M : θ(P′) = θ(P), γ2(P′) = γ2(P)}.

Likewise, one can define M2(P). Quick observations:

1. P ∈M1(P);
2. For any P′ ∈ M1(P) and any doubly robust esti-

mating function D(θ, γ1, γ2),

E[D{θ(P′), γ1(P′), γ2(P′)}]

= E[D{θ(P), γ1(P′), γ2(P)}] = 0,

also

E′[D{θ(P), γ1(P′), γ2(P)}]

= E′[D{θ(P′), γ1(P′), γ2(P′)}] = 0;

3. For any P′ ∈M1(P), M1(P′) =M1(P);
4. for any parametric submodel passing through M1(P),

the corresponding score lies in the nuisance tangent
space NP(M) because θ(P) remains unchanged
within M1(P).
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We now state a key proposition that characterizes the or-
thogonality of a DR estimating function to the nuisance
tangent space of a section.

PROPOSITION 1. For any P′ ∈M1(P) and any dou-
bly robust estimating function D(θ, γ1, γ2),

D{θ(P), γ1(P), γ2(P)} ⊥ S(X),

at law P′, for any S(X) ∈ TP′(M1(P′)) = TP′(M1(P)).
Therefore,

D{θ(P), γ1(P), γ2(P)} ∈ T P,⊥
P′ (M1(P)),

where T P,⊥
P′ (M1(P)) is the orthogonal complement of

TP′(M1(P)) at law P. Moreover,

D{θ(P), γ1(P), γ2(P)} ∈ ⋂
P′∈M1(P)

T P′,⊥
P′ (M1(P))

⋂ ⋂
P′∈M2(P)

T P′,⊥
P′ (M2(P))

 .

The proposition can be seen as a generalization of
the necessary theorem outlined by Robins and Rotnitzky
(2001, Lemma 1). This proposition establishes that a DR
estimating function is orthogonal to the nuisance tangent
space, not just at the true distribution P, but at any dis-
tribution P′ within the section. This orthogonality prop-
erty holds for both sections M1(P) and M1(P). We now
present our main result, which shows that convexity of the
sections is sufficient for an influence curve to be doubly
robust.

THEOREM 1. When the sections M1(P) and M2(P)
are convex, any influence curve D(θ, γ1, γ2) is doubly ro-
bust.

The proof of this theorem relies on the orthogonality
property established in Proposition 1 and the fact that con-
vexity allows us to construct a parametric submodel con-
necting any two distributions within a section. Along this
submodel, the pathwise derivative of the expected esti-
mating function vanishes, implying double robustness.

The geometric intuition behind this result is that con-
vexity ensures that the nuisance tangent space remains
unchanged as we move along the section. This invariance,
combined with the orthogonality of the influence curve to
the nuisance tangent space, enables the global robustness
property of double robustness.

Theorem 1 answers to our first question, showing that
convexity is a sufficient condition for influence curves to
imply double robustness "for free." In the next section,
we will explore necessary and sufficient conditions for the
existence of DR estimators under more general settings.

4. EXISTENCE OF DOUBLY ROBUST ESTIMATING
FUNCTIONS

In this section, we investigate the necessary and suffi-
cient conditions for the existence of doubly robust (DR)
estimators under a given parameterization. We intro-
duce the concept of mean squared differentiable path-
connectedness, which generalizes the convexity condition
from the previous section.

DEFINITION 5 (Mean squared differentiable path-con-
nected model). A model M is called mean squared dif-
ferentiable path-connected if, for any pair P, P′ ∈ M,
there exists a curve Pt ⊂M such that P0 = P and P1 = P′

and mean squared differentiable at each point Pt.

DEFINITION 6 (θ-connected parameterization). A pa-
rameterization γ(P) is called θ-connected if the sections
M1(P) and M2(P) are mean squared differentiable path-
connected.

We now state our main result, which provides necessary
and sufficient conditions for the existence of DR estima-
tors.

THEOREM 2. An adaptive estimating functionD(X,θ, γ)
is doubly robust under a mean squared differentiable
path-connected parameterization γ if and only if for any
P ∈M,

D(X,θ, γ) ∈ ⋂
P′∈M1(P)

T P′,⊥
P′ (M1(P′))

⋂ ⋂
P′∈M2(P)

T P′,⊥
P′ (M2(P′))

 .

Theorem 2 provides a complete characterization of the
existence of DR estimators under a given parameteriza-
tion. The necessary and sufficient condition requires the
estimating function to be orthogonal to the nuisance tan-
gent spaces of both sections, not just at the true distribu-
tion, but at all distributions within the sections.

The geometric intuition behind this result is that the
path-connectedness of the sections allows us to “move”
between any two distributions within a section while pre-
serving the orthogonality of the estimating function to the
nuisance tangent spaces. This global orthogonality prop-
erty is equivalent to double robustness.

Theorem 2 answers our second question and provides a
powerful tool for determining the existence of DR estima-
tors in practice. By checking the orthogonality condition,
we can easily verify whether a given estimating function
is doubly robust under a specific parameterization.

In the next section, we will explore the geometric as-
pects of double robustness in more depth, using tools
from information geometry to gain further insights into
the structure of the statistical model and the properties of
DR estimators.
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5. GEOMETRIC UNDERSTANDING BY INFORMATION
GEOMETRY

Semiparametric theory only concerns the local prop-
erty of the statistical model manifold and estimand, for
instance, it only operationalizes over one tangent space at
one point at a time. On the other hand, double robustness
is a global property along certain curves over the statis-
tical manifold. Therefore, intuitively we need some tools
to operate globally to investigate relation among tangent
spaces at different points. In this section, we deepen our
geometric understanding of double robustness (DR) by
leveraging tools from information geometry.

Information geometry (Amari and Kawanabe, 1997;
Amari and Nagaoka, 2000; Amari, 2016; Ay et al., 2017)
leverage global differential geometry theory onto the sta-
tistical manifold P . For more elaborate introduction on
information geometry, see appendix.

We begin by introducing the concepts of e-parallel
transport and m-parallel transport, which are two types
of parallel transport that are commonly used in informa-
tion geometry, allowing one to “move” along curves on
the statistical manifold.

DEFINITION 7 (E-parallel transport). The e-parallel
transports of a vector D(x) from TP(M) to TP′(M) is
defined as

e∏
P→P′

D(x) =D(x)−E′{D(X)}.

DEFINITION 8 (M-parallel transport). The m-parallel
transports of a vector D(x) from TP(M) to TP′(M) is
defined as

m∏
P→P′

D(x) =
dP
dP′ (x)D(x).

These two parallel transports are dual with respect to
the Riemann metric (or inner product), that is,

⟨D1,D2⟩P =

〈
e∏

P→P′

D1,

m∏
P→P′

D2

〉
P′

.

These parallel transports are dual with respect to the
Fisher information metric and preserve the inner product
between vectors. Figure 2 provides a visual illustration of
these concepts.

𝑇ℙ(ℳ)

𝑇ℙ(ℳ)𝑇ℙ!(ℳ)

𝑇ℙ!(ℳ)

ℳ′
ℙ

ℙ′

e- and m-parallel transports !
ℙ"→ℙ

#

𝐷$

!
ℙ"→ℙ

%

𝐷&

𝐷&

𝐷$

FIG 2. A graphical illustration of e- and m-parallel transports. These
two dual transports keep the inner product of a pair of vectors. In
particular, as shown in the graph, two perpendicular vectors (D1,D2)
will remain to be perpendicular after transportation.

We now establish a key result connecting e-parallel
transport and double robustness.

PROPOSITION 2. An estimating function D(θ, γ1, γ2)
is doubly robust if and only if it remains e-parallel trans-
port invariant along sections M1(P) and M2(P).

The proof of this proposition relies on the properties
of e-parallel transport and the variation independence of
the nuisance functions. Proposition 2 provides a geomet-
ric characterization of DR estimators in terms of their in-
variance under e-parallel transport.

with m-parallel transport, Theorem 2 leads to the fol-
lowing corollary.

COROLLARY 1. An adaptive estimating functionD(X,θ, γ)
is doubly robust under a mean squared differentiable
path-connected parameterization γ if and only if for any
P ∈M,

D(X,θ, γ) ∈ ⋂
P′∈M1(P)

{
m∏

P′→P

TP′(M1(P))

}P,⊥


⋂ ⋂
P′∈M2(P)

{
m∏

P′→P

TP′(M2(P))

}P,⊥
 .

See Figure 3 for a geometric view of the above state-
ments.



DEEPENING THE UNDERSTANDING OF DOUBLE ROBUSTNESS GEOMETRICALLY 7

𝑇ℙ(ℳ)

𝑇ℙ(ℳ)𝑇ℙ!(ℳ)

𝑇ℙ!(ℳ)

ℳ
ℙ

ℙ′

𝒩ℙ"(ℳ) 𝒩ℙ(ℳ)

%
ℙ"→ℙ

#

𝒩ℙ"(ℳ)𝐷 = %
ℙ→ℙ"

$

𝐷 𝐷

FIG 3. E-parallel transport of an estimating function and m-parallel
transport of the nuisance tangent space.

This corollary provides an alternative characterization
of DR estimators in terms of the orthogonality of the es-
timating function to the m-parallel transported nuisance
tangent spaces.

Amari and Kawanabe (1997) investigated the existence
of an estimating function (without nuisance function) un-
der a semiparametric model. They introduced the con-
cepts of m-flatness and m-curvature freeness, which cap-
ture the behavior of the nuisance tangent spaces under m-
parallel transport, to enrich geometric understanding of
their topic. Here we generalize these concepts to under-
stand double robustness.

DEFINITION 9 (M-flat parameterization). A model P
with a variation independent parameterization (θ, γ1, γ2)
is called m-flat if

m∏
P′→P

TP′(Mj)⊂ TP(Mj),

for any P′ and j = 1,2.

Intuitively, m-flatness requires that TP′(Mj) remains
barely changed (within TP(Mj)) under a m-parallel
transport. The convexity of Mj indeed implies m-flatness.

DEFINITION 10 (M-curvature free parameterization).
A model P with the a variation independent parameter-
ization (θ, γ1, γ2) is called m-curvature free if

EIC ∈

{
m∏

P′→P

TP′(Mj)

}P,⊥

,

P′ and j = 1,2.

M-curvature freeness is weaker than m-flatness as
EIC(P) ∈ NP(P)P,⊥ ⊂ {

∏m
P′→PNP′(P)}P,⊥ when m-

flatness holds. Intuitively m-flatness says that {
∏m

P′→P TP′(Mj)}⊥
contains TP(Mj) whilst m-curvature freeness weakens
this argument but still requires the most efficient direc-
tion EIC is still contained in {

∏m
P′→P TP′(Mj)}⊥. We

show that m-flatness and m-curvature freeness are suffi-
cient conditions for the existence of DR estimators.

COROLLARY 2. When a mean squared differentiable
path-connected parameterization (θ, γ1, γ2) is m-flat, any
influence functions are doubly robust.

COROLLARY 3. When a mean squared differentiable
path-connected parameterization (θ, γ1, γ2) is m-curvature
free, the efficient influence curve is a doubly robust esti-
mating function.

These corollaries highlight the role of the geometry of
the nuisance tangent spaces in determining the existence
of DR estimators. In particular, they show that certain
“nice” geometric properties, such as m-flatness and m-
curvature freeness, are sufficient for the existence of DR
estimators.

The information geometric perspective developed in
this section provides a deeper understanding of the global
structure of the statistical model and the properties of DR
estimators. By studying the behavior of estimating func-
tions and nuisance tangent spaces under parallel transport,
we gain new insights into the geometric nature of double
robustness.

6. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we have deepened the geometric under-
standing of double robustness (DR) by leveraging tools
from semiparametric theory and information geometry.
Our results provide new insights into the theoretical un-
derpinnings of DR and the conditions for the existence of
DR estimators.

We have shown that convexity of the sections of the sta-
tistical model is a sufficient condition for influence curves
to imply DR “for free,” resolving the apparent discrep-
ancy between the local and global robustness properties of
DR estimators. We have also provided necessary and suf-
ficient conditions for the existence of DR estimators under
a θ-connected parameterization, characterizing the global
orthogonality properties of DR estimating functions.

Furthermore, we have introduced novel geometric con-
cepts, such as m-flatness and m-curvature freeness, which
capture the behavior of the nuisance tangent spaces under
parallel transport. These concepts provide a deeper un-
derstanding of the global structure of the statistical model
and the geometric properties that enable the existence of
DR estimators.
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Our findings have both theoretical and practical impli-
cations. From a theoretical perspective, our results con-
tribute to the foundational understanding of DR and high-
light the importance of geometric considerations in the
study of robust estimators. The geometric characteriza-
tions we provide can serve as a basis for further investi-
gations into the properties and behavior of DR estimators
in different settings.

From a practical perspective, our results can guide the
construction of DR estimators and the choice of param-
eterizations in applied settings. The necessary and suffi-
cient conditions we establish can be used to check the
existence of DR estimators for a given statistical model
and parameterization, informing the development of ro-
bust inference procedures. The geometric insights we pro-
vide can also aid in the design of more efficient and stable
estimators by taking into account the structure of the sta-
tistical model.

One promising direction for future research is to ex-
plore the implications of our geometric characterizations
for the design of adaptive estimators that can achieve DR
without explicit knowledge of the nuisance functions. De-
veloping data-adaptive methods that can exploit the ge-
ometric structure of the statistical model to achieve DR
could have significant practical impact in settings where
the nuisance functions are difficult to estimate or specify.

In conclusion, this paper provides a deepened under-
standing of double robustness by leveraging tools from
semiparametric theory and information geometry. We
have resolved the apparent discrepancy between the lo-
cal properties of influence curves and the global prop-
erties of doubly robust estimators, showing that convex-
ity is the key condition that enables this connection. We
have also characterized the necessary and sufficient con-
ditions for the existence of doubly robust estimators under
a mean squared differentiable path-connected parameteri-
zation. Furthermore, our novel geometric perspective, us-
ing concepts such as parallel transport, m-flatness, and m-
curvature freeness, sheds new light on the structure of the
statistical model and the properties of doubly robust es-
timators. These insights not only advance the theoretical
understanding of double robustness but also have practi-
cal implications for the construction and analysis of ro-
bust estimators in various fields. We hope that our work
will inspire further research at the intersection of semi-
parametric theory, information geometry, and robust es-
timation, ultimately contributing to the development of
more reliable and efficient statistical methods.

ACKNOWLEDGMENTS

The author would like to thank Jiangang Ying, Cong
Ding for countless discussions. The author would also
like to thank Eric J. Tchetgen Tchetgen for inspiration
of this idea. The author would like to acknowledge the

helpful discussions and insights gained through interac-
tions with the Claude AI assistant, which contributed to
refining the presentation of this work.

APPENDIX A: AN INTRODUCTION TO INFORMATION
GEOMETRY

There is a long history of studies on geometry of man-
ifolds of probability distributions. C.R. Rao is believed
to have been the first who introduced a Riemannian met-
ric by using the Fisher information matrix (Rao, 1945),
which is a monumental work from which information
geometry has emerged. Later, Efron (1975) investigated
old unpublished calculations by R.A. Fisher and eluci-
dated the results by defining the statistical curvature of
a statistical model. This work was commented on by A.P.
Dawid in discussions of Efron’s paper, where the e- and
m-connections were suggested. Following Efron’s and
Dawid’s works, Amari (1982) further developed the dif-
ferential geometry of statistical models and elucidated its
dualistic nature. It was applied to statistical inference to
establish a higher-order statistical theory (Amari, 1982,
1985; Kumon and Amari, 1983). Since then, informa-
tion geometry has become widely known and a num-
ber of competent researchers have joined from the fields
of statistics, vision, optimization, machine learning, etc.
Many international conferences have been organized on
this subject.

In differential geometry, affine connection and the cor-
responding parallel transport are tools to move tangent
vector between tangent spaces. Note that there is a unique
natural affine connection on a Riemann manifold that
is torsion-free and respects the inner product structure,
called the Levi-Civita connection (or Riemann connec-
tion), which usually is the only connection geometricians
are concerned about. However, researchers of informa-
tion geometry are typically interested in other torsion-
free connections that do not respect the inner product
structure. We adopt the e-connection and its dual, the m-
connection because it turns out that the corresponding e-
parallel transport has a natural connection with double ro-
bustness. For estimating function related studies, it takes
a further step investigating global property by construct-
ing parallel transport from affine connection on fibre bun-
dles. Geometrically, parameterization is simply a way of
expressing curves along manifold and doubly robust es-
timating functions are orthogonal to the nuisance tangent
space parallelly transported along two kinds of curves. In-
deed, many statistical models commonly considered are
flat manifolds, meaning that the nuisance tangent space
remains unchanged along parallel transport, which equal-
izes nuisance tangent space and nuisance fibre space and
therefore an influence function becomes doubly (or dou-
bly) robust.
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Though general infinite-dimensional statistical models
do not admit a formal manifold structure (unless with map
into complex Banach spaces), certain concepts can still
be carried over from differential geometry. The Hilbert
space L2

0(P) associated at every point P has informally
given the statistical model the Riemann manifold struc-
ture. (P,L2

0(P)) together is called a fibre bundle. We
may compute the tangent space associated with M called
TP(M) at each point P, (M, T (M)) is called a tangent
bundle. This has given the nuisance tangent sub-bundle
(M,N ). N (P)⊥ is the orthogonal complement of the
nuisance tangent space. A section of a vector bundle is
called a vector field. An adaptive estimating equation is a
vector field that has non-trivial directions along θ, that is,
E{D(P)|N⊥(P)} ̸= 0, for every P.

APPENDIX B: PROOFS

Proof of Lemma 1

For any P′ ∈ M, by convexity of M, the parametric
submodel {tP′+(1− t)P}t∈[0,1] ⊂M, then

dP′

dP
(X)− 1 = lim

t→0

tP′+(1− t)P−P
tP

is in TP(M). Now since P′ ∈ M is arbitrary, we have
proved the proposition.

Proof of Theorem 1

First, an immediate implication for the influence curve
is

D{θ(P), γ1(P), γ2(P)} ∈ T P,⊥
P (M1(P))

⋂
T P,⊥
P (M2(P)).

That is,

E
[
D{θ(P), γ1(P), γ2(P)}

{
dP′

dP
(X)− 1

}]
= E′

[
D{θ(P), γ1(P), γ2(P)}

{
dP
dP′ (X)− 1

}]
= 0.

Therefore,

D{θ(P), γ1(P), γ2(P)} ∈ T P′,⊥
P′ (M1(P)).

Define g(t) = Et[D{θ(P′), γ1(P′), γ2(P′)}], where Pt :=
(1− t)P′+tP. Therefore

dg(t)

dt
= Et

[
D{θ(P′), γ1(P′), γ2(P′)}S(X)

]
= 0,

since

S(X) ∈ TPt
(M1(P)).

By ODE theory, we have g(1) = E[D{θ(P′), γ1(P′), γ2(P′)}] =
E[D{θ(P), γ1(P′), γ2(P)}] = 0 and hence doubly robust.

Proof of Theorem 2

“If” part: for any P′ ∈M1(P), define g(t) = Et[D{θ(P′), γ1(P′), γ2(P′)}],
where Pt := (1− t)P′+tP. Therefore

dg(t)

dt
= Et

[
D{θ(P′), γ1(P′), γ2(P′)}S(X)

]
= 0,

by the condition and the fact that

S(X) ∈ TPt
(M1(P)),

By ODE theory, we have g(1) = E[D{θ(P′), γ1(P′), γ2(P′)}] =
E[D{θ(P), γ1(P′), γ2(P)}] = 0 and hence doubly robust.

“Only if” part follows from Proposition 1.

Proof of Proposition 2

We only need to show for γ1. γ2 is symmetric. “If”
part: for any γ1, because of variation independence, we
can find P′ ∈ M1(P) such that γ1(P′) = γ1. Also since
D(θ, γ1, γ2) is e-parallel transport invariant along the sec-
tion M1(P), that is,

D{θ(P′), γ1(P′), γ2(P′)}

=

e∏
P′→P

D{θ(P′), γ1(P′), γ2(P′)}

=D{θ(P′), γ1(P′), γ2(P′)} −E[D{θ(P′), γ1(P′), γ2(P′)}],

implying E[D{θ(P′), γ1(P′), γ2(P′)}] = 0. We have

E[D{θ(P), γ1, γ2(P)}]

= E[D{θ(P), γ1(P′), γ2(P)}]

= E[D{θ(P′), γ1(P′), γ2(P′)}] = 0.

“Only if” part is trivial.
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